JP4227223B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4227223B2
JP4227223B2 JP22939898A JP22939898A JP4227223B2 JP 4227223 B2 JP4227223 B2 JP 4227223B2 JP 22939898 A JP22939898 A JP 22939898A JP 22939898 A JP22939898 A JP 22939898A JP 4227223 B2 JP4227223 B2 JP 4227223B2
Authority
JP
Japan
Prior art keywords
group
lens
negative
positive
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22939898A
Other languages
Japanese (ja)
Other versions
JP2000047107A5 (en
JP2000047107A (en
Inventor
宏志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22939898A priority Critical patent/JP4227223B2/en
Publication of JP2000047107A publication Critical patent/JP2000047107A/en
Publication of JP2000047107A5 publication Critical patent/JP2000047107A5/ja
Application granted granted Critical
Publication of JP4227223B2 publication Critical patent/JP4227223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Description

【0001】
【発明の属する技術分野】
本発明はズームレンズに関し、所謂リアーフォーカス及びフローティングフォーカスを用いるとともに防振機能を有した一眼レフカメラ等のスティルカメラやビデオカメラ等に好適なズームレンズに関するものである。
【0002】
【従来の技術】
従来より一眼レフカメラ用の単焦点レンズ、特に広角レンズやマクロレンズでは、近距離撮影での光学性能の劣化を防止する目的でフォーカシングの際に2つのレンズ群を独立に移動させる所謂フローティングフォーカスと呼ばれるフォーカス方式を用いている。
【0003】
また、従来よりビデオカメラやスティルカメラ等におけるズームレンズのフォーカス方式としては第1群でフォーカシングを行う所謂前玉フォーカス方式が一般的である。この方式は、同一物体距離に対するフォーカスレンズの繰り出し量がズーム位置によらず一定であるため鏡筒構造を簡単にできるという利点があった。しかしながら、高変倍ズームレンズに用いたとき、近距離撮影時の周辺光量を確保するために前玉のレンズ外径を大きくする必要がありレンズ系の小型化の妨げとなったり、望遠ズームレンズ用においては、特に現在一般的となっているオートフォーカスカメラではレンズ重量の重い第1群をフォーカスで駆動するため高トルクのモータを必要としたりAF(オートフォーカス)スピードが遅くなる等の欠点があった。
【0004】
また、他のフォーカス方式として、リヤーフォーカス方式やインナーフォーカス方式が種々提案されている。
【0005】
この方式はズームレンズを構成するフォーカスレンズ群を比較的小型軽量に構成することができるため、オートフォーカスカメラに用いると迅速なフォーカシングが可能となる等の利点があり、またレンズ系全体を小型化出来るといった利点がある。
【0006】
従来より、リアーフォーカス方式のズームレンズが、例えば特開平3−225307号公報、特開平3−225308号公報、特開平3−225309号公報で提案されている。これらは5群構成の望遠ズームレンズにおいてリアーフォーカス、またはフローティングフォーカスを利用している。
【0007】
また、従来より正、負、正、負、正、負の屈折力の6群構成のズームレンズとして、特開平4−186212号公報、特開平8−29686号公報等がある。特開平4−186212号公報は広角域を含む高変倍ズームレンズであり、特開平8−29686号公報はズーム比4倍程度の望遠ズームレンズである。
【0008】
また、従来より、撮影時の手ぶれ等を補正するために所謂防振機能を有するズームレンズが特開平8−136863号公報で開示されている。
【0009】
【発明が解決しようとしている課題】
撮影画像のブレを補正する方法として電気的な方法は、銀塩写真用カメラには適用できないという問題点があった。又、光学系の物体側にプリズム頂点角度が可変なプリズムを配置し、ブレに応じてプリズム頂点角度を変化させ、その補正を行う方式は、光学系の物体側のプリズムを装着する為、特に大口径な光学系に対してはその補正光学系及び駆動装置が大型化してしまう。又、光学性能的にも補正時にプリズム作用による色収差が出てしまう為、高画質の画像を得るのが難しくなってしまうという問題点があった。
【0010】
又、光学系の一部の移動レンズ群を偏心させることにより画像位置の変位を行い、ブレの補正を行わせる方法は、移動レンズ群を適切に選択、配置することにより、装置を小型にすることができる。
【0011】
しかしながらこの方法は移動レンズ群が小型軽量、かつ少ない移動量にて大きな像位置の変位作用を偏心収差を補正して画質の劣化を極力防止しつつ行う必要があり、一般にそれらのバランスを十分に満たすのが大変難しいという問題点があった。
【0012】
一方、インナーフォーカス式はフォーカス用のレンズ群が小型軽量である為、操作性が容易で、しかも高速操作が可能となり、又無限遠物体と至近物体にフォーカスしたときのレンズ系全体の重心位置の変化が少なく、ホールディングしやすい等の利点がある。
【0013】
この反面、Fナンバーの明るいレンズにおいてインナーフォーカス式を採用すると、フォーカスの際の収差変動が大きくなり、このときの収差変動を良好に補正するのが難しく、光学性能を低下させる原因となっている。
【0014】
本発明は、ズームレンズを全体として所定の屈折力を有する6つのレンズ群より構成し、各レンズ群の屈折力や変倍を行なうための各レンズ群の移動条件等を適切に設定することにより、レンズ枚数を少なくし、レンズ全長の短縮化を図りつつ、全変倍範囲にわたり高い光学性能を有したズームレンズの提供を目的とする。
【0015】
本発明の更なる目的は、光学系の一部のレンズ群を光軸と垂直な方向に偏心駆動させて撮影画像の変位(ブレ)を補正する際、各レンズ要素を適切に配置することによって、各種の偏心収差を良好に補正し、又十分に少ない偏心駆動量で十分に大きい変位補正(ブレ補正)を実現することによって装置全体の小型化を可能としたズームレンズの提供にある。
【0016】
本発明の更なる目的は、インナーフォーカス式とフローティング式を採用しつつ、無限遠物体から近距離物体に至る広範囲の物体距離において、フォーカスの際の収差変動を良好に補正したズームレンズの提供にある。
【0017】
【課題を解決するための手段】
本発明のズームレンズは、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、負の屈折力の第4群、正の屈折力の第5群、負の屈折力の第6群の6つのレンズ群より構成され、前記各レンズ群の間隔を変化させて変倍を行うズームレンズに於いて、前記第3群は物体側より正レンズ物体側に凹面を向けたメニスカス状の負レンズ物体側に強い凸面を向けた正レンズより構成され、前記第5群物体側より正レンズ、像側に強い凹面を向けた負レンズ、正レンズ、正レンズより構成され、前記第6群物体側より負レンズ、正レンズ、負レンズより構成され、第i群と第i+1群の広角端での間隔をDiW、第i群と第i+1群の望遠端での間隔をDiT、第1群の広角端から望遠端への変倍時の移動量をm1、第1,第2,第3,第5群の焦点距離を順にf1,f2,f3,f5、全系の望遠端の焦点距離をfTとしたとき、
D1W < D1T
D2W > D2T
D3W < D3T
D4W > D4T
D5W > D5T
−0.23 < m1/fT <−0.19
0.44 < f1/fT <0.52
0.11 < |f2|/fT <0.15
0.16 < f3/fT <0.25
0.12 < f5/fT <0.16
なる条件式を満足することを特徴としている。
【0018】
【発明の実施の形態】
図1は本発明の数値実施例1の広角端のレンズ断面図、図2〜図5は本発明の数値実施例1の広角端無限遠物体、広角端至近物体(4m)、望遠端無限遠物体、望遠端至近物体(4m)のときの収差図である。
【0019】
図6は本発明の数値実施例2の広角端のレンズ断面図、図7〜図10は本発明の数値実施例2の広角端無限遠物体、広角端至近物体(4m)、望遠端無限遠物体、望遠端至近物体(4m)のときの収差図である。
【0020】
図11は本発明の数値実施例3の広角端のレンズ断面図、図12〜図15は本発明の数値実施例3の広角端無限遠物体、広角端至近物体(4m)、望遠端無限遠物体、望遠端至近物体(4m)のときの収差図である。
【0022】
但し、至近物体4mは後述する数値実施例の単位をmmで表したときである。
【0023】
図中、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は負の屈折力の第4群、L5は正の屈折力の第5群、L6は負の屈折力の第6群、SPは絞りである。矢印は広角端から望遠端への変倍に際して各レンズ群の移動軌跡を示している。
【0024】
本実施例では広角端から望遠端への変倍に際しては前述の条件式(1)〜(5)を満足するように第1,第3〜第6を移動させている。
【0025】
即ち第1群と第2群の間隔が増大し、第2群と第3群の間隔が減少し、第3群と第4群の間隔が増大し、第4群と第5群の間隔が減少し、第5群と第6群の間隔が減少するように、所定のレンズ群を移動させている。
【0026】
本実施形態では、各レンズ群の間隔を条件式(1)〜(5)を満足するように変化させて変倍を行うことで各レンズ群に変倍分担をさせ、広角端から望遠端までバランス良く収差補正を行うとともにコンパクト化を達成している。
【0027】
数値実施例1〜では、広角端から望遠端へのズーミングに際し第1群、第3群、第4 群、第5群、第6群が各々物体側へ移動し、第2群は固定である。無限遠物体から至近物体へのフォーカシングは第6群を像側に移動させるとともに第4群を物体側に移動させて行う。同一物体距離へのフォーカシングのための移動は、第4群は一定であり、第6群は焦点距離が長くなるに従って増大する。また手ぶれ等の補正を行う所謂防振を可能としており、第2群を光軸に垂直な方向に移動させることで防振を行っている。
