JP4227239B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4227239B2
JP4227239B2 JP07353499A JP7353499A JP4227239B2 JP 4227239 B2 JP4227239 B2 JP 4227239B2 JP 07353499 A JP07353499 A JP 07353499A JP 7353499 A JP7353499 A JP 7353499A JP 4227239 B2 JP4227239 B2 JP 4227239B2
Authority
JP
Japan
Prior art keywords
tire
groove
lug groove
equatorial plane
center region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07353499A
Other languages
Japanese (ja)
Other versions
JP2000264022A (en
Inventor
将治 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP07353499A priority Critical patent/JP4227239B2/en
Publication of JP2000264022A publication Critical patent/JP2000264022A/en
Application granted granted Critical
Publication of JP4227239B2 publication Critical patent/JP4227239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気入りタイヤに係り、特に、建設車両等に装着される重荷重車両に用いられるクラウン部の耐久性を向上することのできるラグパターンを有した空気入りタイヤを提供することが目的である。
【0002】
【従来の技術】
建設車両に用いられる空気入りタイヤにおいては、タイヤセンター部にタイヤ周方向に実質上連続する陸部を有するラグ溝パターンが主流である。
【0003】
このようなラグ溝パターンでは、タイヤセンター部での放熱効果が小さく、タイヤセンター部が高く、ショルダー部が低い温度分布となる。
【0004】
【発明が解決しようとする課題】
クラウン部の耐久性を向上させるためには、クラウン部の温度の低減、即ち、走行による温度上昇を抑えることが効果的であり、その手法として、従来では、低発熱性のトレッドコンパウンドを使用したり、トレッドのボリュームダウン(溝深さ低減、ネガティブ比低減)等が行われてきた。
【0005】
しかしながら、従来技術では、いずれの場合でもクラウン部の耐久性(耐ヒートセパレーション性、耐カットセパレーション性)が向上する反面、トレッドの耐摩耗性が低下するという二律背反の性格を持っていた。
【0006】
本発明は上記事実を考慮し、トレッドの耐摩耗性を損なうこと無く、トレッドのクラウン部の耐久性を向上することのできるラグ溝パターンを有する空気入りタイヤを提供することが目的である。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、ショルダー側からタイヤ赤道面へ向かって延びる主ラグ溝をタイヤ周方向に複数有すると共に、トレッド中央領域においてタイヤ周方向に実質的に連続して延在する陸部を有するラグパターンを有する空気入りタイヤにおいて、タイヤ接地最大幅の30%以内に対応するセンター領域に、溝深さがタイヤ赤道面に向かって漸減する補助ラグ溝を前記主ラグ溝に延長して設け、前記センター領域のネガティブ率を10〜35%とし、前記補助ラグ溝の前記センター領域の幅方向端部からタイヤ赤道面に向かう溝幅中心線のタイヤ赤道面となす角度を40〜55°とした、ことを特徴としている。
【0008】
次に、請求項1に記載の空気入りタイヤの作用を説明する。
【0009】
トレッド部の温度は、タイヤ転動時の繰り返し変形(圧縮と曲げ)による発熱と、タイヤパターン表面での放熱量によって決まる。
【0010】
請求項1に記載の空気入りタイヤでは、トレッドのセンター領域に補助ラグ溝を配置したので、センター領域の陸部のボリュームが低減されて発熱量が減少すると共に、溝面積が増加(溝ペリフェリが増加)することによって放熱量が増加するので、タイヤ転動時のセンター領域の温度上昇を抑えることができる。
【0011】
なお、センター領域の溝面積を単純に増加すると、センター領域のラグ剛性が低下して耐摩耗性が低下するが、補助ラグ溝の溝深さをタイヤ赤道面に向けて除々に浅くすることで剛性の低下を抑えることができ、耐摩耗性が確保される。
また、請求項1に記載の空気入りタイヤでは、補助ラグ溝のセンター領域の端部からタイヤ赤道面に向かう溝幅中心線とタイヤ赤道面とのなす角度を40〜55°としたので、センター領域の温度上昇抑制効果を確保しつつ、周方向のトラクションを確保することができる。なお、補助ラグ溝の溝幅中心線とタイヤ赤道面とのなす角度が55°を越えると温度上昇抑制効果が不足し、補助ラグ溝の溝幅中心線とタイヤ赤道面とのなす角度が40°未満になると、周方向のトラクションが不足する。
【0012】
なお、空気入りタイヤは、それぞれのサイズに応じて、JATMA(日本)、TRA(米国)及びETRTO(欧州)などが発行する規格に定められた標準リムに装着して使用され、この標準リムが通常正規リムと称される。
【0013】
本明細書でもこの慣用呼称に従い、「正規リム」とは米国のタイヤとリムの協会TRAが発行する1998年版のYEAR BOOKに定められた適用サイズにおける標準リムを指す。
【0014】
同様に、「正規荷重」及び「正規内圧」とは、米国のタイヤとリムの協会TRAが発行する1998年版のYEAR BOOKに定められた適用サイズ・プライレーティングにおける最大荷重及び最大荷重に対応する空気圧を指す。
【0015】
また、本明細書において、「タイヤ接地最大幅」とは、タイヤを「正規リム」にリム組みして「正規内圧」を充填し、「正規荷重」を静的に負荷したときのトレッドのタイヤ軸方向の接地最大幅を指す。
【0016】
ここで、荷重とは下記規格に記載されている適用サイズにおける単輪の最大荷重(最大負荷能力)のことであり、内圧とは下記規格に記載されている適用サイズにおける単輪の最大荷重(最大負荷能力)に対応する空気圧のことであり、リムとは下記規格に記載されている適用サイズにおける標準リム(または”Approved Rim "、"Recommended Rim' )のことである。
【0017】
