JP2016196218A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2016196218A
JP2016196218A JP2015076304A JP2015076304A JP2016196218A JP 2016196218 A JP2016196218 A JP 2016196218A JP 2015076304 A JP2015076304 A JP 2015076304A JP 2015076304 A JP2015076304 A JP 2015076304A JP 2016196218 A JP2016196218 A JP 2016196218A
Authority
JP
Japan
Prior art keywords
wall surface
groove
main groove
tire
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015076304A
Other languages
Japanese (ja)
Inventor
匠 鈴木
Takumi Suzuki
匠 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2015076304A priority Critical patent/JP2016196218A/en
Publication of JP2016196218A publication Critical patent/JP2016196218A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of restraining occurrence of a hydro-planing phenomenon by securing drainage performance even after wear, and maintaining excellent uneven wear resistant performance.SOLUTION: A tread part 1 is provided with a widening main groove 10 formed of an inside wall surface 11, an outside wall surface 12 and a bottom surface 13. The inside wall surface 11 and the outside wall surface 12 are constituted of an inside wall surface upper part 11a and an outside wall surface upper part 12a inclined toward the inside in the width direction of the widening main groove 10, and an inside wall surface lower part 11b and an outside wall surface lower part 12b inclined in the inverse direction, respectively. Distances h1 and h2 from respective tread surfaces of connection points 11p and 12p for connecting an upper part and a lower part of the respective wall surfaces 11 and 12, satisfy the relationship of h1>h2. Groove widths of the widening main groove 10 at wear of 50%, 80% and 100% are expanded more than virtual groove widths in corresponding positions of virtual grooves constituted of extension lines of the inside wall surface upper part 11a and the outside wall surface upper part 12a, respectively.SELECTED DRAWING: Figure 2

Description

本発明は、周方向に延びる主溝を有する空気入りタイヤに関し、更に詳しくは、摩耗後においても排水性能を確保してハイドロプレーニング現象の発生を抑制すると共に、優れた耐偏摩耗性能を維持することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire having a main groove extending in the circumferential direction. More specifically, the present invention secures drainage performance even after wear, suppresses the occurrence of hydroplaning phenomenon, and maintains excellent uneven wear resistance performance. The present invention relates to a pneumatic tire.

従来、空気入りタイヤでは、雨天時等の排水性能を確保し、ハイドロプレーニング現象の発生を抑制するために、トレッド面にタイヤ周方向に延びる主溝が形成されている。しかしながら、従来の一般的な主溝は、溝底側に向かって溝幅が減少する形状を有するため、トレッド表面が摩耗すると接地面における溝面積が減少し、新品時に比べて排水性能が低下し、ハイドロプレーニング現象の発生を充分に抑制できないという問題がある。   Conventionally, in a pneumatic tire, a main groove extending in the tire circumferential direction is formed on a tread surface in order to ensure drainage performance in rainy weather or the like and suppress the occurrence of a hydroplaning phenomenon. However, since the conventional general main groove has a shape in which the groove width decreases toward the groove bottom side, when the tread surface wears, the groove area on the ground contact surface decreases, and the drainage performance decreases as compared with a new product. There is a problem that the occurrence of the hydroplaning phenomenon cannot be sufficiently suppressed.

そのため、近年、主溝の溝幅をトレッド表面側から溝底側に向かって徐々に大きくすることや(例えば、特許文献1を参照)、主溝を溝幅が漸減する上方部分と溝幅が漸増する下方部分とから構成することで(例えば、特許文献2を参照)、摩耗後であっても接地面における溝面積を確保することが提案されている。   Therefore, in recent years, the groove width of the main groove is gradually increased from the tread surface side toward the groove bottom side (see, for example, Patent Document 1), and the upper portion and the groove width of the main groove are gradually reduced. It has been proposed to secure a groove area on the ground contact surface even after wear by comprising a lower portion that gradually increases (see, for example, Patent Document 2).

しかしながら、このような形状の主溝を設けた場合、主溝が溝底側で拡幅する分、主溝の両側に隣接する陸部が共に主溝の溝底側に向かうに従って大きく抉れたような断面形状になるため、これら陸部の剛性を充分に確保することができなくなり、偏摩耗が生じ易くなる(耐偏摩耗性能が低下する)という問題がある。   However, when the main groove having such a shape is provided, it seems that the land portion adjacent to both sides of the main groove is greatly swollen toward the groove bottom side of the main groove because the main groove is widened on the groove bottom side. Since the cross-sectional shape is not sufficient, the rigidity of these land portions cannot be sufficiently secured, and there is a problem that uneven wear is likely to occur (uneven wear resistance performance is reduced).

特開2001‐121924号公報JP 2001-121924 A 特開平9‐164814号公報JP-A-9-164814

本発明の目的は、摩耗後においても排水性能を確保してハイドロプレーニング現象の発生を抑制すると共に、優れた耐偏摩耗性能を維持することを可能にした空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire that secures drainage performance even after wear and suppresses the occurrence of a hydroplaning phenomenon, and can maintain excellent uneven wear resistance.

上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部を備えた空気入りタイヤにおいて、前記トレッド部にタイヤ周方向に延在し、タイヤ幅方向内側の内側壁面とタイヤ幅方向外側の外側壁面と底面とから構成される拡幅主溝が形成され、前記内側壁面が前記拡幅主溝の幅方向内側に向かって傾斜するトレッド表面側の内側壁面上部と該内側壁面上部と逆方向に傾斜する前記底面側の内側壁面下部とからなり、前記外側壁面が前記拡幅主溝の幅方向内側に向かって傾斜するトレッド表面側の外側壁面上部と該外側壁面上部と逆方向に傾斜する前記底面側の外側壁面下部とからなり、前記内側壁面上部と前記内側壁面下部との連結点のトレッド表面からの距離h1と前記外側壁面上部と前記外側壁面下部との連結点のトレッド表面からの距離h2とがh1>h2の関係を満たし、前記拡幅主溝の50%摩耗時の溝幅と80%摩耗時の溝幅と100%摩耗時の溝幅とがそれぞれ前記内側壁面上部の延長線と前記外側壁面上部の延長線とで構成される仮想溝の対応する位置における仮想溝幅よりも拡大することを特徴とする。   In order to achieve the above object, a pneumatic tire according to the present invention is a pneumatic tire provided with a tread portion that extends in the tire circumferential direction and has an annular shape. An inner wall surface on the tread surface side in which a widened main groove composed of an inner wall surface on the inner side in the direction, an outer wall surface on the outer side in the tire width direction and a bottom surface is formed, and the inner wall surface is inclined toward the inner side in the width direction of the widened main groove. An upper surface and an inner wall lower portion on the bottom surface side inclined in a direction opposite to the upper side of the inner wall surface, and the outer wall surface on the tread surface side and the outer surface in which the outer wall surface is inclined inward in the width direction of the widened main groove. A distance h1 from the tread surface at the connection point between the inner wall surface upper portion and the inner wall surface lower portion, the outer wall surface upper portion and the outer surface. The distance h2 from the tread surface at the connection point with the lower surface satisfies the relationship of h1> h2, and the groove width at 50% wear, groove width at 80% wear, and groove at 100% wear of the widened main groove The width is larger than the virtual groove width at the corresponding position of the virtual groove formed by the extension line of the upper part of the inner wall surface and the extension line of the upper part of the outer wall surface, respectively.

本発明では、拡幅主溝の内側壁面下部と外側壁面下部とが拡幅主溝の幅方向外側に向かって傾斜することで、拡幅主溝の50%摩耗時の溝幅と80%摩耗時の溝幅と100%摩耗時の溝幅とがそれぞれ内側壁面上部の延長線と外側壁面上部の延長線とで構成される仮想溝の対応する位置における仮想溝幅よりも拡大しているので、摩耗後であっても溝面積が確保され、排水性能を充分に維持することができ、ハイドロプレーニング現象の発生を抑制することができる。このとき、内側壁面上部と内側壁面下部との連結点のトレッド表面からの距離h1と外側壁面上部と外側壁面下部との連結点のトレッド表面からの距離h2とがh1>h2の関係を満たし、傾斜が反転する点の拡幅主溝の深さ方向の位置がずれていることで、内側壁面上部の延長線(即ち、仮想溝の内側壁面)よりも陸部側に窪む量が、外側壁面上部の延長線(即ち、仮想溝の外側壁面)よりも陸部側に窪む量よりも小さくなり、拡幅主溝の内側壁面側に隣接する陸部の剛性が高度に維持される。その結果、偏摩耗の要因となり易いタイヤ赤道側の陸部の剛性が保たれ、耐偏摩耗性能を充分に維持することができる。   In the present invention, the inner wall lower portion and the outer wall lower portion of the widened main groove are inclined toward the outer side in the width direction of the widened main groove, so that the groove width at the time of 50% wear and the groove at the time of 80% wear of the widened main groove. Since the width and the groove width at 100% wear are larger than the virtual groove width at the corresponding position of the virtual groove formed by the extension line of the upper part of the inner wall surface and the extension line of the upper part of the outer wall surface, respectively. Even so, the groove area is secured, the drainage performance can be sufficiently maintained, and the occurrence of the hydroplaning phenomenon can be suppressed. At this time, the distance h1 from the tread surface of the connection point between the inner wall surface upper portion and the inner wall surface lower portion and the distance h2 from the tread surface of the connection point between the outer wall surface upper portion and the outer wall surface lower portion satisfy the relationship of h1> h2. Since the position in the depth direction of the widened main groove at the point where the inclination is reversed is shifted, the amount of depression on the land side from the extension line of the inner wall surface upper part (that is, the inner wall surface of the virtual groove) It becomes smaller than the amount of depression on the land portion side than the upper extension line (that is, the outer wall surface of the virtual groove), and the rigidity of the land portion adjacent to the inner wall surface side of the widened main groove is maintained at a high level. As a result, the rigidity of the land portion on the tire equator side that tends to cause uneven wear is maintained, and the uneven wear resistance can be sufficiently maintained.

本発明では、距離h1が拡幅主溝の溝深さh0の0.5倍〜0.8倍であり、距離h2が拡幅主溝の溝深さh0の0.1倍〜0.4倍であることが好ましい。このような範囲に設定することで、拡幅主溝の両側に隣接する陸部の剛性バランスを良好にすることができ、偏摩耗を効果的に抑制することができる。   In the present invention, the distance h1 is 0.5 to 0.8 times the groove depth h0 of the widened main groove, and the distance h2 is 0.1 to 0.4 times the groove depth h0 of the widened main groove. Preferably there is. By setting to such a range, the rigidity balance of the land part adjacent to both sides of the widened main groove can be improved, and uneven wear can be effectively suppressed.

本発明では、タイヤ赤道から拡幅主溝の幅方向中心までの距離L1をタイヤ赤道から接地端までの距離L0の50%〜80%にする一方で、タイヤ赤道と拡幅主溝との間にタイヤ周方向に延在する主溝を形成し、この主溝と拡幅主溝とにより区画された陸部の幅L2をタイヤ赤道から接地端までの距離L0の20%〜40%にすることが好ましい。これにより、タイヤ赤道の片側にタイヤ周方向に延在する2本の溝を有する場合のタイヤ幅方向外側の溝が拡幅主溝となり、その拡幅主溝の配置と拡幅主溝に隣接する陸部の幅とが規定されるので、拡幅主溝の両側に隣接する陸部の剛性バランスを良好にすることができ、耐偏摩耗性能を効果的に維持することができる。   In the present invention, the distance L1 from the tire equator to the center in the width direction of the widened main groove is set to 50% to 80% of the distance L0 from the tire equator to the ground contact edge, while the tire is between the tire equator and the widened main groove. A main groove extending in the circumferential direction is formed, and the width L2 of the land portion defined by the main groove and the widened main groove is preferably 20% to 40% of the distance L0 from the tire equator to the ground contact end. . As a result, the groove on the outer side in the tire width direction in the case of having two grooves extending in the tire circumferential direction on one side of the tire equator becomes the widened main groove, and the arrangement of the widened main groove and the land portion adjacent to the widened main groove Therefore, the rigidity balance between the land portions adjacent to both sides of the widened main groove can be improved, and uneven wear resistance can be effectively maintained.

本発明では、内側壁面下部の傾斜角度β1が内側壁面上部の傾斜角度α1よりも小さく、外側壁面下部の傾斜角度β2が外側壁面上部の傾斜角度α2よりも小さく、内側壁面下部の傾斜角度β1が30°以下であり、外側壁面下部の傾斜角度β2が30°以下であることが好ましい。このように拡幅主溝の壁面の各部の傾斜角度を設定することで、拡幅主溝の形状が良好になり、排水性能を得ながら耐偏摩耗性能を維持するには有利になる。また、拡幅主溝の溝幅が最小になる部分に対して底面側の溝幅の広がりが制限されるのでタイヤ成形時の加工性が良好になる。   In the present invention, the inclination angle β1 at the lower inner wall surface is smaller than the inclination angle α1 at the upper inner wall surface, the inclination angle β2 at the lower outer wall surface is smaller than the inclination angle α2 at the upper outer wall surface, and the inclination angle β1 at the lower inner wall surface is It is preferably 30 ° or less, and the inclination angle β2 of the lower portion of the outer wall surface is preferably 30 ° or less. By setting the inclination angle of each part of the wall surface of the widened main groove in this way, the shape of the widened main groove becomes favorable, which is advantageous for maintaining uneven wear resistance while obtaining drainage performance. Moreover, since the expansion of the groove width on the bottom surface side is limited with respect to the portion where the groove width of the widened main groove is minimized, the workability at the time of tire molding is improved.

本発明では、内側壁面及び外側壁面がそれぞれ底面と子午線断面において円弧状に連結し、各円弧の曲率半径が0.3mm以上3mm以下であることが好ましい。このような形状とすることで、拡幅主溝の底面近傍の溝体積を充分に確保することができ、摩耗後の排水性能を維持するには有利になる。   In the present invention, it is preferable that the inner wall surface and the outer wall surface are connected in an arc shape in the bottom surface and the meridian cross section, respectively, and the radius of curvature of each arc is 0.3 mm or more and 3 mm or less. By adopting such a shape, a sufficient groove volume in the vicinity of the bottom surface of the widened main groove can be secured, which is advantageous for maintaining drainage performance after wear.

尚、本発明において、接地端とは、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときのタイヤ軸方向の端部である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車である場合には180kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車である場合には前記荷重の88%に相当する荷重とする。   In the present invention, the ground contact end is an end portion in the tire axial direction when a normal load is applied by placing the tire on a normal rim and filling the normal internal pressure in a vertical state on a plane. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. “Regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. The maximum air pressure is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFRATION PRESURES”, “INFLATION PRESURE” for ETRTO, but 180 kPa when the tire is a passenger car. “Regular load” is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. The maximum load capacity is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFORATION PRESSURES” is “LOAD CAPACITY” if it is ETRTO, but if the tire is a passenger car, the load is equivalent to 88% of the load.

本発明の実施形態からなる空気入りタイヤの子午線半断面図である。It is a meridian half section view of the pneumatic tire which consists of an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤの拡幅主溝を拡大して示す断面図 である。FIG. 2 is an enlarged cross-sectional view showing a widened main groove of a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤの拡幅主溝を拡大して示す断面図 である。FIG. 2 is an enlarged cross-sectional view showing a widened main groove of a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤのトレッド部を拡大して示す説明 図である。It is explanatory drawing which expands and shows the tread part of the pneumatic tire which consists of embodiment of this invention.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1において、符号CLはタイヤ赤道を表わす。本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、トレッド部1の両側に配置された一対のサイドウォール部2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とから構成される。左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7,8が埋設されている。各ベルト層7,8は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7,8において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。更に、ベルト層7,8の外周側にはベルト補強層9が設けられている。ベルト補強層9は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層9において、有機繊維コードはタイヤ周方向に対する角度が例えば0°〜5°に設定されている。   In FIG. 1, the symbol CL represents the tire equator. The pneumatic tire of the present invention includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, a pair of sidewall portions 2 that are disposed on both sides of the tread portion 1, and the tire radial direction of the sidewall portions 2 It is comprised from a pair of bead part 3 arrange | positioned inside. A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back around the bead core 5 disposed in each bead portion 3 from the vehicle inner side to the outer side. A bead filler 6 is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4. On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 and 8 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each of the belt layers 7 and 8 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and is disposed so that the reinforcing cords cross each other between the layers. In these belt layers 7 and 8, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set, for example, in a range of 10 ° to 40 °. Further, a belt reinforcing layer 9 is provided on the outer peripheral side of the belt layers 7 and 8. The belt reinforcing layer 9 includes an organic fiber cord oriented in the tire circumferential direction. In the belt reinforcing layer 9, the organic fiber cord has an angle with respect to the tire circumferential direction set to, for example, 0 ° to 5 °.

本発明は、このような一般的な空気入りタイヤに適用されるが、その断面構造は上述の基本構造に限定されるものではない。   The present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.

本発明の空気入りタイヤでは、図1に示すように、トレッド部1にタイヤ周方向に延びる拡幅主溝10が設けられる。拡幅主溝10は、図2に拡大して示すように、タイヤ幅方向内側の内側壁面11とタイヤ幅方向外側の外側壁面12と底面13とから構成される。内側壁面11は、トレッド表面側から溝底側に向かって見ると、トレッド表面から拡幅主溝10の深さ方向の中腹までは拡幅主溝10の幅方向内側に向かって傾斜し、拡幅主溝10の深さ方向の中腹で傾斜が反転し、拡幅主溝10の深さ方向の中腹から溝底までは拡幅主溝10の幅方向外側に向かって傾斜している。即ち、内側壁面11は、拡幅主溝10の幅方向内側に向かって傾斜するトレッド表面側の内側壁面上部11aと内側壁面上部11aとは逆方向に傾斜する(即ち、拡幅主溝10の幅方向外側に向かって傾斜する)底面13側の内側壁面下部11bとから構成される。同様に、外側壁面12も、トレッド表面側から溝底側に向かって見ると、トレッド表面から拡幅主溝10の深さ方向の中腹までは拡幅主溝10の幅方向内側に向かって傾斜し、拡幅主溝10の深さ方向の中腹で傾斜が反転し、拡幅主溝10の深さ方向の中腹から溝底までは拡幅主溝10の幅方向外側に向かって傾斜している。即ち、外側壁面11は、拡幅主溝10の幅方向内側に向かって傾斜するトレッド表面側の外側壁面上部12aと外側壁面上部12aと逆方向に傾斜する(即ち、拡幅主溝10の幅方向外側に向かって傾斜する)底面13側の外側壁面下部12bとから構成される。   In the pneumatic tire of the present invention, as shown in FIG. 1, a widened main groove 10 extending in the tire circumferential direction is provided in the tread portion 1. As shown in an enlarged view in FIG. 2, the widened main groove 10 includes an inner wall surface 11 on the inner side in the tire width direction, an outer wall surface 12 on the outer side in the tire width direction, and a bottom surface 13. When viewed from the tread surface side toward the groove bottom side, the inner wall surface 11 is inclined toward the inner side in the width direction of the widened main groove 10 from the tread surface to the middle in the depth direction of the widened main groove 10. The inclination is reversed at the middle of the depth direction 10, and from the middle of the depth direction of the widened main groove 10 to the bottom of the groove, the width is inclined outward in the width direction of the widened main groove 10. That is, the inner wall surface 11 is inclined in the opposite direction to the inner wall surface upper portion 11a on the tread surface side and the inner wall surface upper portion 11a inclined toward the inner side in the width direction of the widened main groove 10 (that is, the width direction of the widened main groove 10). It is composed of an inner wall surface lower portion 11b on the bottom surface 13 side (inclined toward the outside). Similarly, when viewed from the tread surface side toward the groove bottom side, the outer wall surface 12 is also inclined toward the inner side in the width direction of the widened main groove 10 from the tread surface to the middle in the depth direction of the widened main groove 10. The inclination is reversed in the middle of the widened main groove 10 in the depth direction, and from the middle of the widened main groove 10 in the depth direction to the bottom of the groove is inclined outward in the width direction of the widened main groove 10. That is, the outer wall surface 11 is inclined in the opposite direction to the outer wall surface upper portion 12a and the outer wall surface upper portion 12a on the tread surface side inclined toward the inner side in the width direction of the widened main groove 10 (that is, the outer side in the width direction of the widened main groove 10). The outer wall surface lower portion 12b on the bottom surface 13 side (inclined toward the bottom surface).

このとき、内側壁面11において傾斜が反転する点と外側壁面12において傾斜が反転する点の拡幅主溝10の深さ方向の位置は異なっている。具体的には、内側壁面上部11aと内側壁面下部11bとが連結する点を内側連結点11pとし、外側壁面上部12aと外側壁面下部12bとが連結する点を外側連結点12pとすると、内側連結点11pが外側連結点12pよりも拡幅主溝10の深さ方向の深い位置に配されている。言い換えれば、内側連結点11pのトレッド表面からの距離h1が外側連結点12pのトレッド表面からの距離h2よりも大きくなっている。尚、内側壁面上部11aと内側壁面下部11bとが滑らかに連結している場合は各部の延長線の交点を内側連結点11pとし、外側壁面上部12aと外側壁面下部12bとが滑らかに連結している場合は各部の延長線の交点を外側連結点12pとする。   At this time, the position in the depth direction of the widened main groove 10 at the point where the inclination is reversed on the inner wall surface 11 and the point where the inclination is reversed on the outer wall surface 12 are different. Specifically, the point where the inner wall surface upper portion 11a and the inner wall surface lower portion 11b are connected is the inner connection point 11p, and the point where the outer wall surface upper portion 12a and the outer wall surface lower portion 12b are connected is the outer connection point 12p. The point 11p is arranged at a deeper position in the depth direction of the widened main groove 10 than the outer connection point 12p. In other words, the distance h1 from the tread surface of the inner connection point 11p is larger than the distance h2 from the tread surface of the outer connection point 12p. When the inner wall surface upper portion 11a and the inner wall surface lower portion 11b are smoothly connected, the intersection of the extension lines of the respective portions is set as the inner connection point 11p, and the outer wall surface upper portion 12a and the outer wall surface lower portion 12b are smoothly connected. If there is, the intersection of the extension lines of each part is taken as the outer connection point 12p.

このように内側壁面11が内側壁面上部11a及び内側壁面下部11bとからなり、外側壁面12が外側壁面上部12a及び外側壁面下部12bとからなることで、本発明の拡幅主溝10は、溝底に向かって溝幅が漸減する従来の溝(即ち、内側壁面上部11aと外側壁面上部12aとがそれぞれ底面13まで延長したような溝)に比べて、底面13側が拡幅することになる。このとき、本発明の拡幅主溝10では、トレッド表面から拡幅主溝10の有効溝深さHの50%の位置における溝幅(以下、「50%摩耗時の溝幅」と言う)と、トレッド表面から拡幅主溝10の有効溝深さHの80%の位置における溝幅(以下、「80%摩耗時の溝幅」と言う)と、トレッド表面から拡幅主溝10の有効溝深さHの100%の位置における溝幅(以下、「100%摩耗時の溝幅」と言う)とがそれぞれ内側壁面上部11aの延長線と外側壁面上部12aの延長線とで構成される仮想溝の対応する位置における溝幅よりも大きくなるようにしている。尚、有効溝深さHとは、トレッド部1の表面から拡幅主溝10の底面13に形成されたウェアインジケータ(不図示)の上端面までの拡幅主溝10の深さ方向の距離である。言い換えれば、後述の拡幅主溝10の溝深さh0からウェアインジケータの高さ(通常1.7mm)を引いた深さである。   As described above, the inner wall surface 11 includes the inner wall surface upper portion 11a and the inner wall surface lower portion 11b, and the outer wall surface 12 includes the outer wall surface upper portion 12a and the outer wall surface lower portion 12b. As compared with a conventional groove whose groove width gradually decreases toward the bottom (that is, a groove in which the inner wall surface upper portion 11a and the outer wall surface upper portion 12a extend to the bottom surface 13, respectively), the bottom surface 13 side is widened. At this time, in the widened main groove 10 of the present invention, the groove width at the position of 50% of the effective groove depth H of the widened main groove 10 from the tread surface (hereinafter referred to as “50% worn groove width”), The groove width at the position of 80% of the effective groove depth H of the widened main groove 10 from the tread surface (hereinafter referred to as “groove width at 80% wear”), and the effective groove depth of the widened main groove 10 from the tread surface The groove width at the position of 100% of H (hereinafter referred to as “groove width at 100% wear”) is an imaginary groove formed by an extension line of the inner wall surface upper part 11a and an extension line of the outer wall surface upper part 12a, respectively. It is made larger than the groove width at the corresponding position. The effective groove depth H is the distance in the depth direction of the widened main groove 10 from the surface of the tread portion 1 to the upper end surface of a wear indicator (not shown) formed on the bottom surface 13 of the widened main groove 10. . In other words, it is the depth obtained by subtracting the height of the wear indicator (usually 1.7 mm) from the groove depth h0 of the widened main groove 10 described later.

このように、本発明では、上述の構造の拡幅主溝10を設けることで、溝底に向かって溝幅が漸減する従来の溝に比べて、摩耗後であっても溝面積を確保して、排水性能を充分に維持することができる。その結果、ハイドロプレーニング現象の発生を効果的に抑制することができる。また、内側連結点11pのトレッド表面からの距離h1と外側連結点12pのトレッド表面からの距離h2とがh1>h2の関係を満たし、傾斜が反転する点の拡幅主溝の深さ方向の位置がずれていることで、一般的に隣り合う陸部の剛性差が大きくほど偏摩耗が生じ易く、特にタイヤ赤道側の剛性が大きいとその傾向が強いところ、内側壁面上部11aの延長線(即ち、仮想溝の内側壁面)よりも陸部側に窪む量が、外側壁面上部12aの延長線(即ち、仮想溝の外側壁面)よりも陸部側に窪む量よりも小さくなることで、拡幅主溝10の内側壁面11側(タイヤ赤道CL側)に隣接する陸部の剛性が高度に維持されることになり、耐偏摩耗性能を充分に維持することができる。   Thus, in the present invention, by providing the widened main groove 10 having the above-described structure, the groove area is ensured even after wear as compared with the conventional groove in which the groove width gradually decreases toward the groove bottom. The drainage performance can be sufficiently maintained. As a result, the occurrence of the hydroplaning phenomenon can be effectively suppressed. Further, the position in the depth direction of the widened main groove at the point where the distance h1 from the tread surface of the inner connecting point 11p and the distance h2 from the tread surface of the outer connecting point 12p satisfy the relationship of h1> h2, and the inclination is reversed. In general, uneven wear tends to occur as the difference in rigidity between adjacent land portions increases. In particular, when the rigidity on the tire equator side is large, the tendency is strong. The amount of depression on the land portion side from the inner wall surface of the virtual groove) is smaller than the amount of depression on the land portion side than the extension line of the outer wall surface upper portion 12a (that is, the outer wall surface of the virtual groove), The rigidity of the land portion adjacent to the inner wall surface 11 side (the tire equator CL side) of the widened main groove 10 is maintained at a high level, and the uneven wear resistance can be sufficiently maintained.

このとき、内側連結点11pや外側連結点12pの配置等によって拡幅主溝10の50%摩耗時の溝幅、80%摩耗時の溝幅、100%摩耗時の溝幅のいずれかが仮想溝の対応する位置における溝幅よりも拡大しないと、摩耗後の溝面積を充分に得ることができず摩耗後の排水性能を維持することが難しくなる。   At this time, any of the groove width at the time of 50% wear, the groove width at the time of 80% wear, and the groove width at the time of 100% wear of the widened main groove 10 depending on the arrangement of the inner connection point 11p and the outer connection point 12p is a virtual groove. If the groove width is not larger than the corresponding groove width, the groove area after wear cannot be obtained sufficiently, and it becomes difficult to maintain the drainage performance after wear.

内側連結点11p及び外側連結点12pの拡幅主溝10の深さ方向の位置が異なっていても、距離h1が距離h2よりも小さいと、上述のように偏摩耗の要因となり易いタイヤ赤道CL側の陸部の剛性を充分に保つことが難しくなり、耐偏摩耗性能を充分に維持することが難しくなる。   Even if the inner connecting point 11p and the outer connecting point 12p have different positions in the depth direction of the widened main groove 10, if the distance h1 is smaller than the distance h2, the tire equator CL side is likely to cause uneven wear as described above. It becomes difficult to sufficiently maintain the rigidity of the land portion, and it is difficult to sufficiently maintain the uneven wear resistance.

好ましくは距離h1が拡幅主溝10の溝深さh0の0.5倍〜0.8倍であり、距離h2が拡幅主溝10の溝深さh0の0.1倍〜0.4倍であるとよい。このような範囲に設定することで、拡幅主溝10の両側に隣接する陸部の剛性バランスを良好にすることができ、耐偏摩耗性能を効果的に維持することができる。距離h1が溝深さh0の0.5倍よりも小さいと、拡幅主溝10のタイヤ幅方向内側に隣接する陸部が大きく抉られた形状となり、この陸部の剛性を確保することが難しくなる。距離h1が溝深さh0の0.8倍よりも大きいと、内側連結点11pが底面13近傍に配置されるため摩耗後の溝幅を充分に確保することが難しくなる。距離h2が溝深さh0の0.1倍よりも小さいと、拡幅主溝10のタイヤ幅方向外側に隣接する陸部が大きく抉られた形状となり、この陸部の剛性を確保することが難しくなる。距離h2が溝深さh0の0.4倍よりも大きいと、外側連結点12pが底面13側に配置されるため摩耗後の溝幅を充分に確保することが難しくなる。   Preferably, the distance h1 is 0.5 to 0.8 times the groove depth h0 of the widened main groove 10, and the distance h2 is 0.1 to 0.4 times the groove depth h0 of the widened main groove 10. There should be. By setting to such a range, the rigidity balance of the land part adjacent to the both sides of the widening main groove 10 can be made favorable, and uneven wear-proof performance can be maintained effectively. If the distance h1 is smaller than 0.5 times the groove depth h0, the land portion adjacent to the inner side in the tire width direction of the widened main groove 10 is greatly struck, and it is difficult to ensure the rigidity of the land portion. Become. If the distance h1 is larger than 0.8 times the groove depth h0, the inner connection point 11p is disposed in the vicinity of the bottom surface 13, so that it is difficult to ensure a sufficient groove width after wear. If the distance h2 is smaller than 0.1 times the groove depth h0, the land portion adjacent to the outer side in the tire width direction of the widened main groove 10 has a large shape, and it is difficult to ensure the rigidity of the land portion. Become. If the distance h2 is larger than 0.4 times the groove depth h0, the outer connecting point 12p is disposed on the bottom surface 13 side, so that it is difficult to ensure a sufficient groove width after wear.

上述のように、拡幅主溝10の壁面の各部は傾斜しているが、図3に示すように、内側壁面上部11aの傾斜角度をα1、内側壁面下部11bの傾斜角度をβ1、外側壁面上部12aの傾斜角度をα2、外側壁面下部12bの傾斜角度をβ2とすると、傾斜角度β1が傾斜角度α1よりも小さく、傾斜角度β2が傾斜角度α2よりも小さいことが好ましい。また、傾斜角度β1が30°以下であり、傾斜角度β2が30°以下であることが好ましい。尚、各傾斜角度はいずれもトレッド部1の表面の法線に対する傾斜角度である。このように各部の傾斜角度を設定することで、拡幅主溝10の形状が良好になり、排水性能を得ながら剛性バランスを良好にして耐偏摩耗性能を維持するには有利になる。また、拡幅主溝10の溝幅が最小になる部分に対して底面13側の溝幅の広がりが制限されるのでタイヤ成形時の加工性が良好になる。   As described above, each part of the wall surface of the widened main groove 10 is inclined. However, as shown in FIG. 3, the inclination angle of the inner wall surface upper portion 11a is α1, the inclination angle of the inner wall surface lower portion 11b is β1, and the outer wall surface upper portion. When the inclination angle of 12a is α2 and the inclination angle of the outer wall surface lower portion 12b is β2, it is preferable that the inclination angle β1 is smaller than the inclination angle α1 and the inclination angle β2 is smaller than the inclination angle α2. Further, it is preferable that the inclination angle β1 is 30 ° or less and the inclination angle β2 is 30 ° or less. Each inclination angle is an inclination angle with respect to the normal line of the surface of the tread portion 1. By setting the inclination angle of each part in this manner, the shape of the widened main groove 10 becomes favorable, which is advantageous for maintaining the uneven wear resistance by improving the rigidity balance while obtaining the drainage performance. Further, since the expansion of the groove width on the bottom surface 13 side is limited with respect to the portion where the groove width of the widened main groove 10 is minimized, the workability at the time of molding the tire is improved.

このとき、傾斜角度β1,β2が30°を超えると、拡幅主溝10の両側に隣接する陸部の溝底側が大きく抉れた断面形状になり、この陸部の剛性を充分に確保することができなくなる。各部の傾斜角度は上述の関係を満たしていればよいが、より好ましくは、傾斜角度α1が10°〜30°、傾斜角度β1が5°〜25°、傾斜角度α2が5°〜25°、傾斜角度β2が0°〜20°であるとよい。   At this time, if the inclination angles β1 and β2 exceed 30 °, the groove bottom side of the land portion adjacent to both sides of the widened main groove 10 has a large cross-sectional shape, and the rigidity of the land portion is sufficiently ensured. Can not be. The inclination angle of each part only needs to satisfy the above relationship, but more preferably, the inclination angle α1 is 10 ° to 30 °, the inclination angle β1 is 5 ° to 25 °, the inclination angle α2 is 5 ° to 25 °, The inclination angle β2 is preferably 0 ° to 20 °.

図1〜3に例示するように、子午線断面において、内側壁面11(内側壁面下部11b)と底面13、及び、外側壁面12(外側壁面下部12b)と底面13はそれぞれ滑らかに連結して、その連結部が円弧状になっている。このとき、図3に示すように、内側壁面11(内側壁面下部11b)と底面13との連結部の円弧の曲率半径をR1、外側壁面12(外側壁面下部12b)と底面13との連結部の円弧の曲率半径をR2とすると、これら曲率半径R1,R2は、0.3mm以上3mm以下であることが好ましい。このような断面形状とすることで、拡幅主溝10の底面13近傍の溝体積を充分に確保することが可能になり、摩耗後の排水性能を維持するには有利になる。このとき、曲率半径R1,R2が0.3mmよりも小さいと、連結部の円弧が小さ過ぎて角部を有するように連結している場合と変わらなくなる。曲率半径R1,R2が3mmよりも大きいと、溝底部分の溝体積が小さくなり、摩耗後の排水性能を充分に確保することが難しくなる。   As illustrated in FIGS. 1 to 3, in the meridian section, the inner wall surface 11 (inner wall surface lower portion 11 b) and the bottom surface 13, and the outer wall surface 12 (outer wall surface lower portion 12 b) and the bottom surface 13 are smoothly connected, The connecting portion is arcuate. At this time, as shown in FIG. 3, the radius of curvature of the arc of the connection portion between the inner wall surface 11 (inner wall surface lower portion 11 b) and the bottom surface 13 is R1, and the connection portion between the outer wall surface 12 (outer wall surface lower portion 12 b) and the bottom surface 13. When the radius of curvature of the arc is R2, it is preferable that the radius of curvature R1 and R2 is not less than 0.3 mm and not more than 3 mm. By setting it as such a cross-sectional shape, it becomes possible to ensure enough groove volume near the bottom face 13 of the widened main groove 10, and it becomes advantageous in maintaining the drainage performance after wear. At this time, if the curvature radii R1 and R2 are smaller than 0.3 mm, the arc of the connecting portion is too small to be the same as the case where the connecting portions have corner portions. When the curvature radii R1 and R2 are larger than 3 mm, the groove volume at the groove bottom portion becomes small, and it becomes difficult to ensure sufficient drainage performance after wear.

図1の実施形態では、トレッド部1には、拡幅主溝10の他に、タイヤ周方向に延在する主溝20が形成されている。この主溝20は拡幅主溝10よりもタイヤ赤道CL側に配置されている。言い換えれば、タイヤ赤道CLの片側に周方向に延在する2本の溝が形成され、そのうちのタイヤ幅方向外側の溝が拡幅主溝10になっている。このとき、図4に示すように、タイヤ赤道CLから拡幅主溝10の幅方向中心までの距離L1をタイヤ赤道CLから接地端Eまでの距離L0の50%〜80%にする一方で、拡幅主溝10と主溝20とにより区画された陸部の幅L2をタイヤ赤道CLから接地端Eまでの距離L0の20%〜40%にすることが好ましい。このような態様とすることで、拡幅主溝10の両側に隣接する陸部の剛性バランスを良好にすることができ、耐偏摩耗性能を効果的に維持することができる。   In the embodiment of FIG. 1, in addition to the widened main groove 10, a main groove 20 extending in the tire circumferential direction is formed in the tread portion 1. The main groove 20 is disposed closer to the tire equator CL than the widened main groove 10. In other words, two grooves extending in the circumferential direction are formed on one side of the tire equator CL, and a groove on the outer side in the tire width direction is the widened main groove 10. At this time, as shown in FIG. 4, the distance L1 from the tire equator CL to the center in the width direction of the widened main groove 10 is set to 50% to 80% of the distance L0 from the tire equator CL to the ground contact E. It is preferable that the width L2 of the land portion defined by the main groove 10 and the main groove 20 is 20% to 40% of the distance L0 from the tire equator CL to the ground contact end E. By setting it as such an aspect, the rigidity balance of the land part adjacent to the both sides of the widening main groove 10 can be made favorable, and uneven wear-proof performance can be maintained effectively.

このとき、距離L1が距離L0の50%よりも小さいと、拡幅主溝10のタイヤ幅方向内側に隣接する陸部の幅L2を充分に確保できず、この陸部の剛性を充分に維持することが難しくなる。距離L1が距離L0の80%よりも大きいと、拡幅主溝10が接地端Eに近付き過ぎて、接地時に拡幅主溝10が路面と接触する長さが充分に確保されなくなるため、拡幅主溝10による効果(摩耗後の排水性能の維持)が充分に発揮されなくなる。幅L2が距離L0の20%よりも小さいと、幅L2が小さ過ぎて陸部剛性を充分に維持することが難しくなる。幅L2が距離L0の40%よりも大きいと、この部位の排水が充分にできなくなり、ハイドロプレーニング現象の発生を抑制することが難しくなる。   At this time, when the distance L1 is smaller than 50% of the distance L0, the width L2 of the land portion adjacent to the inner side in the tire width direction of the widened main groove 10 cannot be sufficiently secured, and the rigidity of the land portion is sufficiently maintained. It becomes difficult. If the distance L1 is greater than 80% of the distance L0, the widened main groove 10 is too close to the ground contact E, and the length that the widened main groove 10 contacts the road surface at the time of grounding is not sufficiently secured. The effect of 10 (maintaining drainage performance after wear) is not fully exhibited. If the width L2 is smaller than 20% of the distance L0, the width L2 is too small and it becomes difficult to sufficiently maintain the land portion rigidity. When the width L2 is larger than 40% of the distance L0, the drainage of this portion cannot be sufficiently performed, and it becomes difficult to suppress the occurrence of the hydroplaning phenomenon.

タイヤサイズが215/60R16であり、図1に例示する断面形状を有し、内側連結点のトレッド表面からの距離h1と拡幅主溝の溝深さh0との比h1/h0、外側連結点のトレッド表面からの距離h2と拡幅主溝の溝深さh0との比h2/h0、タイヤ赤道から拡幅主溝の幅方向中心までの距離L1とタイヤ赤道から接地端までの距離L0との比L1/L0、拡幅主溝と主溝とにより区画された陸部の幅L2とタイヤ赤道から接地端までの距離L0との比L2/L0、内側壁面上部のトレッド表面の法線に対する傾斜角度α1、内側壁面下部のトレッド表面の法線に対する傾斜角度β1、外側壁面上部のトレッド表面の法線に対する傾斜角度α2、外側壁面下部のトレッド表面の法線に対する傾斜角度β2、内側壁面と底面との連結部の曲率半径R1、外側壁面と底面との連結部の曲率半径R2をそれぞれ表1,2のように設定した従来例1、比較例1〜3、実施例1〜13の17種類の空気入りタイヤを作製した。   The tire size is 215 / 60R16, has the cross-sectional shape illustrated in FIG. 1, the ratio h1 / h0 between the distance h1 from the tread surface of the inner connection point and the groove depth h0 of the widened main groove, Ratio h2 / h0 between the distance h2 from the tread surface and the groove depth h0 of the widened main groove, and the ratio L1 between the distance L1 from the tire equator to the center in the width direction of the widened main groove and the distance L0 from the tire equator to the ground contact edge / L0, the ratio L2 / L0 between the width L2 of the land section defined by the widened main groove and the main groove and the distance L0 from the tire equator to the ground contact edge, the inclination angle α1 with respect to the normal of the tread surface on the inner wall surface, Inclination angle β1 with respect to the normal line of the tread surface at the lower inner wall surface, Inclination angle α2 with respect to the normal line of the tread surface at the upper outer wall surface, Inclination angle β2 with respect to the normal line of the tread surface at the lower outer wall surface, of 17 types of pneumatic tires of Conventional Example 1, Comparative Examples 1 to 3, and Examples 1 to 13 in which the radius of curvature R1 and the radius of curvature R2 of the connecting portion between the outer wall surface and the bottom surface are set as shown in Tables 1 and 2, respectively. Produced.

尚、全ての例において拡幅主溝の溝深さは10mmで共通とした。また、主溝は、溝深さが10mmで、タイヤ幅方向内側の溝壁のトレッド表面の法線に対する傾斜角度が15°、タイヤ幅方向外側の溝壁のトレッド表面の法線に対する傾斜角度が10°、溝壁と溝底との連結部の曲率半径が2mmの溝である。   In all examples, the groove depth of the widened main groove was 10 mm and was common. The main groove has a groove depth of 10 mm, an inclination angle with respect to the normal line of the tread surface of the groove wall on the inner side in the tire width direction, and an inclination angle with respect to the normal line of the tread surface of the groove wall on the outer side in the tire width direction. The groove has a radius of curvature of 2 mm at a connecting portion between the groove wall and the groove bottom at 10 °.

従来例1は、トレッド表面から溝底に向かって溝幅が漸減する溝である。表1では、溝壁が拡幅主溝の幅方向内側に向かって傾斜する内側壁面上部及び外側壁面上部のみから構成される溝、即ち、内側連結点及び外側連結点が底面に存在する(h1=h2=h0)と見做した。比較例1はトレッド表面から溝底に向かって溝幅が漸増する溝である。表1では、溝壁が拡幅主溝の幅方向外側に向かって傾斜する内側壁面下部及び外側壁面下部のみから構成される溝、即ち、内側連結点及び外側連結点がトレッド表面に存在する(h1=h2=0)と見做した。   Conventional Example 1 is a groove in which the groove width gradually decreases from the tread surface toward the groove bottom. In Table 1, the groove is composed of only the inner wall surface upper portion and the outer wall surface upper portion where the groove wall is inclined toward the inner side in the width direction of the widened main groove, that is, the inner connection point and the outer connection point exist on the bottom surface (h1 = h2 = h0). Comparative Example 1 is a groove whose groove width gradually increases from the tread surface toward the groove bottom. In Table 1, a groove composed of only a lower inner wall surface and an outer lower wall surface whose groove wall is inclined outward in the width direction of the widened main groove, that is, an inner connection point and an outer connection point exist on the tread surface (h1). = H2 = 0).

これら17種類の空気入りタイヤについて、下記の評価方法により、排水性能(新品時、30%摩耗時、50%摩耗時)、耐偏摩耗性能を評価し、その結果を表1に併せて示した。   For these 17 types of pneumatic tires, drainage performance (when new, 30% worn, 50% worn) and uneven wear resistance were evaluated by the following evaluation methods. The results are also shown in Table 1. .

排水性能(新品時、30%摩耗時、50%摩耗時)
各試験タイヤをリムサイズ16×61/2JJのホイールに組み付けて、空気圧を200kPaとして、排気量が1.6Lである前輪駆動の乗用車に装着し、直進路上で水深10mmのプールに進入するようにした走行試験を実施し、プールへの進入速度を徐々に増加させ、ハイドロプレーニング現象が発生する限界速度を測定した。尚、30%摩耗時及び50%摩耗時の排水性能については、各試験タイヤをトレッド表面から有効溝深さの30%又は50%の位置まで摩耗したうえで、上記試験を行って測定した。評価結果は、従来例1を100とする指数にて示した。この指数値が大きいほど排水性能が優れることを意味する。
Drainage performance (new, 30% worn, 50% worn)
Each test tire was assembled to a wheel with a rim size of 16 × 61 / 2JJ, and the air pressure was set to 200 kPa, and it was mounted on a front-wheel drive passenger car with a displacement of 1.6 L so as to enter a pool with a water depth of 10 mm on a straight road. A running test was conducted to gradually increase the approach speed to the pool and measure the critical speed at which the hydroplaning phenomenon occurred. The drainage performance at 30% wear and 50% wear was measured by performing the above test after each test tire was worn from the tread surface to a position of 30% or 50% of the effective groove depth. The evaluation results are shown as an index with Conventional Example 1 as 100. A larger index value means better drainage performance.

耐偏摩耗性能
各試験タイヤをリムサイズ16×61/2JJのホイールに組み付けて、空気圧を200kPaとして、排気量が1.6Lである前輪駆動の乗用車に装着し、平均速度80km/hでテストコースを50000km走行した後の摩耗段差量を測定した。評価結果は、測定値の逆数を用いて、従来例1を100とする指数にて示した。この点数が大きいほど摩耗段差が小さく、耐偏摩耗性能に優れることを意味する。
Uneven wear resistance performance Each test tire is mounted on a wheel with a rim size of 16x61 / 2JJ, mounted on a front-wheel drive passenger car with an air pressure of 200 kPa and a displacement of 1.6 L, and a test course at an average speed of 80 km / h. The amount of wear step after running 50000 km was measured. The evaluation result was shown by the index | exponent which sets the prior art example 1 to 100 using the reciprocal number of the measured value. The larger the score, the smaller the wear step and the better the uneven wear resistance.

Figure 2016196218
Figure 2016196218

Figure 2016196218
Figure 2016196218

表1から明らかなように、実施例1〜13はいずれも従来例1に対して、耐偏摩耗性能を維持しながら摩耗後(30%摩耗時及び50%摩耗時)の排水性能を向上した。一方、比較例1,2は摩耗後の排水性能を向上することはできるものの、耐偏摩耗性能が従来例1よりも悪化した。   As is apparent from Table 1, Examples 1 to 13 all improved drainage performance after wear (30% wear and 50% wear) while maintaining uneven wear resistance against Conventional Example 1. . On the other hand, Comparative Examples 1 and 2 were able to improve drainage performance after wear, but uneven wear resistance performance was worse than that of Conventional Example 1.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7,8 ベルト層
9 ベルト補強層
10 拡幅主溝
11 内側壁面
11a 内側壁面上部
11b 内側壁面下部
11p 内側連結点
12 外側壁面
12a 外側壁面上部
12b 外側壁面下部
12p 外側連結点
13 底面
20 主溝
CL タイヤ赤道
E 接地端
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7, 8 Belt layer 9 Belt reinforcement layer 10 Widening main groove 11 Inner wall surface 11a Inner wall surface upper part 11b Inner wall surface lower part 11p Inner connection point 12 Outer wall surface 12a Outer wall upper part 12b Outer wall lower part 12p Outer connection point 13 Bottom face 20 Main groove CL Tire equator E Grounding end

Claims (5)

タイヤ周方向に延在して環状をなすトレッド部を備えた空気入りタイヤにおいて、
前記トレッド部にタイヤ周方向に延在し、タイヤ幅方向内側の内側壁面とタイヤ幅方向外側の外側壁面と底面とから構成される拡幅主溝が形成され、前記内側壁面が前記拡幅主溝の幅方向内側に向かって傾斜するトレッド表面側の内側壁面上部と該内側壁面上部と逆方向に傾斜する前記底面側の内側壁面下部とからなり、前記外側壁面が前記拡幅主溝の幅方向内側に向かって傾斜するトレッド表面側の外側壁面上部と該外側壁面上部と逆方向に傾斜する前記底面側の外側壁面下部とからなり、前記内側壁面上部と前記内側壁面下部との連結点のトレッド表面からの距離h1と前記外側壁面上部と前記外側壁面下部との連結点のトレッド表面からの距離h2とがh1>h2の関係を満たし、前記拡幅主溝の50%摩耗時の溝幅と80%摩耗時の溝幅と100%摩耗時の溝幅とがそれぞれ前記内側壁面上部の延長線と前記外側壁面上部の延長線とで構成される仮想溝の対応する位置における仮想溝幅よりも拡大することを特徴とする空気入りタイヤ。
In a pneumatic tire having a tread portion that extends in the tire circumferential direction and has an annular shape,
A widened main groove is formed in the tread portion in the tire circumferential direction, and is formed of an inner wall surface on the inner side in the tire width direction, an outer wall surface on the outer side in the tire width direction, and a bottom surface, and the inner wall surface of the widened main groove is An inner wall upper portion on the tread surface side inclined toward the inner side in the width direction and an inner wall lower portion on the bottom surface side inclined in the opposite direction to the inner wall upper portion, and the outer wall surface on the inner side in the width direction of the widened main groove. An upper portion of the outer wall surface on the tread surface side inclined toward the upper surface and a lower portion of the outer wall surface on the bottom surface side inclined in the opposite direction to the upper portion of the outer wall surface. H1 and the distance h2 from the tread surface of the connection point between the upper portion of the outer wall surface and the lower portion of the outer wall surface satisfy the relationship of h1> h2, and the groove width at the time of 50% wear of the widened main groove and 80% wear. of time The width and the groove width at 100% wear are larger than the virtual groove width at the corresponding position of the virtual groove formed by the extension line of the upper part of the inner wall surface and the extension line of the upper part of the outer wall surface, respectively. Pneumatic tires.
前記距離h1が前記拡幅主溝の溝深さh0の0.5倍〜0.8倍であり、前記距離h2が前記拡幅主溝の溝深さh0の0.1倍〜0.4倍であることを特徴とする請求項1に記載の空気入りタイヤ。   The distance h1 is 0.5 to 0.8 times the groove depth h0 of the widened main groove, and the distance h2 is 0.1 to 0.4 times the groove depth h0 of the widened main groove. The pneumatic tire according to claim 1, wherein there is a pneumatic tire. タイヤ赤道から前記拡幅主溝の幅方向中心までの距離L1をタイヤ赤道から接地端までの距離L0の50%〜80%にする一方で、タイヤ赤道と前記拡幅主溝との間にタイヤ周方向に延在する主溝を形成し、該主溝と前記拡幅主溝とにより区画された陸部の幅L2をタイヤ赤道から接地端までの距離L0の20%〜40%にしたことを特徴とする請求項1または2に記載の空気入りタイヤ。   While the distance L1 from the tire equator to the center in the width direction of the widened main groove is set to 50% to 80% of the distance L0 from the tire equator to the ground contact end, the tire circumferential direction is between the tire equator and the widened main groove. A land groove defined by the main groove and the widened main groove has a width L2 of 20% to 40% of a distance L0 from the tire equator to the ground contact edge. The pneumatic tire according to claim 1 or 2. 前記内側壁面下部の傾斜角度β1が前記内側壁面上部の傾斜角度α1よりも小さく、前記外側壁面下部の傾斜角度β2が前記外側壁面上部の傾斜角度α2よりも小さく、前記内側壁面下部の傾斜角度β1が30°以下であり、前記外側壁面下部の傾斜角度β2が30°以下であることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   The inclination angle β1 of the lower inner wall surface is smaller than the inclination angle α1 of the upper inner wall surface, the inclination angle β2 of the lower outer wall surface is smaller than the inclination angle α2 of the upper outer wall surface, and the inclination angle β1 of the lower inner wall surface. The pneumatic tire according to any one of claims 1 to 3, wherein an inclination angle β2 of the lower portion of the outer wall surface is 30 ° or less. 前記内側壁面及び前記外側壁面がそれぞれ前記底面と子午線断面において円弧状に連結し、各円弧の曲率半径が0.3mm以上3mm以下であることを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。   The inner wall surface and the outer wall surface are connected in an arc shape in the bottom surface and the meridian cross section, respectively, and the curvature radius of each arc is 0.3 mm or more and 3 mm or less. Pneumatic tires.
JP2015076304A 2015-04-02 2015-04-02 Pneumatic tire Pending JP2016196218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015076304A JP2016196218A (en) 2015-04-02 2015-04-02 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015076304A JP2016196218A (en) 2015-04-02 2015-04-02 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2016196218A true JP2016196218A (en) 2016-11-24

Family

ID=57357330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076304A Pending JP2016196218A (en) 2015-04-02 2015-04-02 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2016196218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043797A (en) * 2019-12-26 2021-06-29 住友橡胶工业株式会社 Tyre for vehicle wheels
WO2022130659A1 (en) * 2020-12-16 2022-06-23 株式会社ブリヂストン Pneumatic radial tire for passenger vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043797A (en) * 2019-12-26 2021-06-29 住友橡胶工业株式会社 Tyre for vehicle wheels
CN113043797B (en) * 2019-12-26 2023-10-20 住友橡胶工业株式会社 Tire with a tire body
WO2022130659A1 (en) * 2020-12-16 2022-06-23 株式会社ブリヂストン Pneumatic radial tire for passenger vehicle
EP4265438A4 (en) * 2020-12-16 2024-03-06 Bridgestone Corp Pneumatic radial tire for passenger vehicle

Similar Documents

Publication Publication Date Title
JP5727965B2 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP5206754B2 (en) Pneumatic tire
JP6375851B2 (en) Pneumatic tire
US8881778B2 (en) Motorcycle tire
JP6375850B2 (en) Pneumatic tire
JP6173291B2 (en) Pneumatic tire
JP6446979B2 (en) Pneumatic tire
JP5416750B2 (en) Pneumatic tire
JP2012106608A (en) Pneumatic tire
JP4992951B2 (en) Pneumatic tire
JPWO2015178442A1 (en) Pneumatic tire
JP2012228993A (en) Pneumatic tire
JP2017159752A (en) Pneumatic tire
JP2013071633A (en) Pneumatic tire
JP2016074387A (en) Pneumatic tire
JP6393222B2 (en) Motorcycle tires
JP6044561B2 (en) Pneumatic tire
JP2010036598A (en) Pneumatic tire
JP4915069B2 (en) Pneumatic tire
JP6446980B2 (en) Pneumatic tire
JP2018144656A (en) Pneumatic tire
JP2018095185A (en) Pneumatic tire
JP2016196218A (en) Pneumatic tire
JP2021160698A (en) Pneumatic tire