【0028】
また本実施形態では、第3群を正レンズと物体側に凹面を向けたメニスカス状の負レンズと物体側に強い凸面を向けた正レンズより構成することで良好な収差補正を可能とし、第6 群を物体側より負レンズ、正レンズ、負レンズより構成することでフォーカシングでの収差変動を少なくし、また、数値実施例2〜4では、第6 群を一つの接合レンズユニットとすることで面反射ゴーストを少なくし、鏡筒への組み込みを簡単にしている。さらに条件式(6)〜(10)を満足するように各レンズ群を構成し、良好なる光学性能を得ている。
【0029】
次に、条件式(6)〜(10)の意味について説明する。
【0030】
条件式(6)は望遠端での全系の焦点距離に対する広角端から望遠端への変倍の際の第1群の移動量を規定するものであり、特に本発明においては、第2群で防振を行うために、第2群の軽量化、コンパクト化が望まれており、これを実現するためのものである。下限値を越えて第1群の移動量が増えると広角端でのレンズ全長を短くするため及び第2群のレンズ外径を小さくするには良い方向であるがこの動きを実現するための鏡筒構造が複雑になってくる。上限値を越えて第1群の移動量が小さくなると広角端でのレンズ全長を短くすることと望遠端での収差補正を両立することが困難となる。
【0031】
条件式(7)は望遠端での全系の焦点距離に対する第1群の焦点距離の範囲を規定するものであり、上記条件式と同様特に第2群の軽量化、コンパクト化を達成しつつ良好な性能を満足するためのものである。下限値を越えて第1群の正の屈折力が強くなるとレンズ全長の短縮、レンズ外径の小型化には良い方向だが、第1群で発生する収差特に球面収差が大きくなりこれを他のレンズ群で補正することが困難となる。上限値を越えて第1群の正の屈折力が弱くなると収差補正には良い方向だが、コンパクト化に反する。
【0032】
条件式(8)は望遠端での全系の焦点距離に対する第2群の焦点距離の範囲を規定するものである。一般に、ズームレンズのコンパクト化を図る手段として各レンズ群の屈折力を強くする、特に第2群の屈折力を強くすることが考えられる。ところが、望遠ズームレンズにおいては第2群の屈折力を強くするに従ってレンズ系の屈折力配置としてレトロフォーカスタイプとなりバックフォーカスが必要以上にながくなり従ってレンズ全長が長くなるため第3群以降のレンズ群を極端なテレフォトタイプとすることでバックフォーカスの増大を防ぐ必要が生じる。
【0033】
そこで本発明ではコンパクト化の方法として前述の方法ではなく多群化によりコンパクト化を達成している。このとき条件式(8)を満足するように第2群の焦点距離を規定している。下限値を越えて第2群の屈折力が強くなると変倍の為の各レンズ群の移動量は少なくできるが、バックフォーカスが長くなり、第2群で発生する諸収差が大きくなり好ましくない。上限値を越えて第2群の屈折力が弱くなると、変倍のための各レンズ群の移動量を大きくする必要がありレンズ系が増大するので好ましくない。
【0034】
条件式(9)は望遠端での全系の焦点距離に対する第3群の焦点距離の範囲を規定するものである。条件式の範囲外となると広角端から望遠端までバランス良く諸収差を補正することが困難となる。
【0035】
条件式(10)は望遠端での全系の焦点距離に対する第5群の焦点距離の範囲を規定するものである。下限値を越えて第5群の屈折力が強くなるとレンズ系のコンパクト化には良い方向だが、第5群で発生する諸収差特に広角端での球面収差が大きくなり好ましくない。上限値を越えて第5群の屈折力が弱くなるとレンズ全長が長くなり好ましくない。
【0036】
尚、本発明において更に全変倍範囲にわたり収差変動が少なく、画面全体にわたり高い光学性能を得るには、次の諸条件のうちの少なくとも1つを満足させるのが良い。
【0037】
(ア-1) 無限遠物体から至近物体へのフォーカシングを第4 群を物体側へ移動し、第6 群を像側に移動して行い、第4 群を物体側に凹面を向けたメニスカス状の負レンズで構成し、第4 群の焦点距離をf4、無限遠物体での第6 群の広角端と、望遠端の横倍率を各々β6W,β6Tとしたとき、
0.28 < |f4|/fT <0.4・・・(11)
2.0 < β6W <2.4・・・(12)
2.6 < β6T <3 ・・・(13)
なる条件式を満足することである。
【0038】
条件式(11)は望遠端での全系の焦点距離に対する第4群の焦点距離の範囲を規定するものである。下限値を越えて第4群の屈折力が強くなるとこれに伴って第6群の屈折力を強くする必要が生じ特に軸外収差が多く発生し、上限値を越えて第4群の屈折力が弱くなるとこの群で補正しているズーミングによる球面収差の変動をとるのが困難となる。
【0039】
条件式(12)、(13)は各々、無限遠物体での第6群の広角端の倍率、第6群の望遠端の倍率であり、第6群でのフォーカシングを良好に行うためのものである。第6群でのフォーカシングの条件として、第6群の敏感度(第6群の移動量にたいする像面の移動量)を適切にする必要がある。
本実施例において第6群の敏感度S6は
S6=(1−β62
で表される。敏感度S6の絶対値が極端に大きくなったり、極端に小さくなったりするのは好ましくなく、変倍の途中で敏感度S6がゼロになるとこのレンズ群でフォーカシングを行うかとができなくなる。条件式(12)の下限値を越えて横倍率β6Wが小さくなると、広角端での第6群の敏感度が小さくなり、上限値を越えて横倍率β6Wが大きくなると、広角端での第6群の敏感度が大きくなる。条件式(13)の下限値を越えて横倍率β6Tが小さくなると、望遠端での第6群の敏感度が小さくなり、上限値を越えて横倍率β6Tが大きくなると、望遠端での第6群の敏感度が大きくなる。従って、上記条件式を満足するように屈折力配置を適切にする必要がある。
【0040】
また、第4群を物体側に凹面を持つメニスカス状の負レンズとすることで、変倍による球面収差の変動をおさえることを可能としている。
【0041】
(ア-2) 無限遠物体から任意の有限距離物体への前記第4群のフォーカシングのための移動量は、焦点距離によらず略一定となるようにしたことである。
【0042】
本発明では、前記第4 群をフォーカシング時に収差補正のために移動させる所謂フローティングを行っている。ここで、フローティングについて説明する。本発明において主フォーカス群は第6群であり、第4群はフォーカシングによる収差変動、特に広角側での像面の変動を補正する働きをしている。従って第4群の繰り出し量は比較的意図的に変えることが可能であり、本発明では、同一物体距離にたいする第4群の繰り出し量が焦点距離によらず略一定になるようにしている。これにより、第4群のフォーカスの移動を従来の前玉フォーカスと同様に簡単な鏡筒構造で実現できる。
【0043】
(ア-3) 前記第1群は物体側より正レンズと像側に凹面を向けたメニスカス状の負レンズ、正レンズで構成し、前記第2群は2枚の負レンズと1枚の正レンズで構成し、前記第2 群を光軸と略垂直方向に移動して撮影画像のブレを補正を行なったことである。
【0044】
これにより、高い光学性能を有しつつレンズ系全体の小型化を図っている。
【0045】
(ア-4) 前記第6 群の3 枚のレンズは各々接合されていることである。
【0046】
(ア-5) フォーカシングによる特にテレ側の球面収差の変動、ワイド側の像面湾曲の変動を良好に補正するとともにコンパクト化を達成するために本実施例では第5群を物体側より正レンズ、像側に強い凹面を向けた負レンズ、正レンズ、正レンズで構成している。
【0047】
次に本発明の数値実施例を示す。数値実施例においてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より第i番目のレンズ厚及び空気間隔、niとviは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。
【0048】
又、前述の各条件式と数値実施例における諸数値との関係を表−1に示す。又、フォーカスレンズ群(第4群と第6群)の移動量を表−2に示す。
【0049】
数値実施例 1
f= 103.0〜 389.3 FNo=1: 4.6 〜 5.8 2ω=23.7 °〜 6.4°
r 1= 123.671 d 1= 5.10 n 1=1.55963 v 1=61.2
r 2= 455.856 d 2= 0.15
r 3= 112.146 d 3= 3.50 n 2=1.74950 v 2=35.0
r 4= 66.664 d 4= 0.27
r 5= 66.084 d 5= 10.70 n 3=1.43387 v 3=95.1
r 6=-45472.240 d 6=可変
r 7= ∞ d 7=可変
r 8= 2400.354 d 8= 1.40 n 4=1.69680 v 4=55.5
r 9= 63.095 d 9= 3.30
r10= -62.783 d10= 1.40 n 5=1.62299 v 5=58.2
r11= 70.270 d11= 2.70 n 6=1.84666 v 6=23.8
r12= 1061.104 d12=可変
r13= -177.051 d13= 4.80 n 7=1.43875 v 7=95.0
r14= -35.917 d14= 1.20
r15= -39.113 d15= 2.00 n 8=1.69680 v 8=55.5
r16= -68.642 d16= 0.20
r17= 60.698 d17= 3.00 n 9=1.62299 v 9=58.2
r18= 477.360 d18= 2.50
r19= (絞り) d19= 可変
r20= -40.615 d20= 2.90 n10=1.60311 v10=60.6
r21= -77.406 d21=可変
r22= 790.908 d22= 3.30 n11=1.48749 v11=70.2
r23= -59.012 d23= 0.15
r24= 305.494 d24= 1.50 n12=1.80518 v12=25.4
r25= 46.466 d25= 1.30
r26= 83.041 d26= 3.30 n13=1.48749 v13=70.2
r27= -146.852 d27= 0.15
r28= 41.620 d28= 4.00 n14=1.66672 v14=48.3
r29= 2851.209 d29=可変
r30= 381.304 d30= 1.45 n15=1.80610 v15=40.9
r31= 36.649 d31= 0.33
r32= 36.066 d32= 4.30 n16=1.72825 v16=28.5
r33= -220.633 d33= 1.45 n17=1.77250 v17=49.6
r34= 48.298

