JP2000302403A - System for feeding hydrogen to equipment using hydrogen as fuel - Google Patents
System for feeding hydrogen to equipment using hydrogen as fuelInfo
- Publication number
- JP2000302403A JP2000302403A JP11113741A JP11374199A JP2000302403A JP 2000302403 A JP2000302403 A JP 2000302403A JP 11113741 A JP11113741 A JP 11113741A JP 11374199 A JP11374199 A JP 11374199A JP 2000302403 A JP2000302403 A JP 2000302403A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- tank
- reformer
- way valve
- released
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水素を燃料とする機
器への水素供給システム、特に、水素を燃料とする機器
に水素を供給すべく、アルコール、ガソリン等の原料か
ら水素を生成するようにした水素供給システムに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for supplying hydrogen to equipment using hydrogen as a fuel, and more particularly to a method for producing hydrogen from a raw material such as alcohol or gasoline to supply hydrogen to equipment using hydrogen as a fuel. Hydrogen supply system.
【0002】[0002]
【従来の技術】従来、この種の水素供給システムは、水
素生成のために改質器を備えている。2. Description of the Related Art Conventionally, this kind of hydrogen supply system is provided with a reformer for producing hydrogen.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、現状の
改質器は、起動するまでの時間が長く、そのため、前記
機器としての燃料電池を電源とする電気自動車において
は始動スイッチを入れても直ちに発進することができ
ず、また水素生成量増加の要求に対する応答性が鈍く、
そのため電気自動車においてはその加速性が悪い、とい
った問題がある。However, the current reformer takes a long time to start, and therefore, in an electric vehicle powered by a fuel cell as the device, the reformer starts immediately even if the start switch is turned on. And the response to the demand for increased hydrogen production is slow,
Therefore, the electric vehicle has a problem that its acceleration is poor.
【0004】[0004]
【課題を解決するための手段】本発明は、水素貯蔵器を
備え、そこからの放出水素のみを機器に供給するように
し、これにより、改質器が持つ問題点が機器への水素供
給に影響しないようにした前記水素供給システムを提供
することを目的とする。SUMMARY OF THE INVENTION The present invention comprises a hydrogen storage device, and supplies only hydrogen released from the hydrogen storage device to the equipment. It is an object of the present invention to provide the hydrogen supply system that has no influence.
【0005】前記目的を達成するため本発明によれば、
アルコール、ガソリン等の原料から水素を生成する改質
器と、前記改質器により生成された水素を吸蔵し、次い
でその吸蔵水素を放出して水素を燃料とする機器に供給
することが可能な水素貯蔵器とを有し、その水素貯蔵器
は、水素吸蔵材を内蔵した少なくとも3つのタンクを備
え、前記機器の運転開始をそれらタンクの少なくとも1
つからの放出水素で行い、また前記機器の運転継続下で
は、1つの前記タンクが水素放出状態にあるとき、別の
1つの前記タンクが水素吸蔵状態にある、水素を燃料と
する機器への水素供給システムが提供される。[0005] To achieve the above object, according to the present invention,
Alcohol, a reformer that generates hydrogen from a raw material such as gasoline, and occludes the hydrogen generated by the reformer, and then releases the occluded hydrogen to supply it to equipment using hydrogen as a fuel A hydrogen storage device, the hydrogen storage device comprising at least three tanks containing a hydrogen storage material, and starting operation of the equipment by at least one of the tanks.
To release the hydrogen from one of the tanks to a hydrogen-fueled device when one of the tanks is in a hydrogen releasing state while the other device is in a hydrogen releasing state. A hydrogen supply system is provided.
【0006】例えば、機器の休止中において改質器を作
動させ、その改質器で生成された水素を水素貯蔵器の1
つ以上のタンクに吸蔵させる。そして、機器の運転開始
時には、例えば1つのタンクから水素を放出させて機器
に供給する。この放出水素の供給は、機器の運転開始時
に同時に始動させた改質器が定常状態に到るまで行われ
る。For example, the reformer is operated while the equipment is at rest, and the hydrogen generated by the reformer is stored in one of the hydrogen storages.
Absorb in more than one tank. Then, when the operation of the equipment is started, for example, hydrogen is released from one tank and supplied to the equipment. The supply of the released hydrogen is performed until the reformer started at the same time as the operation start of the apparatus reaches a steady state.
【0007】その後の機器の運転継続は各タンクから順
次に、且つ間断なく供給される放出水素を用いて行われ
る。この場合、機器の要求水素量が増加したときにはタ
ンクからの放出水素量を増し、一方、前記要求水素量が
減少したときにはタンクからの放出水素量を減らす。[0007] The subsequent operation of the equipment is performed sequentially and continuously using the released hydrogen supplied from each tank. In this case, when the required hydrogen amount of the equipment increases, the amount of hydrogen released from the tank is increased, while when the required hydrogen amount decreases, the amount of hydrogen released from the tank is reduced.
【0008】したがって、この水素供給システムによれ
ば、改質器の応答遅れ等の問題点が機器への水素供給に
影響することを回避することができる。Therefore, according to this hydrogen supply system, it is possible to prevent the problems such as the response delay of the reformer from affecting the hydrogen supply to the equipment.
【0009】[0009]
【発明の実施の形態】図1に示す水素供給システム1
は、水素を燃料とする機器としての燃料電池2を電源と
する電気自動車に搭載される。DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen supply system 1 shown in FIG.
Is mounted on an electric vehicle powered by a fuel cell 2 as a device using hydrogen as a fuel.
【0010】水素供給システム1において、改質器3
は、アルコール、ガソリン等の原料から水素を生成す
る。また第1,第2調湿器41 ,42 は加湿機能および
除湿機能を有するもので、それらの一端側に第1連通口
51 を、また他端側に第2連通口52 をそれぞれ有す
る。両第1連通口51 間は導管6を介して接続され、そ
の導管6に、第1調湿器51 側より第2調湿器52 側に
向って第1,第2,第3三方弁3V1 ,3V2 ,3V3
が装置される。それらの第1,第2ポートp1,p2は
導管6の第1調湿器51 側と第2調湿器52 側とにそれ
ぞれ接続される。第2三方弁3V2 の第3ポートp3に
は導管7を介して改質器3の供給口8が接続される。ま
た第1,第3三方弁3V1 ,3V3 の第3ポートp3は
導管9,10を介して第4三方弁3V4 の第1,第2ポ
ートp1,p2にそれぞれ接続され、その第4三方弁3
V4 の第3ポートp3は導管11を介して燃料電池2の
入口12に接続される。燃料電池2の出口13は第1排
出管141 を介して改質器3の燃焼系に接続され、これ
により燃料電池2の排ガス中の可燃成分が燃焼されて、
その発生熱は改質器3における改質反応に用いられる。In the hydrogen supply system 1, the reformer 3
Generates hydrogen from raw materials such as alcohol and gasoline. The first, second humidistat 4 1, 4 2 those having a humidifying function and a dehumidifying function, their one end first communication port on the side 5 1 and the other end second communication port on the side 5 2 Have each. Both the first communication port 5 1 between is connected via a conduit 6, its conduit 6, first towards from the first humidistat 5 1 side to the second humidistat 5 2 side, the second, third the three-way valve 3V 1, 3V 2, 3V 3
Is installed. First of them, the second port p1, p2 are respectively connected to the first humidistat 5 1 side and the second humidistat 5 2 side of the conduit 6. Inlet 8 of the reformer 3 is connected via a conduit 7 to the third port p3 of the second three-way valve 3V 2. The first, third port p3 of the third three-way valve 3V 1, 3V 3 first fourth three-way valve 3V 4 via conduit 9 and 10, respectively connected to the second port p1, p2, the fourth Three-way valve 3
The third port p3 of V 4 is connected to the inlet 12 of the fuel cell 2 via a conduit 11. Outlet 13 of the fuel cell 2 is connected to the reformer 3 a combustion system through the first exhaust pipe 14 1, thereby being combustible components in the exhaust gas of the fuel cell 2 is burned,
The generated heat is used for a reforming reaction in the reformer 3.
【0011】第1,第2調湿器41 ,42 の両第2連通
口52 間は導管16を介して接続され、その導管16
に、第1調湿器41 側より第2調湿器42 側に向って第
5,第6,第7三方弁3V5 ,3V6 ,3V7 が装置さ
れる。それらの第1,第2ポートp1,p2は導管16
の第1調湿器41 側と第2調湿器42 側とにそれぞれ接
続され、また第6三方弁3V6 の第3ポートp3は水素
貯蔵器15の入口側に接続される。[0011] The first, second humidistat 4 1, 4 2 in both the second communication port 5 2 between are connected via a conduit 16, the conduit 16
The fifth, sixth, seventh three-way valve 3V 5, 3V 6, 3V 7 is device towards from the first humidistat 4 1 side to the second humidistat 4 2 side. The first and second ports p1 and p2 are connected to the conduit 16
It is first humidistat 4 1 side and each of the second humidistat 4 2 side of the connection, and the third port p3 of the sixth three-way valve 3V 6 is connected to the inlet side of the hydrogen reservoir 15.
【0012】水素貯蔵器15は、改質器3により生成さ
れた水素を第1または第2調湿器4 1 ,42 を介し供給
されてそれを吸蔵し、またその吸蔵水素を放出して第1
または第2調湿器41 ,42 を介して燃料電池2に供給
することができる。その水素貯蔵器15は、水素吸蔵材
MHを内蔵した少なくとも3つ、図示例では3つの第
1,第2,第3タンクT1 ,T2 ,T3 を備える。水素
吸蔵材MHとしては水素吸蔵合金または炭素材が用いら
れ、実施例では水素吸蔵材MHはAB5系合金、例えば
MmNi4.77Al0.23合金(Mm:ミッシュメタル)よ
りなる。The hydrogen storage 15 is generated by the reformer 3.
The first or second humidity controller 4 1, 4TwoSupply via
And occlude it and release the stored hydrogen to the first
Or the second humidity controller 41, 4TwoTo fuel cell 2 via
can do. The hydrogen storage 15 is a hydrogen storage material
At least three, in the example shown, three
1, 2nd, 3rd tank T1, TTwo, TThreeIs provided. hydrogen
As the storage material MH, a hydrogen storage alloy or a carbon material is used.
In the embodiment, the hydrogen storage material MH is an AB5-based alloy, for example,
MmNi4.77Al0.23Alloy (Mm: Mish Metal)
It becomes.
【0013】第1〜第3タンクT1 〜T3 の入口17は
導管18により相互に接続され、その導管18の分岐部
19が別の導管20を介して第6三方弁3V6 の第3ポ
ートp3に接続される。導管18において、各タンクT
1 〜T3 の入口17と分岐部19との間に第1,第2,
第3二方弁2V1 ,2V2 ,2V3 がそれぞれ装置され
る。第1〜第3タンクT1 〜T3 の出口21は導管22
により相互に接続され、その導管22の集合部23が第
2排出管142 を介して第1排出管141 の下流側に接
続される。導管22において、各タンクT1 〜T3 の出
口21と集合部23との間に第8,第9,第10三方弁
3V8 ,3V9 ,3V10がそれぞれ装置される。それら
三方弁3V8 ,3V9 ,3V10の第1,第2ポートp
1,p2は導管22の第1〜第3タンクT1 〜T3 側お
よび集合部23側にそれぞれ接続される。The inlets 17 of the first to third tanks T 1 to T 3 are interconnected by a conduit 18, and a branch 19 of the conduit 18 is connected via another conduit 20 to the third of the sixth three-way valve 3V 6 . Connected to port p3. In the conduit 18, each tank T
First between the inlet 17 of 1 through T 3 and the branch portion 19, a second,
The third two-way valve 2V 1, 2V 2, 2V 3 are devices respectively. The outlet 21 of the first to third tanks T 1 to T 3 is connected to a conduit 22.
By being connected to each other, a set portion 23 of the conduit 22 is connected to the first downstream side of the exhaust pipe 14 1 through the second exhaust pipe 14 2. In the conduit 22, the eighth between the outlet 21 and the collecting portion 23 of the tank T 1 through T 3, 9, 10 three-way valve 3V 8, 3V 9, 3V 10 are devices respectively. The first and second ports p of these three-way valves 3V 8 , 3V 9 , 3V 10
1 and p2 are connected to the first to third tanks T 1 to T 3 of the conduit 22 and the collecting portion 23, respectively.
【0014】第8三方弁3V8 の第3ポートp3は導管
24を介して第11三方弁3V11の第1ポートp1に接
続され、また第9三方弁3V9 および第10三方弁3V
10の第3ポートp3は導管25,26を介して第12三
方弁3V12の第1,第2ポートp1,p2にそれぞれ接
続される。その第12三方弁3V12の第3ポートp3は
導管27を介して第11三方弁3V11の第2ポートp2
に接続される。第11三方弁3V11の第3ポートp3は
導管28を介して第13三方弁3V13の第1ポートp1
に接続される。第13三方弁3V13の第2ポートp2は
導管29を介して第5三方弁3V5 の第3ポートp3に
接続され、また第3ポートp3は導管30を介して第7
三方弁3V7 の第3ポートp3に接続される。A third port p3 of the eighth three-way valve 3V 8 is connected to a first port p1 of a 11 three-way valve 3V 11 via the conduit 24, also the ninth three-way valve 3V 9 and 10 three-way valve 3V
The third port p3 of the 10 first twelfth three-way valve 3V 12 via conduit 25 and 26, are connected to the second port p1, p2. Its third port p3 of the 12 three-way valve 3V 12 via a conduit 27 second port p2 of the 11 three-way valve 3V 11
Connected to. 11 first port p1 of a 13 three-way valve 3V 13 through the third port p3 conduit 28 of the three-way valve 3V 11
Connected to. A second port p2 of the 13 three-way valve 3V 13 is connected to the third port p3 of the fifth three-way valve 3V 5 via the conduit 29, and the third port p3 via the conduit 30 7
It is connected to the third port p3 of the three-way valve 3V 7.
【0015】第1,第2調湿器41 ,42 は第1貯蔵部
151 の水素吸蔵性を向上させるべく、改質器3からの
水素に除湿処理を施し、また燃料電池2の発電性能を向
上させるべく、放出水素に加湿処理を施す。この場合、
第1,第2調湿器41 ,42の含水量をそれぞれCw
1,Cw2としたとき、例えば、Cw1<Cw2であれ
ば第1調湿器41 が除湿処理に、一方、第2調湿器42
が加湿処理にそれぞれ用いられる。[0015] The first, second humidistat 4 1, 4 2 in order to improve the hydrogen absorption properties of the first storage unit 15 1 performs the dehumidifying process to hydrogen from the reformer 3 and the fuel cell 2 The released hydrogen is humidified in order to improve the power generation performance. in this case,
The water content of each of the first and second humidifiers 4 1 and 4 2 is calculated as Cw
1, when the Cw2, for example, Cw1 <First humidistat 4 1 dehumidification process if Cw2, while the second humidistat 4 2
Are used for the humidification treatment, respectively.
【0016】このような使用の結果、両含水量Cw1,
Cw2の関係が逆転してCw1>Cw2となれば、第1
調湿器41 は、除湿機能発揮後、加湿機能発揮可能状態
となり、一方、第2調湿器42 は、加湿機能発揮後、除
湿機能発揮可能状態となったもので、今度は第1調湿器
41 が加湿処理に、一方、第2調湿器42 が除湿処理に
それぞれ用いられる。このような使い分は1台の調湿器
によっても可能であるが、2台の調湿器41 ,42 を備
え、それらの間に含水量の差を設けると、除湿および加
湿処理に適確に対応することができる。前記のような除
湿および加湿作用を行うものとしては、モレキュラシー
ブを挙げることができる。As a result of such use, both water contents Cw1,
If the relationship of Cw2 is reversed and Cw1> Cw2, the first
Humidistat 4 1 after dehumidification function exhibit, become humidifying function capable of exhibiting state, while the second humidistat 4 2 after humidifying function exhibit, which was a dehumidification function capable of exhibiting state, this time the first humidistat 4 1 to the humidifying treatment, while the second humidistat 4 2 are used respectively in the dehumidifying process. Such use content is also possible by one of the humidistat, tone two humidifier 4 1, 4 comprises two, providing a difference in water content between them, the dehumidification and humidification We can respond appropriately. Molecular sieves may be used to perform the dehumidifying and humidifying effects as described above.
【0017】必要に応じて、両調湿器41 ,42 に、改
質器3からの水素に含まれた炭酸ガス、酸素等の不純ガ
ス成分を除去する機能を持たせることができる。図中、
Vは逆止弁である。If necessary, both humidity controllers 4 1 and 4 2 may have a function of removing impure gas components such as carbon dioxide and oxygen contained in hydrogen from the reformer 3. In the figure,
V is a check valve.
【0018】(1) 例えば、翌朝において電気自動車
の走行を確実に開始させるためには、夜間駐車中であっ
て、燃料電池2の運転休止中に次のような水素貯蔵作業
を行う。便宜上、作業開始前においては水素貯蔵器15
の第1〜第3タンクT1 〜T 3 は空(カラ)状態である
とする。(1) For example, in the next morning, an electric vehicle
To ensure that the vehicle starts
The following hydrogen storage operation is performed while the operation of the fuel cell 2 is stopped.
I do. For convenience, before starting the operation, the hydrogen storage 15
First to third tanks T1~ T ThreeIs empty
And
【0019】(1)−a 図1に示すように、第1,第
2調湿器41 ,42 の両含水量Cw1,Cw2の間には
Cw1≒Cw2の関係が成立し、それらは除湿機能発揮
可能状態にあるものとする。弁切換操作によって、第
2,第3タンクT2 ,T3 の入口17への経路を遮断し
た状態において、改質器3→第2三方弁3V2 →第1三
方弁3V1 →第1調湿器41 →第5三方弁3V5 →第6
三方弁3V6 →第1二方弁2V1 →第1タンクT1 →第
8三方弁3V8 →第2排出管142 の経路を確立させ
る。そして改質器3を作動させ、その改質器3で生成さ
れた水素を、除湿処理発揮可能状態にある第1調湿器4
1 を経て第1タンクT1 に吸蔵させる。この水素の吸蔵
はその水素に除湿処理が施されているので、水素吸蔵材
MHに対してスムーズに、且つ十分に行われる。水素吸
蔵材MHに吸蔵されなかった過剰の水素は第2排出管1
42 を経て改質器3の燃焼系に導かれ、そこで燃焼され
て、その発生熱は改質器3における改質反応に用いられ
る。また水素に含まれ、且つ水素吸蔵材MHに吸蔵され
ない炭酸ガス等の不純ガス成分は第1タンクT1 の出口
21を通じて第2排出管142 に排出されるので、第1
タンクT1 内における不純ガス成分の濃度上昇が回避さ
れる。この第1タンクT1 への水素の貯蔵は、そのタン
クT1 が充填状態(満状態)となるまで行われ、その
後、弁切換操作によって第1タンクT1 の入口17への
経路および出口21からの経路をそれぞれ遮断する(図
2参照)。両含水量Cw1,Cw2の関係はCw1≒C
w2→Cw1>Cw2となる。[0019] (1) As shown in -a Figure 1, first, between the second humidistat 4 1, 4 2 of both moisture content Cw1, Cw2 established relationship Cw1 ≒ Cw2, they It is assumed that the dehumidifying function can be exhibited. In a state where the paths to the inlets 17 of the second and third tanks T 2 and T 3 are cut off by the valve switching operation, the reformer 3 → the second three-way valve 3V 2 → the first three-way valve 3V 1 → the first control. Humidifier 4 1 → 5th three-way valve 3V 5 → 6th
The three-way valve 3V 6 → establishing a first two-way valve 2V 1 → first tank T 1 → eighth three-way valve 3V 8 → second path of the discharge pipe 14 2. Then, the reformer 3 is operated, and the hydrogen generated in the reformer 3 is supplied to the first humidity controller 4 in a state where the dehumidification process can be performed.
Occluding the first tank T 1 through 1. This hydrogen storage is performed smoothly and sufficiently on the hydrogen storage material MH because the hydrogen is subjected to the dehumidification process. Excess hydrogen not stored in the hydrogen storage material MH is discharged to the second discharge pipe 1
4 2 through the led to the combustion system of the reformer 3, where it is combusted, the heat generated is used for the reforming reaction in the reformer 3. Also included in the hydrogen, and since the impurity gas components carbon dioxide gas which is not absorbed in the hydrogen absorption material MH is discharged to the second discharge pipe 14 2 through the first tank T 1 of the outlet 21, the first
Increase in the concentration of impure gas components in the tank T 1 is avoided. The first storage of hydrogen to the tank T 1 is performed until the tank T 1 is a filling state (full state), then the path and the outlet 21 to the first tank T 1 of the inlet 17 by a valve switching operation The route from each is blocked (see FIG. 2). The relationship between both water contents Cw1 and Cw2 is Cw1 ≒ C
w2 → Cw1> Cw2.
【0020】(1)−b 図2に示すように、両含水量
Cw1,Cw2の間にCw1>Cw2の関係が成立して
いる状態において、弁切換操作を行って、改質器3→第
2三方弁3V2 →第3三方弁3V3 →第2調湿器42 →
第7三方弁3V7 →第6三方弁3V6 →第3二方弁2V
3 →第3タンクT3 →第10三方弁3V10→第2排出管
142 の経路を確立させる。そして改質器3で生成され
た水素を、それに除湿処理を施した後第3タンクT1 に
吸蔵させる。この第3タンクT3 への水素の貯蔵は、そ
のタンクT3 が充填状態(満状態)となるまで行われ、
その後弁切換操作を行って第3タンクT3 の入口17へ
の経路および出口21からの経路をそれぞれ遮断する
(図3参照)。両含水量Cw1,Cw2の関係はCw1
>Cw2→Cw1≒Cw2となる。(1) -b As shown in FIG. 2, in a state where the relationship of Cw1> Cw2 is established between the two water contents Cw1 and Cw2, a valve switching operation is performed, and the reformer 3 → 2 3 way valve 3V 2 → 3rd 3 way valve 3V 3 → 2nd humidity controller 4 2 →
7th 3-way valve 3V 7 → 6th 3-way valve 3V 6 → 3rd 2-way valve 2V
3 → establishing a third tank T 3 → 10 three-way valve 3V 10 → second path of the discharge pipe 14 2. The hydrogen generated in the reformer 3, is inserted in the third tank T 1 was subjected to a dehumidifying treatment thereto. The third storage of hydrogen to the tank T 3 is performed until the tank T 3 is packed state (full state),
Path to block each from the path and outlet 21 of performing subsequent valve switching operation to the third tank T 3 of the inlet 17 (see FIG. 3). The relationship between the two water contents Cw1 and Cw2 is Cw1
> Cw2 → Cw1 ≒ Cw2.
【0021】(2) 電気自動車の走行開始時、つまり
燃料電池2の運転開始時において、第1,第2調湿器4
1 ,42 の両含水量Cw1,Cw2の間にはCw1≒C
w2の関係が成立しているものとする。図3に示すよう
に、弁切換操作によって、第1タンクT1 →第8三方弁
3V8 →第11三方弁3V11→第13三方弁3V13→→
第5三方弁3V5 →第1調湿器41 →第1三方弁3V1
→第4三方弁3V4 →燃料電池2の経路を確立させる。
これにより第1タンクT1 より水素が放出され、加湿処
理を施された後燃料電池2に供給される。この放出水素
の供給は燃料電池2の運転開始時に同時に始動させた改
質器3が定常状態に到るまで行われる。燃料電池2の運
転に伴い電気自動車が走行する。両含水量Cw1,Cw
2の関係はCw1≒Cw2→Cw1<Cw2となる。(2) When the electric vehicle starts running, that is, when the fuel cell 2 starts operating, the first and second humidity controllers 4
Cw1 ≒ C between the water content Cw1 and Cw2 of 1 and 4 2
It is assumed that the relationship of w2 is established. As shown in FIG. 3, the first tank T 1 → the eighth three-way valve 3V 8 → the eleventh three-way valve 3V 11 → the thirteenth three-way valve 3V 13 →→ by the valve switching operation.
Fifth three-way valve 3V 5 → first humidity controller 4 1 → first three-way valve 3V 1
→ Fourth three-way valve 3V 4 → Establish the fuel cell 2 path.
As a result, hydrogen is released from the first tank T 1 and supplied to the fuel cell 2 after humidification. The supply of the released hydrogen is performed until the reformer 3 started simultaneously with the start of operation of the fuel cell 2 reaches a steady state. The electric vehicle runs with the operation of the fuel cell 2. Both water content Cw1, Cw
The relationship of 2 is Cw1 ≒ Cw2 → Cw1 <Cw2.
【0022】(3) 改質器3が定常状態に到ったと
き、図4に示すように弁切換操作によって第1タンクT
1 の出口21からの経路を遮断する。そして第3タンク
T3 →第10三方弁3V10→第12三方弁3V12→第1
1三方弁3V11→第13三方弁3V13→第7三方弁3V
7 →第2調湿器42 →第3三方弁3V3 →第4三方弁3
V4 →燃料電池2の経路を確立させる。これにより第3
タンクT3 からの放出水素が加湿処理を施された後燃料
電池2に供給されるので電気自動車の走行が継続され
る。電気自動車の加速時には、第3タンクT3 の出口2
1における開度を広げて放出水素量を増加し、一方、減
速時には、第3タンクT3 の出口21における開度を狭
めて放出水素量を減少させる。(3) When the reformer 3 reaches a steady state, the first tank T is operated by a valve switching operation as shown in FIG.
Blocking the path from the first outlet 21. And the third tank T 3 → the tenth three-way valve 3V 10 → the twelfth three-way valve 3V 12 → the first
1 3-way valve 3V 11 → 13th 3-way valve 3V 13 → 7th 3-way valve 3V
7 → Second humidity controller 4 2 → Third three-way valve 3V 3 → Fourth three-way valve 3
V 4 → Establish a route for the fuel cell 2. This makes the third
Since the desorbed hydrogen from the tank T 3 is supplied to the fuel cell 2 after having been subjected to moistening the electric vehicle is traveling is continued. When the electric vehicle accelerates, exit 2 of the third tank T 3
To expand the opening to increase the release amount of hydrogen in the 1, whereas, during deceleration reduces the released hydrogen amount to narrow the opening in the third tank T 3 of the outlet 21.
【0023】また改質器3→第2三方弁3V2 →第1三
方弁3V1 →第1調湿器41 →第5三方弁3V5 →第6
三方弁3V6 →第2二方弁2V2 →第2タンクT2 →第
9三方弁3V9 →第2排出管142 の経路を確立させ
る。これにより改質器3からの水素が除湿処理を施され
た後第2タンクT2 に吸蔵される。両含水量Cw1,C
w2の関係は、Cw1<Cw2→Cw1>Cw2とな
る。[0023] The reformer 3 → the second three-way valve 3V 2 → the first three-way valve 3V 1 → first humidistat 4 1 → fifth three-way valve 3V 5 → 6
The three-way valve 3V 6 → establishing a second two-way valve 2V 2 → second tank T 2 → 9 three-way valve 3V 9 → the second path of the discharge pipe 14 2. Thus the hydrogen from the reformer 3 are inserted into the second tank T 2 after being subjected to dehumidifying treatment. Both water content Cw1, C
The relationship of w2 is Cw1 <Cw2 → Cw1> Cw2.
【0024】図5は図4の場合に次ぐ走行段階を示し、
この段階では第1,第2調湿器41,42 の両含水量C
w1,Cw2の間にCw1>Cw2の関係が成立して、
第2タンクT2 からの水素の放出、第1調湿器41 によ
る放出水素への加湿処理および燃料電池2への加湿後の
放出水素の供給が行われ、また改質器3による水素の生
成、第2調湿器42 による生成水素への除湿処理および
第1タンクT1 における除湿後の生成水素の吸蔵が行わ
れている。これにより両含水量Cw1,Cw2の関係
は、Cw1>Cw2→Cw1<Cw2となる。FIG. 5 shows the driving phase next to that of FIG.
At this stage, both the water content C of the first and second humidifiers 4 1 and 4 2
The relationship of Cw1> Cw2 is established between w1 and Cw2,
Release of hydrogen from the second tank T 2, the supply of desorbed hydrogen after humidification to humidification and the fuel cell 2 to the first humidistat 4 1 due to the release of hydrogen takes place, also of hydrogen by the reformer 3 production, storage of generated hydrogen after dehumidification in the dehumidifying processing and the first tank T 1 of the the second humidistat 4 2 due to the production of hydrogen is taking place. Thus, the relationship between the two water contents Cw1 and Cw2 is Cw1> Cw2 → Cw1 <Cw2.
【0025】図6は図5の場合に次ぐ走行段階を示し、
この段階では第1,第2調湿器41,42 の両含水量C
w1,Cw2の間にCw1<Cw2の関係が成立して、
第1タンクT1 からの水素の放出、第2調質器42 によ
る放出水素への加湿処理および燃料電池2への加湿後の
放出水素の供給が行われ、また改質器3による水素の生
成、第1調湿器41 による生成水素への除湿処理および
第3タンクT3 における除湿後の生成水素の吸蔵が行わ
れている。これにより両含水量Cw1,Cw2の関係
は、Cw1<Cw2→Cw1>Cw2となる。FIG. 6 shows the driving stage next to that of FIG.
At this stage, both the water content C of the first and second humidifiers 4 1 and 4 2
The relationship of Cw1 <Cw2 is established between w1 and Cw2,
The release of hydrogen from the first tank T 1 , the humidification of the released hydrogen by the second temper 42, and the supply of the released hydrogen to the fuel cell 2 after humidification are performed. production, storage of generated hydrogen after dehumidification in the first humidistat 4 1 dehumidifying processing and the third tank T 3 to generate hydrogen by is performed. Thus, the relationship between the two water contents Cw1 and Cw2 is Cw1 <Cw2 → Cw1> Cw2.
【0026】このように水素供給システム1において
は、燃料電池2の運転開始を、第1〜第3タンクT1 〜
T3 の少なくとも1つのタンク、実施例では1つの第1
タンクT1 からの放出水素で行い、一方、燃料電池2の
運転継続下では第1〜第3タンクT1 〜T3 のうち1つ
のタンクT3 ,T2 ,T1 が水素放出状態にあるとき、
別の1つのタンクT2 ,T1 ,T3 が水素吸蔵状態にあ
る。As described above, in the hydrogen supply system 1, the operation of the fuel cell 2 is started by the first to third tanks T 1 to T 1 .
At least one tank T 3, the first one in the embodiment
Performed by releasing hydrogen from the tank T 1, while one of the tanks T 3, T 2, T 1 of the first to third tank T 1 through T 3 is in the hydrogen release condition in continuous operation under the fuel cell 2 When
Another tank T 2 , T 1 , T 3 is in a hydrogen storage state.
【0027】なお、水素を燃料とする機器としては、燃
料電池の外に内燃機関を挙げることができる。As an apparatus using hydrogen as a fuel, an internal combustion engine can be used in addition to a fuel cell.
【0028】[0028]
【発明の効果】請求項1記載の発明によれば、前記のよ
うな手段を採用することによって、機器の運転開始を迅
速に行い、また機器への水素供給を間断なく行って、そ
の運転を確実に継続することが可能であって、改質器が
持つ問題点が水素供給に影響しないようにした水素供給
システムを提供することができる。According to the first aspect of the present invention, by employing the above-described means, the operation of the equipment can be started quickly, and the supply of hydrogen to the equipment can be performed without interruption so that the operation can be performed. It is possible to provide a hydrogen supply system which can be surely continued and in which the problems of the reformer do not affect the hydrogen supply.
【0029】請求項2記載の発明によれば、前記のよう
な手段を採用することによって、水素貯蔵器への水素吸
蔵性を向上させると共に特に、前記機器としての燃料電
池の発電性能を向上させることが可能な水素供給システ
ムを提供することができる。According to the second aspect of the present invention, by employing the above-described means, the hydrogen storage capacity of the hydrogen storage can be improved, and in particular, the power generation performance of the fuel cell as the device is improved. Capable of providing a hydrogen supply system capable of performing the above.
【0030】請求項3記載の発明によれば、水素に対し
加湿処理および除湿処理を確実に施すことが可能な水素
供給システムを提供することができる。According to the third aspect of the present invention, it is possible to provide a hydrogen supply system capable of reliably performing humidification processing and dehumidification processing on hydrogen.
【図面の簡単な説明】[Brief description of the drawings]
【図1】燃料電池の運転休止中において、第1タンクに
水素を吸蔵させている状態を示す水素供給システムの説
明図である。FIG. 1 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is stored in a first tank during suspension of operation of a fuel cell.
【図2】燃料電池の運転休止中において、第3タンクに
水素を吸蔵させている状態を示す水素供給システムの説
明図である。FIG. 2 is an explanatory diagram of a hydrogen supply system showing a state where hydrogen is stored in a third tank while the operation of the fuel cell is suspended.
【図3】燃料電池の運転開始時において、第1タンクか
ら水素を放出して燃料電池に供給している状態を示す水
素供給システムの説明図である。FIG. 3 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is released from a first tank and supplied to the fuel cell at the start of operation of the fuel cell.
【図4】電気自動車の走行中において、第3タンクから
水素を放出し、一方、第2タンクに水素を吸蔵させてい
る状態を示す水素供給システムの説明図である。FIG. 4 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is released from a third tank while the electric vehicle is running, and hydrogen is stored in a second tank.
【図5】電気自動車の走行中において、第2タンクから
水素を放出し、一方、第1タンクに水素を吸蔵させてい
る状態を示す水素供給システムの説明図である。FIG. 5 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is released from a second tank and hydrogen is stored in a first tank while the electric vehicle is running.
【図6】電気自動車の走行中において、第1タンクから
水素を放出し、一方、第3タンクに水素を吸蔵させてい
る状態を示す水素供給システムの説明図である。FIG. 6 is an explanatory diagram of a hydrogen supply system showing a state in which hydrogen is released from a first tank and hydrogen is stored in a third tank while the electric vehicle is running.
1 水素供給システム 2 燃料電池(機器) 3 改質器 41 ,42 第1,第2調湿器 15 水素貯蔵器 Cw1,Cw2 含水量 MH 水素吸蔵材 T1 ,T2 ,T3 第1,第2,第3タンクREFERENCE SIGNS LIST 1 hydrogen supply system 2 fuel cell (equipment) 3 reformer 4 1 , 4 2 first and second humidifier 15 hydrogen storage Cw 1, Cw 2 water content MH hydrogen storage material T 1 , T 2 , T 3 first , Second and third tanks
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 AA01 AA12 AA14 EA02 EA03 EA06 FA01 FA02 FB04 FB05 FC02 FD04 FE01 5H027 AA02 BA01 BA09 BA14 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4G040 AA01 AA12 AA14 EA02 EA03 EA06 FA01 FA02 FB04 FB05 FC02 FD04 FE01 5H027 AA02 BA01 BA09 BA14
Claims (3)
を生成する改質器(3)と、前記改質器(3)により生
成された水素を吸蔵し、次いでその吸蔵水素を放出して
水素を燃料とする機器(2)に供給することが可能な水
素貯蔵器(15)とを有し、その水素貯蔵器(15)
は、水素吸蔵材(MH)を内蔵した少なくとも3つのタ
ンク(T1 ,T2 ,T3 )を備え、前記機器(2)の運
転開始をそれらタンク(T1 ,T2 ,T3 )の少なくと
も1つからの放出水素で行い、また前記機器(2)の運
転継続下では、1つの前記タンク(T1 ,T2 ,T3 )
が水素放出状態にあるとき、別の1つの前記タンク(T
3 ,T1 ,T2 )が水素吸蔵状態にあることを特徴とす
る、水素を燃料とする機器への水素供給システム。1. A reformer (3) for producing hydrogen from a raw material such as alcohol or gasoline, and hydrogen stored by the reformer (3) is absorbed, and then the stored hydrogen is released to produce hydrogen. A hydrogen storage (15) that can be supplied to a device (2) that is a fuel, and the hydrogen storage (15)
Has at least three tanks (T 1 , T 2 , T 3 ) containing a hydrogen storage material (MH), and starts operation of the device (2) with the tanks (T 1 , T 2 , T 3 ). The operation is performed with hydrogen released from at least one of the tanks, and when the operation of the equipment (2) is continued, one of the tanks (T 1 , T 2 , T 3 )
Is in a hydrogen releasing state, another one of the tanks (T
3 , T 1 , T 2 ) is in a hydrogen storage state.
(T1 ,T2 ,T3)に吸蔵させる前に、その水素に除
湿処理を施し、また各タンク(T1 ,T2 ,T3 )から
の放出水素を前記機器としての燃料電池(2)に導入す
る前に、その放出水素に加湿処理を施す、2台の調湿器
(41 ,42 )を備えている、請求項1記載の水素を燃
料とする機器への水素供給システム。Wherein said reformer hydrogen from (3) prior to storage in the tank (T 1, T 2, T 3), subjected to dehumidification process in the hydrogen, and each tank (T 1, T 2 , 2 humidifiers (4 1 , 4 2 ) for humidifying the released hydrogen before introducing the hydrogen released from T 3 ) into the fuel cell (2) as the device. The system for supplying hydrogen to hydrogen-fueled equipment according to claim 1.
(41 ,42 )のうち含水量(Cw1,Cw2)の少な
い方を使用し、また前記加湿処理に当っては両調湿器
(41 ,42 )のうち含水量(Cw1,Cw2)の多い
方を使用する、請求項2記載の水素を燃料とする機器へ
の水素供給システム。3. In the dehumidifying treatment, use one of the two humidifiers (4 1 , 4 2 ) having a smaller water content (Cw1, Cw2). In the humidifying treatment, use both humidifiers. vessel (4 1, 4 2) use one with a lot of water content (Cw1, Cw2) of the hydrogen supply system of hydrogen according to claim 2, wherein the device for the fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11113741A JP2000302403A (en) | 1999-04-21 | 1999-04-21 | System for feeding hydrogen to equipment using hydrogen as fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11113741A JP2000302403A (en) | 1999-04-21 | 1999-04-21 | System for feeding hydrogen to equipment using hydrogen as fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000302403A true JP2000302403A (en) | 2000-10-31 |
Family
ID=14619961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11113741A Pending JP2000302403A (en) | 1999-04-21 | 1999-04-21 | System for feeding hydrogen to equipment using hydrogen as fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000302403A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108110281A (en) * | 2018-01-10 | 2018-06-01 | 广东国鸿氢能科技有限公司 | A kind of methanol recapitalization fuel cell system |
CN108736044A (en) * | 2017-04-20 | 2018-11-02 | 徐煜 | A kind of fuel cell |
CN108736045A (en) * | 2017-04-20 | 2018-11-02 | 徐煜 | A kind of fuel cell |
-
1999
- 1999-04-21 JP JP11113741A patent/JP2000302403A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736044A (en) * | 2017-04-20 | 2018-11-02 | 徐煜 | A kind of fuel cell |
CN108736045A (en) * | 2017-04-20 | 2018-11-02 | 徐煜 | A kind of fuel cell |
CN108110281A (en) * | 2018-01-10 | 2018-06-01 | 广东国鸿氢能科技有限公司 | A kind of methanol recapitalization fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0700107B1 (en) | Reformer and fuel cell system using the same | |
US20090023040A1 (en) | Oxygen removal systems during fuel cell shutdown | |
EP1243048A1 (en) | Integrated fuel cell and pressure swing adsorption system | |
JP2002289237A (en) | On-board fuel cell system and hydrogen off-gas exhausting method | |
JP5264040B2 (en) | Fuel cell system | |
WO2007132692A1 (en) | Hydrogen production system and method of controlling flow rate of offgas in the system | |
US20220169501A1 (en) | Method for Hydrogen Production, and Hydrogen Production Device | |
JP2002029701A (en) | Hydrogen supply device and fuel cell device provided with the same and hydrogen detecting method | |
US11207637B2 (en) | Gas separating system | |
JP2001026401A (en) | Hydrogen supply system-for equipment using hydrogen as fuel | |
JP2000302403A (en) | System for feeding hydrogen to equipment using hydrogen as fuel | |
JP2001295708A (en) | Fuel vapor processor and exhaust emission control device | |
JP2003163024A (en) | Reform type fuel cell system | |
JP4229527B2 (en) | Hydrogen supply system for equipment using hydrogen as fuel | |
JP4229526B2 (en) | Hydrogen supply system for equipment using hydrogen as fuel | |
JP2002313402A (en) | Method of increasing power generating efficiency of fuel cell | |
CN214477571U (en) | Low-tail-emission fuel cell air processing system using molecular sieve, fuel cell system and vehicle | |
JP2000302406A (en) | System for feeding hydrogen to equipment using hydrogen as fuel | |
JPS62274561A (en) | Molten carbonate fuel cell | |
JP2022554171A (en) | METHOD OF OPERATING FUEL CELL SYSTEM AND CONTROL DEVICE THEREOF | |
JP4229525B2 (en) | Hydrogen supply system for equipment using hydrogen as fuel | |
KR102194278B1 (en) | Fuel cell system with combined passive and active adsorbent beds | |
US12071344B2 (en) | Operation method for hydrogen production device, and hydrogen production device | |
JP2001313050A (en) | Hydrogen supply system for the equipment using hydrogen as fuel and device for the same | |
JP2000302401A (en) | System for feeding hydrogen to equipment using hydrogen as fuel |