そして規格とは、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では”The Tire and Rim Association Inc. のYear Book"であり、欧州では”The European Tire and Rim Technical OrganizationのStandards Manual”であり、日本では日本自動車タイヤ協会の”JATMA Year Book"にて規定されている。
【0018】
請求項2に記載の発明は、ショルダー側からタイヤ赤道面へ向かって延びる主ラグ溝をタイヤ周方向に複数有すると共に、トレッド中央領域においてタイヤ周方向に実質的に連続して延在する陸部を有するラグパターンを有する空気入りタイヤにおいて、タイヤ接地最大幅の30%以内に対応するセンター領域に、溝深さがタイヤ赤道面に向かって漸減する補助ラグ溝を、前記主ラグ溝とは独立して設け、前記センター領域のネガティブ率を10〜35%としたことを特徴としている。
【0019】
トレッド部の温度は、タイヤ転動時の繰り返し変形(圧縮と曲げ)による発熱と、タイヤパターン表面での放熱量によって決まる。
【0020】
請求項2に記載の空気入りタイヤでは、トレッドのセンター領域に補助ラグ溝を配置したので、センター領域の陸部のボリュームが低減されて発熱量が減少すると共に、溝面積が増加(溝ペリフェリが増加)することによって放熱量が増加するので、タイヤ転動時のセンター領域の温度上昇を抑えることができる。
【0021】
なお、センター領域の溝面積を単純に増加すると、センター領域のラグ剛性が低下して耐摩耗性が低下するが、補助ラグ溝の溝深さをタイヤ赤道面に向けて除々に浅くすることで剛性の低下を抑えることができ、耐摩耗性が確保される。
【0022】
また、主ラグ溝と独立して設けられる補助ラグ溝は、周方向に間隔をおいて配置される主ラグ溝間に配置することが好ましい。
【0023】
請求項3に記載の発明は、請求項1または請求項2に記載の空気入りタイヤにおいて、前記補助ラグ溝の溝深さが、前記主ラグ溝の最大深さの45〜70%であることを特徴としている。
【0024】
次に、請求項3に記載の空気入りタイヤの作用を説明する。
【0025】
補助ラグ溝の溝深さを主ラグ溝の最大深さの45〜70%としたので、センター領域の温度上昇抑制効果を得つつ、センター領域の剛性を確保することができる。
【0026】
なお、補助ラグ溝の溝深さが主ラグ溝の最大深さの45%未満になると、温度上昇抑制効果が不足し、補助ラグ溝の溝深さが主ラグ溝の最大深さの70%を越えると、センター領域の剛性が不足する。
【0031】
【発明の実施の形態】
[第1の実施形態]
本発明の空気入りタイヤの第1の実施形態を図1(A),(B)にしたがって説明する。
【0032】
図1(A),(B)に示すように、本実施形態の空気入りタイヤ10のトレッド12には、ショルダー部18からタイヤ赤道面CLへ向かって延びる主ラグ溝20と、この主ラグ溝20のタイヤ赤道面CL側の端部に連続して設けられる補助ラグ溝22が、タイヤ周方向(矢印B方向)に間隔を開けて形成されており、トレッド中央領域においては陸部16がタイヤ周方向に実質的に連続して延在している。
【0033】
ここで、トレッド12において、タイヤ接地最大幅Wの30%以内に対応する領域をセンター領域24、その両側の領域を両側領域25としたときに、主ラグ溝20は両側領域25に設けられており、補助ラグ溝22は、その殆どの部分がセンター領域24に設けられている。
【0034】
なお、センター領域24のネガティブ率は、10〜35%の範囲内に設定されている。
【0035】
補助ラグ溝22は、その溝深さ が主ラグ溝20の最大深さDの45〜70%の範囲内に設定されていると共に、溝深さdがタイヤ赤道面CLに向かって漸減している。
【0036】
本実施形態の主ラグ溝20は、タイヤ幅方向(矢印A方向)に対して傾斜(タイヤ周方向に対する角度β。)している。
【0037】
センター領域24の端部からタイヤ赤道面CLに向かう補助ラグ溝22も主ラグ溝20と同方向に傾斜しており、センター領域24の端部からタイヤ赤道面CLに向かう補助ラグ溝22の溝幅中心線GLとタイヤ周方向(タイヤ赤道面CL)とのなす角度αは40〜55°の範囲内に設定されている。
【0038】
なお、本実施形態の空気入りタイヤ10の内部構造は通常のラジアルタイヤと同様であるので、内部構造に付いての説明は省略する。
【0039】
次に、本実施形態の空気入りタイヤ10の作用を説明する。
【0040】
空気入りタイヤ10が転動してトレッド12が繰り返し変形をするとトレッド12が発熱するが、本実施形態の空気入りタイヤ10では、トレッド12のセンター領域24に補助ラグ溝22が形成されているので、センター領域24、即ちタイヤ赤道面CL付近のボリュームが低減されてタイヤ赤道面CL付近の発熱量が減少すると共に、溝面積(溝の側面、底面の表面積)が増加することによって放熱効果が向上し、転動時のタイヤ赤道面CL付近の温度上昇を抑えることができる。
【0041】
本実施形態では、補助ラグ溝22の溝深さdをタイヤ赤道面CLに向けて除々に浅くしたので、トレッド12のタイヤ赤道面CL付近の剛性を低下させることがなく、耐摩耗性を確保することができる。
【0042】
また、補助ラグ溝22の溝深さdを主ラグ溝20の最大深さDの45〜70%としたので、タイヤ赤道面CL付近の温度上昇抑制効果を得つつ、タイヤ赤道面CL付近の剛性を確保することができる。
【0043】
なお、補助ラグ溝22の溝深さdが主ラグ溝20の最大深さDの45%未満になると温度上昇抑制効果が不足し、補助ラグ溝22の溝深さdが主ラグ溝20の最大深さDの70%を越えると、タイヤ赤道面CL付近の剛性が不足する。
【0044】
また、補助ラグ溝22の溝幅中心線GLとタイヤ周方向(タイヤ赤道面CL)とのなす角度αを40〜55°としたので、タイヤ赤道面CL付近の温度上昇抑制効果を得つつ、周方向のトラクションを得ることができる。
【0045】
なお、角度αが55°を越えると、センター領域24内での補助ラグ溝34の長さが短くなるため温度上昇抑制効果が不足し、角度αが40°未満になると補助ラグ溝34の方向(形状)が周方向溝に近づくため周方向のトラクションが不足する。
[第2の実施形態]
本発明の空気入りタイヤの第2の実施形態を図2(A),(B)にしたがって説明する。なお、第1の実施形態と同一構成に関しては同一符号を付し、その説明は省略する。
【0046】
図2(A),(B)に示すように、本実施形態の空気入りタイヤ30のトレッド12には、ショルダー部18からタイヤ赤道面CLへ向かって延びる主ラグ溝32と、この主ラグ溝32とは独立して設けられる補助ラグ溝34とが、各々タイヤ周方向(矢印B方向)に間隔を開けて形成されており、トレッド中央領域においては陸部16がタイヤ周方向に実質的に連続して延在している。