焦点距離102.99 164.43 389.28
可変間隔
d 6 7.03 40.76 91.36
d 7 2.00 2.00 2.00
d 12 22.21 15.73 6.42
d 19 11.72 16.09 22.24
d 21 26.74 18.89 7.51
d 29 23.08 19.08 1.73
skinf 73.85 87.81 119.69

f FNo 2w w
103.0 4.6 23.7 11.9
164.4 5.2 15.0 7.5
389.3 5.8 6.4 3.2

数値実施例 2
f= 102.7〜 389.2 FNo=1: 4.6 〜 5.8 2ω=23.8 °〜 6.4°
r 1= 117.449 d 1= 5.20 n 1=1.48749 v 1=70.2
r 2= 506.654 d 2= 0.15
r 3= 108.121 d 3= 3.50 n 2=1.74950 v 2=35.0
r 4= 67.497 d 4= 0.12
r 5= 68.071 d 5= 10.40 n 3=1.43387 v 3=95.1
r 6= -7912.525 d 6=可変
r 7= ∞ d 7=可変
r 8= -371.134 d 8= 1.40 n 4=1.71300 v 4=53.9
r 9= 58.940 d 9= 3.50
r10= -57.436 d10= 1.40 n 5=1.62299 v 5=58.2
r11= 64.689 d11= 2.60 n 6=1.84666 v 6=23.8
r12=-28288.289 d12=可変
r13= 225.869 d13= 5.90 n 7=1.43875 v 7=95.0
r14= -36.078 d14= 1.10
r15= -37.529 d15= 2.00 n 8=1.70154 v 8=41.2
r16= -56.400 d16= 0.20
r17= 52.957 d17= 2.40 n 9=1.62012 v 9=49.5
r18= 110.626 d18= 3.00
r19= (絞り) d19= 可変
r20= -41.960 d20= 2.90 n10=1.60311 v10=60.6
r21= -88.566 d21=可変
r22= 1463.246 d22= 3.50 n11=1.48749 v11=70.2
r23= -55.561 d23= 0.15
r24= 309.587 d24= 1.60 n12=1.80518 v12=25.4
r25= 46.432 d25= 1.30
r26= 83.246 d26= 3.20 n13=1.51633 v13=64.1
r27= -163.106 d27= 0.15
r28= 41.344 d28= 4.00 n14=1.66672 v14=48.3
r29= 598.945 d29=可変
r30= 431.689 d30= 1.40 n15=1.83481 v15=42.7
r31= 36.686 d31= 3.90 n16=1.72825 v16=28.5
r32= -272.789 d32= 1.40 n17=1.77250 v17=49.6
r33= 53.286

焦点距離102.68 161.53 389.19
可変間隔
d 6 7.74 41.09 91.13
d 7 2.00 2.00 2.00
d 12 20.89 15.49 6.44
d 19 11.91 14.86 20.25
d 21 26.80 19.97 10.38
d 29 22.57 18.94 1.94
skinf 74.01 86.92 117.18

f FNo 2w w
102.7 4.6 23.8 11.9
161.5 5.1 15.3 7.6
389.2 5.8 6.4 3.2

数値実施例 3
f= 102.9〜 389.2 FNo=1: 4.6 〜 5.8 2ω=23.7 °〜 6.4°
r 1= 112.875 d 1= 5.60 n 1=1.48749 v 1=70.2
r 2= 666.390 d 2= 0.15
r 3= 107.690 d 3= 3.50 n 2=1.74950 v 2=35.0
r 4= 66.588 d 4= 0.12
r 5= 67.147 d 5= 10.00 n 3=1.43387 v 3=95.1
r 6= 1910.719 d 6=可変
r 7= ∞ d 7=可変
r 8= -570.514 d 8= 1.40 n 4=1.71300 v 4=53.9
r 9= 56.723 d 9= 3.63
r10= -54.676 d10= 1.40 n 5=1.62299 v 5=58.2
r11= 69.446 d11= 2.60 n 6=1.84666 v 6=23.8
r12= -998.563 d12=可変
r13= 190.902 d13= 6.40 n 7=1.43875 v 7=95.0
r14= -35.709 d14= 1.10
r15= -36.408 d15= 2.00 n 8=1.64769 v 8=33.8
r16= -57.661 d16= 0.20
r17= 52.613 d17= 2.60 n 9=1.59551 v 9=39.2
r18= 105.172 d18= 3.50
r19= (絞り) d19= 可変
r20= -45.038 d20= 2.90 n10=1.60311 v10=60.6
r21= -97.329 d21=可変
r22= -520.130 d22= 3.50 n11=1.48749 v11=70.2
r23= -56.696 d23= 0.15
r24= 147.567 d24= 1.60 n12=1.80518 v12=25.4
r25= 44.814 d25= 1.12
r26= 79.107 d26= 3.20 n13=1.51633 v13=64.1
r27= -300.545 d27= 0.15
r28= 41.007 d28= 4.00 n14=1.63854 v14=55.4
r29= 1408.886 d29=可変
r30= 400.379 d30= 1.40 n15=1.83481 v15=42.7
r31= 36.824 d31= 4.20 n16=1.72825 v16=28.5
r32= -273.139 d32= 1.40 n17=1.77250 v17=49.6
r33= 51.619

焦点距離102.90 205.68 389.18
可変間隔
d 6 5.02 51.00 88.15
d 7 2.00 2.00 2.00
d 12 22.31 13.57 8.14
d 19 11.51 16.32 18.57
d 21 27.22 15.13 11.50
d 29 22.62 16.31 1.55
skinf 73.86 96.20 117.77

f FNo 2w w
102.9 4.6 23.7 11.9
205.7 5.5 12.0 6.0
389.2 5.8 6.4 3.2
【0050】
【表1】
【0051】
【発明の効果】
本発明によれば、
(イ-1) ズームレンズを全体として所定の屈折力を有する6つのレンズ群より構成し、各レンズ群の屈折力や変倍を行なうための各レンズ群の移動条件等を適切に設定することにより、レンズ枚数を少なくし、レンズ全長の短縮化を図りつつ、全変倍範囲にわたり高い光学性能を有したズームレンズを達成することができる。
【0052】
(イ-2) 光学系の一部のレンズ群を光軸と垂直な方向に偏心駆動させて撮影画像の変位(ブレ)を補正する際、各レンズ要素を適切に配置することによって、各種の偏心収差を良好に補正し、又十分に少ない偏心駆動量で十分に大きい変位補正(ブレ補正)を実現することによって装置全体の小型化を可能としたズームレンズを達成することができる。
【0053】
(イ-3) インナーフォーカス式とフローティング式を採用しつつ、無限遠物体から近距離物体に至る広範囲の物体距離において、フォーカスの際の収差変動を良好に補正したズームレンズを達成することができる。
【0054】
(イ-4) 6つのレンズ群よりズームレンズを構成しフォーカシングは第6群と第4群を用いることで迅速な焦点合わせが可能で無限遠物体から至近物体まで良好な光学性能のズーム比4倍程度の望遠ズームレンズを達成することができる。
【図面の簡単な説明】
【図1】 本発明の数値実施例1の広角端のレンズ断面図
【図2】 本発明の数値実施例1の広角端無限遠物体の収差図
【図3】 本発明の数値実施例1の広角端至近物体(4m)の収差図
【図4】 本発明の数値実施例1の望遠端無限遠物体の収差図
【図5】 本発明の数値実施例1の望遠端至近物体(4m)の収差図
【図6】 本発明の数値実施例2の広角端のレンズ断面図
【図7】 本発明の数値実施例2の広角端無限遠物体の収差図
【図8】 本発明の数値実施例2の広角端至近物体(4m)の収差図
【図9】 本発明の数値実施例2の望遠端無限遠物体の収差図
【図10】 本発明の数値実施例2の望遠端至近物体(4m)の収差図
【図11】 本発明の数値実施例3の広角端のレンズ断面図
【図12】 本発明の数値実施例3の広角端無限遠物体の収差図
【図13】 本発明の数値実施例3の広角端至近物体(4m)の収差図
【図14】 本発明の数値実施例3の望遠端無限遠物体の収差図
【図15】 本発明の数値実施例3の望遠端至近物体(4m)の収差図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
L5 第5群
L6 第6群
SP 絞り
ΔS サジタル像面
ΔM メリディオナル像面
d d線
g g線
S.C 正弦条件
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens, and more particularly to a zoom lens suitable for a still camera such as a single-lens reflex camera or a video camera that uses a so-called rear focus and floating focus and has an anti-vibration function.
[0002]
[Prior art]
Conventionally, single-focus lenses for single-lens reflex cameras, particularly wide-angle lenses and macro lenses, have a so-called floating focus that moves two lens groups independently during focusing in order to prevent deterioration of optical performance in close-up shooting. The so-called focus method is used.
[0003]
Conventionally, as a zoom lens focusing method in a video camera, a still camera, or the like, a so-called front lens focusing method in which focusing is performed in the first group is common. This method has an advantage that the lens barrel structure can be simplified because the amount of extension of the focus lens with respect to the same object distance is constant regardless of the zoom position. However, when used in a high-magnification zoom lens, it is necessary to increase the lens outer diameter of the front lens in order to secure the amount of peripheral light during close-up shooting, which may hinder downsizing of the lens system or a telephoto zoom lens In particular, the auto focus cameras that are currently popular have the disadvantages that a high torque motor is required and the AF (auto focus) speed is slow to drive the first lens group, which has a heavy lens weight, with focus. there were.
[0004]
As other focus methods, various methods such as a rear focus method and an inner focus method have been proposed.
[0005]
This method has the advantage that the focusing lens group that composes the zoom lens can be made relatively small and light, so that it can be used for autofocus cameras, enabling quick focusing, etc., and downsizing the entire lens system There is an advantage of being able to
[0006]
Conventionally, rear focus type zoom lenses have been proposed in, for example, Japanese Patent Laid-Open Nos. 3-225307, 3-225308, and 3-225309. These utilize a rear focus or a floating focus in a telephoto zoom lens having a five-group configuration.
[0007]
Conventionally, as zoom lenses having a six-group configuration of positive, negative, positive, negative, positive, and negative refractive powers, there are JP-A-4-186212 and JP-A-8-29686. Japanese Patent Laid-Open No. 4-186212 is a high-magnification zoom lens including a wide angle region, and Japanese Patent Laid-Open No. 8-29686 is a telephoto zoom lens having a zoom ratio of about 4 times.
[0008]
Conventionally, a zoom lens having a so-called image stabilization function for correcting camera shake at the time of shooting is disclosed in Japanese Patent Laid-Open No. 8-136863.
[0009]
[Problems to be solved by the invention]
As a method for correcting blurring of a photographed image, there is a problem that an electrical method cannot be applied to a silver halide photographic camera. In addition, the prism that can change the prism apex angle on the object side of the optical system, the prism apex angle is changed in accordance with the blur, and the correction is made by mounting the prism on the object side of the optical system. For a large-diameter optical system, the correction optical system and the driving device are increased in size. Also, in terms of optical performance, there is a problem in that it becomes difficult to obtain a high-quality image because chromatic aberration due to the prism action occurs during correction.
[0010]
In addition, the method of shifting the image position by decentering a part of the moving lens group of the optical system and correcting the blurring makes the apparatus compact by appropriately selecting and arranging the moving lens group. be able to.
[0011]
However, in this method, the moving lens group is small and light, and it is necessary to perform the displacement action of a large image position with a small amount of movement while correcting decentration aberrations and preventing deterioration of image quality as much as possible. There was a problem that it was very difficult to meet.
[0012]
On the other hand, the inner focus type lens group for focusing is small and lightweight, so it is easy to operate and high-speed operation is possible, and the center of gravity of the entire lens system when focusing on an object at infinity and a close object is possible. There are advantages such as little change and easy holding.
[0013]
On the other hand, when the inner focus type is adopted in a lens having a bright F number, the aberration fluctuation at the time of focusing becomes large, and it is difficult to correct the aberration fluctuation at this time satisfactorily, which causes a decrease in optical performance. .
[0014]
According to the present invention, the zoom lens is composed of six lens groups having a predetermined refractive power as a whole, and by appropriately setting the refractive power of each lens group, the moving condition of each lens group for zooming, and the like. An object of the present invention is to provide a zoom lens having high optical performance over the entire zooming range while reducing the number of lenses and shortening the total lens length.
[0015]
A further object of the present invention is to appropriately dispose each lens element when correcting a displacement (blur) of a captured image by driving a part of a lens group of an optical system eccentrically in a direction perpendicular to the optical axis. Accordingly, it is an object of the present invention to provide a zoom lens that can reduce the size of the entire apparatus by satisfactorily correcting various decentering aberrations and realizing sufficiently large displacement correction (blur correction) with a sufficiently small amount of decentering drive.
[0016]
A further object of the present invention is to provide a zoom lens that satisfactorily corrects aberration fluctuations during focusing over a wide range of object distances from an infinite object to a close object while adopting an inner focus type and a floating type. is there.
[0017]
[Means for Solving the Problems]
The zoom lens according to the present invention includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, a fourth group having a negative refractive power, and a positive refraction. the fifth group of force, is composed of six lens groups in the sixth unit having a negative refractive power, wherein at the zoom lens to perform zooming by changing the distances between the lens groups, the third group of the object side more positive lens, meniscus-shaped negative lens having a concave surface on the object side is constituted of a positive lens having a strong convex surface facing the object side, the fifth group was its strong concave surface from the object side positive lens, the image side The sixth group is composed of a negative lens, a positive lens, and a negative lens from the object side, and the distance between the i-th group and the i + 1th group at the wide-angle end is DiW, i-th The distance between the telephoto end of the first lens group and the (i + 1) th lens group is DiT, and the moving amount of the first lens group when zooming from the wide angle end to the telephoto end is m , First, second, third, a focal length of the fifth group in order f1, f2, f3, f5, the focal length at the telephoto end of the entire system was fT,
D1W <D1T
D2W> D2T
D3W <D3T
D4W> D4T
D5W> D5T
−0.23 <m1 / fT <−0.19
0.44 <f1 / fT <0.52
0.11 <| f2 | / fT <0.15
0.16 <f3 / fT <0.25
0.12 <f5 / fT <0.16
It satisfies the following conditional expression.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a lens cross-sectional view at a wide angle end according to Numerical Example 1 of the present invention, and FIGS. 2 to 5 are an object at wide angle end, an object at a wide angle end close to (4 m), and a telephoto end at infinity according to Numerical Example 1 according to the present invention. FIG. 7 is an aberration diagram for an object and an object close to the telephoto end (4 m).
[0019]
6 is a lens cross-sectional view at the wide-angle end according to Numerical Example 2 of the present invention, and FIGS. 7 to 10 are an object at wide-angle end infinity, an object close to the wide-angle end (4 m), and a telephoto end at infinity according to Numerical Example 2 according to the present invention. FIG. 7 is an aberration diagram for an object and an object close to the telephoto end (4 m).
[0020]
FIG. 11 is a lens cross-sectional view at the wide angle end according to Numerical Example 3 of the present invention, and FIGS. 12 to 15 are a wide angle end infinite object, a wide angle end closest object (4 m), and a telephoto end at infinity according to Numerical Example 3 of the present invention. FIG. 7 is an aberration diagram for an object and an object close to the telephoto end (4 m).
[0022]
However, the closest object 4m is when the unit of the numerical example described later is expressed in mm.
[0023]
In the figure, L1 is a first group having positive refractive power, L2 is a second group having negative refractive power, L3 is a third group having positive refractive power, L4 is a fourth group having negative refractive power, and L5 is positive. 5 is a fifth group of refractive power, L6 is a sixth group of negative refractive power, and SP is a stop. The arrows indicate the movement trajectory of each lens unit upon zooming from the wide-angle end to the telephoto end.
[0024]
In this embodiment, when zooming from the wide-angle end to the telephoto end, the first, third to sixth are moved so as to satisfy the conditional expressions (1) to (5) described above.
[0025]
That is, the distance between the first group and the second group is increased, the distance between the second group and the third group is decreased, the distance between the third group and the fourth group is increased, and the distance between the fourth group and the fifth group is increased. The predetermined lens group is moved so that the distance between the fifth group and the sixth group decreases.
[0026]
In this embodiment, by changing the distance between the lens groups so as to satisfy the conditional expressions (1) to (5) and changing the magnification, each lens group is assigned a change in magnification, and from the wide-angle end to the telephoto end. Aberration correction is performed in a well-balanced manner and compactness is achieved.
[0027]
In Numerical Examples 1 to 3 , when zooming from the wide-angle end to the telephoto end, the first group, the third group, the fourth group, the fifth group, and the sixth group move to the object side, and the second group is fixed. is there. Focusing from an infinite object to a close object is performed by moving the sixth group to the image side and moving the fourth group to the object side. The movement for focusing to the same object distance is constant in the fourth group, and the sixth group increases as the focal length increases. In addition, so-called image stabilization for correcting camera shake or the like is possible, and image stabilization is performed by moving the second group in a direction perpendicular to the optical axis.
[0028]
In the present embodiment, the third lens unit is composed of a positive lens, a meniscus negative lens having a concave surface facing the object side, and a positive lens having a strong convex surface facing the object side, thereby enabling good aberration correction. The sixth group is composed of a negative lens, a positive lens, and a negative lens from the object side to reduce aberration fluctuations during focusing. In Numerical Examples 2 to 4, the sixth group is a single cemented lens unit. This reduces surface reflection ghosts and simplifies installation into the lens barrel. Further, each lens group is configured to satisfy the conditional expressions (6) to (10), and good optical performance is obtained.
[0029]
Next, the meaning of conditional expressions (6) to (10) will be described.
[0030]
Conditional expression (6) defines the amount of movement of the first group at the time of zooming from the wide-angle end to the telephoto end with respect to the focal length of the entire system at the telephoto end. In particular, in the present invention, the second group In order to perform vibration isolation, it is desired to reduce the weight and size of the second group, and to achieve this. A mirror for realizing this movement is a good direction for shortening the total lens length at the wide-angle end and reducing the lens outer diameter of the second group when the movement amount of the first group increases beyond the lower limit. The cylinder structure becomes complicated. If the amount of movement of the first lens unit becomes small beyond the upper limit, it becomes difficult to reduce both the total lens length at the wide-angle end and aberration correction at the telephoto end.
[0031]
Conditional expression (7) defines the range of the focal length of the first group relative to the focal length of the entire system at the telephoto end, and in the same way as the above conditional expression, while achieving the weight reduction and compactness of the second group in particular. This is to satisfy good performance. When the positive refractive power of the first group becomes stronger beyond the lower limit, it is a good direction for shortening the overall lens length and reducing the outer diameter of the lens. However, aberrations generated in the first group, particularly spherical aberration, increase, It becomes difficult to correct with the lens group. If the positive refractive power of the first lens group is weakened beyond the upper limit, it is a good direction for correcting aberrations, but it is against compactness.
[0032]
Conditional expression (8) defines the range of the focal length of the second group with respect to the focal length of the entire system at the telephoto end. In general, as means for reducing the size of the zoom lens, it is conceivable to increase the refractive power of each lens group, particularly to increase the refractive power of the second group. However, in the telephoto zoom lens, as the refractive power of the second group is increased, the refractive power arrangement of the lens system becomes a retrofocus type, and the back focus becomes longer than necessary. It is necessary to prevent an increase in back focus by making the lens an extreme telephoto type.
[0033]
Therefore, in the present invention, as a compacting method, compacting is achieved not by the above-described method but by multi-grouping. At this time, the focal length of the second group is defined so as to satisfy the conditional expression (8). If the refractive power of the second group becomes stronger beyond the lower limit, the amount of movement of each lens group for zooming can be reduced, but the back focus becomes longer and various aberrations generated in the second group become undesirably large. If the refractive power of the second group becomes weaker than the upper limit value, it is necessary to increase the amount of movement of each lens group for zooming, which is not preferable because the lens system increases.
[0034]
Conditional expression (9) defines the range of the focal length of the third group with respect to the focal length of the entire system at the telephoto end. If out of the range of the conditional expression, it becomes difficult to correct various aberrations in a balanced manner from the wide-angle end to the telephoto end.
[0035]
Conditional expression (10) defines the range of the focal length of the fifth group with respect to the focal length of the entire system at the telephoto end. When the refractive power of the fifth group becomes stronger beyond the lower limit, it is a good direction for reducing the size of the lens system, but various aberrations occurring in the fifth group, particularly spherical aberration at the wide-angle end, become unfavorable. If the upper limit is exceeded and the refractive power of the fifth group becomes weak, the total lens length becomes long, which is not preferable.
[0036]
In the present invention, it is preferable that at least one of the following conditions is satisfied in order to obtain a high optical performance over the entire screen with less aberration fluctuation over the entire zoom range.
[0037]
(A-1) Focusing from an infinite object to a close object is performed by moving the 4th group to the object side, moving the 6th group to the image side, and moving the 4th group to the object side, with the concave surface facing the 4th group to the object side. When the focal length of the fourth lens unit is f4, the lateral angle of the sixth lens unit at infinity and the horizontal magnification of the telephoto end are β6W and β6T, respectively,
0.28 <| f4 | / fT <0.4 (11)
2.0 <β6W <2.4 (12)
2.6 <β6T <3 (13)
The following conditional expression is satisfied.
[0038]
Conditional expression (11) defines the range of the fourth group focal length with respect to the focal length of the entire system at the telephoto end. When the refractive power of the fourth group becomes stronger beyond the lower limit, it is necessary to increase the refractive power of the sixth group accordingly, and in particular, many off-axis aberrations occur, and the refractive power of the fourth group exceeds the upper limit. As the lens becomes weaker, it becomes difficult to change the spherical aberration due to zooming corrected in this group.
[0039]
Conditional expressions (12) and (13) are the magnification at the wide-angle end of the sixth group and the magnification at the telephoto end of the sixth group for an infinitely distant object, respectively, in order to perform focusing in the sixth group satisfactorily It is. As a condition for focusing in the sixth group, it is necessary to appropriately set the sensitivity of the sixth group (the amount of movement of the image plane relative to the amount of movement of the sixth group).
In this embodiment, the sensitivity S6 of the sixth group is S6 = (1−β6 2 ).
It is represented by It is not preferable that the absolute value of the sensitivity S6 becomes extremely large or extremely small. If the sensitivity S6 becomes zero during zooming, it is impossible to perform focusing with this lens group. If the lateral magnification β6W decreases beyond the lower limit of conditional expression (12), the sensitivity of the sixth group at the wide-angle end decreases, and if the lateral magnification β6W increases beyond the upper limit, the sixth at the wide-angle end. Increases group sensitivity. When the lateral magnification β6T decreases beyond the lower limit of conditional expression (13), the sensitivity of the sixth lens group at the telephoto end decreases, and when the lateral magnification β6T increases beyond the upper limit, the sixth at the telephoto end. Increases group sensitivity. Therefore, it is necessary to make the refractive power arrangement appropriate so as to satisfy the conditional expression.
[0040]
In addition, the fourth lens unit is a meniscus negative lens having a concave surface on the object side, thereby suppressing the variation of spherical aberration due to zooming.
[0041]
(A-2) The amount of movement for focusing of the fourth group from an object at infinity to an object at an arbitrary finite distance is made substantially constant regardless of the focal length.
[0042]
In the present invention, so-called floating is performed in which the fourth group is moved for aberration correction during focusing. Here, floating will be described. In the present invention, the main focus group is the sixth group, and the fourth group functions to correct aberration fluctuations due to focusing, particularly image plane fluctuations on the wide-angle side. Accordingly, the amount of extension of the fourth group can be changed relatively intentionally. In the present invention, the amount of extension of the fourth group with respect to the same object distance is made substantially constant regardless of the focal length. Thereby, the movement of the focus of the fourth group can be realized with a simple lens barrel structure as in the conventional front lens focus.
[0043]
(A-3) The first group includes a positive lens from the object side and a negative meniscus lens having a concave surface facing the image side, and a positive lens, and the second group includes two negative lenses and one positive lens. This is made up of lenses, and the second group is moved in a direction substantially perpendicular to the optical axis to correct the blur of the photographed image.
[0044]
As a result, the entire lens system is reduced in size while having high optical performance.
[0045]
(A-4) The six lenses in the sixth group are cemented.
[0046]
(A-5) In order to satisfactorily correct the variation in spherical aberration on the tele side and the variation in field curvature on the wide side due to focusing, and in order to achieve compactness, in this embodiment, the fifth lens unit is a positive lens from the object side. It consists of a negative lens, a positive lens, and a positive lens with a strong concave surface facing the image side.
[0047]
Next, numerical examples of the present invention will be shown. In the numerical example, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing from the object side, and ni and vi are respectively the i-th lens in order from the object side. Refractive index and Abbe number of glass.
[0048]
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples. Table 2 shows the amount of movement of the focus lens group (the fourth group and the sixth group).
[0049]
Numerical example 1
f = 103.0 to 389.3 FNo = 1: 4.6 to 5.8 2ω = 23.7 ° to 6.4 °
r 1 = 123.671 d 1 = 5.10 n 1 = 1.55963 v 1 = 61.2
r 2 = 455.856 d 2 = 0.15
r 3 = 112.146 d 3 = 3.50 n 2 = 1.74950 v 2 = 35.0
r 4 = 66.664 d 4 = 0.27
r 5 = 66.084 d 5 = 10.70 n 3 = 1.43387 v 3 = 95.1
r 6 = -45472.240 d 6 = variable
r 7 = ∞ d 7 = variable
r 8 = 2400.354 d 8 = 1.40 n 4 = 1.69680 v 4 = 55.5
r 9 = 63.095 d 9 = 3.30
r10 = -62.783 d10 = 1.40 n 5 = 1.62299 v 5 = 58.2
r11 = 70.270 d11 = 2.70 n 6 = 1.84666 v 6 = 23.8
r12 = 1061.104 d12 = variable
r13 = -177.051 d13 = 4.80 n 7 = 1.43875 v 7 = 95.0
r14 = -35.917 d14 = 1.20
r15 = -39.113 d15 = 2.00 n 8 = 1.69680 v 8 = 55.5
r16 = -68.642 d16 = 0.20
r17 = 60.698 d17 = 3.00 n 9 = 1.62299 v 9 = 58.2
r18 = 477.360 d18 = 2.50
r19 = (Aperture) d19 = Variable
r20 = -40.615 d20 = 2.90 n10 = 1.60311 v10 = 60.6
r21 = -77.406 d21 = variable
r22 = 790.908 d22 = 3.30 n11 = 1.48749 v11 = 70.2
r23 = -59.012 d23 = 0.15
r24 = 305.494 d24 = 1.50 n12 = 1.80518 v12 = 25.4
r25 = 46.466 d25 = 1.30
r26 = 83.041 d26 = 3.30 n13 = 1.48749 v13 = 70.2
r27 = -146.852 d27 = 0.15
r28 = 41.620 d28 = 4.00 n14 = 1.66672 v14 = 48.3
r29 = 2851.209 d29 = variable
r30 = 381.304 d30 = 1.45 n15 = 1.80610 v15 = 40.9
r31 = 36.649 d31 = 0.33
r32 = 36.066 d32 = 4.30 n16 = 1.72825 v16 = 28.5
r33 = -220.633 d33 = 1.45 n17 = 1.77250 v17 = 49.6
r34 = 48.298

Focal length 102.99 164.43 389.28
Variable interval
d 6 7.03 40.76 91.36
d 7 2.00 2.00 2.00
d 12 22.21 15.73 6.42
d 19 11.72 16.09 22.24
d 21 26.74 18.89 7.51
d 29 23.08 19.08 1.73
skinf 73.85 87.81 119.69

f FNo 2w w
103.0 4.6 23.7 11.9
164.4 5.2 15.0 7.5
389.3 5.8 6.4 3.2

Numerical example 2
f = 102.7 to 389.2 FNo = 1: 4.6 to 5.8 2ω = 23.8 ° to 6.4 °
r 1 = 117.449 d 1 = 5.20 n 1 = 1.48749 v 1 = 70.2
r 2 = 506.654 d 2 = 0.15
r 3 = 108.121 d 3 = 3.50 n 2 = 1.74950 v 2 = 35.0
r 4 = 67.497 d 4 = 0.12
r 5 = 68.071 d 5 = 10.40 n 3 = 1.43387 v 3 = 95.1
r 6 = -7912.525 d 6 = variable
r 7 = ∞ d 7 = variable
r 8 = -371.134 d 8 = 1.40 n 4 = 1.71300 v 4 = 53.9
r 9 = 58.940 d 9 = 3.50
r10 = -57.436 d10 = 1.40 n 5 = 1.62299 v 5 = 58.2
r11 = 64.689 d11 = 2.60 n 6 = 1.84666 v 6 = 23.8
r12 = -28288.289 d12 = variable
r13 = 225.869 d13 = 5.90 n 7 = 1.43875 v 7 = 95.0
r14 = -36.078 d14 = 1.10
r15 = -37.529 d15 = 2.00 n 8 = 1.70154 v 8 = 41.2
r16 = -56.400 d16 = 0.20
r17 = 52.957 d17 = 2.40 n 9 = 1.62012 v 9 = 49.5
r18 = 110.626 d18 = 3.00
r19 = (Aperture) d19 = Variable
r20 = -41.960 d20 = 2.90 n10 = 1.60311 v10 = 60.6
r21 = -88.566 d21 = variable
r22 = 1463.246 d22 = 3.50 n11 = 1.48749 v11 = 70.2
r23 = -55.561 d23 = 0.15
r24 = 309.587 d24 = 1.60 n12 = 1.80518 v12 = 25.4
r25 = 46.432 d25 = 1.30
r26 = 83.246 d26 = 3.20 n13 = 1.51633 v13 = 64.1
r27 = -163.106 d27 = 0.15
r28 = 41.344 d28 = 4.00 n14 = 1.66672 v14 = 48.3
r29 = 598.945 d29 = variable
r30 = 431.689 d30 = 1.40 n15 = 1.83481 v15 = 42.7
r31 = 36.686 d31 = 3.90 n16 = 1.72825 v16 = 28.5
r32 = -272.789 d32 = 1.40 n17 = 1.77250 v17 = 49.6
r33 = 53.286

Focal length 102.68 161.53 389.19
Variable interval
d 6 7.74 41.09 91.13
d 7 2.00 2.00 2.00
d 12 20.89 15.49 6.44
d 19 11.91 14.86 20.25
d 21 26.80 19.97 10.38
d 29 22.57 18.94 1.94
skinf 74.01 86.92 117.18

f FNo 2w w
102.7 4.6 23.8 11.9
161.5 5.1 15.3 7.6
389.2 5.8 6.4 3.2

Numerical example 3
f = 102.9 to 389.2 FNo = 1: 4.6 to 5.8 2ω = 23.7 ° to 6.4 °
r 1 = 112.875 d 1 = 5.60 n 1 = 1.48749 v 1 = 70.2
r 2 = 666.390 d 2 = 0.15
r 3 = 107.690 d 3 = 3.50 n 2 = 1.74950 v 2 = 35.0
r 4 = 66.588 d 4 = 0.12
r 5 = 67.147 d 5 = 10.00 n 3 = 1.43387 v 3 = 95.1
r 6 = 1910.719 d 6 = variable
r 7 = ∞ d 7 = variable
r 8 = -570.514 d 8 = 1.40 n 4 = 1.71300 v 4 = 53.9
r 9 = 56.723 d 9 = 3.63
r10 = -54.676 d10 = 1.40 n 5 = 1.62299 v 5 = 58.2
r11 = 69.446 d11 = 2.60 n 6 = 1.84666 v 6 = 23.8
r12 = -998.563 d12 = variable
r13 = 190.902 d13 = 6.40 n 7 = 1.43875 v 7 = 95.0
r14 = -35.709 d14 = 1.10
r15 = -36.408 d15 = 2.00 n 8 = 1.64769 v 8 = 33.8
r16 = -57.661 d16 = 0.20
r17 = 52.613 d17 = 2.60 n 9 = 1.59551 v 9 = 39.2
r18 = 105.172 d18 = 3.50
r19 = (Aperture) d19 = Variable
r20 = -45.038 d20 = 2.90 n10 = 1.60311 v10 = 60.6
r21 = -97.329 d21 = variable
r22 = -520.130 d22 = 3.50 n11 = 1.48749 v11 = 70.2
r23 = -56.696 d23 = 0.15
r24 = 147.567 d24 = 1.60 n12 = 1.80518 v12 = 25.4
r25 = 44.814 d25 = 1.12
r26 = 79.107 d26 = 3.20 n13 = 1.51633 v13 = 64.1
r27 = -300.545 d27 = 0.15
r28 = 41.007 d28 = 4.00 n14 = 1.63854 v14 = 55.4
r29 = 1408.886 d29 = variable
r30 = 400.379 d30 = 1.40 n15 = 1.83481 v15 = 42.7
r31 = 36.824 d31 = 4.20 n16 = 1.72825 v16 = 28.5
r32 = -273.139 d32 = 1.40 n17 = 1.77250 v17 = 49.6
r33 = 51.619

Focal length 102.90 205.68 389.18
Variable interval
d 6 5.02 51.00 88.15
d 7 2.00 2.00 2.00
d 12 22.31 13.57 8.14
d 19 11.51 16.32 18.57
d 21 27.22 15.13 11.50
d 29 22.62 16.31 1.55
skinf 73.86 96.20 117.77

f FNo 2w w
102.9 4.6 23.7 11.9
205.7 5.5 12.0 6.0
389.2 5.8 6.4 3.2
[0050]
[Table 1]
[0051]
【The invention's effect】
According to the present invention,
(A-1) The zoom lens is composed of six lens groups having a predetermined refractive power as a whole, and the refractive power of each lens group and the movement conditions of each lens group for zooming are appropriately set. Thus, it is possible to achieve a zoom lens having high optical performance over the entire zooming range while reducing the number of lenses and shortening the total lens length.
[0052]
(A-2) When correcting the displacement (blur) of a captured image by driving a part of the lens group of the optical system in the direction perpendicular to the optical axis, various lens elements are arranged appropriately. It is possible to achieve a zoom lens that can reduce the size of the entire apparatus by correcting decentration aberrations well and realizing sufficiently large displacement correction (blur correction) with a sufficiently small amount of decentering drive.
[0053]
(A-3) A zoom lens that corrects aberration fluctuations at the time of focusing can be achieved over a wide range of object distances from infinity to short-distance objects while adopting an inner focus type and floating type. .
[0054]
(B-4) A zoom lens is composed of six lens groups, and focusing is possible by using the sixth group and the fourth group. A zoom ratio of 4 with good optical performance from an infinite object to a close object is possible. A telephoto zoom lens of about double magnification can be achieved.
[Brief description of the drawings]
FIG. 1 is a lens cross-sectional view at the wide-angle end of Numerical Example 1 of the present invention. FIG. 2 is an aberration diagram of an object at infinity at the wide-angle end of Numerical Example 1 of the present invention. FIG. 4 is an aberration diagram of an object at infinity at the telephoto end according to Numerical Example 1 of the present invention. FIG. 5 is an aberration diagram at a telephoto end near object (4 m) according to Numerical Example 1 of the present invention. Aberration diagram [FIG. 6] Lens cross-sectional view at the wide-angle end of Numerical Example 2 of the present invention [FIG. 7] Aberration diagram of an object at infinity at the wide-angle end according to Numerical Example 2 of the present invention [FIG. FIG. 9 is an aberration diagram of an object at infinity at a telephoto end according to Numerical Example 2 of the present invention. FIG. 10 is an object at close to a telephoto end according to Numerical Example 2 according to the present invention (4 m). FIG. 11 is a lens cross-sectional view at the wide angle end according to Numerical Example 3 of the present invention. FIG. 12 is an object at infinity at the wide angle end according to Numerical Example 3 of the present invention. Aberration diagram [FIG. 13] Aberration diagram of a wide-angle end object (4 m) according to Numerical Example 3 of the present invention [FIG. 14] Aberration diagram of a telephoto end infinity object according to Numerical Example 3 of the present invention [FIG. 15] Aberration diagram of telephoto end closest object (4 m) in Numerical Example 3
L1 1st group L2 2nd group L3 3rd group L4 4th group L5 5th group L6 6th group SP Aperture ΔS Sagittal image plane ΔM Meridional image plane d d-line g g-line C sine condition

Claims (5)

物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、負の屈折力の第4群、正の屈折力の第5群、負の屈折力の第6群の6つのレンズ群より構成され、前記各レンズ群の間隔を変化させて変倍を行うズームレンズに於いて、前記第3群は物体側より正レンズ物体側に凹面を向けたメニスカス状の負レンズ物体側に強い凸面を向けた正レンズより構成され、前記第5群物体側より正レンズ、像側に強い凹面を向けた負レンズ、正レンズ、正レンズより構成され、前記第6群物体側より負レンズ、正レンズ、負レンズより構成され、第i群と第i+1群の広角端での間隔をDiW、第i群と第i+1群の望遠端での間隔をDiT、第1群の広角端から望遠端への変倍時の移動量をm1、第1,第2,第3,第5群の焦点距離を順にf1,f2,f3,f5、全系の望遠端の焦点距離をfTとしたとき、
D1W < D1T
D2W > D2T
D3W < D3T
D4W > D4T
D5W > D5T
−0.23 < m1/fT <−0.19
0.44 < f1/fT <0.52
0.11 < |f2|/fT <0.15
0.16 < f3/fT <0.25
0.12 < f5/fT <0.16
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side, the first group of positive refractive power, the second group of negative refractive power, the third group of positive refractive power, the fourth group of negative refractive power, the fifth group of positive refractive power, the negative In the zoom lens which is composed of six lens groups of the sixth lens group having a refractive power and performs zooming by changing the interval between the lens groups, the third lens group is a positive lens from the object side, and an object side. It consists of a negative meniscus lens with a concave surface, a positive lens with a strong convex surface on the object side, and the fifth group is a positive lens on the object side, a negative lens with a strong concave surface on the image side, a positive lens, and a positive lens. is composed of a lens, the sixth negative lens from the object side group, a positive lens, a negative lens, the i-th group and DiW apart at the wide-angle end of the (i + 1) group, the i group and tele of the i + 1 group The distance at the end is DiT, the moving amount at the time of zooming from the wide-angle end to the telephoto end of the first group is m1, the first, second, third, The focal length of the group order f1, f2, f3, f5, the focal length at the telephoto end of the entire system was fT,
D1W <D1T
D2W> D2T
D3W <D3T
D4W> D4T
D5W> D5T
−0.23 <m1 / fT <−0.19
0.44 <f1 / fT <0.52
0.11 <| f2 | / fT <0.15
0.16 <f3 / fT <0.25
0.12 <f5 / fT <0.16
A zoom lens satisfying the following conditional expression:
無限遠物体から至近物体へのフォーカシングを、前記第4群を物体側へ移動させるとともに、前記第6群を像側に移動させることにより行い前記第4群は物体側に凹面を向けたメニスカス状の負レンズで構成され前記第4群の焦点距離をf4、無限遠物体にフォーカスしているときの前記第6群の広角端における横倍率、望遠端における横倍率を各々β6W,β6Tとしたとき、
0.28 < |f4|/fT <0.4
2.0 < β6W <2.4
2.6 < β6T <3
なる条件式を満足することを特徴とする請求項1のズームレンズ。
Focusing from infinity to a close object, along with moving the fourth group to the object side, carried out by moving the sixth group on the image side, a meniscus wherein the fourth group having a concave surface on the object side consists of Jo negative lens, the fourth focal length of the group f4, infinite lateral magnification at the wide angle end of the sixth group when focusing on distant object, Beta6W each lateral magnification at the telephoto end, and β6T When
0.28 <| f4 | / fT <0.4
2.0 <β6W <2.4
2.6 <β6T <3
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
無限遠物体から任意の有限距離物体へのフォーカシングのための前記第4群の移動量は、焦点距離によらず略一定であることを特徴とする請求項1のズームレンズ。2. The zoom lens according to claim 1, wherein the amount of movement of the fourth group for focusing from an object at infinity to an object at an arbitrary finite distance is substantially constant regardless of the focal length . 前記第1群は物体側より正レンズ像側に凹面を向けたメニスカス状の負レンズ、正レンズで構成され、前記第2群は2枚の負レンズと1枚の正レンズで構成され、前記第2群を光軸と略垂直方向に移動させて撮影画像のブレを補正することを特徴とする請求項1のズームレンズ。The first group is a positive lens from the object side, a meniscus-shaped negative lens having a concave surface facing the image side, is a positive lens, the second group is composed of two negative lenses and one positive lens, the zoom lens according to claim 1, characterized in that the second group for compensating for the shot image blurring is moved in the optical axis direction substantially perpendicular. 前記第6群の3枚のレンズは各々接合されていることを特徴とする請求項1ズームレンズ。 The zoom lens according to claim 1 , wherein the six lenses of the sixth group are each cemented.
JP22939898A 1998-07-30 1998-07-30 Zoom lens Expired - Fee Related JP4227223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22939898A JP4227223B2 (en) 1998-07-30 1998-07-30 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939898A JP4227223B2 (en) 1998-07-30 1998-07-30 Zoom lens

Publications (3)

Publication Number Publication Date
JP2000047107A JP2000047107A (en) 2000-02-18
JP2000047107A5 JP2000047107A5 (en) 2005-10-20
JP4227223B2 true JP4227223B2 (en) 2009-02-18

Family

ID=16891592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939898A Expired - Fee Related JP4227223B2 (en) 1998-07-30 1998-07-30 Zoom lens

Country Status (1)

Country Link
JP (1) JP4227223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102071A1 (en) 2014-01-06 2015-07-09 リコーイメージング株式会社 Zoom lens system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352407A (en) * 2004-06-14 2005-12-22 Fujinon Corp Projection lens barrel
US8049968B2 (en) 2008-01-11 2011-11-01 Tamron Co., Ltd. Zoom lens
JP5115848B2 (en) * 2008-01-30 2013-01-09 株式会社ニコン Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5648907B2 (en) 2010-11-26 2015-01-07 株式会社ニコン Magnification optical system and optical instrument
WO2012081602A1 (en) * 2010-12-15 2012-06-21 株式会社ニコン Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system
JP5740965B2 (en) * 2010-12-15 2015-07-01 株式会社ニコン Variable magnification optical system and optical apparatus having the variable magnification optical system
CN103443687B (en) * 2010-12-15 2016-06-15 株式会社尼康 Become focus optical system, the optical device with this change focus optical system and the method for the manufacture of change focus optical system
JP5972075B2 (en) 2012-07-09 2016-08-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5984539B2 (en) 2012-07-09 2016-09-06 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6071465B2 (en) 2012-11-22 2017-02-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6143475B2 (en) 2013-01-30 2017-06-07 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6341727B2 (en) * 2014-04-03 2018-06-13 キヤノン株式会社 Zoom lens and imaging apparatus having the same
WO2019097716A1 (en) * 2017-11-20 2019-05-23 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102071A1 (en) 2014-01-06 2015-07-09 リコーイメージング株式会社 Zoom lens system
US9645367B2 (en) 2014-01-06 2017-05-09 Ricoh Imaging Company, Ltd. Zoom lens system

Also Published As

Publication number Publication date
JP2000047107A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP5006634B2 (en) Zoom lens and imaging apparatus having the same
JP4146977B2 (en) Zoom lens
JP4944499B2 (en) Zoom lens and imaging apparatus having the same
JP4046834B2 (en) Variable magnification optical system with anti-vibration function
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JPH11174329A (en) Variable power optical system having vibration-proof function
JP2001356381A (en) Zoom lens with vibration-proof function and optical equipment using the same
JP4227223B2 (en) Zoom lens
JP2006058584A (en) Zoom lens and imaging device incorporating it
JPH08248312A (en) Zoom lens
JP3745104B2 (en) Inner focus optical system with anti-vibration function
JP3526182B2 (en) Zoom lens and camera having the same
JP4545849B2 (en) Variable magnification optical system
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP4401469B2 (en) Zoom lens
JP4677210B2 (en) Zoom lens and image pickup apparatus using the same
JP5582918B2 (en) Zoom lens and imaging apparatus having the same
JP3144153B2 (en) Zoom lens
JP4533437B2 (en) Zoom lens
JP3147492B2 (en) Zoom lens
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JP4865218B2 (en) Zoom lens and imaging apparatus having the same
JP4672860B2 (en) Zoom lens and optical apparatus using the same
JP2001318315A (en) Zoom lens and optical apparatus using it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees