JP5785577B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5785577B2
JP5785577B2 JP2013050879A JP2013050879A JP5785577B2 JP 5785577 B2 JP5785577 B2 JP 5785577B2 JP 2013050879 A JP2013050879 A JP 2013050879A JP 2013050879 A JP2013050879 A JP 2013050879A JP 5785577 B2 JP5785577 B2 JP 5785577B2
Authority
JP
Japan
Prior art keywords
narrow groove
tire
inflow portion
groove
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013050879A
Other languages
Japanese (ja)
Other versions
JP2014177150A (en
Inventor
和貴 松澤
和貴 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013050879A priority Critical patent/JP5785577B2/en
Priority to CA2903360A priority patent/CA2903360C/en
Priority to BR112015022869A priority patent/BR112015022869A8/en
Priority to PCT/JP2014/001451 priority patent/WO2014141715A1/en
Priority to RU2015143613/11A priority patent/RU2602619C1/en
Publication of JP2014177150A publication Critical patent/JP2014177150A/en
Priority to CL2015002573A priority patent/CL2015002573A1/en
Application granted granted Critical
Publication of JP5785577B2 publication Critical patent/JP5785577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane

Description

本発明は、特に、トレッドの放熱性を高めた空気入りタイヤに関する。   The present invention particularly relates to a pneumatic tire with improved heat dissipation of a tread.

車両に装着されたタイヤは、負荷転動に伴う伸縮の繰り返しにより発熱する。特に、この発熱は、路面に接するトレッドにおいて顕著となり、トレッドの様々な故障(例えば、ヒートセパレーション等)の原因となる。そのため、空気入りタイヤのトレッドに発生する熱を放出する工夫が必要とされている。   A tire mounted on a vehicle generates heat due to repeated expansion and contraction accompanying load rolling. In particular, this heat generation becomes conspicuous in the tread in contact with the road surface, and causes various failures of the tread (for example, heat separation). Therefore, the device which discharge | releases the heat | fever which generate | occur | produces in the tread of a pneumatic tire is required.

この必要に応えるため、従来、トレッド踏面に溝が設けられた空気入りタイヤが用いられてきた。このタイヤによれば、溝を設けることによって、発熱源たるトレッドそのものを低減し、且つ、トレッドの表面積を増大させることができ、空気入りタイヤのトレッドの放熱性を高めることができる。   In order to meet this need, conventionally, a pneumatic tire having a groove on the tread surface has been used. According to this tire, by providing the groove, the tread itself as a heat generation source can be reduced, the surface area of the tread can be increased, and the heat dissipation of the tread of the pneumatic tire can be enhanced.

特開2003−205706号公報JP 2003-205706 A

しかしながら、上記従来の空気入りタイヤでは、放熱性を高める効果をより向上させるためには溝の総容量を増加させる必要があるところ、溝の総容量を増加させると陸部の剛性の低下を招き、タイヤの摩耗性能や操縦安定性能が悪化する虞がある。
そこで、本発明は、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めた空気入りタイヤを提供することを目的とする。
However, in the conventional pneumatic tire described above, it is necessary to increase the total capacity of the groove in order to further improve the effect of improving heat dissipation. However, if the total capacity of the groove is increased, the rigidity of the land portion is reduced. The tire wear performance and steering stability performance may be deteriorated.
Then, an object of this invention is to provide the pneumatic tire which improved the heat dissipation of the tread, suppressing the increase in the total capacity | capacitance of a groove | channel.

本発明の要旨は以下の通りである。
本発明の空気入りタイヤは、トレッド踏面に、タイヤ周方向に傾斜して延び、溝深さと比較して小さい溝幅を有する細溝が、タイヤ周方向に間隔をおいて設けられ、前記細溝は、両端が陸部内で終端し、前記細溝の一方の端部において、タイヤ周方向に対向する前記細溝の溝壁面のうち、前記細溝の一方の端から前記細溝の他方の端に向かう第一ベクトルのタイヤ周方向成分の終点側にある前記溝壁面にのみ、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、流入部が設けられ、ここで、前記流入部は、タイヤ周方向に対向する前記細溝の溝壁面の両方に、設けられ、前記流入部の他方の端から流入部の一方の端に向かうにつれて深さが漸増し、タイヤ周方向に隣接する、前記細溝及び前記流入部を合わせた部分間において、一方の前記部分のタイヤ周方向最外端のうち他方の前記部分側にあるものと、他方の前記部分のタイヤ周方向最外端のうち一方の前記部分側にあるものとが、タイヤ周方向に離間する、ことを特徴とする。
上記構成とすれば、細溝及び流入部を合わせた部分のタイヤ周方向投影長さを比較的小さくすることができるため、トレッド成型用金型の継ぎ目の位置が細溝又は流入部の位置に当たることを回避しやすくなり、細溝及び/又は流入部の上にバリが生じにくくなる。そのため、本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。また、上記構成とすれば、トレッドの放熱性を高める効果を一層高めることができる。
なお、「トレッド踏面」とは、適用リムに組み付けると共に規定内圧を充填したタイヤを、最大負荷能力に対応する負荷を加えた状態で転動させた際に、路面に接触することになる、タイヤの全周にわたる外周面を意味する。ここで、「適用リム」とは、タイヤサイズに応じて下記の規格に規定された標準リム(下記TRAのYEAR BOOKでは“Design Rim”と規定。下記ETRTOのSTANDARDS MANUALでは“Measuring Rim”と規定。)を指し、「規定内圧」とは、下記の規格において、最大負荷能力に対応して規定される空気圧をいい、「最大負荷能力」とは、下記の規格でタイヤに負荷されることが許容される最大の質量を指す。そして、その規格とは、タイヤが生産又は使用される地域に有効な産業規格によって決められたものであり、例えば、アメリカ合衆国では、“THE TIRE AND RIM ASSOCIATION INC.(TRA)”の“YEAR BOOK”であり、欧州では、“The European Tyre and Rim Technical Organization(ETRTO)”の“STANDARDS MANUAL”であり、日本では、“日本自動車タイヤ協会(JATMA)”の“JATMA YEAR BOOK”である。
またなお、「(細溝の)溝深さ」とは、細溝のタイヤ径方向の深さのうち最も大きい深さを指し、「(細溝の)溝幅」とは、細溝のタイヤ周方向の幅を指す。
更になお、本発明の空気入りタイヤの諸寸法は、特に断りのない限り、タイヤを適用リムに装着し、規定内圧とし、無負荷状態としたときの諸寸法を指す。
The gist of the present invention is as follows.
In the pneumatic tire of the present invention, narrow grooves extending in the tire circumferential direction and having a groove width smaller than the groove depth are provided on the tread tread surface at intervals in the tire circumferential direction. Are both ends in the land portion, and at one end of the narrow groove, among the groove wall surfaces of the narrow groove facing in the tire circumferential direction, from one end of the narrow groove to the other end of the narrow groove An inflow portion is provided that extends in the tire circumferential direction only, communicates with the narrow groove at one end and terminates at the other end only on the groove wall surface on the end side of the tire circumferential component of the first vector toward Here, the inflow portion is provided on both of the groove wall surfaces of the narrow groove facing in the tire circumferential direction , and the depth gradually increases from the other end of the inflow portion toward one end of the inflow portion. , between adjacent in the circumferential direction of the tire, it combined the thin groove and the inlet portion In the tire circumferential direction outermost end of one of the parts, the one on the other part side and the one on the one part side of the tire circumferential direction outermost end of the other part, They are separated in the tire circumferential direction.
With the above configuration, since the projected length in the tire circumferential direction of the portion including the narrow groove and the inflow portion can be made relatively small, the position of the seam of the mold for tread molding corresponds to the position of the narrow groove or the inflow portion. This is easy to avoid, and burrs are less likely to occur on the narrow groove and / or the inflow portion. Therefore, according to the pneumatic tire of the present invention, the heat dissipation of the tread can be enhanced while suppressing an increase in the total capacity of the grooves. Moreover, if it is set as the said structure, the effect which improves the heat dissipation of a tread can be heightened further.
The “tread surface” is a tire that comes into contact with the road surface when the tire that is assembled to the applicable rim and filled with the specified internal pressure is rolled with a load corresponding to the maximum load capacity applied. Means the outer peripheral surface of the entire circumference. Here, the “applicable rim” is a standard rim defined in the following standard according to the tire size (specified as “Design Rim” in YEAR BOOK of the following TRA. “Measuring Rim” in STANDARDDS MANUAL of the following ETRTO. )), And “specified internal pressure” means the air pressure specified in accordance with the maximum load capacity in the following standards, and “maximum load capacity” means that the tire is loaded in accordance with the following standards. Refers to the maximum mass allowed. The standard is determined by an industrial standard effective in the region where the tire is produced or used. For example, in the United States, “THE TIRE AND RIM ASSOCIATION INC. (TRA)” “YEAR BOOK” In Europe, it is “STANDARDS MANUAL” of “The European Tire and Rim Technical Organization (ETRTO)”, and in Japan it is “JATMA YEAR BOOK” of “Japan Automobile Tire Association (JATMA)”.
The “groove depth (of the narrow groove)” refers to the largest depth in the tire radial direction of the narrow groove, and the “(groove width) of the groove” refers to the tire of the narrow groove. Refers to the width in the circumferential direction.
Furthermore, unless otherwise specified, the dimensions of the pneumatic tire of the present invention refer to the dimensions when the tire is mounted on an applicable rim, set to a specified internal pressure, and in a no-load state.

また、本発明の空気入りタイヤは、前記細溝及び前記流入部を合わせた部分のタイヤ周方向投影長さLxが、前記流入部の位置と同じタイヤ幅方向位置において、前記第一ベクトルのタイヤ周方向成分の始点側にある前記溝壁面に、仮想流入部が設けられた場合の、前記細溝及び前記仮想流入部を合わせた部分のタイヤ周方向投影長さLx’と比較して、小さいことが好ましい。上記範囲とすれば、トレッドの放熱性を高めるという上記効果がより得られやすい。   In the pneumatic tire of the present invention, the tire of the first vector has a tire circumferential direction projection length Lx of the portion including the narrow groove and the inflow portion that is the same as the position of the inflow portion in the tire width direction position. Smaller than the tire circumferential projection length Lx ′ of the combined portion of the narrow groove and the virtual inflow portion when the virtual inflow portion is provided in the groove wall surface on the starting point side of the circumferential direction component It is preferable. If it is the said range, the said effect of improving the heat dissipation of a tread will be easier to be acquired.

更に、本発明の空気入りタイヤは、前記細溝の一方の端から前記流入部の位置までの、前記細溝の延在方向に沿った距離は、前記細溝の延在長さの0〜35%であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果がより得られやすい。   Furthermore, in the pneumatic tire of the present invention, the distance along the extending direction of the narrow groove from one end of the narrow groove to the position of the inflow portion is 0 to 0 of the extending length of the narrow groove. 35% is preferable. If it is the said structure, the said effect of improving the heat dissipation of a tread will be acquired more easily.

更に、本発明の空気入りタイヤは、前記流入部は、前記細溝の一方の端に設けられることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。   Furthermore, in the pneumatic tire of the present invention, it is preferable that the inflow portion is provided at one end of the narrow groove. If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.

更に、本発明の空気入りタイヤは、前記第一ベクトルと前記流入部の一方の端から前記流入部の他方の端に向かう第二ベクトルとのなす角度θ2が、90°未満であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。   Furthermore, in the pneumatic tire of the present invention, it is preferable that an angle θ2 formed by the first vector and a second vector directed from one end of the inflow portion to the other end of the inflow portion is less than 90 °. . If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.

更に本発明の空気入りタイヤは、前記角度θ2が、50〜70°であることが好ましい。上記構成とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。   Furthermore, in the pneumatic tire of the present invention, the angle θ2 is preferably 50 to 70 °. If it is the said structure, the said effect of improving the heat dissipation of a tread will be further easy to be acquired.

本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。   According to the pneumatic tire of the present invention, the heat dissipation of the tread can be improved while suppressing an increase in the total capacity of the grooves.

(a)は、本発明の一例の空気入りタイヤのトレッド踏面を表す部分展開図であり、(b)は、(a)に示すタイヤを、タイヤ周方向に延びるA−A線に沿って切断したときの断面図である。(A) is a partial expanded view showing the tread surface of the pneumatic tire of an example of the present invention, (b) cuts the tire shown in (a) along the line AA extending in the tire circumferential direction. It is sectional drawing when doing. (a)は、図1に示すタイヤに用いられ得る細溝及び流入部((i)〜(iv))、並びに比較例のタイヤに用いられる細溝及び仮想流入部((i))の拡大図であり、(b)は、(a)に示す細溝の一方の端を始点とし、他方の端を終点とする第一ベクトルを示す図であり、(c)は、(a)に示す(i)〜(iv)における、流入部の一方の端を始点とし、他方の端を終点とする第二ベクトルを、(b)に示す第一ベクトルと共に示す図である。(A) is an expansion of narrow grooves and inflow portions ((i) to (iv)) that can be used in the tire shown in FIG. 1, and narrow grooves and virtual inflow portions ((i)) used in the tire of the comparative example. It is a figure, (b) is a figure which shows the 1st vector which makes one end of the narrow groove | channel shown to (a) a start point, and the other end is an end point, (c) is shown to (a). In (i)-(iv), it is a figure which shows the 2nd vector which makes one end of an inflow part a starting point, and makes the other end an end point with the 1st vector shown in (b). (a)は、図1に示すタイヤに用いられ得る細溝及び流入部の拡大図であり、(b)は、(a)に示す細溝についての第一ベクトルを示す図であり、(c)は、(a)に示す細溝についての第二ベクトルを、(b)に示す第一ベクトルと共に示す図である。(A) is an enlarged view of a narrow groove and an inflow portion that can be used in the tire shown in FIG. 1, (b) is a diagram showing a first vector for the narrow groove shown in (a), (c) (A) is a figure which shows the 2nd vector about the fine groove shown to (a) with the 1st vector shown to (b). 図1に示すタイヤに用いられ得る、細溝の溝壁面の両方に流入部が設けられた場合の細溝及び流入部の拡大図である。FIG. 2 is an enlarged view of a narrow groove and an inflow portion that can be used in the tire illustrated in FIG. 1 when inflow portions are provided on both of the groove wall surfaces of the narrow groove.

以下、図面を参照して、本発明の空気入りタイヤの実施形態について詳細に例示説明する。
図1(a)に、本発明の一例の空気入りタイヤのトレッド踏面を表す部分展開図を示す。
本発明の一例の空気入りタイヤ1(以下、「タイヤ1」ともいう)は、トレッド踏面2に、タイヤ赤道Cを挟んでタイヤ周方向に沿って延びる1対の中央周方向溝13,13と、該中央周方向溝13,13のタイヤ幅方向外側にタイヤ周方向に沿って延びる1対の側方周方向溝14,14と、が設けられている。また、トレッド踏面2には、タイヤ幅方向に沿って延び、中央周方向溝13及び側方周方向溝14に連通する中間幅方向溝15と、タイヤ幅方向に沿って延び、側方周方向溝14に連通しトレッド接地端TGに延びる側方幅方向溝16と、が設けられている。
なお、トレッド接地端TGとは、トレッド踏面のタイヤ幅方向端を指す。
Hereinafter, embodiments of the pneumatic tire of the present invention will be described in detail with reference to the drawings.
FIG. 1A is a partial development view showing a tread surface of a pneumatic tire according to an example of the present invention.
A pneumatic tire 1 (hereinafter also referred to as “tire 1”) according to an example of the present invention includes a pair of central circumferential grooves 13 and 13 that extend along the tire circumferential direction across the tire equator C on the tread tread surface 2. A pair of lateral circumferential grooves 14 and 14 extending along the tire circumferential direction are provided outside the central circumferential grooves 13 and 13 in the tire width direction. Further, the tread tread surface 2 extends along the tire width direction, and extends along the tire width direction with an intermediate width direction groove 15 that communicates with the central circumferential groove 13 and the lateral circumferential groove 14. A lateral width direction groove 16 that communicates with the groove 14 and extends to the tread grounding end TG is provided.
The tread ground contact end TG refers to the tire width direction end of the tread surface.

また、タイヤ1は、中央周方向溝13により区画され、タイヤ赤道Cを含むリブ状中央陸部17と、中央周方向溝13と側方周方向溝14と中間幅方向溝15とによって区画されるブロック状中間陸部18と、側方周方向溝14と側方幅方向溝16とトレッド接地端TGとによって区画されるブロック状側方陸部19と、を有している。   Further, the tire 1 is defined by a central circumferential groove 13 and is defined by a rib-shaped central land portion 17 including the tire equator C, a central circumferential groove 13, a lateral circumferential groove 14, and an intermediate width direction groove 15. And a block-shaped side land portion 19 defined by the side circumferential groove 14, the side width direction groove 16, and the tread ground contact end TG.

タイヤ1は、トレッド踏面2にあるリブ状中央陸部17に、タイヤ周方向に傾斜して延び、その両端3a、3bがリブ状中央陸部17内で終端する細溝3が設けられる。
図1(b)に、図1(a)に示すタイヤを、タイヤ周方向に延びるA−A線に沿って切断したときの断面図を示す。ここで、細溝3は、図1(b)に示すように、溝深さd3と比較して小さい溝幅w3を有する。
タイヤ1では、細溝3は、タイヤ周方向に一定のピッチLpで設けられている。
The tire 1 is provided with a narrow groove 3 extending at an incline in the tire circumferential direction on the rib-shaped central land portion 17 on the tread tread 2 and having both ends 3 a and 3 b terminating in the rib-shaped central land portion 17.
FIG. 1B shows a cross-sectional view of the tire shown in FIG. 1A taken along line AA extending in the tire circumferential direction. Here, as shown in FIG. 1B, the narrow groove 3 has a groove width w3 that is smaller than the groove depth d3.
In the tire 1, the narrow grooves 3 are provided at a constant pitch Lp in the tire circumferential direction.

また、タイヤ1は、細溝3の溝壁面3w(3we)に、タイヤ周方向に延びる流入部4が設けられる。流入部4は、一方の端4aで細溝3に連通し、他方の端4bで終端する。
なお、「タイヤ周方向に延びる」とは、厳密にタイヤ周方向に延びることを意味するものでなく、タイヤ周方向の成分を有する方向に延びることを意味する。
Further, in the tire 1, an inflow portion 4 extending in the tire circumferential direction is provided on the groove wall surface 3 w (3 we) of the narrow groove 3. The inflow portion 4 communicates with the narrow groove 3 at one end 4a and terminates at the other end 4b.
“Extending in the tire circumferential direction” does not mean strictly extending in the tire circumferential direction, but means extending in a direction having a component in the tire circumferential direction.

図2(a)(i)〜(iv)に、タイヤ1に設けられ得る細溝3及び流入部4の拡大図を示す。以下、特に断りのない限り、トレッド踏面を表す展開図における説明とする。
ここで、図2(b)に示すように、細溝3の一方の端3aから細溝3の他方の端3bに向かうベクトルを第一ベクトルV1とする。このとき、タイヤ1では、図2(a)(ii)〜(iv)に示すように、細溝3の一方の端3aにおいて、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに、タイヤ周方向に延びる流入部4が設けられている、すなわち、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cが向く側とは逆側にある、細溝3の溝壁面3weに流入部が設けられている。
なお、本発明の空気入りタイヤでは、流入部4は、図2(a)(i)〜(iv)に示すように、細溝3の一方の端部3apにおいて、設けられている。またなお、タイヤ1では、流入部4は、溝壁面3w(3we)から第一ベクトルV1のタイヤ周方向成分V1cの方向とは逆の方向に延びている。
The enlarged view of the narrow groove 3 and the inflow part 4 which can be provided in the tire 1 is shown to Fig.2 (a) (i)-(iv). Hereinafter, unless otherwise noted, the description in the developed view showing the tread surface is used.
Here, as shown in FIG. 2B, a vector from one end 3a of the narrow groove 3 toward the other end 3b of the narrow groove 3 is defined as a first vector V1. At this time, in the tire 1, as shown in FIGS. 2 (a), (ii) to (iv), at one end 3 a of the narrow groove 3, the groove wall surfaces 3 we, 3 ws ( 3w), an inflow portion 4 extending in the tire circumferential direction is provided on the groove wall surface 3we of the narrow groove 3 on the end point V1ce side of the tire circumferential component V1c of the first vector V1, that is, in the tire circumferential direction. An inflow portion is provided in the groove wall surface 3we of the narrow groove 3 on the opposite side of the groove wall surface 3we, 3ws (3w) of the groove wall 3 opposite to the side facing the tire circumferential component V1c of the first vector V1. It has been.
In the pneumatic tire of the present invention, the inflow portion 4 is provided at one end 3ap of the narrow groove 3 as shown in FIGS. 2 (a) (i) to (iv). In the tire 1, the inflow portion 4 extends from the groove wall surface 3w (3we) in a direction opposite to the direction of the tire circumferential component V1c of the first vector V1.

なお、図2(a)(i)〜(iv)に示す例では、第一ベクトルV1は、細溝3の一方の端3aをなすタイヤ周方向に延びる線分の中点Xを始点とし、細溝3の他方の端3bをなすタイヤ周方向に延びる線分の中点Yを終点とするベクトルとしているが、本発明の空気入りタイヤでは、第一ベクトルV1は、細溝3の一方の端部3apにおけるタイヤ幅方向最外側の点を始点とし、細溝3の他方の端部3bpにおけるタイヤ幅方向最外側の点を終点とするベクトルとすることもできる。   In the example shown in FIGS. 2 (a) (i) to (iv), the first vector V1 starts from the midpoint X of the line segment extending in the tire circumferential direction that forms one end 3a of the narrow groove 3, In the pneumatic tire of the present invention, the first vector V1 is one of the narrow grooves 3, although the middle point Y of the line segment extending in the tire circumferential direction that forms the other end 3b of the narrow groove 3 is the end point. It is also possible to use a vector whose starting point is the outermost point in the tire width direction at the end 3ap and whose end point is the outermost point in the tire width direction at the other end 3bp of the narrow groove 3.

タイヤ転動時には、タイヤの回転方向とは逆の方向に、風が流れる。この風が、トレッド踏面に設けられた溝に流入し、その後流出することによって、トレッドの熱が放出され、トレッドが冷却される。
ここで、溝の幅を大きくすると、溝に流入する風の量が増加してトレッドを冷却する効果が高まるものの、陸部の剛性が低下してタイヤの耐摩耗性や操縦安定性が低下する。溝の幅を小さくすると、陸部の剛性の低下は抑制されタイヤの耐摩耗性や操縦安定性の低下は抑制されるものの、溝の内部に流入する風の量が減少してトレッドを冷却する効果が弱まる。
When the tire rolls, wind flows in a direction opposite to the tire rotation direction. This wind flows into a groove provided on the tread surface and then flows out, so that heat of the tread is released and the tread is cooled.
Here, when the width of the groove is increased, the amount of wind flowing into the groove increases and the effect of cooling the tread increases, but the rigidity of the land portion decreases and the wear resistance and steering stability of the tire decrease. . Decreasing the width of the groove reduces the rigidity of the land and suppresses the wear resistance and steering stability of the tire, but reduces the amount of wind flowing into the groove to cool the tread. The effect is weakened.

比較的小さい溝幅を有する細溝の他に、流入部が設けられた、本発明の一例のタイヤ1では、タイヤ転動時に、風が流入部4を介して容易に細溝3に取り込まれるため、細溝3に流入する風の量が増加する。そのため、本発明の空気入りタイヤによれば、細溝及び流入部によるトレッドを冷却する効果を得ることができる。   In the tire 1 of the present invention in which an inflow portion is provided in addition to the narrow groove having a relatively small groove width, wind is easily taken into the narrow groove 3 through the inflow portion 4 during tire rolling. For this reason, the amount of wind flowing into the narrow groove 3 increases. Therefore, according to the pneumatic tire of the present invention, an effect of cooling the tread due to the narrow groove and the inflow portion can be obtained.

以下、本発明の一例のタイヤ1の作用効果を説明する。
図2(a)(i)に示す細溝3及び流入部4が設けられた本発明の一例のタイヤ1の比較例となるタイヤでは、タイヤ1の流入部4の位置と同じタイヤ幅方向位置において、第一ベクトルV1のタイヤ周方向成分V1cの始点V1cs側にある、細溝3の溝壁面3wsに流入部が設けられる(図1(a)では、仮想流入部4’で示す)。
ここで、細溝3の一方の端部3apにおいて、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに流入部4が設けられる、本発明の一例のタイヤ1における、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLx(代表的に図2(a)(i)に示す)は、第一ベクトルV1のタイヤ周方向成分V1cの始点V1cs側にある、細溝3の溝壁面3wsに仮想流入部4’が設けられる、比較例の空気入りタイヤにおける、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLx’(図2(a)(i)に示す)と比較して、小さい。
なお、流入部4の位置とは、図2(b)に示すように、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aoo及び最も細溝3の他方の端3bに近い点4aoiとの中点Pを指す。仮想流入部4’の位置は、同様に定めた点P’を指す(図2(i)参照)。ここで、本発明の一例のタイヤ1についての点Pと、比較例の空気入りタイヤについての点P’とを通る直線がタイヤ周方向に平行となる、すなわち、流入部4の位置と仮想流入部4’の位置とはタイヤ幅方向位置が同じとなるようにする。
空気入りタイヤは、一般的に、タイヤ成型用金型を用いて加硫されることによって、製造される。ここで、トレッドは、タイヤ全周に亘って複数のトレッド成型用金型を並べる(タイヤ周方向に分割されたセクターを用いる)ことによって、成型される。トレッド成型用金型の継ぎ目においては、僅かな量のトレッドゴムが金型の外部に漏れ出ることがあり、この場合、加硫済みの空気入りタイヤのトレッド踏面は、局所的に、バリ(余分なゴム)が生じる。そして、トレッド成型用金型の継ぎ目の位置が、トレッド踏面に設けられる細溝及び/又は流入部の位置に対応した場合には、細溝及び/又は流入部の上にバリが生じ、細溝及び/又は流入部の一部が埋まってしまう。これにより、トレッド踏面に同じ数の流入部を有する細溝が設けられた場合、細溝及び流入部を合わせた部分のタイヤ周方向投影長さが小さいほど、トレッド成型用金型の継ぎ目の位置が、細溝又は流入部の位置に当たることを回避しやすくなり、上記のバリによる細溝及び流入部の形状の乱れが低減される。
そのため、比較的小さな、細溝3及び流入部4を合わせた部分のタイヤ周方向投影長さLxを有する、本発明の一例のタイヤ1によれば、細溝3及び流入部4によるトレッドを冷却する効果が得られやすい。
Hereinafter, the effect of the tire 1 of an example of the present invention will be described.
In the tire as a comparative example of the tire 1 of the example of the present invention in which the narrow groove 3 and the inflow portion 4 shown in FIGS. 2A and 2I are provided, the same position in the tire width direction as the position of the inflow portion 4 of the tire 1 In FIG. 1, an inflow portion is provided on the groove wall surface 3ws of the narrow groove 3 on the side of the starting point V1cs of the tire circumferential direction component V1c of the first vector V1 (indicated by a virtual inflow portion 4 ′ in FIG. 1A).
Here, in one end portion 3ap of the narrow groove 3, the inflow portion 4 is provided on the groove wall surface 3we of the narrow groove 3 on the end point V1ce side of the tire circumferential direction component V1c of the first vector V1. The tire circumferential projection length Lx (typically shown in FIGS. 2A and 2I) of the portion of the tire 1 including the narrow groove 3 and the inflow portion 4 is a tire circumferential component of the first vector V1. Tire circumferential direction projection length of the combined portion of the narrow groove 3 and the inflow portion 4 in the pneumatic tire of the comparative example in which the virtual inflow portion 4 ′ is provided on the groove wall surface 3ws of the narrow groove 3 on the side of the starting point V1cs of V1c It is smaller than the length Lx ′ (shown in FIGS. 2A and 2I).
Note that the position of the inflow portion 4 is a point 4ao and the narrowest groove on the line forming one end 4a of the inflow portion 4 that is closest to one end 3a of the narrow groove 3 as shown in FIG. 3 indicates the midpoint P with the point 4aoi close to the other end 3b. The position of the virtual inflow portion 4 ′ indicates the point P ′ determined in the same manner (see FIG. 2 (i)). Here, a straight line passing through the point P for the tire 1 of the present invention and the point P ′ for the pneumatic tire of the comparative example is parallel to the tire circumferential direction, that is, the position of the inflow portion 4 and the virtual inflow The position in the tire width direction is the same as the position of the portion 4 ′.
A pneumatic tire is generally manufactured by vulcanization using a tire molding die. Here, the tread is molded by arranging a plurality of molds for molding a tread over the entire circumference of the tire (using a sector divided in the tire circumferential direction). A small amount of tread rubber may leak to the outside of the mold at the joint of the mold for tread molding. In this case, the tread surface of the vulcanized pneumatic tire is locally burr (excess A new rubber). When the position of the seam of the tread molding die corresponds to the position of the narrow groove and / or the inflow portion provided on the tread surface, burrs are generated on the narrow groove and / or the inflow portion, and the narrow groove And / or a part of the inflow portion is buried. As a result, when narrow grooves having the same number of inflow portions are provided on the tread surface, the position of the seam of the tread molding die becomes smaller as the projected length in the tire circumferential direction of the portion including the narrow grooves and the inflow portions is smaller. However, it is easy to avoid hitting the position of the narrow groove or the inflow portion, and the disturbance of the shape of the narrow groove and the inflow portion due to the burr is reduced.
Therefore, according to the tire 1 of the example of the present invention having a relatively small projection length Lx in the tire circumferential direction of the combined portion of the narrow groove 3 and the inflow portion 4, the tread by the narrow groove 3 and the inflow portion 4 is cooled. It is easy to obtain the effect.

また、本発明の一例のタイヤ1では、第一ベクトルV1のタイヤ周方向成分V1cの方向(流入部の一方の端から流入部の他方の端に向かう方向)を、タイヤの回転方向とした場合には、以下の作用効果を奏する。細溝3の一方の端部3apにおいて、トレッド踏面2に開口する流入部4の他方の端4bから流入部4に流入し、細溝3に連通する流入部4の一方の端4aから細溝3に流入した空気は、細溝3の一方の端部3apから細溝3の他方の3bpまで、細溝3の延在長さL3の大部分に亘って、流れる。これにより、空気が流れる細溝3内部の領域を比較的大きくすることができる。
なお、本発明の一例のタイヤ1では、第一ベクトルV1のタイヤ周方向成分V1cの方向とは逆の方向(流入部の他方の端から流入部の一方の端に向かう方向)を、タイヤの回転方向とした場合には、細溝3の他方の端部3bpにおいて、細溝3に流入した空気は、細溝3の一方の端部3apに設けられた流入部4から空気を流出することができる。
そのため、本発明の一例のタイヤ1によれば、細溝3及び流入部4によるトレッドを冷却する効果が得られやすい。
Moreover, in the tire 1 of an example of the present invention, when the direction of the tire circumferential direction component V1c of the first vector V1 (the direction from one end of the inflow portion toward the other end of the inflow portion) is the tire rotation direction. Has the following effects. In one end portion 3 ap of the narrow groove 3, it flows into the inflow portion 4 from the other end 4 b of the inflow portion 4 that opens to the tread surface 2, and the narrow groove from one end 4 a of the inflow portion 4 that communicates with the narrow groove 3. The air that has flowed into 3 flows from one end 3ap of the narrow groove 3 to the other 3 bp of the narrow groove 3 over most of the extending length L3 of the narrow groove 3. Thereby, the area | region inside the narrow groove 3 through which air flows can be enlarged comparatively.
In the tire 1 of the example of the present invention, the direction opposite to the direction of the tire circumferential direction component V1c of the first vector V1 (the direction from the other end of the inflow portion toward one end of the inflow portion) is In the case of the rotational direction, the air that has flowed into the narrow groove 3 at the other end 3 bp of the narrow groove 3 flows out from the inflow portion 4 provided at the one end 3 ap of the narrow groove 3. Can do.
Therefore, according to the tire 1 of the example of the present invention, it is easy to obtain the effect of cooling the tread by the narrow groove 3 and the inflow portion 4.

そのため、本発明の空気入りタイヤによれば、トレッドの放熱性を高めることができる。
また、本発明の空気入りタイヤによれば、前述の通り、細溝及び/又は流入部の上にバリが生じにくくなるため、タイヤの製造効率を向上させることができる。
Therefore, according to the pneumatic tire of this invention, the heat dissipation of a tread can be improved.
Moreover, according to the pneumatic tire of the present invention, as described above, since burrs are hardly generated on the narrow groove and / or the inflow portion, the manufacturing efficiency of the tire can be improved.

本発明の一例のタイヤ1では、図1に示す通り、タイヤ周方向に隣接する2つの細溝3及び流入部4を合わせた部分21、22間において、一方の部分21のタイヤ周方向最外端21e1、21e2のうち他方の部分22側にあるもの21e2と、他方の部分22のタイヤ周方向最外端22e1、22e2のうち一方の部分21側にあるもの22e1とが、タイヤ周方向に離間している、すなわち、線分21e2−22e1のタイヤ周方向投影長さLi>0である。タイヤ周方向最外端21e2、22e1がタイヤ周方向に離間することによって、トレッド成型用金型の継ぎ目の位置が、細溝3又は流入部4の位置に当たることを回避することができる
なお、図1に示す本発明の一例のタイヤ1では、タイヤ周方向最外端21e2は細溝3の一方の端3aであり、タイヤ周方向最外端22e1は細溝3の他方の端3bであるが、本発明の空気入りタイヤでは、これに限定されることなく、タイヤ周方向最外端21e2、22e1を流入部4の他方の端とすることもできる。
In the tire 1 according to an example of the present invention, as illustrated in FIG. 1, the outermost circumferential direction of one portion 21 is between the portions 21 and 22 including the two narrow grooves 3 and the inflow portion 4 adjacent to each other in the tire circumferential direction. Of the ends 21e1, 21e2, the one 21e2 on the other portion 22 side and the other portion 22 of the outermost circumferential ends 22e1, 22e2 on the one portion 21 side are separated in the tire circumferential direction That is, the tire circumferential projection length Li> 0 of the line segment 21e2-22e1. By separating the tire circumferential direction outermost ends 21e2 and 22e1 in the tire circumferential direction, it is possible to avoid the position of the seam of the tread molding die from hitting the position of the narrow groove 3 or the inflow portion 4.
1, the tire circumferential direction outermost end 21e2 is one end 3a of the narrow groove 3, and the tire circumferential direction outermost end 22e1 is the other end 3b of the narrow groove 3. However, in the pneumatic tire of the present invention, the tire circumferential direction outermost ends 21e2 and 22e1 may be the other end of the inflow portion 4 without being limited thereto.

前述の通り、本発明の空気入りタイヤでは、細溝3の一方の端3aから流入部4の位置までの、細溝3の延在方向に沿った距離M1は、細溝3の延在長さL3の0〜35%であることが好ましい。
この場合、流入部4から細溝3に流入した空気が、細溝3の一方の端3aにより近い位置から細溝3の他方の端3bにより近い位置まで、細溝3の延在長さL3のほぼ大部分に亘って、流れる。これにより、空気が流れる細溝3の内部の領域を更に大きくすることができる。そのため、トレッドの放熱性を高めるという上記効果が得られやすい。また、タイヤ周方向に隣接する細溝3間のタイヤ周方向の距離の低減を抑制することができる。
As described above, in the pneumatic tire of the present invention, the distance M1 along the extending direction of the narrow groove 3 from the one end 3a of the narrow groove 3 to the position of the inflow portion 4 is the extension length of the narrow groove 3. It is preferable that it is 0 to 35% of the length L3.
In this case, the extended length L3 of the narrow groove 3 from the position where the air flowing into the narrow groove 3 from the inflow portion 4 is closer to one end 3a of the narrow groove 3 to the position closer to the other end 3b of the narrow groove 3 is provided. It flows over almost the majority of Thereby, the area | region inside the narrow groove 3 through which air flows can be enlarged further. Therefore, it is easy to obtain the above effect of improving the heat dissipation of the tread. Moreover, reduction of the distance of the tire circumferential direction between the narrow grooves 3 adjacent to the tire circumferential direction can be suppressed.

ここで、細溝3の一方の端3aから流入部4の位置までの、細溝3の延在方向に沿った距離M1とは、上記中点Pと、上記点Xとの、細溝3の延在方向に沿った距離を指す。
また、細溝3の延在長さL3とは、上記点Xと上記点Yとの直線距離、すなわち、第一ベクトルV1の長さを指す。
Here, the distance M1 along the extending direction of the narrow groove 3 from one end 3a of the narrow groove 3 to the position of the inflow portion 4 is the narrow groove 3 between the midpoint P and the point X. The distance along the extending direction of
Further, the extending length L3 of the narrow groove 3 indicates a linear distance between the point X and the point Y, that is, the length of the first vector V1.

また、前述の通り、図2(a)(ii)〜(iv)に示すように、タイヤ1では、流入部4は、細溝3の一方の端3aに設けられるため、流入部4から細溝3に流入した空気が、細溝3の一方の端3aから細溝3の他方の端3bまで、細溝3の延在長さL3のほぼ全体に亘って、流れる。これにより、空気が流れる細溝3内部の領域を更に大きくすることができる。そのため、トレッドの放熱性を高めるという上記効果が更に得られやすい。また、タイヤ周方向に隣接する細溝3間のタイヤ周方向の距離の低減を最小限にすることができる。   Further, as described above, as shown in FIGS. 2 (a), (ii) to (iv), in the tire 1, the inflow portion 4 is provided at one end 3 a of the narrow groove 3. The air flowing into the groove 3 flows from one end 3a of the narrow groove 3 to the other end 3b of the narrow groove 3 over almost the entire extending length L3 of the narrow groove 3. Thereby, the area | region inside the narrow groove 3 through which air flows can be enlarged further. Therefore, it is easier to obtain the above effect of improving the heat dissipation of the tread. Further, the reduction in the distance in the tire circumferential direction between the narrow grooves 3 adjacent in the tire circumferential direction can be minimized.

ここで、「流入部4が細溝3の一方の端3aに設けられる」とは、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aooと、細溝3の一方の端部3apにおけるタイヤ幅方向外側の点とが一致することを指す。
なお、タイヤ1では、細溝3の一方の端3aは、タイヤ周方向に平行な直線であるため、3a上のいずれの点も、細溝3の一方の端部3apにおけるタイヤ幅方向外側の点とすることができる。
Here, “the inflow portion 4 is provided at one end 3 a of the narrow groove 3” means a point 4 aoo of the line forming the one end 4 a of the inflow portion 4 closest to the one end 3 a of the narrow groove 3. This means that a point on the outer side in the tire width direction at one end 3ap of the narrow groove 3 coincides.
In the tire 1, since one end 3a of the narrow groove 3 is a straight line parallel to the tire circumferential direction, any point on 3a is located on the outer side in the tire width direction at one end 3ap of the narrow groove 3. Can be a point.

ここで、図2(c)に示すように、細溝3の一方の端部3apに設けられる流入部4の一方の端4aから流入部4の他方の端4bに向かうベクトルを第二ベクトルV2とする。
図2(c)(i)〜(iv)は、それぞれ図2(a)(i)〜(iv)に示す細溝3及び流入部4についての第一ベクトルV1及び第二ベクトルV2を示す。
なお、第二ベクトルV2は、流入部4の一方の端4aをなす線の、最も細溝3の一方の端3aに近い点4aooと最も細溝3の他方の端3bに近い点4aoiとの中点Pを始点V2sとし、流入部4の他方の端4bをなす線の、最も細溝3の一方の端3aに近い点4booと最も細溝3の他方の端3bに近い点4boiとの中点Qを終点V2eとするベクトルを指す。
Here, as shown in FIG. 2C, a vector directed from one end 4a of the inflow portion 4 provided at one end 3ap of the narrow groove 3 to the other end 4b of the inflow portion 4 is expressed as a second vector V2. And
2 (c) (i) to (iv) show the first vector V1 and the second vector V2 for the narrow groove 3 and the inflow portion 4 shown in FIGS. 2 (a), (i) to (iv), respectively.
The second vector V2 is a line between one end 4a of the inflow portion 4 and a point 4aoo closest to one end 3a of the narrow groove 3 and a point 4aoi closest to the other end 3b of the narrow groove 3. The middle point P is the starting point V2s, and the line 4boo closest to one end 3a of the narrow groove 3 and the point 4boi closest to the other end 3b of the narrow groove 3 of the line forming the other end 4b of the inflow portion 4 A vector having the middle point Q as the end point V2e is indicated.

このとき、タイヤ1では、図2(c)(iv)に示すように、第一ベクトルV1と第二ベクトルV2とのなす角度θ2が、90°未満(鋭角)であることが好ましい。すなわち、タイヤ1では、図2(a)(i)〜(iii)に示す細溝3及び流入部4と比較して、図2(a)(iv)に示す細溝3及び流入部4を用いることが好ましい。   At this time, in the tire 1, as shown in FIGS. 2 (c) and (iv), the angle θ2 formed by the first vector V1 and the second vector V2 is preferably less than 90 ° (acute angle). That is, in the tire 1, the narrow groove 3 and the inflow portion 4 shown in FIGS. 2 (a) and (iv) are compared with the narrow groove 3 and the inflow portion 4 shown in FIGS. 2 (a) (i) to (iii). It is preferable to use it.

上記角度θ2を鋭角とすれば、細溝3の一方の端部3apにおいて、トレッド踏面2に開口する流入部4の他方の端4bから流入部4に流入し、細溝3に連通する流入部4の一方の端4aから細溝3に流入した空気が、細溝3の一方の端部3apから細溝3の方の端部3bpに向かうというよりもむしろ、細溝3の一方の端部3apに集中する。細溝3の一方の端部3apに集中した空気は、細溝3の一方の端部3apにおいてタイヤ径方向内方に向かって流れて、細溝3の溝底3boに達し、次いで、空気は、細溝3の一方の端部3apから細溝3の他方の端部3bpに向かって流れて、細溝3の他方の端部3bpに達し、そして、空気は、細溝3の他方の端部3bpにおいてタイヤ径方向外方に向かって流れる。このように、空気は、細溝3の深部を流れて、その後、トレッド踏面2に流出する。ここで、トレッドにおける熱の発生は、タイヤ径方向外方のトレッド部分と比較して、タイヤ径方向内方のトレッド部分において、顕著であり、空気が細溝3の深部を流れることによっても、トレッドに発生した熱をより効果的に放出することができる。
そのため、上記角度θ2を90°未満とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
If the angle θ2 is an acute angle, at one end 3 ap of the narrow groove 3, the inflow portion that flows into the inflow portion 4 from the other end 4 b of the inflow portion 4 that opens to the tread surface 2 and communicates with the narrow groove 3. Rather than the air flowing into the narrow groove 3 from one end 4a of the groove 4 toward the end 3bp toward the narrow groove 3 from one end 3ap of the narrow groove 3, one end of the narrow groove 3 Concentrate on 3ap. The air concentrated on one end 3ap of the narrow groove 3 flows inward in the tire radial direction at the one end 3ap of the narrow groove 3, reaches the groove bottom 3bo of the narrow groove 3, and then the air , Flows from one end 3ap of the narrow groove 3 toward the other end 3bp of the narrow groove 3, reaches the other end 3bp of the narrow groove 3, and air flows to the other end 3bp of the narrow groove 3. It flows toward the outside in the tire radial direction at the portion 3 bp. In this way, air flows through the deep part of the narrow groove 3 and then flows out to the tread surface 2. Here, the generation of heat in the tread is remarkable in the tread portion on the inner side in the tire radial direction as compared with the tread portion on the outer side in the tire radial direction, and even when air flows in the deep part of the narrow groove 3, The heat generated in the tread can be released more effectively.
Therefore, if the angle θ2 is less than 90 °, the above effect of improving the heat dissipation of the tread is further easily obtained.

ここで、上記角度θ2は、50〜70°であることが好ましい。
角度θ2を上記範囲とすれば、トレッドの放熱性を高めるという上記効果が更に得られやすい。
Here, the angle θ2 is preferably 50 to 70 °.
When the angle θ2 is in the above range, the above effect of improving the heat dissipation of the tread can be further easily obtained.

また本発明の空気入りタイヤでは、図2(a)に示す細溝3の一方の端と他方の端とを入れ換えて定めることによって、図3(a)に示すように、細溝3の一方の端3aにおいて、タイヤ周方向に対向する溝壁3の溝壁面3we、3ws(3w)のうち、第一ベクトルV1のタイヤ周方向成分V1cの終点V1ce側にある、細溝3の溝壁面3weに、タイヤ周方向に延びる流入部4を設けることもできる。なお、図3(b)に、この場合の第一ベクトルV1を示し、図3(c)に、この場合の第二ベクトルを示す。   Further, in the pneumatic tire of the present invention, one end of the narrow groove 3 shown in FIG. 3A is obtained by replacing one end and the other end of the narrow groove 3 shown in FIG. The groove wall surface 3we of the narrow groove 3 on the end V1ce side of the tire circumferential direction component V1c of the first vector V1 among the groove wall surfaces 3we and 3ws (3w) of the groove wall 3 facing in the tire circumferential direction at the end 3a In addition, an inflow portion 4 extending in the tire circumferential direction can be provided. FIG. 3B shows the first vector V1 in this case, and FIG. 3C shows the second vector in this case.

なお、流入部4の好適な実施形態は、流入部4の好適な実施形態と同様にすることができる。   The preferred embodiment of the inflow portion 4 can be the same as the preferred embodiment of the inflow portion 4.

そして、本発明の空気入りタイヤでは、図4に示すように、タイヤ周方向に対向する細溝3の溝壁面3wの両方に、流入部4が設けられることが好ましい。   And in the pneumatic tire of this invention, as shown in FIG. 4, it is preferable that the inflow part 4 is provided in both the groove wall surfaces 3w of the narrow groove 3 which opposes a tire circumferential direction.

細溝3の溝壁面3wの両方に流入部4を設ければ、細溝3の一方の端部3ap側に設けられた流入部4から細溝3に流入した空気が、細溝3の他方の端部3bp側に設けられた流入部4から流出することができる。そのため、トレッドの放熱性を一層高めることができる。
また、流入部4を設ければ、第一ベクトルV1のタイヤ周方向成分の向き、及びその反対の向きのいずれを、タイヤの回転方向とした場合でも、トレッドの放熱性を高めるという効果を得ることができる。
If the inflow portions 4 are provided on both the groove wall surfaces 3 w of the narrow groove 3, the air flowing into the narrow groove 3 from the inflow portion 4 provided on the one end 3 ap side of the narrow groove 3 is transferred to the other side of the narrow groove 3. It can flow out from the inflow part 4 provided in the edge part 3bp side. Therefore, the heat dissipation of the tread can be further enhanced.
Moreover, if the inflow part 4 is provided, the effect of improving the heat dissipation of the tread can be obtained regardless of whether the direction of the tire circumferential direction component of the first vector V1 or the opposite direction is the rotation direction of the tire. be able to.

タイヤ1では、図1(a)に示すように、細溝3はタイヤ周方向に一定のピッチLpで設けられているが、本発明の空気入りタイヤでは、これに限定されることなく、細溝はタイヤ周方向に間隔をおいて設けられていればよい。細溝をタイヤ周方向に間隔をおいて設ければ、トレッド成型用金型の継ぎ目の位置が細溝又は流入部の位置に当たることを回避することができ、細溝及び/又は流入部の上にバリが生じるのを防ぐことができる。そのため、トレッドの放熱性を高めるという効果を得ることができる。   In the tire 1, as shown in FIG. 1 (a), the narrow grooves 3 are provided at a constant pitch Lp in the tire circumferential direction. The grooves only need to be provided at intervals in the tire circumferential direction. If the narrow grooves are provided at intervals in the tire circumferential direction, the position of the seam of the mold for tread molding can be avoided from hitting the position of the narrow groove or the inflow portion. It is possible to prevent burrs from being generated. Therefore, the effect of improving the heat dissipation of the tread can be obtained.

本発明の空気入りタイヤでは、細溝3及び流入部4は、トレッド踏面2のどこかに設けられていれば、トレッドの放熱性を高めるという効果を得ることができる。
タイヤ1では、細溝3及び流入部4は、タイヤ赤道面CLを含むリブ状中央陸部17に設けられている。ここで、リブ状中央陸部17では、タイヤ転動時の接地圧が特に高くなり、トレッドゴムの伸縮が特に大きい。そのため、リブ状中央陸部17に細溝3及び流入部4を設ければ、細溝3及び流入部4によるトレッドの放熱性を高めるという上記効果が得られやすい。
In the pneumatic tire of the present invention, if the narrow groove 3 and the inflow portion 4 are provided anywhere on the tread surface 2, the effect of enhancing the heat dissipation of the tread can be obtained.
In the tire 1, the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17 including the tire equatorial plane CL. Here, in the rib-shaped central land portion 17, the contact pressure at the time of tire rolling is particularly high, and the expansion and contraction of the tread rubber is particularly large. Therefore, if the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17, the above-described effect of improving the heat dissipation of the tread by the narrow groove 3 and the inflow portion 4 can be easily obtained.

本発明の空気入りタイヤでは、細溝3の延在方向とタイヤ周方向とのなす角度のうち小さい方の角度θ1(代表的に図1(a)に示す)は、45〜70°であることが好ましく、55〜65°であることが更に好ましい。上記範囲とすれば、細溝3への風の流入を確保することができる。   In the pneumatic tire of the present invention, the smaller angle θ1 (typically shown in FIG. 1A) of the angle formed between the extending direction of the narrow groove 3 and the tire circumferential direction is 45 to 70 °. Preferably, the angle is 55 to 65 °. If it is the said range, the inflow of the wind to the narrow groove 3 is securable.

タイヤ1では、流入部4のタイヤ周方向長さw4(図1(b)参照)の細溝3の溝幅w3に対する割合(w4/w3)は、3〜7であることが好ましい。w4/w3を上記範囲とすれば、細溝3及び流入部4が設けられている陸部の剛性の確保とトレッドの放熱性の向上とを両立することができる。
また、流入部4の深さd4(図1(b)参照)の細溝3の溝深さd3に対する割合(d4/d3)は、1/7〜1/3であることが好ましい。d4/d3を上記範囲とすれば、細溝3及び流入部4が設けられている陸部の剛性の確保とトレッドの放熱性の向上とを両立することができる。
In the tire 1, it is preferable that the ratio (w4 / w3) of the tire circumferential direction length w4 (see FIG. 1B) of the inflow portion 4 to the groove width w3 of the narrow groove 3 is 3-7. If w4 / w3 is within the above range, it is possible to achieve both the rigidity of the land portion where the narrow groove 3 and the inflow portion 4 are provided and the improvement of the heat dissipation of the tread.
Further, the ratio (d4 / d3) of the depth d4 of the inflow portion 4 (see FIG. 1B) to the groove depth d3 of the narrow groove 3 is preferably 1/7 to 1/3. If d4 / d3 is within the above range, it is possible to achieve both the rigidity of the land portion where the narrow groove 3 and the inflow portion 4 are provided and the improvement of the heat dissipation of the tread.

タイヤ1では、図2(a)(i)〜(iii)に示すように、流入部4のトレッド踏面2上における形状は、細溝3の延在方向に平行な1対の辺を含む平行四辺形であるが、本発明の空気入りタイヤでは、上記形状は、これに限定されることなく、いかなる形状であってもよい。
流入部4のトレッド踏面2上における形状の例としては、平行四辺形、台形、タイヤ幅方向長さが漸増する形状、タイヤ周方向長さが漸増する形状、半円、三角形等が挙げられる。
In the tire 1, as shown in FIGS. 2 (a), (i) to (iii), the shape of the inflow portion 4 on the tread surface 2 is parallel including a pair of sides parallel to the extending direction of the narrow groove 3. Although it is a quadrilateral, in the pneumatic tire of the present invention, the shape is not limited to this, and may be any shape.
Examples of the shape of the inflow portion 4 on the tread surface 2 include a parallelogram, trapezoid, a shape in which the tire width direction length gradually increases, a shape in which the tire circumferential direction length gradually increases, a semicircle, a triangle, and the like.

また、流入部4の細溝3の延在方向と垂直な面による断面における形状は、図1(b)に示すように、流入部4の他方の端4bから流入部4の一方の端4aに向かうにつれて深さが漸増し、流入部4の一方の端4aにおいて流入部4の深さが最大になる形状であることが好ましい。   Further, the shape of the cross section of the inflow portion 4 in a plane perpendicular to the extending direction of the narrow groove 3 is as shown in FIG. 1B, from the other end 4b of the inflow portion 4 to one end 4a of the inflow portion 4. It is preferable that the depth gradually increases toward the end of the inflow portion 4, and the depth of the inflow portion 4 is maximized at one end 4 a of the inflow portion 4.

タイヤ1では、図1(b)に示すように、流入部4の細溝3の延在方向と垂直な面による断面おける形状は、流入部4の一方の端4aと他方の端4bとを結ぶ直線であるが、本発明の空気入りタイヤでは、上記形状は、これに限定されることなく、いかなる形状であってもよい。   In the tire 1, as shown in FIG. 1 (b), the shape of the cross section by a plane perpendicular to the extending direction of the narrow groove 3 of the inflow portion 4 is such that one end 4 a and the other end 4 b of the inflow portion 4 are formed. Although it is a straight line that connects, in the pneumatic tire of the present invention, the shape is not limited to this, and may be any shape.

なお、タイヤ1では、リブ状陸部及びブロック状陸部を有するトレッドパターンを有しているが、本発明の空気入りタイヤのトレッドパターンは、これに限定されることなく、いかなるパターンとしてもよい。
また、細溝の両端3a、3bがリブ状中央陸部17内で終端しているが、本発明の空気入りタイヤでは、細溝の端の少なくとも1つが、他の溝(例えば、周方向溝)に開口していてもよい。
The tire 1 has a tread pattern having a rib-like land portion and a block-like land portion. However, the tread pattern of the pneumatic tire of the present invention is not limited to this and may be any pattern. .
Moreover, although both ends 3a and 3b of the narrow groove terminate in the rib-shaped central land portion 17, in the pneumatic tire of the present invention, at least one end of the narrow groove has other grooves (for example, circumferential grooves). ) May be open.

タイヤ1では、細溝3及び流入部4は、タイヤ赤道Cを含むリブ状中央陸部17に設けられているが、本発明の空気入りタイヤでは、細溝3及び流入部4は、トレッド踏面2のどこに設けられていてもよい。   In the tire 1, the narrow groove 3 and the inflow portion 4 are provided in the rib-shaped central land portion 17 including the tire equator C. However, in the pneumatic tire of the present invention, the narrow groove 3 and the inflow portion 4 are provided on the tread surface. 2 may be provided anywhere.

本発明の空気入りタイヤは、特に、比較的大きなトレッドを有する、建設車両用タイヤやトラック・バス用タイヤに好適に用いられる。   The pneumatic tire of the present invention is particularly preferably used for construction vehicle tires and truck / bus tires having a relatively large tread.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

本実施例では、タイヤ業界における通常の手法を用いて、タイヤを成形し、その後加硫することによって、細溝及び流入部を有し、且つ表1に示す諸元を有する加硫済みタイヤを作製した。加硫には、トレッドを複数個の金型を用いて加硫する加硫器を用いた。   In this example, a vulcanized tire having a narrow groove and an inflow portion and having the specifications shown in Table 1 is formed by molding a tire using a normal technique in the tire industry and then vulcanizing. Produced. For vulcanization, a vulcanizer for vulcanizing the tread using a plurality of molds was used.

作製したタイヤを、JATMA規格に定める適用リム(53/80R63)に装着してリム組みして、内圧600kPaの条件とした。そして、該タイヤにタイヤ周方向に流れる風を与えた。ここで、該タイヤの細溝の風下側の溝壁面にフィルムヒータを設けて細溝内に熱を与えつつ、この熱を細溝の風上側の溝壁面の中央付近の一点で測定することによって、細溝の内部の熱の伝導率を評価した。具体的には、比較例1の評価結果を100とした相対評価となる指数を算出した。指数が大きいほど、トレッドの放熱性を高める効果が高いことを示す。詳細な条件及び結果を表1に示す。   The prepared tire was mounted on an applicable rim (53 / 80R63) defined in the JATMA standard and assembled with the rim to obtain an internal pressure of 600 kPa. And the wind which flows to a tire peripheral direction was given to this tire. Here, a film heater is provided on the groove wall on the lee side of the narrow groove of the tire to heat the narrow groove, and this heat is measured at a point near the center of the groove wall on the windward side of the narrow groove. The thermal conductivity inside the narrow groove was evaluated. Specifically, an index for relative evaluation with the evaluation result of Comparative Example 1 as 100 was calculated. It shows that the effect which improves the heat dissipation of a tread is so high that an index | exponent is large. Detailed conditions and results are shown in Table 1.

Figure 0005785577
Figure 0005785577

参考例1と比較例1とを比較することによって細溝及び/又は流入部の上にバリが生じにくくなることが示された。参考例3と参考例1、2、4とを比較することによってトレッドの放熱性を高める効果が特に高くなることが示された。
By comparing with Comparative Example 1 and Reference Example 1, burrs on the narrow grooves and / or the inlet has been shown to be less likely to occur. By comparing Reference Example 3 with Reference Examples 1, 2, and 4, it was shown that the effect of increasing the heat dissipation of the tread is particularly high.

本発明の空気入りタイヤによれば、溝の総容量の増加を抑えつつ、トレッドの放熱性を高めることができる。本発明の空気入りタイヤは、特に、建設車両用タイヤやトラック・バス用タイヤに好適に用いられる。   According to the pneumatic tire of the present invention, the heat dissipation of the tread can be improved while suppressing an increase in the total capacity of the grooves. The pneumatic tire of the present invention is particularly suitably used for construction vehicle tires and truck / bus tires.

1;空気入りタイヤ、 2;トレッド踏面、 3;細溝、 3a(3e);細溝の一方の端、 3b(3e);細溝の他方の端、 3ap(3ep);細溝の一方の端部、 3bp(3ep);細溝の他方の端部、 3bo;細溝の溝底、 3w;細溝の溝壁面、 3we(3w);第一ベクトルのタイヤ周方向成分の終点側にある、細溝の溝壁面、 3ws(3w);第一ベクトルのタイヤ周方向成分の始点側にある、細溝の溝壁面、 4;流入部、 4’;仮想流入部、 4a(4e);流入部の一方の端、 4b(4e);流入部の他方の端、 4aoo;流入部の一方の端をなす線の、最も細溝の一方の端に近い点、 4aoi;流入部の一方の端をなす線の、最も細溝の他方の端に近い点、 4boo;流入部の他方の端をなす線の、最も細溝の一方の端に近い点、 4boi;流入部の他方の端をなす線の、最も細溝の他方の端に近い点、 21、22;タイヤ周方向に隣接する細溝及び流入部を合わせた部分、 21e1、21e2、22e1、22e2;タイヤ周方向に隣接する細溝及び流入部を合わせた部分のタイヤ周方向最外端、 d3;細溝の溝深さ、 d4;流入部の深さ、 w3;細溝のタイヤ周方向の溝幅、 w4;流入部のタイヤ周方向長さ、 C;タイヤ赤道、 CL;タイヤ赤道面、 M1;細溝の一方の端から流入部の位置までの、細溝の延在方向に沿った距離、 L3;細溝の延在長さ、 Li;タイヤ周方向投影長さ、 Lx;細溝及び流入部を合わせた部分のタイヤ周方向投影長さ、 Lx’;細溝及び仮想流入部を合わせた部分のタイヤ周方向投影長さ、 P;点4aooと点4aoiとの中点、 Q;点4booと点4boiとの中点、 Tw;トレッド接地幅、 TG;トレッド接地端、 V1;第一ベクトル、 V1c;V1のタイヤ周方向成分、 V1ce;V1cの終点、 V1cs;V1cの始点、 V2;第二ベクトル、 V2e;V2の終点、 V2s;V2の始点、 θ1;細溝の延在方向とタイヤ周方向とのなす角度、 θ2;V1とV2とのなす角度 DESCRIPTION OF SYMBOLS 1; Pneumatic tire, 2; Tread surface, 3; Narrow groove, 3a (3e); One end of a narrow groove, 3b (3e); The other end of a narrow groove, 3ap (3ep); One of a narrow groove End, 3 bp (3 ep); the other end of the narrow groove, 3 bo: the groove bottom of the narrow groove, 3 w: the groove wall surface of the narrow groove, 3 we (3 w): on the end point side of the tire circumferential component of the first vector , Groove wall surface of the narrow groove, 3ws (3w); groove wall surface of the narrow groove on the starting point side of the tire circumferential component of the first vector, 4; inflow portion, 4 ′; virtual inflow portion, 4a (4e); 4b (4e); the other end of the inflow part, 4aoo; the point closest to one end of the narrow groove of the line forming one end of the inflow part, 4aoi; one end of the inflow part The point closest to the other end of the narrow groove of the line forming the line 4boo; at the one end of the thinnest groove of the line forming the other end of the inflow portion There point, 4Boi; lines forming the other end of the inlet portion, a point near the other end of the most narrow grooves, 21, 22; part of the combined narrow groove and the inlet portion adjacent to the tire circumferential direction, 21E1,21e2 22e1, 22e2; tire circumferential direction outermost end of the combined portion of the narrow groove adjacent to the tire circumferential direction and the inflow portion, d3: groove depth of the narrow groove, d4: depth of the inflow portion, w3: of the narrow groove Groove width in the tire circumferential direction, w4: tire circumferential direction length of the inflow portion, C: tire equator, CL: tire equator plane, M1: extension of the narrow groove from one end of the narrow groove to the position of the inflow portion Distance along the direction, L3: Extension length of the narrow groove, Li: Projected length in the tire circumferential direction, Lx: Projected length in the tire circumferential direction of the combined portion of the narrow groove and the inflow portion, Lx ′: Fine groove and Tire circumferential projection length of the combined virtual inflow part, P; point 4ao and point 4ao Q: midpoint between point 4boo and point 4boi, Tw: tread contact width, TG: tread contact end, V1: first vector, V1c: tire circumferential component of V1, V1ce; end point of V1c, V1cs: start point of V1c, V2: second vector, V2e: end point of V2, V2s: start point of V2, θ1: angle formed by the extending direction of the narrow groove and the tire circumferential direction, θ2: angle formed by V1 and V2

Claims (6)

トレッド踏面に、タイヤ周方向に傾斜して延び、溝深さと比較して小さい溝幅を有する細溝が、タイヤ周方向に間隔をおいて設けられ、
前記細溝は、両端が陸部内で終端し、
前記細溝の一方の端部において、
タイヤ周方向に対向する前記細溝の溝壁面のうち、前記細溝の一方の端から前記細溝の他方の端に向かう第一ベクトルのタイヤ周方向成分の終点側にある前記溝壁面にのみ、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、流入部が設けられ、
ここで、前記流入部は、タイヤ周方向に対向する前記細溝の溝壁面の両方に、設けられ、前記流入部の他方の端から流入部の一方の端に向かうにつれて深さが漸増し、
タイヤ周方向に隣接する、前記細溝及び前記流入部を合わせた部分間において、
一方の前記部分のタイヤ周方向最外端のうち他方の前記部分側にあるものと、他方の前記部分のタイヤ周方向最外端のうち一方の前記部分側にあるものとが、タイヤ周方向に離間する、
ことを特徴とする空気入りタイヤ。
On the tread surface, narrow grooves extending in the tire circumferential direction and having a groove width smaller than the groove depth are provided at intervals in the tire circumferential direction,
The narrow groove terminates in the land at both ends ,
At one end of the narrow groove,
Of the groove wall surfaces of the narrow grooves facing in the tire circumferential direction, only on the groove wall surface on the end side of the tire circumferential direction component of the first vector from one end of the narrow groove toward the other end of the narrow groove An inflow portion extending in the tire circumferential direction, communicating with the narrow groove at one end and terminating at the other end,
Here, the inflow portion is provided on both of the groove wall surfaces of the narrow groove facing in the tire circumferential direction , the depth gradually increases from the other end of the inflow portion toward one end of the inflow portion,
In the portion between the narrow groove and the inflow portion adjacent to each other in the tire circumferential direction,
A tire circumferential direction includes a tire circumferential direction outermost end of one part on the other part side and a tire circumferential outermost end of the other part on the one part side. Spaced apart,
A pneumatic tire characterized by that.
前記細溝及び前記流入部を合わせた部分のタイヤ周方向投影長さLxが、前記流入部の位置と同じタイヤ幅方向位置において、前記第一ベクトルのタイヤ周方向成分の始点側にある前記溝壁面に、仮想流入部が設けられた場合の、前記細溝及び前記仮想流入部を合わせた部分のタイヤ周方向投影長さLx’と比較して、小さいことを特徴とする、請求項1に記載の空気入りタイヤ。   The groove in the tire circumferential direction projection length Lx of the combined portion of the narrow groove and the inflow portion is at the start side of the tire circumferential direction component of the first vector at the same tire width direction position as the position of the inflow portion. In the case where a virtual inflow portion is provided on the wall surface, it is smaller than the tire circumferential direction projection length Lx ′ of the combined portion of the narrow groove and the virtual inflow portion. The described pneumatic tire. 前記細溝の一方の端から前記流入部の位置までの、前記細溝の延在方向に沿った距離は、前記細溝の延在長さの0〜35%であることを特徴とする、請求項1又は2に記載の空気入りタイヤ。   The distance along the extending direction of the narrow groove from one end of the narrow groove to the position of the inflow portion is 0 to 35% of the extending length of the narrow groove, The pneumatic tire according to claim 1 or 2. 前記流入部は、前記細溝の一方の端に設けられることを特徴とする、請求項1〜3のいずれか一項に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the inflow portion is provided at one end of the narrow groove. 前記第一ベクトルと前記流入部の一方の端から前記流入部の他方の端に向かう第二ベクトルとのなす角度θ2が、90°未満であることを特徴とする、請求項1〜4のいずれか一項に記載の空気入りタイヤ。   5. The angle θ <b> 2 formed by the first vector and a second vector directed from one end of the inflow portion to the other end of the inflow portion is less than 90 °. A pneumatic tire according to claim 1. 前記角度θ2が、50〜70°であることを特徴とする、請求項5に記載の空気入りタイヤ。   The pneumatic tire according to claim 5, wherein the angle θ2 is 50 to 70 °.
JP2013050879A 2013-03-13 2013-03-13 Pneumatic tire Active JP5785577B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013050879A JP5785577B2 (en) 2013-03-13 2013-03-13 Pneumatic tire
CA2903360A CA2903360C (en) 2013-03-13 2014-03-13 Pneumatic tire
BR112015022869A BR112015022869A8 (en) 2013-03-13 2014-03-13 pneumatic
PCT/JP2014/001451 WO2014141715A1 (en) 2013-03-13 2014-03-13 Pneumatic tire
RU2015143613/11A RU2602619C1 (en) 2013-03-13 2014-03-13 Pneumatic tyre
CL2015002573A CL2015002573A1 (en) 2013-03-13 2015-09-10 Tire that has a tread that offers greater heat dissipation.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050879A JP5785577B2 (en) 2013-03-13 2013-03-13 Pneumatic tire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015105736A Division JP6317295B2 (en) 2015-05-25 2015-05-25 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014177150A JP2014177150A (en) 2014-09-25
JP5785577B2 true JP5785577B2 (en) 2015-09-30

Family

ID=51536393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050879A Active JP5785577B2 (en) 2013-03-13 2013-03-13 Pneumatic tire

Country Status (6)

Country Link
JP (1) JP5785577B2 (en)
BR (1) BR112015022869A8 (en)
CA (1) CA2903360C (en)
CL (1) CL2015002573A1 (en)
RU (1) RU2602619C1 (en)
WO (1) WO2014141715A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954867B2 (en) 2018-06-19 2021-10-27 株式会社ブリヂストン Heavy load tires

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200506B2 (en) * 1993-08-12 2001-08-20 横浜ゴム株式会社 Pneumatic radial tire for heavy loads
JP4227239B2 (en) * 1999-03-18 2009-02-18 株式会社ブリヂストン Pneumatic tire
JP4950491B2 (en) * 2005-12-29 2012-06-13 住友ゴム工業株式会社 Heavy duty tire
JP4938316B2 (en) * 2006-01-20 2012-05-23 株式会社ブリヂストン Construction vehicle tires
JP4943717B2 (en) * 2006-03-01 2012-05-30 株式会社ブリヂストン Pneumatic tire
JP5052317B2 (en) * 2007-12-10 2012-10-17 株式会社ブリヂストン Pneumatic tire
JP5297778B2 (en) * 2008-02-27 2013-09-25 株式会社ブリヂストン Pneumatic tire
JP5427560B2 (en) * 2009-11-10 2014-02-26 株式会社ブリヂストン tire
JP5603670B2 (en) * 2010-06-18 2014-10-08 株式会社ブリヂストン tire
EP2754567B1 (en) * 2011-09-09 2017-05-10 Bridgestone Corporation Pneumatic tire

Also Published As

Publication number Publication date
RU2602619C1 (en) 2016-11-20
BR112015022869A8 (en) 2019-11-26
BR112015022869A2 (en) 2017-07-18
CA2903360A1 (en) 2014-09-18
JP2014177150A (en) 2014-09-25
CL2015002573A1 (en) 2016-04-01
CA2903360C (en) 2017-07-11
WO2014141715A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US10343462B2 (en) Pneumatic tire
JP4826681B1 (en) Pneumatic tire
JP5170999B2 (en) Pneumatic tire
JP5186203B2 (en) Pneumatic tire
US20100294412A1 (en) Pneumatic tire
JP2016088338A (en) Pneumatic tire
JP5771407B2 (en) Pneumatic tire
BRPI1105616A2 (en) tire
JP2009029384A (en) Pneumatic tire
JP2014172600A (en) Pneumatic tire
CN107867126B (en) Tyre for vehicle wheels
JP2016172527A (en) Tire for motor cycle
CN106427402B (en) Pneumatic tire
JP6317295B2 (en) Pneumatic tire
JP5785577B2 (en) Pneumatic tire
JP2009160989A (en) Pneumatic tire
JP5966348B2 (en) Pneumatic tire
JP5874235B2 (en) Pneumatic tire
JP2012017008A (en) Pneumatic tire
JP2010132043A (en) Tire
WO2020170537A1 (en) Pneumatic tire
JP2016196218A (en) Pneumatic tire
JP2019104360A (en) Tire for heavy load
JP6029957B2 (en) Pneumatic tire
JP6012442B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150724

R150 Certificate of patent or registration of utility model

Ref document number: 5785577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250