【0047】
なお、補助ラグ溝34は、周方向に間隔をおいて配置される主ラグ溝32と主ラグ溝32との間に配置されている。
【0048】
主ラグ溝32は両側領域25に設けられており、補助ラグ溝34はその殆どの部分がセンター領域24に設けられている。
【0049】
なお、センター領域24のネガティブ率は、10〜35%の範囲内に設定されている。
【0050】
補助ラグ溝34は、その溝深さdが主ラグ溝32の最大深さDの45〜70%の範囲内に設定されていると共に、溝深さdがタイヤ赤道面CLに向かって漸減している。
【0051】
本実施形態の主ラグ溝32は、タイヤ幅方向に対して傾斜している。
【0052】
センター領域24の端部からタイヤ赤道面CLに向かう補助ラグ溝34も主ラグ溝32と同方向に傾斜しており、センター領域24の端部からタイヤ赤道面CLに向かう補助ラグ溝32の溝幅中心線GLとタイヤ周方向(タイヤ赤道面CL)とのなす角度αは40〜55°の範囲内に設定されている。
【0053】
次に、本実施形態の空気入りタイヤ30の作用を説明する。
【0054】
空気入りタイヤ30が転動してトレッド12が繰り返し変形をするとトレッド12が発熱するが、本実施形態の空気入りタイヤ30では、トレッド12のセンター領域24に補助ラグ溝34が形成されているので、センター領域24、即ちタイヤ赤道面CL付近のボリュームが低減されてタイヤ赤道面CL付近での発熱量が減少すると共に、溝面積(溝の側面、底面の表面積)が増加することによって放熱効果が向上し、転動時のタイヤ赤道面CL付近の温度上昇を抑えることができる。
【0055】
本実施形態では、補助ラグ溝34の溝深さdをタイヤ赤道面CLに向けて除々に浅くしたので、トレッド12の剛性を低下させることがなく、耐摩耗性を確保することができる。
【0056】
また、補助ラグ溝34の溝深さdを主ラグ溝32の最大深さDの45〜70%としたので、タイヤ赤道面CL付近の温度上昇抑制効果を得つつ、タイヤ赤道面CL付近の剛性を確保することができる。
【0057】
なお、補助ラグ溝34の溝深さdが主ラグ溝32の最大深さDの45%未満になると温度上昇抑制効果が不足し、補助ラグ溝34の溝深さdが主ラグ溝32の最大深さDの70%を越えると、タイヤ赤道面CL付近の剛性が不足する。
【0058】
また、補助ラグ溝34の溝幅中心線GLとタイヤ周方向(タイヤ赤道面CL)とのなす角度αを40〜55°としたので、タイヤ赤道面CL付近の温度上昇抑制効果を得つつ、周方向のトラクションを得ることができる。
【0059】
なお、角度αが55°を越えると、センター領域24内での補助ラグ溝34の長さが短くなるため温度上昇抑制効果が不足し、角度αが40°未満になると補助ラグ溝34の方向(形状)が周方向溝に近づくため周方向のトラクションが不足する。
【0060】
なお、本実施形態では、補助ラグ溝34が、周方向に間隔をおいて配置される主ラグ溝32と主ラグ溝32との間に配置されていたが、補助ラグ溝34は主ラグ溝32のタイヤ赤道面CL側の延長線上に配置されていても良い。
(試験例)
本発明の効果を確かめるために、本発明の適用された実施例のタイヤ2種及び従来例のタイヤ1種(何れもタイヤサイズはORR18.00R25)を用意し、室内のドラム試験機による発熱試験と摩耗試験を実施した。
【0061】
実施例1:図1に示すラグパターンを有する空気入りタイヤである。
【0062】
実施例2:図2に示すラグパターンを有する空気入りタイヤである。
【0063】
従来例:図3(A),(B)に示すように、センター領域24内まで延びる主ラグ溝100により形成されたラグパターンを有する空気入りタイヤである。
【0064】
なお、試験タイヤのその他の諸元は以下の表1内に記載されている通りである。
【0065】
発熱試験:供試タイヤを正規リム(13.00/2.5)に正規内圧(700kPa)でリム組みし、正規荷重(14000kg)を付加して速度10km/hで、室内ドラム試験機によって一定時間走行後のトレッドのセンター領域の温度を測定した。
【0066】
なお、発熱試験の試験結果は、従来例のタイヤの温度の逆数を100とする指数で表しており、数値の大きいものほど温度上昇が少なく、トレッドの耐久性(発熱耐久性)に優れていることを示す。
【0067】
摩耗試験:供試タイヤを正規リム(13.00/2.5)に正規内圧(700kPa)でリム組みし、正規荷重(14000kg)を付加して速度10km/hで、室内ドラム試験機によって一定時間走行後のトレッドの摩耗量を測定した。
【0068】
なお、摩耗試験の試験結果は、従来例のタイヤの摩耗量の逆数を100とする指数で表しており、数値の大きいものほど摩耗が少なく、耐摩耗性能に優れていることを示す。
【0069】
【表1】

Figure 0004227239
【0070】
試験の結果、本発明の適用された実施例1及び実施例2のタイヤは、従来例のタイヤに比較して転動時のセンター領域の温度上昇が少なく、このことからトレッドの発熱耐久性に優れていることは明らかである。
【0071】
また、本発明の適用された実施例1及び実施例2のタイヤは、従来例のタイヤと同等の耐摩耗性を有していた。
【0072】
【発明の効果】
以上説明したように、本発明の空気入りタイヤは上記の構成としたので、トレッドの耐摩耗性を損なうこと無く、トレッドのクラウン部の耐久性を向上することができる、という優れた効果を有する。
【図面の簡単な説明】
【図1】(A)は本発明の第1の実施形態に係る空気入りタイヤのトレッドの平面図であり、(B)は図1(A)に示すトレッドの1(B)−1(B)線断面図である。
【図2】(A)は本発明の第2の実施形態に係る空気入りタイヤのトレッドの平面図であり、(B)は図2(A)に示すトレッドの2(B)−2(B)線断面図である。
【図3】(A)は従来例に係る空気入りタイヤのトレッドの平面図であり、(B)は図3(A)に示すトレッドの3(B)−3(B)線断面図である。
【符号の説明】
10 空気入りタイヤ
12 主ラグ溝
16 陸部
20 主ラグ溝
22 補助ラグ溝
24 センター領域
30 タイヤ赤道面
32 主ラグ溝
34 補助ラグ溝[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire, and in particular, to provide a pneumatic tire having a lug pattern that can improve the durability of a crown portion used in a heavy load vehicle mounted on a construction vehicle or the like. is there.
[0002]
[Prior art]
In a pneumatic tire used for a construction vehicle, a lag groove pattern having a land portion substantially continuous in a tire circumferential direction at a tire center portion is a mainstream.
[0003]
In such a lug groove pattern, the heat dissipation effect at the tire center portion is small, the tire center portion is high, and the shoulder portion has a low temperature distribution.
[0004]
[Problems to be solved by the invention]
In order to improve the durability of the crown part, it is effective to reduce the temperature of the crown part, that is, to suppress the temperature rise due to running. Conventionally, a tread compound with low heat generation is used as the technique. Or tread volume reduction (groove depth reduction, negative ratio reduction) and the like.
[0005]
However, the conventional technique has a trade-off characteristic that the durability (heat separation resistance, cut separation resistance) of the crown portion is improved in any case, but the wear resistance of the tread is reduced.
[0006]
In view of the above facts, an object of the present invention is to provide a pneumatic tire having a lug groove pattern that can improve the durability of the crown portion of the tread without impairing the wear resistance of the tread.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 includes a plurality of main lug grooves extending from the shoulder side toward the tire equatorial plane in the tire circumferential direction and extending substantially continuously in the tire circumferential direction in the tread central region. In the pneumatic tire having a lug pattern having an auxiliary lug groove whose groove depth gradually decreases toward the tire equatorial plane in the center region corresponding to within 30% of the maximum tire contact width, the main lug groove is extended. The negative rate of the center region is 10 to 35%, and the angle formed by the tire equator plane of the groove width center line from the widthwise end of the center region of the auxiliary lug groove toward the tire equator plane is 40 to 55 °. and was, it is characterized in that.
[0008]
Next, the operation of the pneumatic tire according to claim 1 will be described.
[0009]
The temperature of the tread portion is determined by heat generation due to repeated deformation (compression and bending) during rolling of the tire and the amount of heat released from the surface of the tire pattern.
[0010]
In the pneumatic tire according to claim 1, since the auxiliary lug groove is arranged in the center region of the tread, the volume of the land portion of the center region is reduced, the heat generation amount is reduced, and the groove area is increased (the groove periphery is reduced). Increase), the amount of heat release increases, so that the temperature rise in the center region during tire rolling can be suppressed.
[0011]
If the groove area of the center region is simply increased, the lug rigidity of the center region is reduced and the wear resistance is lowered, but by gradually decreasing the groove depth of the auxiliary lug groove toward the tire equatorial plane. A decrease in rigidity can be suppressed, and wear resistance is ensured.
In the pneumatic tire according to claim 1, the angle formed by the groove width center line from the end of the center region of the auxiliary lug groove toward the tire equatorial plane and the tire equatorial plane is 40 to 55 °. Circumferential traction can be ensured while ensuring the temperature rise suppression effect of the region. If the angle formed between the groove width center line of the auxiliary lug groove and the tire equatorial plane exceeds 55 °, the effect of suppressing the temperature rise is insufficient, and the angle formed between the groove width center line of the auxiliary lug groove and the tire equatorial plane is 40. If it is less than °, circumferential traction will be insufficient.
[0012]
Pneumatic tires are used by attaching to standard rims defined by standards issued by JATMA (Japan), TRA (US), ETRTO (Europe), etc., depending on the size. Usually called a regular rim.
[0013]
In accordance with this common designation herein, “regular rim” refers to a standard rim in the applicable size defined in the 1998 YEAR BOOK issued by the United States Tire and Rim Association TRA.
[0014]
Similarly, “regular load” and “regular internal pressure” are the air pressure corresponding to the maximum load and the maximum load in the applicable size / ply rating defined in the 1998 YEAR BOOK issued by the United States Tire and Rim Association TRA. Point to.
[0015]
Also, in this specification, “tire maximum contact width” means a tire of a tread when a tire is assembled to a “regular rim” and filled with “regular internal pressure” and a “regular load” is statically applied. The maximum ground contact width in the axial direction.
[0016]
Here, the load is the maximum load (maximum load capacity) of a single wheel at the applicable size described in the following standard, and the internal pressure is the maximum load of a single wheel at the applicable size described in the following standard ( The rim is a standard rim (or “Approved Rim”, “Recommended Rim”) in the applicable size described in the following standards.
[0017]
The standard is determined by an industrial standard effective in the region where the tire is produced or used. For example, “Year Book of The Tire and Rim Association Inc.” in the United States, “Standards Manual of The European Tire and Rim Technical Organization” in Europe, and “JATMA Year Book” of the Japan Automobile Tire Association in Japan. It is prescribed.
[0018]
The invention according to claim 2 includes a plurality of main lug grooves extending from the shoulder side toward the tire equatorial plane in the tire circumferential direction and extending substantially continuously in the tire circumferential direction in the tread central region. In a pneumatic tire having a lug pattern having an auxiliary lug groove whose groove depth gradually decreases toward the tire equatorial plane in a center region corresponding to within 30% of the maximum tire ground contact width, independent of the main lug groove The negative rate of the center region is 10 to 35%.
[0019]
The temperature of the tread portion is determined by heat generation due to repeated deformation (compression and bending) during rolling of the tire and the amount of heat released from the surface of the tire pattern.
[0020]
In the pneumatic tire according to claim 2, since the auxiliary lug groove is disposed in the center region of the tread, the volume of the land portion in the center region is reduced, the heat generation amount is decreased, and the groove area is increased (the groove periphery is reduced). Increase), the amount of heat release increases, so that the temperature rise in the center region during tire rolling can be suppressed.
[0021]
If the groove area of the center region is simply increased, the lug rigidity of the center region is reduced and the wear resistance is lowered, but by gradually decreasing the groove depth of the auxiliary lug groove toward the tire equatorial plane. A decrease in rigidity can be suppressed, and wear resistance is ensured.
[0022]
Moreover, it is preferable to arrange | position the auxiliary | assistant lug groove provided independently of the main lug groove between the main lug grooves arrange | positioned at intervals in the circumferential direction.
[0023]
In the pneumatic tire according to claim 1 or 2, the groove depth of the auxiliary lug groove is 45 to 70% of the maximum depth of the main lug groove. It is characterized by.
[0024]
Next, the operation of the pneumatic tire according to claim 3 will be described.
[0025]
Since the groove depth of the auxiliary lug groove is set to 45 to 70% of the maximum depth of the main lug groove, the rigidity of the center region can be ensured while obtaining the temperature rise suppressing effect of the center region.
[0026]
If the groove depth of the auxiliary lug groove is less than 45% of the maximum depth of the main lug groove, the temperature rise suppressing effect is insufficient, and the groove depth of the auxiliary lug groove is 70% of the maximum depth of the main lug groove. Beyond this, the rigidity of the center area is insufficient.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
1st Embodiment of the pneumatic tire of this invention is described according to FIG. 1 (A), (B).
[0032]
As shown in FIGS. 1A and 1B, the tread 12 of the pneumatic tire 10 of the present embodiment includes a main lug groove 20 extending from the shoulder portion 18 toward the tire equatorial plane CL, and the main lug groove. Auxiliary lug grooves 22 that are continuously provided at the end portion on the tire equatorial plane CL side of 20 are formed at intervals in the tire circumferential direction (arrow B direction), and the land portion 16 is the tire in the tread central region. It extends substantially continuously in the circumferential direction.
[0033]
Here, in the tread 12, when the region corresponding to 30% or less of the tire ground contact maximum width W is a center region 24, and both regions are both region 25, the main lug groove 20 is provided in the both regions 25. The most part of the auxiliary lug groove 22 is provided in the center region 24.
[0034]
The negative rate of the center region 24 is set within a range of 10 to 35%.
[0035]
The auxiliary lug groove 22 has a groove depth set within a range of 45 to 70% of the maximum depth D of the main lug groove 20, and the groove depth d gradually decreases toward the tire equatorial plane CL. Yes.
[0036]
The main lug groove 20 of the present embodiment is inclined (angle β with respect to the tire circumferential direction) with respect to the tire width direction (arrow A direction).
[0037]
The auxiliary lug groove 22 from the end of the center region 24 toward the tire equatorial plane CL is also inclined in the same direction as the main lug groove 20, and the groove of the auxiliary lug groove 22 from the end of the center region 24 toward the tire equatorial plane CL The angle α formed by the width center line GL and the tire circumferential direction (tire equatorial plane CL) is set within a range of 40 to 55 °.
[0038]
In addition, since the internal structure of the pneumatic tire 10 of this embodiment is the same as that of a normal radial tire, description about an internal structure is abbreviate | omitted.
[0039]
Next, the effect | action of the pneumatic tire 10 of this embodiment is demonstrated.
[0040]
When the pneumatic tire 10 rolls and the tread 12 is repeatedly deformed, the tread 12 generates heat. However, in the pneumatic tire 10 of the present embodiment, the auxiliary lug groove 22 is formed in the center region 24 of the tread 12. In addition, the volume near the center region 24, that is, the tire equatorial plane CL is reduced, the amount of heat generated near the tire equatorial plane CL is reduced, and the heat dissipation effect is improved by increasing the groove area (surface area of the side surface and the bottom surface of the groove). In addition, the temperature rise near the tire equatorial plane CL during rolling can be suppressed.
[0041]
In the present embodiment, since the groove depth d of the auxiliary lug groove 22 is gradually reduced toward the tire equatorial plane CL, the rigidity of the tread 12 in the vicinity of the tire equatorial plane CL is not lowered, and wear resistance is ensured. can do.
[0042]
Further, since the groove depth d of the auxiliary lug groove 22 is set to 45 to 70% of the maximum depth D of the main lug groove 20, the effect of suppressing the temperature rise near the tire equatorial plane CL is obtained, and the area near the tire equatorial plane CL is obtained. Rigidity can be ensured.
[0043]
Note that when the groove depth d of the auxiliary lug groove 22 is less than 45% of the maximum depth D of the main lug groove 20, the temperature rise suppressing effect is insufficient, and the groove depth d of the auxiliary lug groove 22 is less than that of the main lug groove 20. If it exceeds 70% of the maximum depth D, the rigidity in the vicinity of the tire equatorial plane CL is insufficient.
[0044]
Moreover, since the angle α formed by the groove width center line GL of the auxiliary lug groove 22 and the tire circumferential direction (tire equatorial plane CL) is set to 40 to 55 °, while obtaining an effect of suppressing the temperature rise near the tire equatorial plane CL, Circumferential traction can be obtained.
[0045]
When the angle α exceeds 55 °, the length of the auxiliary lug groove 34 in the center region 24 is shortened, so that the temperature rise suppressing effect is insufficient. When the angle α is less than 40 °, the direction of the auxiliary lug groove 34 Since (shape) approaches the circumferential groove, circumferential traction is insufficient.
[Second Embodiment]
A second embodiment of the pneumatic tire of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the same structure as 1st Embodiment, and the description is abbreviate | omitted.
[0046]
As shown in FIGS. 2A and 2B, the tread 12 of the pneumatic tire 30 of the present embodiment includes a main lug groove 32 extending from the shoulder portion 18 toward the tire equatorial plane CL, and the main lug groove. Auxiliary lug grooves 34 provided independently of 32 are formed at intervals in the tire circumferential direction (arrow B direction), and the land portion 16 substantially extends in the tire circumferential direction in the tread central region. It extends continuously.
[0047]
The auxiliary lug groove 34 is disposed between the main lug groove 32 and the main lug groove 32 that are disposed at intervals in the circumferential direction.
[0048]
The main lug groove 32 is provided in the both side regions 25, and most of the auxiliary lug groove 34 is provided in the center region 24.
[0049]
The negative rate of the center region 24 is set within a range of 10 to 35%.
[0050]
The auxiliary lug groove 34 has a groove depth d set in a range of 45 to 70% of the maximum depth D of the main lug groove 32, and the groove depth d gradually decreases toward the tire equatorial plane CL. ing.
[0051]
The main lug groove 32 of this embodiment is inclined with respect to the tire width direction.
[0052]
The auxiliary lug groove 34 from the end of the center region 24 toward the tire equatorial plane CL is also inclined in the same direction as the main lug groove 32, and the groove of the auxiliary lug groove 32 from the end of the center region 24 toward the tire equatorial plane CL The angle α formed by the width center line GL and the tire circumferential direction (tire equatorial plane CL) is set within a range of 40 to 55 °.
[0053]
Next, the effect | action of the pneumatic tire 30 of this embodiment is demonstrated.
[0054]
When the pneumatic tire 30 rolls and the tread 12 is repeatedly deformed, the tread 12 generates heat. However, in the pneumatic tire 30 of the present embodiment, the auxiliary lug groove 34 is formed in the center region 24 of the tread 12. The volume in the vicinity of the center region 24, that is, the tire equatorial plane CL is reduced, the amount of heat generated in the vicinity of the tire equatorial plane CL is reduced, and the heat dissipation effect is obtained by increasing the groove area (surface area of the side surface and the bottom surface of the groove). This can improve the temperature rise near the tire equatorial plane CL during rolling.
[0055]
In the present embodiment, since the groove depth d of the auxiliary lug groove 34 is gradually decreased toward the tire equatorial plane CL, the rigidity of the tread 12 is not lowered and the wear resistance can be ensured.
[0056]
Further, since the groove depth d of the auxiliary lug groove 34 is set to 45 to 70% of the maximum depth D of the main lug groove 32, the temperature rise suppressing effect near the tire equatorial plane CL is obtained, and the area near the tire equatorial plane CL is obtained. Rigidity can be ensured.
[0057]
When the groove depth d of the auxiliary lug groove 34 is less than 45% of the maximum depth D of the main lug groove 32, the temperature rise suppressing effect is insufficient, and the groove depth d of the auxiliary lug groove 34 is less than that of the main lug groove 32. If it exceeds 70% of the maximum depth D, the rigidity in the vicinity of the tire equatorial plane CL is insufficient.
[0058]
In addition, since the angle α formed by the groove width center line GL of the auxiliary lug groove 34 and the tire circumferential direction (tire equatorial plane CL) is set to 40 to 55 °, while obtaining an effect of suppressing the temperature rise near the tire equatorial plane CL, Circumferential traction can be obtained.
[0059]
When the angle α exceeds 55 °, the length of the auxiliary lug groove 34 in the center region 24 is shortened, so that the temperature rise suppressing effect is insufficient. When the angle α is less than 40 °, the direction of the auxiliary lug groove 34 Since (shape) approaches the circumferential groove, circumferential traction is insufficient.
[0060]
In the present embodiment, the auxiliary lug groove 34 is disposed between the main lug groove 32 and the main lug groove 32 that are arranged at intervals in the circumferential direction. It may be arranged on an extension line on the 32 tire equatorial plane CL side.
(Test example)
In order to confirm the effect of the present invention, two types of tires according to the examples to which the present invention is applied and one type of conventional tire (both tire sizes are ORR18.00R25) are prepared, and an exothermic test is performed by an indoor drum tester. A wear test was conducted.
[0061]
Example 1: A pneumatic tire having the lug pattern shown in FIG.
[0062]
Example 2: A pneumatic tire having the lug pattern shown in FIG.
[0063]
Conventional Example: As shown in FIGS. 3A and 3B, a pneumatic tire having a lug pattern formed by a main lug groove 100 extending into the center region 24.
[0064]
The other specifications of the test tire are as described in Table 1 below.
[0065]
Heat generation test: The test tire is assembled to a regular rim (13.00 / 2.5) at a regular internal pressure (700 kPa), a regular load (14000 kg) is applied, and the speed is 10 km / h, constant by an indoor drum tester. The temperature in the center area of the tread after running for a time was measured.
[0066]
In addition, the test result of the exothermic test is represented by an index with the reciprocal of the temperature of the tire of the conventional example being 100, and the higher the numerical value, the less the temperature rises and the better the tread durability (exothermic durability). It shows that.
[0067]
Abrasion test: A test tire is assembled to a regular rim (13.00 / 2.5) at a regular internal pressure (700 kPa), a regular load (14000 kg) is applied, and the speed is 10 km / h, constant by an indoor drum tester. The amount of wear on the tread after running for an hour was measured.
[0068]
In addition, the test result of the wear test is represented by an index in which the reciprocal of the wear amount of the tire of the conventional example is 100, and the larger the value, the less the wear and the better the wear resistance performance.
[0069]
[Table 1]
Figure 0004227239
[0070]
As a result of the test, the tires of Example 1 and Example 2 to which the present invention is applied have less temperature rise in the center region at the time of rolling compared to the tires of the conventional example, and thus the heat generation durability of the tread is improved. It is clear that it is excellent.
[0071]
Further, the tires of Example 1 and Example 2 to which the present invention was applied had wear resistance equivalent to that of the conventional tire.
[0072]
【The invention's effect】
As described above, since the pneumatic tire of the present invention has the above-described configuration, it has an excellent effect that the durability of the crown portion of the tread can be improved without impairing the wear resistance of the tread. .
[Brief description of the drawings]
FIG. 1A is a plan view of a tread of a pneumatic tire according to a first embodiment of the present invention, and FIG. 1B is a view of 1 (B) -1 (B of the tread shown in FIG. FIG.
2A is a plan view of a tread of a pneumatic tire according to a second embodiment of the present invention, and FIG. 2B is a view of a tread 2 (B) -2 (B FIG.
3A is a plan view of a tread of a pneumatic tire according to a conventional example, and FIG. 3B is a cross-sectional view taken along the line 3 (B) -3 (B) of the tread shown in FIG. 3A. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pneumatic tire 12 Main lug groove 16 Land part 20 Main lug groove 22 Auxiliary lug groove 24 Center area | region 30 Tire equatorial plane 32 Main lug groove 34 Auxiliary lug groove

Claims (3)

ショルダー側からタイヤ赤道面へ向かって延びる主ラグ溝をタイヤ周方向に複数有すると共に、トレッド中央領域においてタイヤ周方向に実質的に連続して延在する陸部を有するラグパターンを有する空気入りタイヤにおいて、
タイヤ接地最大幅の30%以内に対応するセンター領域に、溝深さがタイヤ赤道面に向かって漸減する補助ラグ溝を前記主ラグ溝に延長して設け、
前記センター領域のネガティブ率を10〜35%とし、
前記補助ラグ溝の前記センター領域の幅方向端部からタイヤ赤道面に向かう溝幅中心線のタイヤ赤道面となす角度を40〜55°とした、空気入りタイヤ。
A pneumatic tire having a plurality of main lug grooves extending in the tire circumferential direction from the shoulder side toward the tire equatorial plane and having a lug pattern having a land portion extending substantially continuously in the tire circumferential direction in the tread central region In
In the center region corresponding to within 30% of the maximum tire ground contact width, an auxiliary lug groove whose groove depth gradually decreases toward the tire equatorial plane is provided extending to the main lug groove,
The negative rate of the center region is 10 to 35% ,
A pneumatic tire having an angle of 40 to 55 ° with a tire equator plane of a groove width center line from a width direction end portion of the center region of the auxiliary lug groove toward the tire equator plane .
ショルダー側からタイヤ赤道面へ向かって延びる主ラグ溝をタイヤ周方向に複数有すると共に、トレッド中央領域においてタイヤ周方向に実質的に連続して延在する陸部を有するラグパターンを有する空気入りタイヤにおいて、
タイヤ接地最大幅の30%以内に対応するセンター領域に、溝深さがタイヤ赤道面に向かって漸減する補助ラグ溝を、前記主ラグ溝とは独立して設け、
前記センター領域のネガティブ率を10〜35%としたことを特徴とする空気入りタイヤ。
A pneumatic tire having a plurality of main lug grooves extending in the tire circumferential direction from the shoulder side toward the tire equatorial plane and having a lug pattern having a land portion extending substantially continuously in the tire circumferential direction in the tread central region In
An auxiliary lug groove whose groove depth gradually decreases toward the tire equatorial plane is provided independently of the main lug groove in the center region corresponding to within 30% of the tire ground contact maximum width,
A pneumatic tire characterized by having a negative rate of 10 to 35% in the center region.
前記補助ラグ溝の溝深さが、前記主ラグ溝の最大深さの45〜70%であることを特徴とする請求項1または請求項2に記載の空気入りタイヤ。  The pneumatic tire according to claim 1 or 2, wherein a groove depth of the auxiliary lug groove is 45 to 70% of a maximum depth of the main lug groove.
JP07353499A 1999-03-18 1999-03-18 Pneumatic tire Expired - Fee Related JP4227239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07353499A JP4227239B2 (en) 1999-03-18 1999-03-18 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07353499A JP4227239B2 (en) 1999-03-18 1999-03-18 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2000264022A JP2000264022A (en) 2000-09-26
JP4227239B2 true JP4227239B2 (en) 2009-02-18

Family

ID=13521003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07353499A Expired - Fee Related JP4227239B2 (en) 1999-03-18 1999-03-18 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4227239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639340A (en) * 2009-12-04 2012-08-15 株式会社普利司通 Pneumatic tire for motorcycle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955860B2 (en) * 2001-04-09 2012-06-20 住友ゴム工業株式会社 Pneumatic tire
JP4602782B2 (en) 2005-02-03 2010-12-22 株式会社ブリヂストン Heavy duty pneumatic tire
JP5727502B2 (en) * 2010-10-22 2015-06-03 株式会社ブリヂストン Heavy duty pneumatic tires for construction vehicles
EP2754567B1 (en) * 2011-09-09 2017-05-10 Bridgestone Corporation Pneumatic tire
JP5977696B2 (en) 2013-03-13 2016-08-24 株式会社ブリヂストン Pneumatic tire
JP5799043B2 (en) 2013-03-13 2015-10-21 株式会社ブリヂストン Pneumatic tire
JP5785577B2 (en) * 2013-03-13 2015-09-30 株式会社ブリヂストン Pneumatic tire
JP6060138B2 (en) * 2014-12-02 2017-01-11 株式会社ブリヂストン Pneumatic tire
JP5985005B2 (en) * 2015-05-25 2016-09-06 株式会社ブリヂストン Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639340A (en) * 2009-12-04 2012-08-15 株式会社普利司通 Pneumatic tire for motorcycle

Also Published As

Publication number Publication date
JP2000264022A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP4776622B2 (en) Construction vehicle tires
US10399390B2 (en) Pneumatic tire
EP3088213B1 (en) Pneumatic tire
JP5275610B2 (en) Pneumatic tire
WO2009096133A1 (en) Pneumatic tire
JP4539774B2 (en) Heavy duty pneumatic tire
EP1498288A1 (en) Pneumatic tire
JP4015623B2 (en) Heavy duty tire
JP4180910B2 (en) Heavy duty radial tire
JP4227239B2 (en) Pneumatic tire
JP5109823B2 (en) Pneumatic tire
JPWO2009048078A1 (en) tire
CN106427402B (en) Pneumatic tire
JP4303343B2 (en) Pneumatic tire
JP4170066B2 (en) Pneumatic tire
JP4915069B2 (en) Pneumatic tire
JP4687342B2 (en) Pneumatic tire
JP4608111B2 (en) Pneumatic tires for construction vehicles
JP6658934B2 (en) Heavy duty tire
JP4285617B2 (en) Pneumatic radial tire
JP4872066B2 (en) Pneumatic tire
JP3967917B2 (en) Pneumatic tire
US20210379935A1 (en) Pneumatic Tire
JP3513340B2 (en) Pneumatic tires for vehicles
JPWO2006001290A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees