JP4229526B2 - Hydrogen supply system for equipment using hydrogen as fuel - Google Patents

Hydrogen supply system for equipment using hydrogen as fuel Download PDF

Info

Publication number
JP4229526B2
JP4229526B2 JP16494099A JP16494099A JP4229526B2 JP 4229526 B2 JP4229526 B2 JP 4229526B2 JP 16494099 A JP16494099 A JP 16494099A JP 16494099 A JP16494099 A JP 16494099A JP 4229526 B2 JP4229526 B2 JP 4229526B2
Authority
JP
Japan
Prior art keywords
hydrogen
reformer
way valve
storage
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16494099A
Other languages
Japanese (ja)
Other versions
JP2000351602A (en
Inventor
繁 角掛
昌志 高橋
雅樹 上山
淳一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Original Assignee
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Japan Metals and Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16494099A priority Critical patent/JP4229526B2/en
Publication of JP2000351602A publication Critical patent/JP2000351602A/en
Application granted granted Critical
Publication of JP4229526B2 publication Critical patent/JP4229526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素を燃料とする機器への水素供給システム、特に、水素を燃料とする機器に水素を供給すべく、アルコール、ガソリン等の原料から水素を生成する改質器を備えた水素供給システムに関する。
【0002】
【従来の技術】
従来、この種の水素供給システムとしては、改質器の応答遅れによる燃料電池への水素供給量の不足分を充足すべく、水素吸蔵材としての水素吸蔵合金を有する水素貯蔵装置を備えたものが知られている(例えば、特開平2−56866号公報参照)。
【0003】
【発明が解決しようとする課題】
水素吸蔵材としては、水素を吸蔵し易く、また吸蔵水素を放出し易いものが理想的であるが、現在、知られている水素吸蔵材は、水素を吸蔵し易いものは水素を放出しにくく、一方、水素を吸蔵しにくいものは水素を放出し易い、といったように理想からはほど遠い性質を有する。
【0004】
このような状況下において、従来の水素吸蔵装置に、例えば、水素を放出しにくい水素吸蔵材を用いた場合には改質器の応答遅れ等による水素供給量の不足分を迅速に充足することができず、一方、水素を吸蔵しにくい水素吸蔵材を用いた場合には、吸蔵量不足から前記水素供給量の不足分を充足することができない、というおそれがある。
【0005】
【課題を解決するための手段】
本発明は、機器の要求水素量を改質器により充足することができない時、その要求水素量を迅速に充足し得る前記水素供給システムを提供することを目的とする。
【0006】
前記目的を達成するため本発明の第1の特徴によれば、水素を燃料とする機器に水素を供給すべく、料から水素を生成する改質器と、その改質器により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器とを備えてなり、その水素貯蔵器は、第1の水素吸蔵材を備えた第1貯蔵部と、第2の水素吸蔵材を備えた第2貯蔵部とを有し、両水素吸蔵材において、水素の吸蔵し易さに関しては前記第1の水素吸蔵材が前記第2の水素吸蔵材に比べて優れており、一方、吸蔵水素の放出し易さに関しては前記第2の水素吸蔵材が前記第1の水素吸蔵材に比べて優れており、前記改質器からの水素に除湿処理を施した後その水素を前記第1貯蔵部に一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部に吸蔵させ、前記機器の要求水素量を前記改質器により充足することができない時、その要求水素量を充足すべく、前記第2貯蔵部より吸蔵水素を放出させる水素供給システムであって、前記改質器からの生成水素を前記第1貯蔵部に一旦吸蔵させる過程で前記第1の水素吸蔵材に吸蔵されなかった過剰の水素は、前記改質器の燃焼系と前記第1貯蔵部の出口側との間に設けた排出管を経て該改質器の燃焼系に導かれて、そこで燃焼され、その燃焼による発生熱が該改質器における改質反応に用いられることを特徴とする、水素を燃料とする機器への水素供給システムが提供され、また本発明の第2の特徴によれば、水素を燃料とする機器に水素を供給すべく、原料から水素を生成する改質器と、その改質器により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器とを備えてなり、その水素貯蔵器は、第1の水素吸蔵材を備えた第1貯蔵部と、第2の水素 吸蔵材を備えた第2貯蔵部とを有し、両水素吸蔵材において、水素吸蔵特性に関しては、同一温度・同一圧力下では前記第1の水素吸蔵材が前記第2の水素吸蔵材に比べて水素吸蔵の平衡圧が低く、一方、水素放出特性に関しては、同一温度・同一圧力下では前記第2の水素吸蔵材が前記第1の水素吸蔵材に比べて水素放出の平衡圧が高く、前記改質器からの水素に除湿処理を施した後その水素を前記第1貯蔵部に一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部に吸蔵させ、前記機器の要求水素量を前記改質器により充足することができない時、その要求水素量を充足すべく、前記第2貯蔵部より吸蔵水素を放出させる水素供給システムであって、前記改質器からの生成水素を前記第1貯蔵部に一旦吸蔵させる過程で前記第1の水素吸蔵材に吸蔵されなかった過剰の水素は、前記改質器の燃焼系と前記第1貯蔵部の出口側との間に設けた排出管を経て該改質器の燃焼系に導かれて、そこで燃焼され、その燃焼による発生熱が該改質器における改質反応に用いられることを特徴とする、水素を燃料とする機器への水素供給システムが提供される。
【0007】
例えば、機器の休止中において改質器を作動させ、その改質器で生成された水素を、それに除湿処理を施した後第1貯蔵部に吸蔵させる。この水素の吸蔵は、第1の水素吸蔵材が水素を吸蔵し易い性質を有し、且つ水素に除湿処理が施されているので、スムーズに、且つ十分に行われる。
【0008】
第1吸蔵部から第2吸蔵部への水素の移送において、第1吸蔵部からの吸蔵水素の放出は、第1の水素吸蔵材が水素を放出しにくい性質を持つことを考慮して、その第1の水素吸蔵材の温度を加熱により高めることによって行われ、これにより高圧な放出水素が得られる。第2貯蔵部における第2の水素吸蔵材は水素を吸蔵しにくい性質を有するが、第1吸蔵部からの放出水素は高圧であるため第2貯蔵部に十分に吸蔵される。
【0009】
そして、機器の運転開始時には、第2貯蔵部より水素を放出させて機器に供給する。この放出水素の供給は、機器の運転開始時に同時に始動させた改質器が定常状態に到るまで行われる。第2貯蔵部からの水素の放出は、第2の水素吸蔵材が水素を放出し易い性質を有するので、迅速に、且つ十分に行われる。
【0010】
【発明の実施の形態】
図1に示す水素供給システム1は、水素を燃料とする機器としての燃料電池2を電源とする電気自動車に搭載される。
【0011】
水素供給システム1において、改質器3は、アルコール、ガソリン等の原料から水素を生成するもので、その生成された水素を燃料電池2に供給すべく、その供給口4が燃料電池2の入口5に供給管6を介して接続される。燃料電池2の出口7は排出管8を介して改質器3の燃焼系に接続され、これにより燃料電池2の排ガス中の可燃成分が燃焼されて、その発生熱は改質器3における改質反応に用いられる。
【0012】
供給管6において、その改質器3側に第1三方弁3V1 が、またその燃料電池2側に第2三方弁3V2 がそれぞれ装置される。第1三方弁3V1 の第1,第2ポートp1,p2は供給管6の上流側と下流側とにそれぞれ接続され、また第2三方弁3V2 の第1,第2ポートp1,p2も、前記同様に供給管6の上流側と下流側とにそれぞれ接続される。第1三方弁3V1 の第3ポートp3と第2三方弁3V2 の第3ポートp3とは導管91 を介して接続され、その導管91 に第3三方弁3V3 が装置される。その第3三方弁3V3 の第1,第2ポートp1,p2は導管91 の第1,第2三方弁3V1 ,3V2 側にそれぞれ接続される。供給管6における第2三方弁3V2 よりも下流側と、導管91 の第2,第3三方弁3V2 ,3V3 間とが、別の導管92 を介して接続され、その導管92 に第1二方弁2V1 が装置される。
【0013】
第1,第2調湿器101 ,102 はそれぞれ加湿機能および除湿機能を有し、且つ選択的に使用されるもので、それらの一端側に第1連通口11を、また他端側に第2連通口12をそれぞれ有する。両第1連通口11間は導管131 により接続され、その導管131 に第4三方弁3V4 が装置される。第4三方弁3V4 の第1,第2ポートp1,p2は導管131 の第1,第2調湿器101 ,102 側にそれぞれ接続され、また第3ポートp3は、導管14を介して第3三方弁3V3 の第3ポートp3に接続される。両第2連通口12間は導管132 により接続され、その導管132 に第5三方弁3V5 が装置される。第5三方弁3V5 の第1,第2ポートp1,p2は導管132 の第1,第2調湿器101 ,102 側にそれぞれ接続され、第3ポートp3は導管141 を介して水素貯蔵器15の入口側に接続される。その導管141 に第6三方弁3V6 が装置されており、その第1,第2ポートp1,p2は導管141 の第5三方弁3V5 側と水素貯蔵器15の入口側とにそれぞれ接続され、第3ポートp3は導管142 を介して水素貯蔵器15の出口側に接続される。
【0014】
水素貯蔵器15は、改質器3により生成された水素を第1三方弁3V1 、第3三方弁3V3 、第4三方弁3V4 、第1または第2調湿器101 ,102 、第5三方弁3V5 および第6三方弁3V6 を介し供給されてそれを吸蔵し、またその吸蔵水素を放出して第6三方弁3V6 、第5三方弁3V5 、第1または第2調湿器101 ,102 、第4三方弁3V4 、第3三方弁3V3 および第2三方弁3V2 を介し、または第6三方弁3V6 、第5三方弁3V5 、第1または第2調湿器101 ,102 、第4三方弁3V4 、第3三方弁3V3 および第1二方弁2V1 を介してそれぞれ燃料電池2に供給することができる。
【0015】
その水素貯蔵器15は、第1の水素吸蔵材MH1 を備えた第1貯蔵部151 と、第2の水素吸蔵材MH2 を備えた第2貯蔵部152 とを有する。第1,第2の水素吸蔵材MH1 ,MH2 としては水素吸蔵合金または炭素材が用いられる。第1の水素吸蔵材MH1 のプラトー領域を示す温度は第2の水素吸蔵材MH2 のそれよりも高く、したがって改質器3からの比較的高温な水素の吸蔵し易さに関しては第1の水素吸蔵材MH1 が第2の水素吸蔵材MH2 に比べて優れているが、常温下での吸蔵水素の放出し易さに関しては第2の水素吸蔵材MH2 が第1の水素吸蔵材MH1 に比べて優れている。つまり、両水素吸蔵材MH1 ,MH2 において、水素吸蔵特性に関しては、同一温度・同一圧力下では第1の水素吸蔵材MH1 が第2の水素吸蔵材MH2 に比べて水素吸蔵の平衡圧が低く、一方、水素放出特性に関しては、同一温度・同一圧力下では第2の水素吸蔵材MH2 が第1の水素吸蔵材MH1 に比べて水素放出の平衡圧が高いのである。実施例では第1の水素吸蔵材MH1 はAB5系合金、例えばMmNi4.9 Al0.1 合金よりなり、また第2の水素吸蔵材MH2 はAB5系合金、例えばMmNi4.77Al0.23合金よりなる。各化学式において、Mmはランタン系ミッシュメタルを意味する。
【0016】
第1貯蔵部151 は、第1の水素吸蔵材MH1 を内蔵した1つ以上、図示例では2つの第1,第2タンクT1 ,T2 を備え、両タンクT1 ,T2 の入口19間を接続する導管20に第7三方弁3V7 が装置される。第7三方弁3V7 の第1,第2ポートp1,p2は導管20の第1,第2タンクT1 ,T2 側にそれぞれ接続され、また第3ポートp3は、第6三方弁3V6 を装置された導管141 に接続される。両タンクT1 ,T2 の出口21間は導管22により接続され、その導管22に第8三方弁3V8 が装置される。第8三方弁3V8 の第1,第2ポートp1,p2は導管22における第1,第2タンクT1 ,T2 側にそれぞれ接続され、また第3ポートp3は導管23を介して排出管8に接続される。
【0017】
第2貯蔵部152 は第2の水素吸蔵材MH2 を内蔵した1つ以上、図示例では1つの第3タンクT3 を備える。第1,第2タンクT1 ,T2 の出口21間を接続する導管22において、第1タンクT1 および第8三方弁3V8 間に、別の導管24の一端が接続され、その他端は第3タンクT3 の入口19に接続される。その導管24に第9三方弁3V9 が装置され、第9三方弁3V9 の第1,第2ポートp1,p2は導管24の第1,第3タンクT1 ,T3 側にそれぞれ接続される。また第1,第2タンクT1 ,T2 の出口21間を接続する導管22において、第2タンクT2 および第8三方弁3V8 間に、別の導管25の一端が接続され、その他端は第9三方弁3V9 の第3ポートp3に接続される。第3タンクT3 の出口21に導管26を介して第2二方弁2V2 が接続され、その第2二方弁2V2 に導管142 が接続される。なお、実施例では第1〜第3タンクT1 〜T3 の水素吸蔵容量は略等しい。
【0018】
第1,第2調湿器101 ,102 は第1貯蔵部151 の水素吸蔵性を向上させるべく、改質器3からの水素に除湿処理を施し、また燃料電池2の発電性能を向上させるべく、放出水素に加湿処理を施す。この場合、第1,第2調湿器101 ,102 の含水量をそれぞれCw1,Cw2としたとき、例えば、Cw1<Cw2であれば第1調湿器101 が除湿処理に、一方、第2調湿器102 が加湿処理にそれぞれ用いられる。
【0019】
このような使用の結果、両含水量Cw1,Cw2の関係が逆転してCw1>Cw2となれば、第1調湿器101 は、除湿機能発揮後、加湿機能発揮可能状態となり、一方、第2調湿器102 は、加湿機能発揮後、除湿機能発揮可能状態となったもので、今度は第1調湿器101 が加湿処理に、一方、第2調湿器102 が除湿処理にそれぞれ用いられる。このような使い分は1台の調湿器によっても可能であるが、2台の調湿器101 ,102 を備え、それらの間に含水量の差を設けると、除湿および加湿処理に適確に対応することができる。前記のような除湿および加湿作用を行うものとしては、モレキュラシーブを挙げることができる。
【0020】
必要に応じて、両調湿器101 ,102 に、改質器3からの水素に含まれた炭酸ガス、酸素等の不純ガス成分を除去する機能を持たせることができる。図中、Vは逆止弁である。
【0021】
(1) 例えば、翌朝において電気自動車の走行を確実に開始させるためには、夜間駐車中であって、燃料電池2の運転休止中に次のような水素貯蔵作業を行う。便宜上、作業開始前においては水素貯蔵器15の第1〜第3タンクT1 〜T3 は空(カラ)状態であるとする。各図面において、「E」は空状態を、また「F」は充填状態(満状態)を、さらに「<F/E」は水素が放出されて、空ではないが充填状態でもない状態(<F)か、または空状態(E)にあることをそれぞれ示す。
【0022】
(1)−a 図1に示すように、第9三方弁3V9 を切換えて、第1貯蔵部151 の第1タンクT1 →第9三方弁3V9 →第2貯蔵部152 の第3タンクT3 の経路を遮断する。また第2二方弁2V2 を切換えて、第3タンクT3 →第2二方弁2V2 →第6三方弁3V6 の経路を遮断する。この場合、第1,第2調湿器101 ,102 の両含水量Cw1,Cw2の間にはCw1<Cw2の関係が成立しているものとする。
【0023】
この状態において、第1,第3〜第8三方弁3V1 ,3V3 〜3V8 を切換えて、改質器3→第1三方弁3V1 →第3三方弁3V3 →第4三方弁3V4 →第1調湿器101 →第5三方弁3V5 →第6三方弁3V6 →第7三方弁3V7 →第1タンクT1 →第8三方弁3V8 →排出管8の経路を確立させる。そして改質器3を作動させ、その改質器3で生成された比較的高温な水素を、除湿処理発揮可能状態にある第1調湿器101 を経て第1貯蔵部151 の第1タンクT1 に吸蔵させる。この水素の吸蔵は第1の水素吸蔵材MH1 が改質器3からの比較的高温な水素を吸蔵し易い性質を有し、且つその水素に除湿処理が施されているので、スムーズに、且つ十分に行われる。第1の水素吸蔵材MH1 に吸蔵されなかった過剰の水素は排出管8を経て改質器3の燃焼系に導かれ、そこで燃焼されて、その発生熱は改質器3における改質反応に用いられる。また水素に含まれ、且つ第1の水素吸蔵材MH1 に吸蔵されない炭酸ガス等の不純ガス成分は第1タンクT1 の出口21を通じて排出管8に排出されるので、第1タンクT1 内における不純ガス成分の濃度上昇が回避される。この第1タンクT1 への水素の貯蔵は、そのタンクT1 が充填状態(満状態)となるまで行う。
【0024】
(1)−b 第1貯蔵部151 の第1タンクT1 から第2貯蔵部152 の第3タンクT3 への水素の移送に当っては、図2に示すように、第7,第8三方弁3V7 ,3V8 を切換えて、第1調湿器101 →第5三方弁3V5 →第6三方弁3V6 →第7三方弁3V7 →第1タンクT1 →第8三方弁3V8 →排出管8の経路を遮断すると共に、第9三方弁3V9 を切換えて、第1タンクT1 →第9三方弁3V9 →第3タンクT3 の経路を確立させる。第1タンクT1 からの吸蔵水素の放出は、常温下における第1の水素吸蔵材MH1 の水素を放出しにくい性質を考慮して、その第1の水素吸蔵材MH1 の温度を加熱により60℃以上に高めることによって行われ、これにより高圧な放出水素が得られる。第3タンクT3 における第2の水素吸蔵材MH2 は、第1タンクT1 からの比較的高温な放出水素を吸蔵しにくい性質を有するが、その放出水素は高圧でもあるため第3タンクT3 に十分に吸蔵される。この場合、改質器3による生成水素を燃焼させて、その燃焼熱により第1の水素吸蔵材MH1 を加熱することが可能である。
【0025】
また第7,第8三方弁3V7 ,3V8 の切換えにより、改質器3→第1三方弁3V1 →第3三方弁3V3 →第4三方弁3V4 →第1調湿器101 →第5三方弁3V5 →第6三方弁3V6 →第7三方弁3V7 →第2タンクT2 →第8三方弁3V8 →排出管8の経路が確立されているので、改質器3で生成された水素が第2タンクT2 に吸蔵される。
【0026】
(1)−c 図3に示すように、第3タンクT3 が充填状態となり、一方、第1タンクT1 が空状態となったとき、第9三方弁3V9 を切換えて第1タンクT1 →第9三方弁3V9 →第3タンクT3 の経路を遮断する。また第2タンクT2 が充填状態となったとき、第7,第8三方弁3V7 ,3V8 を切換えて、再び、改質器1→第1三方弁3V1 →第3三方弁3V3 →第4三方弁3V4→第1調湿器101 →第5三方弁3V5 →第6三方弁3V6 →第7三方弁3V7 →第1タンクT1 →第8三方弁3V8 →排出管8の経路を確立させて第1タンクT1 に水素を吸蔵させる。
【0027】
(2) 電気自動車の走行開始時、つまり燃料電池2の運転開始時において、第1,第2調湿器101 ,102 の両含水量Cw1,Cw2の間にはCw1<Cw2の関係が成立しているものとする。図4に示すように、第2,第3,第4三方弁3V2 ,3V3 ,3V4 および第1二方弁2V1 の切換えによって、第2調湿器102 →第4三方弁3V4 →第3三方弁3V3 →第2三方弁3V2 →燃料電池2の経路が確立されると共に第1二方弁2V1 が導管18を遮断している状態において、第5,第6三方弁3V5 ,3V6 および第2二方弁2V2 を切換えて第3タンクT3 →第2二方弁2V2 →第6三方弁3V6 →第5三方弁3V5 →第2調湿器102 の経路を確立させる。これにより第2貯蔵部152 、つまり第3タンクT3 より水素が放出され、加湿処理を施された後燃料電池2に供給される。この放出水素の供給は燃料電池2の運転開始時に同時に始動させた改質器3が定常状態に到るまで行われる。燃料電池2の運転に伴い電気自動車が走行する。第3タンクT3 からの水素の放出は、第2の水素吸蔵材MH2 が常温下で水素を放出し易い性質を有するので、約25℃でスムーズに、且つ十分に行われる。
【0028】
この間に、第1三方弁3V1 を切換えて改質器3→第1三方弁3V1 →第3三方弁3V3 →第4三方弁3V4 →第2調湿器102 の経路を遮断し、一方、改質器3→第1三方弁3V1 →第2三方弁3V2 の経路を確立させておく。
【0029】
(3) 改質器3が定常状態に到ったとき、図5に示すように第2三方弁3V2 を切換えて、改質器3→第1三方弁3V1 →第2三方弁3V2 →燃料電池2の経路を確立させる。これにより電気自動車の走行が継続される。また第2二方弁2V2 を切換えて、第3タンクT3 →第2二方弁2V2 →第6三方弁3V6 →第5三方弁3V5 →第2調湿器102 の経路を遮断すると共に第9三方弁3V9 を切換えて、第2タンクT2 →第9三方弁3V9 →第3タンクT3 の経路を確立させる。これにより、水素を第2タンクT2 から第3タンクT3 に移送することができる。
【0030】
図6に示すように、第3タンクT3 が充填状態となり、一方、第2タンクT2 が空状態となったとき、第9三方弁3V9 を切換えて第2タンクT2 →第9三方弁3V9 →第3タンクT3 の経路を遮断する。また第7,第8三方弁3V7 ,3V8 を切換えて、第7三方弁3V7 →第2タンクT2 →第8三方弁3V8 →排出管8の経路を確立させる。
【0031】
(4) 前記水素貯蔵過程で第1調湿器101 が水素の除湿処理に用いられたことからその含水量Cw1が増加し、一方、前記運転開始過程で第2調湿器102 が水素の加湿処理に用いられたことからその含水量Cw2が減少し、その結果、電気自動車の加速時には、第1,第2調湿器101 ,102 の両含水量Cw1,Cw2の間にはCw1>Cw2の関係が成立しているものとする。
【0032】
また電気自動車の加速時には、改質器3の応答遅れにより、その改質器3の水素供給量が燃料電池2の要求水素量に満たなくなる。この場合には、図7に示すように第4,第5三方弁3V4 ,3V5 および第1,第2二方弁2V1 ,2V2 を切換えて、第3タンクT3 →第2二方弁2V2 →第6三方弁3V6 →第5三方弁3V5 →第1調湿器101 →第4三方弁3V4 →第3三方弁3V3 →第1二方弁2V1 →燃料電池2の経路を確立させ、改質器3による水素量の不足分を第3タンクT3 からの放出水素により充足する。
【0033】
改質器3からの水素供給量が燃料電池2の要求水素量を満たしたとき、第1,第2二方弁2V1 ,2V2 を図6に示したごとく切換えて、前記経路、つまり第3タンクT3 →……→燃料電池2の経路を遮断する。第3タンクT3 における水素消費量は第1タンクT1 からの水素の移送により充足される。
【0034】
(5) 電気自動車の減速時においても第1,第2調湿器101 ,102 の両含水量Cw1,Cw2の間にはCw1>Cw2の関係が成立しているものとする。図8に示すように、第1,第3〜第6三方弁3V1 ,3V3 〜3V6 を切換えて、改質器3→第1三方弁3V1 →第3三方弁3V3 →第4三方弁3V4 →第2調湿器102 →第5三方弁3V5 →第6三方弁3V5 →第7三方弁3V7 →第2タンクT2 →第8三方弁3V8 →排出管8の経路を確立させ、これにより改質器3の応答遅れによる余剰水素を第2タンクT2 に吸蔵させる。第2タンクT2 が充填状態となれば、余剰水素は第1タンクT1 に充填される。
【0035】
なお、水素貯蔵器15の第1,第2貯蔵部151 ,152 において、必要に応じ、タンクの数を実施例の場合よりも増すか、或は第1,第2の吸蔵材MH1 ,MH2 の量を増して、それら貯蔵部151 ,152 の水素吸蔵能力(水素吸蔵容量)を増大させることが行われる。また水素を燃料とする機器としては、燃料電池の外に内燃機関を挙げることができる。
【0036】
【発明の効果】
発明によれば、前記のような手段を採用することによって、水素貯蔵器への水素吸蔵性を向上させ、また機器の要求水素量を改質器により充足することができない時、その要求水素量を水素貯蔵器により迅速に充足することが可能な水素供給システムを提供することができる。また特に改質器で生成されて除湿処理を施された水素を第1貯蔵部に一旦吸 蔵させる過程で第1の水素吸蔵材に吸蔵されなかった過剰の水素は、排出管を経て改質器の燃焼系に導かれて、そこで燃焼され、その燃焼による発生熱を改質器における改質反応に用いることができる。
【0037】
また請求項2記載の発明によれば、前記のような手段を採用することによって、特に、前記機器としての燃料電池の発電性能を向上させることが可能な水素供給システムを提供することができる。
【0038】
また請求項3〜5記載の発明によれば、水素に対し加湿処理および除湿処理を確実に施すことが可能で、且つ利便性のある調湿器を備えた水素供給システムを提供することができる
【図面の簡単な説明】
【図1】 燃料電池の運転休止中において、第1タンクに水素を充填している状態を示す水素供給システムの説明図である。
【図2】 第1タンクから第3タンクへ水素を移送し、また第2タンクに水素を充填している状態を示す水素供給システムの説明図である。
【図3】 第1タンクに再び水素を充填している状態を示す水素供給システムの説明図である。
【図4】 燃料電池の運転開始状態を示す水素供給システムの説明図である。
【図5】 電気自動車が走行し、また第2タンクから第3タンクへ水素を移送している状態を示す水素供給システムの説明図である。
【図6】 電気自動車が走行し、また第2タンクに再び水素を充填し得る状態を示す水素供給システムの説明図である。
【図7】 電気自動車の加速状態を示す水素供給システムの説明図である。
【図8】 電気自動車の減速状態を示す水素供給システムの説明図である。
【符号の説明】
1 水素供給システム
2 燃料電池(機器)
3 改質器
101 ,102 第1,第2調湿器
15 水素貯蔵器
151 ,152 第1,第2貯蔵部
Cw1,Cw2 含水量
MH1 ,MH2 第1,第2の水素吸蔵材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen supply system for equipment using hydrogen as a fuel, and in particular, a hydrogen supply system including a reformer that generates hydrogen from raw materials such as alcohol and gasoline in order to supply hydrogen to equipment using hydrogen as a fuel. About.
[0002]
[Prior art]
Conventionally, this type of hydrogen supply system includes a hydrogen storage device having a hydrogen storage alloy as a hydrogen storage material in order to satisfy the shortage of the hydrogen supply amount to the fuel cell due to a delay in response of the reformer. Is known (for example, see JP-A-2-56866).
[0003]
[Problems to be solved by the invention]
Ideal hydrogen storage materials are those that can easily store and release hydrogen, but currently known hydrogen storage materials are those that easily store hydrogen and do not readily release hydrogen. On the other hand, those that are difficult to occlude hydrogen have properties that are far from ideal, such as being easy to release hydrogen.
[0004]
Under these circumstances, for example, when a hydrogen storage material that does not easily release hydrogen is used in a conventional hydrogen storage device, the shortage of the hydrogen supply amount due to a delay in the response of the reformer, etc. is quickly satisfied. On the other hand, when a hydrogen storage material that hardly stores hydrogen is used, there is a risk that the shortage of the hydrogen supply amount cannot be satisfied due to the shortage of the storage amount.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide the hydrogen supply system capable of quickly satisfying the required hydrogen amount when the required hydrogen amount of the equipment cannot be satisfied by the reformer.
[0006]
According to a first aspect of the present invention for achieving the above object, in order to supply hydrogen to the equipment using hydrogen as fuel, a reformer for generating hydrogen from raw materials, produced by the reformer occluding hydrogen, and it and a is hydrogens reservoir to release the hydrogen reservoir comprises a first reservoir having a first hydrogen storage material, a second hydrogen storage material The first hydrogen storage material is superior to the second hydrogen storage material in terms of the ease of storage of hydrogen in both hydrogen storage materials, The second hydrogen occlusion material is superior to the first hydrogen occlusion material in terms of the ease of releasing the hydrogen, and after dehumidifying the hydrogen from the reformer, the hydrogen is stored in the first storage. Occluded in the second storage part, and then the hydrogen obtained by releasing the occluded hydrogen is occluded in the second storage part. When it is not possible to satisfy the required amount of hydrogen in the device by the reformer, in order to satisfy the required hydrogen amount, a hydrogen supply system for releasing occluded hydrogen from the second storage unit, the reformer Excess hydrogen that has not been occluded in the first hydrogen occlusion material in the process of once occlusion of hydrogen produced from the first storage part is obtained by the combustion system of the reformer and the outlet side of the first storage part. The hydrogen is introduced into a combustion system of the reformer through an exhaust pipe provided between the two, and burned there, and heat generated by the combustion is used for a reforming reaction in the reformer. According to a second aspect of the present invention, there is provided a reformer that generates hydrogen from a raw material in order to supply hydrogen to a device that uses hydrogen as a fuel. Occludes and releases hydrogen produced by the reformer It will be a possible hydrogen storage device, the hydrogen storage device is used, the number and the first storage portion with a first hydrogen storage material and a second reservoir having a second hydrogen storage material In both hydrogen storage materials, with respect to hydrogen storage characteristics, under the same temperature and pressure, the first hydrogen storage material has a lower hydrogen storage equilibrium pressure than the second hydrogen storage material. With regard to the release characteristics, under the same temperature and pressure, the second hydrogen storage material has a higher equilibrium pressure for hydrogen release than the first hydrogen storage material, and the hydrogen from the reformer is subjected to dehumidification. After that, the hydrogen is temporarily stored in the first storage unit, and then the hydrogen obtained by releasing the stored hydrogen is stored in the second storage unit, and the required hydrogen amount of the equipment is satisfied by the reformer. When it is not possible to do so, the second storage unit should satisfy the required amount of hydrogen. In the hydrogen supply system for releasing the stored hydrogen, excess hydrogen that was not stored in the first hydrogen storage material in the process of temporarily storing the generated hydrogen from the reformer in the first storage unit, It is guided to the combustion system of the reformer through an exhaust pipe provided between the combustion system of the reformer and the outlet side of the first storage unit, where it is combusted, and the heat generated by the combustion is converted into the reformed gas. characterized in that it is used for the reforming reaction in the quality control and Ru are provided hydrogen supply system to the equipment using hydrogen as fuel.
[0007]
For example, the reformer is operated while the equipment is stopped, and the hydrogen generated in the reformer is dehumidified and stored in the first storage unit. This hydrogen occlusion is performed smoothly and sufficiently because the first hydrogen occlusion material has the property of easily occluding hydrogen and the dehumidification treatment is performed on the hydrogen.
[0008]
In the transfer of hydrogen from the first occlusion unit to the second occlusion unit, the release of the occluded hydrogen from the first occlusion unit is based on the fact that the first hydrogen occlusion material has a property of hardly releasing hydrogen. This is performed by increasing the temperature of the first hydrogen storage material by heating, whereby high-pressure released hydrogen is obtained. The second hydrogen storage material in the second storage part has a property that it is difficult to store hydrogen, but the hydrogen released from the first storage part is sufficiently stored in the second storage part because of the high pressure.
[0009]
At the start of operation of the device, hydrogen is released from the second storage unit and supplied to the device. This supply of released hydrogen is performed until the reformer started simultaneously with the start of operation of the equipment reaches a steady state. The release of hydrogen from the second storage unit is performed quickly and sufficiently because the second hydrogen storage material has a property of easily releasing hydrogen.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A hydrogen supply system 1 shown in FIG. 1 is mounted on an electric vehicle using a fuel cell 2 as a power source as a power source.
[0011]
In the hydrogen supply system 1, the reformer 3 generates hydrogen from raw materials such as alcohol and gasoline, and the supply port 4 is an inlet of the fuel cell 2 in order to supply the generated hydrogen to the fuel cell 2. 5 through a supply pipe 6. The outlet 7 of the fuel cell 2 is connected to the combustion system of the reformer 3 via the discharge pipe 8, whereby combustible components in the exhaust gas of the fuel cell 2 are combusted, and the generated heat is modified in the reformer 3. Used for quality reactions.
[0012]
In the supply pipe 6, the reformer first three-way valve 3V 1 to 3 side, and the second three-way valve 3V 2 is device respectively to the fuel cell 2 side. First first three-way valve 3V 1, second port p1, p2 are respectively connected to the upstream side and the downstream side of the supply pipe 6, also the first second three-way valve 3V 2, second port p1, p2 also In the same manner as described above, the supply pipe 6 is connected to the upstream side and the downstream side, respectively. A first third port p3 of the three-way valve 3V 1 and the third port p3 of the second three-way valve 3V 2 is connected via a conduit 9 1, 3-way valve 3V 3 is apparatus to the conduit 9 1. The first of the third three-way valve 3V 3, the second port p1, p2 the first conduit 9 1, are connected to the second three-way valve 3V 1, 3V 2 side. And downstream of the second three-way valve 3V 2 in the feed pipe 6, the second conduit 9 1, and between the third three-way valve 3V 2, 3V 3 is connected via another conduit 9 2, the conduit 9 the first two-way valve 2V 1 is apparatus 2.
[0013]
The first and second humidity controllers 10 1 and 10 2 each have a humidifying function and a dehumidifying function, and are selectively used. The first communication port 11 is provided at one end side thereof, and the other end side thereof. Each has a second communication port 12. During both the first communication port 11 is connected via line 13 1, the fourth three-way valve 3V 4 is apparatus to the conduit 13 1. The first fourth three-way valve 3V 4, second ports p1, p2 the first conduit 13 1 is connected to the second humidistat 10 1, 10 2 side, and the third port p3 is a conduit 14 It is connected to the third port p3 of the third three-way valve 3V 3 through. Both second communication port 12 between is connected by a conduit 13 2, the fifth three-way valve 3V 5 is apparatus to the conduit 13 2. First fifth three-way valve 3V 5, second port p1, p2 the first conduit 13 2 are connected to the second humidistat 10 1, 10 2 side, and the third port p3 is via conduit 14 1 And connected to the inlet side of the hydrogen reservoir 15. The conduit 14 1 is provided with a sixth three-way valve 3V 6 , and the first and second ports p1 and p2 are respectively connected to the fifth three-way valve 3V 5 side of the conduit 14 1 and the inlet side of the hydrogen reservoir 15. The third port p3 is connected to the outlet side of the hydrogen reservoir 15 via the conduit 14 2 .
[0014]
The hydrogen storage unit 15 converts the hydrogen generated by the reformer 3 into the first three-way valve 3V 1 , the third three-way valve 3V 3 , the fourth three-way valve 3V 4 , the first or second humidity controller 10 1 , 10 2. , Supplied through the fifth three-way valve 3V 5 and the sixth three-way valve 3V 6 and occludes it, and releases the occluded hydrogen to produce the sixth three-way valve 3V 6 , the fifth three-way valve 3V 5 , the first or second Via the two humidity controllers 10 1 , 10 2 , the fourth three-way valve 3V 4 , the third three-way valve 3V 3 and the second three-way valve 3V 2 , or the sixth three-way valve 3V 6 , the fifth three-way valve 3V 5 , the first Alternatively, the fuel cells can be supplied to the fuel cell 2 via the second humidity controllers 10 1 , 10 2 , the fourth three-way valve 3V 4 , the third three-way valve 3V 3, and the first two-way valve 2V 1 .
[0015]
As the hydrogen reservoir 15 has first and reservoir 15 1 having a first hydrogen storage material MH 1, the second and the reservoir 15 2 having a second hydrogen storage material MH 2. As the first and second hydrogen storage materials MH 1 and MH 2 , hydrogen storage alloys or carbon materials are used. The temperature indicating the plateau region of the first hydrogen storage material MH 1 is higher than that of the second hydrogen storage material MH 2 , and therefore, the first point in terms of the ease of storing relatively high-temperature hydrogen from the reformer 3. hydrogen Although storage material MH 1 is superior to the second hydrogen storage material MH 2, and the release of occluded hydrogen at room temperature with respect to ease second hydrogen absorbing material MH 2 first hydrogen absorption It is superior to wood MH 1. That is, in both hydrogen storage materials MH 1 and MH 2 , with respect to the hydrogen storage characteristics, the first hydrogen storage material MH 1 is more balanced in hydrogen storage than the second hydrogen storage material MH 2 under the same temperature and pressure. On the other hand, regarding the hydrogen release characteristics, the second hydrogen storage material MH 2 has a higher hydrogen release equilibrium pressure than the first hydrogen storage material MH 1 at the same temperature and pressure. In the embodiment, the first hydrogen storage material MH 1 is made of an AB5 alloy, such as an MmNi 4.9 Al 0.1 alloy, and the second hydrogen storage material MH 2 is made of an AB5 alloy, eg, an MmNi 4.77 Al 0.23 alloy. In each chemical formula, Mm means a lanthanum misch metal.
[0016]
First storage unit 15 1, the first hydrogen storage material MH 1 1 or more with a built-in, first two in the illustrated example, the second comprises a tank T 1, T 2, of both tanks T 1, T 2 A seventh three-way valve 3V 7 is installed in the conduit 20 connecting the inlets 19. The seventh three-way valve 3V 7 first, the first second port p1, p2 conduit 20, respectively connected to the second tank T 1, T 2 side, and the third port p3 is the sixth three-way valve 3V 6 To the connected conduit 14 1 . The outlets 21 of both tanks T 1 and T 2 are connected by a conduit 22, and the eighth three-way valve 3V 8 is installed in the conduit 22. The eighth three-way valve 3V 8 1, first in the second port p1, p2 conduit 22 are connected to the second tank T 1, T 2 side and the discharge pipe the third port p3 via a conduit 23 8 is connected.
[0017]
The second storage unit 15 2 includes one or more third tanks T 3 including the second hydrogen storage material MH 2 in the illustrated example. In the conduit 22 connecting the outlets 21 of the first and second tanks T 1 and T 2 , one end of another conduit 24 is connected between the first tank T 1 and the eighth three-way valve 3V 8 , and the other end is It is connected to the third tank T 3 of the inlet 19. The ninth three-way valve 3V 9 is installed in the conduit 24, and the first and second ports p1 and p2 of the ninth three-way valve 3V 9 are connected to the first and third tanks T 1 and T 3 side of the conduit 24, respectively. The In the conduit 22 connecting the outlets 21 of the first and second tanks T 1 and T 2 , one end of another conduit 25 is connected between the second tank T 2 and the eighth three-way valve 3V 8 , and the other end. It is connected to the third port p3 of the ninth three-way valve 3V 9. A second two-way valve 2V 2 is connected to the outlet 21 of the third tank T 3 via a conduit 26, and a conduit 14 2 is connected to the second two-way valve 2V 2 . In the embodiment, the hydrogen storage capacities of the first to third tanks T 1 to T 3 are substantially equal.
[0018]
The first and second humidity controllers 10 1 , 10 2 perform dehumidification treatment on the hydrogen from the reformer 3 in order to improve the hydrogen storage performance of the first storage unit 15 1 , and improve the power generation performance of the fuel cell 2. In order to improve, humidification treatment is applied to the released hydrogen. In this case, when the water contents of the first and second humidity controllers 10 1 and 10 2 are Cw1 and Cw2, respectively, for example, if Cw1 <Cw2, the first humidity controller 10 1 performs the dehumidification process, second humidistat 10 2 are used respectively in the humidification.
[0019]
Result of such use, if the Cw1> Cw2 relationship between the two water content Cw1, Cw2 is reversed, the first humidistat 10 1 after dehumidification function exhibit, become humidifying function capable of exhibiting state, whereas, the 2 humidistat 10 2 after humidifying function exhibit, which was a dehumidification function capable of exhibiting state, this time the first humidistat 10 1 moistening, while the second humidistat 10 2 dehumidification process Respectively. Such usage can be achieved by one humidity controller, but if two humidity controllers 10 1 , 10 2 are provided and a difference in water content is provided between them, dehumidification and humidification treatment can be performed. It is possible to respond appropriately. Examples of those that perform the dehumidifying and humidifying actions as described above include molecular sieves.
[0020]
If necessary, both the humidity controllers 10 1 and 10 2 can have a function of removing impurity gas components such as carbon dioxide and oxygen contained in hydrogen from the reformer 3. In the figure, V is a check valve.
[0021]
(1) For example, in order to reliably start the electric vehicle on the next morning, the following hydrogen storage operation is performed while parking at night and while the operation of the fuel cell 2 is stopped. For convenience, it is assumed that the first to third tanks T 1 to T 3 of the hydrogen storage device 15 are in an empty state before the work starts. In each drawing, “E” indicates an empty state, “F” indicates a filled state (full state), and “<F / E” indicates that hydrogen is released and is not empty but not filled (< F) or empty (E) respectively.
[0022]
(1) As shown in -a Figure 1, switches the ninth three-way valve 3V 9, the first storage unit 15 first first tank T 1 → 9 three-way valve 3V 9second storage unit 15 Paragraph 3 to block the path of the tank T 3. Further, the second two-way valve 2V 2 is switched to cut off the path of the third tank T 3 → the second two-way valve 2V 2 → the sixth three-way valve 3V 6 . In this case, it is assumed that a relationship of Cw1 <Cw2 is established between the moisture contents Cw1 and Cw2 of the first and second humidity controllers 10 1 and 10 2 .
[0023]
In this state, the first, third to eighth three-way valves 3V 1 , 3V 3 to 3V 8 are switched, and the reformer 3 → first three-way valve 3V 1 → third three-way valve 3V 3 → fourth three-way valve 3V. 4 → first humidity controller 10 1 → fifth three-way valve 3V 5 → sixth three-way valve 3V 6 → seventh three-way valve 3V 7 → first tank T 1 → eighth three-way valve 3V 8 → path of the discharge pipe 8 Establish. The reformer 3 is actuated and the reformer at a relatively high temperature hydrogen produced by 3, first the first storage unit 15 1 via the first humidistat 10 1 in the process exert state dehumidification The tank T 1 is occluded. This hydrogen occlusion has the property that the first hydrogen occlusion material MH 1 is likely to occlude relatively high-temperature hydrogen from the reformer 3, and since the dehumidification treatment is applied to the hydrogen, And well done. Excess hydrogen that has not been stored in the first hydrogen storage material MH 1 is led to the combustion system of the reformer 3 through the discharge pipe 8 and burned there, and the generated heat is used for the reforming reaction in the reformer 3. Used for. Also included in the hydrogen, and since the impurity gas components carbon dioxide gas that is not occluded in the first hydrogen storage material MH 1 is discharged to the discharge pipe 8 through the first tank T 1 of the outlet 21, the first tank T 1 An increase in the concentration of impure gas components in is avoided. Storage of hydrogen into the first tank T 1 is carried out until the tank T 1 is a filling state (full state).
[0024]
(1) -b from the first tank T 1 of the first storage unit 15 1 hitting the transfer of hydrogen into the second storage unit 15 2 of the third tank T 3, as shown in FIG. 2, 7, By switching the eighth three-way valve 3V 7 and 3V 8 , the first humidity controller 10 1 → the fifth three-way valve 3V 5 → the sixth three-way valve 3V 6 → the seventh three-way valve 3V 7 → the first tank T 1 → the eighth The path of the three-way valve 3V 8 → the discharge pipe 8 is shut off and the ninth three-way valve 3V 9 is switched to establish the path of the first tank T 1 → the ninth three-way valve 3V 9 → the third tank T 3 . The release of the stored hydrogen from the first tank T 1 takes into account the property of the first hydrogen storage material MH 1 that is difficult to release hydrogen at room temperature, and the temperature of the first hydrogen storage material MH 1 is increased by heating. This is carried out by raising the temperature to 60 ° C. or higher, whereby high-pressure released hydrogen is obtained. The second hydrogen storage material MH 2 in the third tank T 3 has a property that it is difficult to store the relatively high temperature released hydrogen from the first tank T 1, but since the released hydrogen is also high pressure, the third tank T 3 3 is fully occluded. In this case, the hydrogen produced by the reformer 3 can be combusted, and the first hydrogen storage material MH 1 can be heated by the combustion heat.
[0025]
Further, by switching the seventh and eighth three-way valves 3V 7 and 3V 8 , the reformer 3 → the first three-way valve 3V 1 → the third three-way valve 3V 3 → the fourth three-way valve 3V 4 → the first humidity controller 10 1 → Fifth three-way valve 3V 5 → Sixth three-way valve 3V 6 → Seventh three-way valve 3V 7 → Second tank T 2 → Eighth three-way valve 3V 8 → The path of the discharge pipe 8 has been established. hydrogen produced in 3 are inserted in the second tank T 2.
[0026]
(1) -c As shown in FIG. 3, when the third tank T 3 is in a filling state and the first tank T 1 is in an empty state, the ninth three-way valve 3V 9 is switched to switch the first tank T 3. 1 → 9th three-way valve 3V 9 → Blocks the path of the third tank T 3 . When the second tank T 2 is filled, the seventh and eighth three-way valves 3V 7 and 3V 8 are switched, and the reformer 1 → the first three-way valve 3V 1 → the third three-way valve 3V 3 again. → 4th three-way valve 3V4 → 1st humidity controller 10 15th 3 way valve 3V 5 → 6th 3 way valve 3V 6 → 7th 3 way valve 3V 7 → 1st tank T 18th 3 way valve 3V 8 → discharge The path of the pipe 8 is established, and hydrogen is stored in the first tank T 1 .
[0027]
(2) At the start of running the electric vehicle, that is, when the fuel cell 2 is started, there is a relationship of Cw1 <Cw2 between the water contents Cw1 and Cw2 of the first and second humidity controllers 10 1 and 10 2. It shall be established. As shown in FIG. 4, the second humidity controller 10 2 → the fourth three-way valve 3V is switched by switching the second, third and fourth three-way valves 3V 2 , 3V 3 , 3V 4 and the first two-way valve 2V 1. 4 → third three-way valve 3V 3 → second three-way valve 3V 2 → 5th, sixth three-way in the state where the path of the fuel cell 2 is established and the first two-way valve 2V 1 shuts off the conduit 18 Switch the valves 3V 5 and 3V 6 and the second two-way valve 2V 2 to switch the third tank T 3 → the second two-way valve 2V 2 → the sixth three-way valve 3V 6 → the fifth three-way valve 3V 5 → the second humidity controller Establish 10 2 routes. As a result, hydrogen is released from the second storage unit 15 2 , that is, the third tank T 3 , and is supplied to the fuel cell 2 after being humidified. The supply of the released hydrogen is performed until the reformer 3 started simultaneously with the start of the operation of the fuel cell 2 reaches a steady state. The electric vehicle travels with the operation of the fuel cell 2. The release of hydrogen from the third tank T 3 is performed smoothly and sufficiently at about 25 ° C. because the second hydrogen storage material MH 2 has a property of easily releasing hydrogen at room temperature.
[0028]
During this time, the first three-way valve 3V 1 is switched to cut off the path of the reformer 3 → the first three-way valve 3V 1 → the third three-way valve 3V 3 → the fourth three-way valve 3V 4 → the second humidity controller 10 2. On the other hand, the path of the reformer 3 → the first three-way valve 3V 1 → the second three-way valve 3V 2 is established.
[0029]
(3) When the reformer 3 reaches a steady state, the second three-way valve 3V 2 is switched as shown in FIG. 5, and the reformer 3 → the first three-way valve 3V 1 → the second three-way valve 3V 2 → Establish the path of the fuel cell 2. Thereby, driving | running | working of an electric vehicle is continued. Further, the second two-way valve 2V 2 is switched, and the path of the third tank T 3 → the second two-way valve 2V 2 → the sixth three-way valve 3V 6 → the fifth three-way valve 3V 5 → the second humidity controller 10 2 is changed. The circuit is shut off and the ninth three-way valve 3V 9 is switched to establish the path of the second tank T 2 → the ninth three-way valve 3V 9 → the third tank T 3 . Thereby, hydrogen can be transferred from the second tank T 2 to the third tank T 3 .
[0030]
As shown in FIG. 6, when the third tank T 3 is in a filling state and the second tank T 2 is in an empty state, the ninth three-way valve 3V 9 is switched to change the second tank T 2 → the ninth three-way. The path of the valve 3V 9 → third tank T 3 is shut off. In addition, the seventh and eighth three-way valves 3V 7 and 3V 8 are switched to establish the path of the seventh three-way valve 3V 7 → the second tank T 2 → the eighth three-way valve 3V 8 → the discharge pipe 8.
[0031]
(4) the hydrogen storage process first humidistat 10 1 increases its moisture content Cw1 since used in dehumidification process of the hydrogen, while the second humidistat 10 2 is hydrogen by the operation start process As a result, when the electric vehicle is accelerated, the moisture content Cw2 decreases between the moisture contents Cw1 and Cw2 of the first and second humidifiers 10 1 and 10 2. Assume that the relationship of Cw1> Cw2 is established.
[0032]
Further, when the electric vehicle is accelerated, the hydrogen supply amount of the reformer 3 becomes less than the required hydrogen amount of the fuel cell 2 due to the response delay of the reformer 3. In this case, as shown in FIG. 7, the fourth and fifth three-way valves 3V 4 and 3V 5 and the first and second two-way valves 2V 1 and 2V 2 are switched, and the third tank T 3 → second second Two- way valve 2V 2 → Sixth three-way valve 3V 6 → Fifth three-way valve 3V 5 → First humidity controller 10 1 → Fourth three-way valve 3V 4 → Third three-way valve 3V 3 → First two-way valve 2V 1 → Fuel The path of the battery 2 is established, and the shortage of the hydrogen amount due to the reformer 3 is filled with the hydrogen released from the third tank T 3 .
[0033]
When the hydrogen supply amount from the reformer 3 satisfies the required hydrogen amount of the fuel cell 2, the first and second two-way valves 2V 1 and 2V 2 are switched as shown in FIG. 3 tank T 3 → …… → Shuts off the path of the fuel cell 2. The hydrogen consumption in the third tank T 3 is satisfied by the transfer of hydrogen from the first tank T 1 .
[0034]
(5) It is assumed that the relationship of Cw1> Cw2 is established between the moisture contents Cw1 and Cw2 of the first and second humidity controllers 10 1 and 10 2 even during deceleration of the electric vehicle. As shown in FIG. 8, the reformer 3 → first three-way valve 3V 1 → third three-way valve 3V 3 → fourth is switched by switching the first , third to sixth three-way valves 3V 1 and 3V 3 to 3V 6 . 3 way valve 3V 4 → 2nd humidity controller 10 25th 3 way valve 3V 5 → 6th 3 way valve 3V 5 → 7th 3 way valve 3V 7 → 2nd tank T 28th 3 way valve 3V 8discharge pipe 8 path to establish a, thereby occluding the excess hydrogen due to the response delay of the reformer 3 to the second tank T 2. When the second tank T 2 is filled, excess hydrogen is filled into the first tank T 1 .
[0035]
In the first and second storage portions 15 1 and 15 2 of the hydrogen storage device 15, the number of tanks is increased as necessary, or the first and second storage materials MH 1 are increased. , MH 2 is increased to increase the hydrogen storage capacity (hydrogen storage capacity) of the storage units 15 1 , 15 2 . Further, as an apparatus using hydrogen as a fuel, an internal combustion engine can be cited in addition to a fuel cell.
[0036]
【The invention's effect】
According to the present invention, by adopting the above-described means, the hydrogen storage capacity in the hydrogen storage device is improved, and when the required hydrogen amount of the equipment cannot be satisfied by the reformer, the required hydrogen It is possible to provide a hydrogen supply system in which the amount can be quickly satisfied by the hydrogen reservoir. Excess hydrogen not occluded in the first hydrogen storage material in the process of temporarily occluding hydrogen that has been subjected to dehumidification process is generated by the particular reformer first reservoir also modified through the discharge pipe It is led to the combustion system of the reactor, where it is burned, and the heat generated by the combustion can be used for the reforming reaction in the reformer.
[0037]
According to the second aspect of the present invention, by employing the means as described above, in particular, it is possible to provide a hydrogen supply system which can improve the power generation performance of the fuel cell as the equipment.
[0038]
Moreover , according to invention of Claims 3-5, the hydrogen supply system provided with the humidifier which can perform humidification processing and dehumidification processing reliably with respect to hydrogen, and is convenient can be provided. .
[Brief description of the drawings]
FIG. 1 is an explanatory view of a hydrogen supply system showing a state in which a first tank is filled with hydrogen during a suspension of operation of a fuel cell.
FIG. 2 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is transferred from a first tank to a third tank and a second tank is filled with hydrogen.
FIG. 3 is an explanatory diagram of the hydrogen supply system showing a state in which the first tank is again filled with hydrogen.
FIG. 4 is an explanatory diagram of a hydrogen supply system showing a fuel cell operation start state.
FIG. 5 is an explanatory diagram of a hydrogen supply system showing a state in which an electric vehicle is running and hydrogen is being transferred from a second tank to a third tank.
FIG. 6 is an explanatory diagram of a hydrogen supply system showing a state in which an electric vehicle runs and a second tank can be refilled with hydrogen.
FIG. 7 is an explanatory diagram of a hydrogen supply system showing an acceleration state of an electric vehicle.
FIG. 8 is an explanatory diagram of a hydrogen supply system showing a deceleration state of the electric vehicle.
[Explanation of symbols]
1 Hydrogen supply system 2 Fuel cell (equipment)
3 reformers 10 1 , 10 2 first and second humidifiers 15 hydrogen reservoirs 15 1 , 15 2 first and second storage parts Cw1, Cw2 water content MH 1 , MH 2 first and second hydrogen Occlusion material

Claims (6)

水素を燃料とする機器(2)に水素を供給すべく、料から水素を生成する改質器(3)と、その改質器(3)により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器(15)とを備えてなり、その水素貯蔵器(15)は、第1の水素吸蔵材(MH1 )を備えた第1貯蔵部(151 )と、第2の水素吸蔵材(MH2 )を備えた第2貯蔵部(152 )とを有し、両水素吸蔵材(MH1 ,MH2 )において、水素の吸蔵し易さに関しては前記第1の水素吸蔵材(MH1 )が前記第2の水素吸蔵材(MH2 )に比べて優れており、一方、吸蔵水素の放出し易さに関しては前記第2の水素吸蔵材(MH2 )が前記第1の水素吸蔵材(MH1 )に比べて優れており、前記改質器(3)からの水素に除湿処理を施した後その水素を前記第1貯蔵部(151 )に一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部(152 )に吸蔵させ、前記機器(2)の要求水素量を前記改質器(3)により充足することができない時、その要求水素量を充足すべく、前記第2貯蔵部(152 )より吸蔵水素を放出させる水素供給システムであって、
前記改質器(3)からの生成水素を前記第1貯蔵部(15 1 )に一旦吸蔵させる過程で前記第1の水素吸蔵材(MH 1 )に吸蔵されなかった過剰の水素は、前記改質器(3)の燃焼系と前記第1貯蔵部(15 1 )の出口側との間に設けた排出管(8)を経て該改質器(3)の燃焼系に導かれて、そこで燃焼され、その燃焼による発生熱が該改質器(3)における改質反応に用いられることを特徴とする、水素を燃料とする機器への水素供給システム。
To supply hydrogen to the device (2) using hydrogen as fuel, reformer for generating hydrogen from raw materials and (3), to occlude hydrogen generated by the reformer (3), and release it will be a possible hydrogen reservoir (15), the hydrogen reservoir (15), a first reservoir having a first hydrogen storage material with (MH 1) and (15 1), second a second storage unit having a hydrogen absorption material (MH 2) and (15 2), in both the hydrogen absorption material (MH 1, MH 2), the first hydrogen respect occluded ease hydrogen The occlusion material (MH 1 ) is superior to the second hydrogen occlusion material (MH 2 ), while the second hydrogen occlusion material (MH 2 ) is the second hydrogen occlusion material (MH 2 ) for the ease of releasing the occlusion hydrogen. 1 of hydrogen absorption material (MH 1) is superior to the reformer (3) wherein the hydrogen after being subjected to dehumidifying treatment hydrogen from the first Compared (15 1) to thereby temporarily occluded, then the hydrogen obtained by releasing the occluded hydrogen is occluded in the second reservoir (15 2), said reforming the required hydrogen amount of the device (2) A hydrogen supply system that releases occluded hydrogen from the second storage unit (15 2 ) in order to satisfy the required amount of hydrogen when it cannot be satisfied by the vessel (3) ,
Excess hydrogen not stored in the first hydrogen storage material (MH 1 ) in the process of temporarily storing the generated hydrogen from the reformer (3) in the first storage unit (15 1 ) It is led to the combustion system of the reformer (3) through an exhaust pipe (8) provided between the combustion system of the mass device (3) and the outlet side of the first storage section (15 1 ). A hydrogen supply system for equipment using hydrogen as a fuel, wherein the heat generated by the combustion is used for a reforming reaction in the reformer (3) .
前記第2貯蔵部(152 )からの放出水素を前記機器としての燃料電池(2)に導入する前に、その放出水素に加湿処理を施す、請求項1記載の水素を燃料とする機器への水素供給システム。2. The hydrogen-fueled device according to claim 1, wherein the hydrogen released from the second storage section (15 2 ) is humidified before being introduced into the fuel cell (2) as the device. Hydrogen supply system. 前記除湿処理および加湿処理を行う調湿器(101 ,102 )を備え、その調湿器(101 ,102 )は、除湿機能発揮後、加湿機能発揮可能状態となり、且つ加湿機能発揮後、除湿機能発揮可能状態となる、請求項2記載の水素を燃料とする機器への水素供給システム。A humidity controller (10 1 , 10 2 ) that performs the dehumidifying process and the humidifying process is provided, and the humidifier (10 1 , 10 2 ) is in a state where the humidifying function can be exhibited after the dehumidifying function is exhibited, and the humidifying function is exhibited. 3. A hydrogen supply system for a device using hydrogen as a fuel according to claim 2, wherein the dehumidifying function is enabled. 前記調湿器(101 ,102 )を2台備え、それら調湿器(101 ,102 )は選択的に使用される、請求項2または3記載の水素を燃料とする機器への水素供給システム。The said humidity controller (10 1 , 10 2 ) is provided with two units, and these humidity controllers (10 1 , 10 2 ) are selectively used. Hydrogen supply system. 前記除湿処理に当っては両調湿器(101 ,102 )のうち含水量(Cw1,Cw2)の少ない方を使用し、また前記加湿処理に当っては両調湿器(101 ,102 )のうち含水量(Cw1,Cw2)の多い方を使用する、請求項4記載の水素を燃料とする機器への水素供給システム。The water content used towards the low (Cw1, Cw2), also both humidistat is hitting the moistening (10 1 out of the dehumidifying both humidistat is hitting the treatment (10 1, 10 2), water content of 10 2) (Cw1, use the one with a lot of Cw2), hydrogen supply system of hydrogen according to claim 4, wherein the device for the fuel. 水素を燃料とする機器(2)に水素を供給すべく、料から水素を生成する改質器(3)と、その改質器(3)により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器(15)とを備えてなり、その水素貯蔵器(15)は、第1の水素吸蔵材(MH1 )を備えた第1貯蔵部(151 )と、第2の水素吸蔵材(MH2 )を備えた第2貯蔵部(152 )とを有し、両水素吸蔵材(MH1 ,MH2 )において、水素吸蔵特性に関しては、同一温度・同一圧力下では前記第1の水素吸蔵材(MH1 )が前記第2の水素吸蔵材(MH2 )に比べて水素吸蔵の平衡圧が低く、一方、水素放出特性に関しては、同一温度・同一圧力下では前記第2の水素吸蔵材(MH2 )が前記第1の水素吸蔵材(MH1 )に比べて水素放出の平衡圧が高く、前記改質器(3)からの水素に除湿処理を施した後その水素を前記第1貯蔵部(151 )に一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部(152 )に吸蔵させ、前記機器(2)の要求水素量を前記改質器(3)により充足することができない時、その要求水素量を充足すべく、前記第2貯蔵部(152 )より吸蔵水素を放出させる水素供給システムであって、
前記改質器(3)からの生成水素を前記第1貯蔵部(15 1 )に一旦吸蔵させる過程で 前記第1の水素吸蔵材(MH 1 )に吸蔵されなかった過剰の水素は、前記改質器(3)の燃焼系と前記第1貯蔵部(15 1 )の出口側との間に設けた排出管(8)を経て該改質器(3)の燃焼系に導かれて、そこで燃焼され、その燃焼による発生熱が該改質器(3)における改質反応に用いられることを特徴とする、水素を燃料とする機器への水素供給システム。
To supply hydrogen to the device (2) using hydrogen as fuel, reformer for generating hydrogen from raw materials and (3), to occlude hydrogen generated by the reformer (3), and release it will be a possible hydrogen reservoir (15), the hydrogen reservoir (15), a first reservoir having a first hydrogen storage material with (MH 1) and (15 1), second a second storage unit having a hydrogen absorption material (MH 2) and (15 2), in both the hydrogen absorption material (MH 1, MH 2), with respect to the hydrogen storage characteristics, under the same temperature and the same pressure The first hydrogen storage material (MH 1 ) has a lower hydrogen storage equilibrium pressure than the second hydrogen storage material (MH 2 ). On the other hand, the hydrogen release characteristics are the same at the same temperature and pressure. the second hydrogen-absorbing material (MH 2) has a higher equilibrium pressure of hydrogen releasing than the first hydrogen storage material (MH 1), Kiaratame reformer (3) the hydrogen was subjected to a dehumidification process hydrogen is temporarily occluded in the first storage section (15 1) from, and then the second hydrogen obtained by releasing the occluded hydrogen When the storage unit (15 2 ) is occluded and the required hydrogen amount of the device (2) cannot be satisfied by the reformer (3), the second storage unit ( 15 2 ) A hydrogen supply system for releasing stored hydrogen from
Excess hydrogen not stored in the first hydrogen storage material (MH 1 ) in the process of temporarily storing the generated hydrogen from the reformer (3) in the first storage unit (15 1 ) It is led to the combustion system of the reformer (3) through an exhaust pipe (8) provided between the combustion system of the mass device (3) and the outlet side of the first storage section (15 1 ). A hydrogen supply system for equipment using hydrogen as a fuel, wherein the heat generated by the combustion is used for a reforming reaction in the reformer (3) .
JP16494099A 1999-06-11 1999-06-11 Hydrogen supply system for equipment using hydrogen as fuel Expired - Fee Related JP4229526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16494099A JP4229526B2 (en) 1999-06-11 1999-06-11 Hydrogen supply system for equipment using hydrogen as fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16494099A JP4229526B2 (en) 1999-06-11 1999-06-11 Hydrogen supply system for equipment using hydrogen as fuel

Publications (2)

Publication Number Publication Date
JP2000351602A JP2000351602A (en) 2000-12-19
JP4229526B2 true JP4229526B2 (en) 2009-02-25

Family

ID=15802749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16494099A Expired - Fee Related JP4229526B2 (en) 1999-06-11 1999-06-11 Hydrogen supply system for equipment using hydrogen as fuel

Country Status (1)

Country Link
JP (1) JP4229526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP4040525B2 (en) * 2003-04-30 2008-01-30 本田技研工業株式会社 Hydrogen filling device
FR2893187A1 (en) * 2005-11-10 2007-05-11 Air Liquide ELECTRIC POWER CONSUMER INSTALLATION USING A FUEL CELL AND METHOD OF SUPPLYING SUCH A INSTALLATION

Also Published As

Publication number Publication date
JP2000351602A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP4000608B2 (en) Hydrogen production filling device and electric vehicle
CA2435013C (en) Fuel cell system with stored hydrogen
CA2259396C (en) Fuel-cell power generating system
US7059277B2 (en) Gas engine
EP2487742B1 (en) Fuel cell system
CA2703629A1 (en) Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
CA2618064A1 (en) Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption
WO2011004606A1 (en) Fuel cell system
JP2001026401A (en) Hydrogen supply system-for equipment using hydrogen as fuel
JP4229526B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP4229527B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP2001229951A (en) Fuel-cell system for moving object
JP4229525B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JPS62170171A (en) Fuel cell system
JP2000302406A (en) System for feeding hydrogen to equipment using hydrogen as fuel
JP2001313050A (en) Hydrogen supply system for the equipment using hydrogen as fuel and device for the same
CN100392902C (en) Fuel cell capable of making hydrogen or air temperature and humidity entered into reaction stablizing
JP2000302403A (en) System for feeding hydrogen to equipment using hydrogen as fuel
JP2000012061A (en) Fuel cell power generating system
JP2003229155A (en) Fuel cell system
JP4938299B2 (en) Operation method of fuel cell power generator
JP4259674B2 (en) Fuel cell power generator
JP2000285944A (en) Operation method for fuel cell power generation device and fuel cell power generation device
JP2004127624A (en) Fuel cell system
JP4644333B2 (en) Hydrogen supply apparatus and method for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees