WO2012081602A1 - Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system - Google Patents

Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system Download PDF

Info

Publication number
WO2012081602A1
WO2012081602A1 PCT/JP2011/078870 JP2011078870W WO2012081602A1 WO 2012081602 A1 WO2012081602 A1 WO 2012081602A1 JP 2011078870 W JP2011078870 W JP 2011078870W WO 2012081602 A1 WO2012081602 A1 WO 2012081602A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
refractive power
focal length
Prior art date
Application number
PCT/JP2011/078870
Other languages
French (fr)
Japanese (ja)
Inventor
智希 伊藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010285367A external-priority patent/JP5740965B2/en
Priority claimed from JP2010285366A external-priority patent/JP5674125B2/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US13/994,730 priority Critical patent/US9091841B2/en
Priority to CN201180060509.XA priority patent/CN103443687B/en
Publication of WO2012081602A1 publication Critical patent/WO2012081602A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
  • variable power optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, JP-A-11-223770).
  • variable power optical system has a problem that the aberration fluctuation during zooming is large.
  • the present invention has been made in view of such problems, and provides a variable power optical system that satisfactorily suppress aberration fluctuations during variable power, an optical apparatus having the variable power system, and a method of manufacturing the variable power optical system.
  • the purpose is to provide.
  • the first aspect of the present invention is configured in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • a third lens group, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power, and these lenses The lens unit moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis.
  • the focal length of the first lens group is f1
  • the focal length of the third lens group is f3
  • the focal length of the fourth lens group is f4
  • the focal length of the fifth lens group is Provided is a variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) when f5 is satisfied. 1.62 ⁇ f1 / f3 ⁇ 2.23 (1) 1.71 ⁇ ( ⁇ f4) / f5 ⁇ 2.99 (2)
  • a second aspect of the present invention provides an optical apparatus characterized by having a variable magnification optical system according to the first aspect of the present invention.
  • the optical axis is fixed with respect to the image plane.
  • the focal length of the first lens group is f1
  • the focal length of the second lens group is f2
  • the focal length of the third lens group is f3
  • the following conditional expression (5 ) And (6) are satisfied, and a variable magnification optical system is provided. 3.10 ⁇ f1 / ( ⁇ f2) ⁇ 5.00 (5) 0.40 ⁇ ( ⁇ f2) / f3 ⁇ 0.60 (6)
  • a fourth aspect of the present invention provides an optical apparatus characterized by having the variable magnification optical system according to the third aspect of the present invention.
  • a method of manufacturing a variable magnification optical system having a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power at least a part of any one of the lens groups is movably disposed so as to include a component in a direction orthogonal to the optical axis, and the focal length of the first lens group is f1, and the third lens
  • the focal length of the group is f3
  • the focal length of the fourth lens group is f4
  • the focal length of the fifth lens group is f5
  • a method of manufacturing a variable magnification optical system having a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power At the time of zooming, the first lens unit is disposed so as to be fixed in the optical axis direction with respect to the image plane, the focal length of the first lens unit is f1, the focal length of the second lens unit is f2,
  • a variable magnification optical system manufacturing method characterized by disposing the three lens groups so as to satisfy the following conditional expressions (5) and (6) when the focal length of the three lens groups is f3. 3.10 ⁇ f1 / ( ⁇ f2) ⁇ 5.00 (5) 0.40 ⁇ ( ⁇ f2) / f
  • variable magnification optical system that satisfactorily suppress aberration fluctuations during variable magnification
  • an optical apparatus having the variable magnification optical system and a method for manufacturing the variable magnification optical system.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example.
  • 2A and 2B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the first example.
  • FIG. 2A shows the state at the infinite focus
  • FIG. 2B shows 0.3 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIGS. 3A and 3B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIG. 3A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • FIGS. 6A and 6B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the first example.
  • FIG. 4A shows an infinite focus state
  • FIG. 4B shows 0.2 ° in an infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIG. 5 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the second example.
  • FIGS. 6A and 6B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the second example.
  • FIG. 6A shows the infinite focus state
  • FIG. 6B shows 0.3 o in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIGS. 7A and 7B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIG. 7A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • FIGS. 8A and 8B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the second example.
  • FIG. 8A shows the infinite focus state
  • FIG. 8B shows the 0.2 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIG. 9 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the third example.
  • FIGS. 9 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the third example.
  • FIGS. 10A and 10B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the third example.
  • FIG. 10A shows the infinite focus state
  • FIG. 10B shows 0.3 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • 11A and 11B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the third example.
  • FIG. 11A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • 12A and 12B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 12A shows the infinite focus state
  • FIG. 12B shows 0.2 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIG. 13 is a cross-sectional view of a single-lens reflex camera equipped with a variable magnification optical system according to this embodiment.
  • FIG. 14 is a flowchart showing an outline of a method for manufacturing a variable magnification optical system according to the present embodiment.
  • FIG. 15 is a flowchart showing an outline of a method for manufacturing a variable magnification optical system viewed from another viewpoint according to the present embodiment.
  • variable magnification optical system ZL includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power And have.
  • variable magnification optical system ZL moves at least a part of any one of the first to sixth lens groups G1 to G6 so as to include a component in a direction orthogonal to the optical axis. It is configured to function as an anti-vibration lens group that displaces an image. By moving at least a part of any one of the first to sixth lens groups G1 to G6, the moving mechanism can be reduced in size.
  • the zoom optical system ZL has a distance between the first to sixth lens groups G1 to G6 (a distance between the first lens group G1 and the second lens group G2, a second lens group G2 and the like) during zooming.
  • the distance between G6 and the G6 is changed. Further, by changing the distance between the lens groups, it is possible to reduce the fluctuation of spherical aberration and the fluctuation of field curvature during zooming.
  • the first lens group G1 is fixed in the optical axis direction with respect to the image plane during zooming.
  • the first lens group G1 is fixed in the optical axis direction with respect to the image plane during zooming.
  • variable magnification optical system ZL satisfies the following conditional expression (1) when the focal length of the first lens group G1 is f1 and the focal length of the third lens group G3 is f3. It is characterized by that. 1.62 ⁇ f1 / f3 ⁇ 2.23 (1)
  • Conditional expression (1) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the third lens group G3. By satisfying conditional expression (1), spherical aberration and chromatic aberration at the telephoto end can be corrected well. If the value of f1 / f3 is less than the lower limit value of the conditional expression (1), the refractive power of the first lens group G1 increases, which makes it difficult to correct spherical aberration and chromatic aberration at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 1.70.
  • the refractive power of the first lens group G1 becomes small, leading to an increase in the total length.
  • the refractive power of the third lens group G3 increases, and it becomes difficult to correct spherical aberration at the telephoto end, which is not preferable.
  • variable magnification optical system ZL satisfies the following conditional expression (2) when the focal length of the fourth lens group G4 is f4 and the focal length of the fifth lens group G5 is f5. It is characterized by that. 1.71 ⁇ ( ⁇ f4) / f5 ⁇ 2.99 (2)
  • Conditional expression (2) defines an appropriate focal length of the fourth lens group G4 with respect to the focal length of the fifth lens group G5. By satisfying conditional expression (2), it is possible to satisfactorily correct the variation in spherical aberration during zooming. If the value of ( ⁇ f4) / f5 is less than the lower limit value of the conditional expression (2), the refractive power of the fourth lens group G4 increases, and the occurrence of decentration coma due to manufacturing errors becomes significant, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.90.
  • conditional expression (2) if the value of ( ⁇ f4) / f5 exceeds the upper limit value of conditional expression (2), the refractive power of the fourth lens group G4 becomes small, and it becomes difficult to correct the variation of spherical aberration at the time of zooming. It is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 2.85.
  • variable magnification optical system ZL is configured to satisfy the conditional expression (1) or the conditional expression (2), so that the aberration fluctuation at the time of zooming and the aberration fluctuation at the time of image blur correction are corrected. It is possible to realize a variable magnification optical system in which the above is satisfactorily suppressed.
  • the total length in the wide-angle end state (the distance along the optical axis from the lens surface closest to the object side of the variable magnification optical system ZL to the image plane) is TLw. It is preferable that the following conditional expression (3) is satisfied. 0.30 ⁇ f1 / TLw ⁇ 0.60 (3)
  • Conditional expression (3) defines an appropriate focal length of the first lens group G1 with respect to the optical total length of the zooming optical system ZL in the wide-angle end state. By satisfying conditional expression (3), it is possible to satisfactorily correct spherical aberration and chromatic aberration in the telephoto end state. If the value of f1 / TLw is less than the lower limit value of conditional expression (3), the refractive power of the first lens group G1 increases, and it becomes difficult to correct spherical aberration and chromatic aberration in the telephoto end state. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.35.
  • conditional expression (3) if the value of f1 / TLw exceeds the upper limit value of conditional expression (3), the total optical length becomes shorter than the refractive power of the first lens group G1, and it becomes difficult to correct curvature of field in the wide-angle end state. Absent. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (3) to 0.52.
  • Conditional expression (4) defines an appropriate focal length of the second lens group G2 with respect to the entire optical length of the variable magnification optical system ZL in the wide-angle end state.
  • variable magnification optical system ZL is provided between the third lens group G3 and the sixth lens group G6 (including being arranged between the lens group and the lens group or in the lens group). It is preferable to have an aperture stop S. With this configuration, coma and curvature of field can be favorably corrected.
  • variable magnification optical system ZL it is preferable that at least a part of the third lens group G3 moves along the optical axis during focusing. Furthermore, it is more preferable that all the lenses of the third lens group G3 move toward the object side along the optical axis during focusing. With this configuration, rapid focusing can be performed, and fluctuations in spherical aberration during focusing can be reduced.
  • each lens is arranged and a lens group is prepared (step S100).
  • a negative negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined, and the convex surface is directed to the object side.
  • the positive meniscus lens L13 and the positive meniscus lens L14 having a convex surface facing the object side are arranged as a first lens group G1, and in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, A cemented positive lens with a biconvex lens L23 and a biconcave lens L24 are arranged to form a second lens group G2, and in order from the object side, a biconvex lens L31, a biconvex lens L32, and a negative meniscus lens L33 with a concave surface facing the object side Are arranged as a third lens group G3, and a negative meniscus lens L41 having a concave surface facing the object side is arranged as a fourth lens group G4.
  • an aperture stop S In order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side are arranged as a fifth lens.
  • a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side are arranged in order from the object side to form a sixth lens group G6.
  • any one of the first to sixth lens groups (a part of the fifth lens group G5 in the case of FIG. 1) has a component in a direction perpendicular to the optical axis. It arrange
  • the focal length of the first lens group is f1
  • the focal length of the third lens group is f3
  • the focal length of the fourth lens group is f4, and the focal length of the fifth lens group.
  • variable magnification optical system ZL viewed from another viewpoint according to this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power.
  • the first lens group G1 is fixed in the optical axis direction with respect to the image plane during the variable magnification. By fixing the first lens group G1 in the optical axis direction with respect to the image plane, it is possible to simplify the drive mechanism for zooming, thereby reducing the size of the lens barrel.
  • variable magnification optical system ZL viewed from another point of view according to the present embodiment has an interval between the first to sixth lens groups G1 to G6, that is, the first lens group G1 and the second lens group, at the time of zooming.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, at least a part of any one of the first to sixth lens groups G1 to G6 is orthogonal to the optical axis. It is configured to function as an anti-vibration lens group that displaces an image by moving it so as to have a directional component. Thus, by moving a part of the lens group, the moving mechanism can be reduced in size.
  • variable magnification optical system ZL when the focal length of the first lens group G1 is f1, and the focal length of the second lens group G2 is f2, the following conditional expression Satisfies (5). 3.10 ⁇ f1 / ( ⁇ f2) ⁇ 5.00 (5)
  • Conditional expression (5) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the second lens group G2. By satisfying conditional expression (5), it is possible to satisfactorily correct spherical aberration and chromatic aberration in the telephoto end state. If the value of f1 / ( ⁇ f2) is less than the lower limit value of the conditional expression (5), the refractive power of the first lens group G1 increases, and it becomes difficult to correct spherical aberration and chromatic aberration in the telephoto end state. Absent. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 3.40.
  • the refractive power of the first lens group G1 becomes small, which leads to an increase in the total length.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment satisfies the following conditional expression (6) when the focal length of the third lens group G3 is f3. 0.40 ⁇ ( ⁇ f2) / f3 ⁇ 0.60 (6)
  • Conditional expression (6) defines an appropriate focal length of the second lens group G2 with respect to the focal length of the third lens group G3.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment is configured to satisfy the conditional expression (5) or the conditional expression (6). It is possible to realize a variable magnification optical system that satisfactorily suppress aberration fluctuations during blur correction.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, when the focal length of the fourth lens group G4 is f4 and the focal length of the sixth lens group G6 is f6, the following conditional expression It is preferable to satisfy (7). 2.00 ⁇ f4 / f6 ⁇ 3.00 (7)
  • Conditional expression (7) defines an appropriate focal length of the sixth lens group G6 with respect to the focal length of the fourth lens group G4. By satisfying conditional expression (7), it is possible to satisfactorily correct the variation in spherical aberration during zooming. If the value of f4 / f6 is less than the lower limit value of conditional expression (7), the refractive power of the fourth lens group G4 increases, and the occurrence of decentration coma due to manufacturing errors becomes significant. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 2.20.
  • the refractive power of the fourth lens group G4 becomes small, which makes it difficult to correct the variation of spherical aberration during zooming, which is not preferable.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment
  • the focal length of the fifth lens group G5 is f5
  • the focal length of the sixth lens group G6 is f6
  • the following conditional expression It is preferable to satisfy (8). 0.66 ⁇ f5 / ( ⁇ f6) ⁇ 1.50 (8)
  • Conditional expression (8) defines an appropriate focal length of the fifth lens group G5 with respect to the focal length of the sixth lens group G6.
  • conditional expression (8) it is possible to satisfactorily correct the variation in field curvature at the time of zooming. If the value of f5 / ( ⁇ f6) is less than the lower limit value of conditional expression (8), the refractive power of the fifth lens group G5 increases, and it becomes difficult to correct curvature of field and astigmatism in the wide-angle end state. It is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (8) to 0.80.
  • the refractive power of the fifth lens group G5 becomes small, and the fluctuation of the field curvature at the time of zooming can be corrected. It becomes difficult and undesirable.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment is disposed between the third lens group G3 and the sixth lens group G6 (between the lens group and the lens group or in the lens group). It is preferable to have an aperture stop S. With this configuration, coma and curvature of field can be favorably corrected.
  • variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, it is preferable that at least a part of the third lens group G3 moves along the optical axis during focusing. Furthermore, it is more preferable that all the lenses of the third lens group G3 move toward the object side along the optical axis during focusing. With this configuration, rapid focusing can be performed, and fluctuations in spherical aberration during focusing can be reduced.
  • each lens is arranged and a lens group is prepared (step S400).
  • a negative negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined, and the convex surface is directed to the object side.
  • the positive meniscus lens L13 and the positive meniscus lens L14 having a convex surface facing the object side are arranged as a first lens group G1, and in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, A cemented positive lens with a biconvex lens L23 and a biconcave lens L24 are arranged to form a second lens group G2, and in order from the object side, a biconvex lens L31, a biconvex lens L32, and a negative meniscus lens L33 with a concave surface facing the object side Are arranged as a third lens group G3, and a negative meniscus lens L41 having a concave surface facing the object side is arranged as a fourth lens group G4.
  • an aperture stop S In order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side are arranged as a fifth lens.
  • a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side are arranged in order from the object side to form a sixth lens group G6.
  • the first lens group G1 is arranged so as to be fixed in the optical axis direction with respect to the image plane (step S500).
  • lens groups G1 to G6 have the focal length of the first lens group G1 as f1, the focal length of the second lens group G2 as f2, and the focal length of the third lens group G3 as f3. (5) and (6) are satisfied (step S600).
  • FIG. 5, and FIG. 9 are sectional views showing the configuration of the variable magnification optical system ZL (ZL1 to ZL3) according to each example.
  • Each of these variable magnification optical systems ZL1 to ZL3 has, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power.
  • each lens group G1 to G6 when zooming from the wide-angle end state (W) to the telephoto end state (T)
  • the direction of movement is indicated by an arrow.
  • the axial air gap between the first lens group G1 and the second lens group G2 increases, the axial air gap between the second lens group G2 and the third lens group G3 changes, and the third lens.
  • the axial air gap between the group G3 and the fourth lens group G4 changes, the axial air gap between the fourth lens group G4 and the fifth lens group G5 decreases, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 is fixed in the optical axis direction with respect to the image plane, the second lens group G2 moves toward the image plane side, and the third lens group G3 is temporarily moved. After moving to the image plane side, it moves to the object side, the fourth lens group G4 once moves to the image plane side, then moves to the object side, the fifth lens group G5 moves to the object side, and the sixth lens group G6. Moves to the object side.
  • variable magnification optical systems ZL1 to ZL3 the third lens group G3 moves along the optical axis from the object side to the image plane side when focusing on the closest object from infinity.
  • a part of the fifth lens group G5 moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group.
  • a part of the sixth lens group G6 moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group.
  • FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example of the present application.
  • the first lens group G1 has, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. It is composed of a positive meniscus lens L13 and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a cemented positive lens of a biconcave lens L22 and a biconvex lens L23, and a biconcave lens L24.
  • the third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented negative lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side.
  • the fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side.
  • the fifth lens group G5 includes, in order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side. It is configured.
  • the sixth lens group G6 includes, in order from the object side, a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 with a concave surface facing the object side.
  • Table 1 below lists the values of the specifications of the first embodiment.
  • (total specifications) are the focal length f, the F number FNO, the angle of view 2 ⁇ , the image height in each of the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T).
  • Y and full length TL are shown respectively.
  • the first column m indicates the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam
  • the second column r indicates the curvature radius of each lens surface
  • the third column d indicates the distance (surface interval) on the optical axis from each optical surface to the next optical surface
  • the refractive index The total length TL represents the distance on the optical axis from the first surface of the lens surface to the image surface at the time of focusing on infinity.
  • the focal length of the entire system is f
  • the image movement amount on the imaging surface with respect to the image stabilization coefficient that is, the amount of movement of the moving lens group (anti-vibration lens group) in shake correction.
  • the image stabilization lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K. The same applies to the examples).
  • (anti-shake correction data) includes the focal length f in the wide-angle end state (M), the intermediate focal length state (M), and the telephoto end state (T) of the variable magnification optical system ZL1 according to the first example.
  • the vibration coefficient K, the rotational shake ⁇ (unit: degree), and the vibration-proof lens group movement amount Dvr (unit: mm) are shown.
  • (lens group data) indicates the start surface ST and the focal length of each of the first to sixth lens groups G1 to G6.
  • the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional.
  • a radius of curvature of 0.00 indicates a plane in the case of a lens surface, and indicates an aperture or a diaphragm surface in the case of a stop. Further, the refractive index of air of 1.0000 is omitted.
  • the description of these symbols and the description of the specification table are the same in the following examples.
  • FIGS. 2A and 2B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the first example.
  • FIG. 2A shows the state at the infinite focus
  • FIG. 2B shows 0.3 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIGS. 3A and 3B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIG. 3A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • FIGS. 4A and 4B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the first example.
  • FIG. 4A shows an infinite focus state
  • FIG. 4B shows 0.2 ° in an infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FNO represents an F number
  • A represents a half field angle
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • FIG. 5 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example of the present application.
  • the first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 in order from the object side, is a cemented negative lens composed of a biconvex lens L21 and a biconcave lens L22, a cemented negative lens composed of a biconcave lens L23 and a positive meniscus lens L24 having a convex surface facing the object, and a biconcave lens L25. It is composed of
  • the third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented positive lens formed by a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side.
  • the fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side.
  • the fifth lens group G5 includes, in order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a cemented positive lens formed by a negative meniscus lens L61 having a convex surface facing the object side and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side. .
  • FIGS. 6A and 6B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the second example.
  • FIG. 6A shows the infinite focus state
  • FIG. 6B shows 0.3 o in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • FIGS. 7A and 7B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIG. 7A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • FIGS. 8A and 8B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the second example.
  • FIG. 8A shows the infinite focus state
  • FIG. 8B shows the 0.2 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • various aberrations are corrected well and the imaging performance is excellent.
  • FIG. 9 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the third example of the present application.
  • the first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens composed of a positive meniscus lens L21 and a biconcave lens L22 having a concave surface directed toward the object side, a cemented negative lens composed of a biconvex lens L23 and a biconcave lens L24, and an object side. It is composed of a negative meniscus lens L25 having a concave surface.
  • the third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented negative lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side.
  • the fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side.
  • the fifth lens group G5 includes, in order from the object side, an aperture stop S, a cemented positive lens composed of a negative meniscus lens L51 having a convex surface facing the object side and a biconvex lens L52, and a positive meniscus lens L53 having a convex surface facing the object side. It is configured.
  • the sixth lens group G6 includes, in order from the object side, a cemented negative lens composed of a biconvex lens L61 and a biconcave lens L62, a negative meniscus lens L63 having a convex surface facing the object side, and a positive meniscus lens L64 having a convex surface facing the object side. It is composed of a cemented positive lens and a negative meniscus lens L65 having a concave surface facing the object side.
  • FIGS. 10A and 10B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the third example.
  • FIG. 10A shows the infinite focus state
  • FIG. 10B shows 0.3 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • 11A and 11B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the third example.
  • FIG. 11A shows the infinite focus state
  • FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown.
  • 12A and 12B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 10A shows the infinite focus state
  • FIG. 10B shows 0.3 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • 11A and 11B are graphs showing various aberrations in
  • FIG. 12A shows the infinite focus state
  • FIG. 12B shows 0.2 ° in the infinite focus state.
  • the coma aberration figure when performing the rotational shake correction of is shown.
  • various aberrations are corrected favorably and the imaging performance is excellent.
  • FIG. 13 is a schematic cross-sectional view of a single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL.
  • a camera single-lens reflex camera 1
  • variable magnification optical system ZL variable magnification optical system
  • light from an object (subject) (not shown) is collected by the taking lens 2 (variable magnification optical system ZL) and imaged on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6.
  • the photographer can observe the object (subject) image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 2 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1.
  • the camera 1 shown in FIG. 13 may hold the variable magnification optical system ZL in a detachable manner, or may be formed integrally with the variable magnification optical system ZL.
  • the camera 1 may be a so-called single-lens reflex camera. Further, even a camera that does not have a quick return mirror can achieve the same effects as the above camera.
  • variable magnification optical system ZL having a six-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as a seven-group configuration.
  • a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group includes at least one lens that is separated by an air interval that changes at the time of zooming or focusing, or that is separated depending on whether or not it moves so as to have a component substantially orthogonal to the optical axis. The part which has is shown.
  • a focusing lens group that performs focusing from an object at infinity to a near object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction may be used.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor).
  • a motor for autofocus such as an ultrasonic motor.
  • the third lens group G3 is a focusing lens group.
  • the lens group or the partial lens group is moved so as to have a component in a direction orthogonal to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake.
  • a vibration-proof lens group to be corrected may be used.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface. If all lens surfaces are formed with spherical surfaces without using an aspherical surface as in the variable magnification optical system ZL shown in this embodiment, lens processing and assembly adjustment are facilitated, and optical performance is deteriorated due to errors in processing and assembly adjustment. This is preferable. The same applies even if the lens surface includes a flat surface. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • variable magnification optical system ZL In the variable magnification optical system ZL according to this embodiment, the variable magnification ratio is about 2.5 to 8.
  • the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A variable power optical system (ZL), which is mounted in an optical device such as a single-lens reflex camera (1), comprises sequentially from the object side, a first lens group (G1) that has a positive refractive power, a second lens group (G2) that has a negative refractive power, a third lens group (G3) that has a positive refractive power, a fourth lens group (G4) that has a negative refractive power, a fifth lens group (G5) that has a positive refractive power and sixth lens group (G6) that has a negative refractive power. The variable power optical system (ZL) is configured such that at least some lenses in one lens group among the first to sixth lens groups (G1-G6) move so as to contain a component in the direction that is perpendicular to the optical axis. Consequently, there are provided: a variable power optical system wherein aberration fluctuation at the time when the power is varied is well suppressed; an optical device which comprises the variable power system; and a method for producing a variable power optical system.

Description

変倍光学系、この変倍光学系を有する光学機器、および変倍光学系の製造方法Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
 本発明は、変倍光学系、この変倍光学系を有する光学機器、および変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特開平11-223770公報参照)。 Conventionally, a variable power optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, JP-A-11-223770).
 しかしながら従来の変倍光学系は、変倍時の収差変動が大きいという課題があった。 However, the conventional variable power optical system has a problem that the aberration fluctuation during zooming is large.
 本発明はこのような課題に鑑みてなされたものであり、変倍時の収差変動を良好に抑えた変倍光学系、この変倍系を有する光学機器、および変倍光学系の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and provides a variable power optical system that satisfactorily suppress aberration fluctuations during variable power, an optical apparatus having the variable power system, and a method of manufacturing the variable power optical system. The purpose is to provide.
 前記課題を解決するために、本発明の第1態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有し、これらのレンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動する。そして、この変倍光学系は、第1レンズ群の焦点距離をf1とし、第3レンズ群の焦点距離をf3とし、第4レンズ群の焦点距離をf4とし、第5レンズ群の焦点距離をf5としたとき、以下の条件式(1)および(2)を満足することを特徴とする変倍光学系を提供する。
1.62 < f1/f3 < 2.23         (1)
1.71 < (-f4)/f5 < 2.99      (2)
In order to solve the above-described problem, the first aspect of the present invention is configured in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A third lens group, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power, and these lenses The lens unit moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis. In this zoom optical system, the focal length of the first lens group is f1, the focal length of the third lens group is f3, the focal length of the fourth lens group is f4, and the focal length of the fifth lens group is Provided is a variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) when f5 is satisfied.
1.62 <f1 / f3 <2.23 (1)
1.71 <(− f4) / f5 <2.99 (2)
 また、本発明の第2態様は、本発明の第1態様に係る変倍光学系を有することを特徴とする光学機器を提供する。 Also, a second aspect of the present invention provides an optical apparatus characterized by having a variable magnification optical system according to the first aspect of the present invention.
 また、本発明の第3態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有し、変倍に際し、第1レンズ群は、像面に対して光軸方向に固定されている。そして、この変倍光学系は、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3としたとき、以下の条件式(5)および(6)を満足することを特徴とする変倍光学系を提供する。
3.10 < f1/(-f2) < 5.00     (5)
0.40 < (-f2)/f3 < 0.60     (6)
Further, according to a third aspect of the present invention, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, A fourth lens group having negative refracting power, a fifth lens group having positive refracting power, and a sixth lens group having negative refracting power. The optical axis is fixed with respect to the image plane. In this zoom optical system, when the focal length of the first lens group is f1, the focal length of the second lens group is f2, and the focal length of the third lens group is f3, the following conditional expression (5 ) And (6) are satisfied, and a variable magnification optical system is provided.
3.10 <f1 / (− f2) <5.00 (5)
0.40 <(− f2) / f3 <0.60 (6)
 また、本発明の第4態様は、本発明の第3態様に係る変倍光学系を有することを特徴とする光学機器を提供する。 Also, a fourth aspect of the present invention provides an optical apparatus characterized by having the variable magnification optical system according to the third aspect of the present invention.
 また、本発明の第5態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有する変倍光学系の製造方法であって、これらのレンズ群のうち、いずれか1つのレンズ群の少なくとも一部を光軸と直交する方向の成分を含むように移動可能に配置し、第1レンズ群の焦点距離をf1と、第3レンズ群の焦点距離をf3とし、第4レンズ群の焦点距離をf4とし、第5レンズ群の焦点距離をf5としたとき、以下の条件式(1)および(2)を満足するように配置することを特徴とする変倍光学系の製造方法を提供する。
1.62 < f1/f3 < 2.23          (1)
1.71 < (-f4)/f5 < 2.99       (2)
According to a fifth aspect of the present invention, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power; A method of manufacturing a variable magnification optical system having a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power, Among these lens groups, at least a part of any one of the lens groups is movably disposed so as to include a component in a direction orthogonal to the optical axis, and the focal length of the first lens group is f1, and the third lens When the focal length of the group is f3, the focal length of the fourth lens group is f4, and the focal length of the fifth lens group is f5, they are arranged so as to satisfy the following conditional expressions (1) and (2). A variable magnification optical system manufacturing method is provided.
1.62 <f1 / f3 <2.23 (1)
1.71 <(− f4) / f5 <2.99 (2)
 また、本発明の第6態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有する変倍光学系の製造方法であって、変倍に際し、第1レンズ群は、像面に対して光軸方向に固定されるように配置され、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3としたとき、以下の条件式(5)および(6)を満足するように配置することを特徴とする変倍光学系の製造方法を提供する。
3.10 < f1/(-f2) < 5.00      (5)
0.40 < (-f2)/f3 < 0.60      (6)
According to a sixth aspect of the present invention, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power; A method of manufacturing a variable magnification optical system having a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power, At the time of zooming, the first lens unit is disposed so as to be fixed in the optical axis direction with respect to the image plane, the focal length of the first lens unit is f1, the focal length of the second lens unit is f2, Provided is a variable magnification optical system manufacturing method characterized by disposing the three lens groups so as to satisfy the following conditional expressions (5) and (6) when the focal length of the three lens groups is f3.
3.10 <f1 / (− f2) <5.00 (5)
0.40 <(− f2) / f3 <0.60 (6)
 本発明によれば、変倍時の収差変動を良好に抑えた変倍光学系、この変倍光学系を有する光学機器、および変倍光学系の製造方法を提供することができる。 According to the present invention, it is possible to provide a variable magnification optical system that satisfactorily suppress aberration fluctuations during variable magnification, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
図1は、第1実施例に係る変倍光学系のレンズ構成を示す断面図である。FIG. 1 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example. 図2A、2Bは、第1実施例に係る変倍光学系の広角端状態における諸収差図であり、図2Aは無限遠合焦時を示し、図2Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。2A and 2B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the first example. FIG. 2A shows the state at the infinite focus, and FIG. 2B shows 0.3 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図3A、3Bは、第1実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図3Aは無限遠合焦時を示し、図3Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 3A and 3B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the first example. FIG. 3A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. 図4A、4Bは、第1実施例に係る変倍光学系の望遠端状態における諸収差図であり、図4Aは無限遠合焦時を示し、図4Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 4A and 4B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the first example. FIG. 4A shows an infinite focus state, and FIG. 4B shows 0.2 ° in an infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図5は、第2実施例に係る変倍光学系のレンズ構成を示す断面図である。FIG. 5 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the second example. 図6A、6Bは、第2実施例に係る変倍光学系の広角端状態における諸収差図であり、図6Aは無限遠合焦時を示し、図6Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 6A and 6B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the second example. FIG. 6A shows the infinite focus state, and FIG. 6B shows 0.3 o in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図7A、7Bは、第2実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図7Aは無限遠合焦時を示し、図7Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 7A and 7B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the second example. FIG. 7A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. 図8A、8Bは、第2実施例に係る変倍光学系の望遠端状態における諸収差図であり、図8Aは無限遠合焦時を示し、図8Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 8A and 8B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the second example. FIG. 8A shows the infinite focus state, and FIG. 8B shows the 0.2 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図9は、第3実施例に係る変倍光学系のレンズ構成を示す断面図である。FIG. 9 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the third example. 図10A、10Bは、第3実施例に係る変倍光学系の広角端状態における諸収差図であり、図10Aは無限遠合焦時を示し、図10Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。FIGS. 10A and 10B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the third example. FIG. 10A shows the infinite focus state, and FIG. 10B shows 0.3 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図11A、11Bは、第3実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図11Aは無限遠合焦時を示し、図11Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。11A and 11B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the third example. FIG. 11A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. 図12A、12Bは、第3実施例に係る変倍光学系の望遠端状態における諸収差図であり、図12Aは無限遠合焦時を示し、図12Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。12A and 12B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the third example. FIG. 12A shows the infinite focus state, and FIG. 12B shows 0.2 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 図13は、本実施形態に係る変倍光学系が搭載された一眼レフカメラの断面図を示す。FIG. 13 is a cross-sectional view of a single-lens reflex camera equipped with a variable magnification optical system according to this embodiment. 図14は、本実施形態に係る変倍光学系の製造方法の概要を示すフローチャートである。FIG. 14 is a flowchart showing an outline of a method for manufacturing a variable magnification optical system according to the present embodiment. 図15は、本実施形態に係る別の観点から見た変倍光学系の製造方法の概要を示すフローチャートである。FIG. 15 is a flowchart showing an outline of a method for manufacturing a variable magnification optical system viewed from another viewpoint according to the present embodiment.
 以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とを有する。また、この変倍光学系ZLは、第1~第6レンズ群G1~G6のうち、いずれか1つのレンズ群の少なくとも一部を、光軸と直交する方向の成分を含むように移動させて像を変位させる防振レンズ群として機能させるように構成されている。第1~第6レンズ群G1~G6のいずれか1つのレンズ群の少なくとも一部を移動させることにより、移動機構の小型化を図ることができる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power And have. The variable magnification optical system ZL moves at least a part of any one of the first to sixth lens groups G1 to G6 so as to include a component in a direction orthogonal to the optical axis. It is configured to function as an anti-vibration lens group that displaces an image. By moving at least a part of any one of the first to sixth lens groups G1 to G6, the moving mechanism can be reduced in size.
 また、この変倍光学系ZLは、変倍に際し、上記第1~第6レンズ群G1~G6どうしの間隔(第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔)が変化するように構成されている。また、レンズ群どうしの間隔を変化させることにより、変倍時の球面収差の変動および像面湾曲の変動を小さくすることができる。 In addition, the zoom optical system ZL has a distance between the first to sixth lens groups G1 to G6 (a distance between the first lens group G1 and the second lens group G2, a second lens group G2 and the like) during zooming. The distance between the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group. The distance between G6 and the G6 is changed. Further, by changing the distance between the lens groups, it is possible to reduce the fluctuation of spherical aberration and the fluctuation of field curvature during zooming.
 また、この変倍光学系ZLは、変倍に際し、第1レンズ群G1が像面に対して光軸方向に固定されている。第1レンズ群G1を像面に対して光軸方向に固定することにより、変倍のための駆動機構を簡素化することができ、これにより鏡筒の小型化を図ることができる。 In the zoom optical system ZL, the first lens group G1 is fixed in the optical axis direction with respect to the image plane during zooming. By fixing the first lens group G1 in the optical axis direction with respect to the image plane, it is possible to simplify the drive mechanism for zooming, thereby reducing the size of the lens barrel.
 それでは、本実施形態に係る変倍光学系ZLを構成するための条件について説明する。まず、本実施形態に係る変倍光学系ZLは、第1レンズ群G1の焦点距離をf1とし、第3レンズ群G3の焦点距離をf3としたとき、以下の条件式(1)を満足することを特徴とする。
1.62 < f1/f3 < 2.23           (1)
Now, conditions for configuring the variable magnification optical system ZL according to the present embodiment will be described. First, the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (1) when the focal length of the first lens group G1 is f1 and the focal length of the third lens group G3 is f3. It is characterized by that.
1.62 <f1 / f3 <2.23 (1)
 条件式(1)は第3レンズ群G3の焦点距離に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(1)を満足することにより、望遠端における球面収差と色収差を良好に補正することができる。f1/f3の値が条件式(1)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端における球面収差と色収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を1.70にすることが好ましい。また、f1/f3の値が条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、全長の増大を招いてしまう。また、第3レンズ群G3の屈折力が大きくなり、望遠端における球面収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を2.20にすることが好ましい。 Conditional expression (1) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the third lens group G3. By satisfying conditional expression (1), spherical aberration and chromatic aberration at the telephoto end can be corrected well. If the value of f1 / f3 is less than the lower limit value of the conditional expression (1), the refractive power of the first lens group G1 increases, which makes it difficult to correct spherical aberration and chromatic aberration at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 1.70. On the other hand, if the value of f1 / f3 exceeds the upper limit value of the conditional expression (1), the refractive power of the first lens group G1 becomes small, leading to an increase in the total length. In addition, the refractive power of the third lens group G3 increases, and it becomes difficult to correct spherical aberration at the telephoto end, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 2.20.
 また、本実施形態に係る変倍光学系ZLは、第4レンズ群G4の焦点距離をf4とし、第5レンズ群G5の焦点距離をf5としたとき、以下の条件式(2)を満足することを特徴とする。
1.71 < (-f4)/f5 < 2.99        (2)
Further, the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (2) when the focal length of the fourth lens group G4 is f4 and the focal length of the fifth lens group G5 is f5. It is characterized by that.
1.71 <(− f4) / f5 <2.99 (2)
 条件式(2)は第5レンズ群G5の焦点距離に対する、適正な第4レンズ群G4の焦点距離を規定するものである。条件式(2)を満足することにより、変倍時の球面収差の変動を良好に補正することができる。(-f4)/f5の値が条件式(2)の下限値を下回ると、第4レンズ群G4の屈折力が大きくなり、製造誤差による偏心コマ収差の発生が顕著になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を1.90にすることが好ましい。また、(-f4)/f5の値が条件式(2)の上限値を上回ると、第4レンズ群G4の屈折力が小さくなり、変倍時の球面収差の変動を補正することが困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を2.85にすることが好ましい。 Conditional expression (2) defines an appropriate focal length of the fourth lens group G4 with respect to the focal length of the fifth lens group G5. By satisfying conditional expression (2), it is possible to satisfactorily correct the variation in spherical aberration during zooming. If the value of (−f4) / f5 is less than the lower limit value of the conditional expression (2), the refractive power of the fourth lens group G4 increases, and the occurrence of decentration coma due to manufacturing errors becomes significant, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.90. On the other hand, if the value of (−f4) / f5 exceeds the upper limit value of conditional expression (2), the refractive power of the fourth lens group G4 becomes small, and it becomes difficult to correct the variation of spherical aberration at the time of zooming. It is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 2.85.
 このように本実施形態に係る変倍光学系ZLは、条件式(1)又は条件式(2)を満足するように構成することにより、変倍時の収差変動および像ぶれ補正時の収差変動を良好に抑えた変倍光学系を実現することができる。 As described above, the variable magnification optical system ZL according to the present embodiment is configured to satisfy the conditional expression (1) or the conditional expression (2), so that the aberration fluctuation at the time of zooming and the aberration fluctuation at the time of image blur correction are corrected. It is possible to realize a variable magnification optical system in which the above is satisfactorily suppressed.
 また、本実施形態に係る変倍光学系ZLは、広角端状態での全長(本変倍光学系ZLの最も物体側のレンズ面から像面までの光軸に沿った距離)をTLwとしたとき、以下の条件式(3)を満足することが好ましい。
0.30 < f1/TLw < 0.60          (3)
In the variable magnification optical system ZL according to the present embodiment, the total length in the wide-angle end state (the distance along the optical axis from the lens surface closest to the object side of the variable magnification optical system ZL to the image plane) is TLw. It is preferable that the following conditional expression (3) is satisfied.
0.30 <f1 / TLw <0.60 (3)
 条件式(3)は広角端状態における本変倍光学系ZLの光学全長に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(3)を満足することにより、望遠端状態における球面収差と色収差を良好に補正することができる。f1/TLwの値が、条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端状態における球面収差と色収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を0.35にすることが好ましい。また、f1/TLwの値が、条件式(3)の上限値を上回ると、第1レンズ群G1の屈折力に対し光学全長が短くなり、広角端状態における像面湾曲の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を0.52にすることが好ましい。 Conditional expression (3) defines an appropriate focal length of the first lens group G1 with respect to the optical total length of the zooming optical system ZL in the wide-angle end state. By satisfying conditional expression (3), it is possible to satisfactorily correct spherical aberration and chromatic aberration in the telephoto end state. If the value of f1 / TLw is less than the lower limit value of conditional expression (3), the refractive power of the first lens group G1 increases, and it becomes difficult to correct spherical aberration and chromatic aberration in the telephoto end state. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.35. On the other hand, if the value of f1 / TLw exceeds the upper limit value of conditional expression (3), the total optical length becomes shorter than the refractive power of the first lens group G1, and it becomes difficult to correct curvature of field in the wide-angle end state. Absent. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (3) to 0.52.
 また、本実施形態に係る変倍光学系は、第2レンズ群G2の焦点距離をf2としたとき、以下の条件式(4)を満足することが好ましい。
0.08 < (-f2)/TLw < 0.15       (4)
In the zoom optical system according to this embodiment, it is preferable that the following conditional expression (4) is satisfied when the focal length of the second lens group G2 is f2.
0.08 <(− f2) / TLw <0.15 (4)
 条件式(4)は広角端状態における変倍光学系ZLの光学全長に対する、適正な第2レンズ群G2の焦点距離を規定するものである。条件式(4)を満足することにより、広角端状態におけるコマ収差、および望遠端状態における球面収差を良好に補正することができる。(-f2)/TLwの値が条件式(4)の下限値を下回ると、第2レンズ群G2の屈折力が大きくなり、広角端状態におけるコマ収差、および望遠端状態における球面収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を0.09にすることが好ましい。また、(-f2)/TLwの値が条件式(4)の上限値を上回ると、第2レンズ群G2の屈折力が小さくなり、第1レンズ群G1の径が大きくなってしまい好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を0.14にすることが好ましい。 Conditional expression (4) defines an appropriate focal length of the second lens group G2 with respect to the entire optical length of the variable magnification optical system ZL in the wide-angle end state. By satisfying conditional expression (4), coma aberration in the wide-angle end state and spherical aberration in the telephoto end state can be favorably corrected. When the value of (−f2) / TLw falls below the lower limit value of the conditional expression (4), the refractive power of the second lens group G2 increases, and the coma aberration in the wide-angle end state and the spherical aberration in the telephoto end state are corrected. It becomes difficult and undesirable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.09. On the other hand, if the value of (−f2) / TLw exceeds the upper limit value of the conditional expression (4), the refractive power of the second lens group G2 becomes small, and the diameter of the first lens group G1 becomes large. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.14.
 また、本実施形態に係る変倍光学系ZLは、第3レンズ群G3と第6レンズ群G6の間(レンズ群とレンズ群との間、または、レンズ群中に配置されることも含む)に開口絞りSを有することが好ましい。この構成により、コマ収差と像面湾曲を良好に補正することができる。 In addition, the variable magnification optical system ZL according to the present embodiment is provided between the third lens group G3 and the sixth lens group G6 (including being arranged between the lens group and the lens group or in the lens group). It is preferable to have an aperture stop S. With this configuration, coma and curvature of field can be favorably corrected.
 また、本実施形態に係る変倍光学系ZLは、合焦に際し、第3レンズ群G3の少なくとも一部が光軸に沿って移動することが好ましい。さらに、第3レンズ群G3の全てのレンズが、合焦に際し、光軸に沿って物体側に移動することがより好ましい。この構成により、迅速な合焦を行うことができ、また合焦時の球面収差の変動を小さくすることができる。 In the variable magnification optical system ZL according to the present embodiment, it is preferable that at least a part of the third lens group G3 moves along the optical axis during focusing. Furthermore, it is more preferable that all the lenses of the third lens group G3 move toward the object side along the optical axis during focusing. With this configuration, rapid focusing can be performed, and fluctuations in spherical aberration during focusing can be reduced.
 以下、本実施形態の変倍光学系ZLの製造方法の概略を、図14を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS100)。具体的に、本実施形態では、例えば、図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合負レンズ、物体側に凸面を向けた正メニスカスレンズL13、および物体側に凸面を向けた正メニスカスレンズL14を配置して第1レンズ群G1とし、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と両凸レンズL23との接合正レンズ、および両凹レンズL24を配置して第2レンズ群G2とし、物体側から順に、両凸レンズL31、および両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合負レンズを配置して第3レンズ群G3とし、物体側に凹面を向けた負メニスカスレンズL41を配置して第4レンズ群G4とし、物体側から順に、開口絞りS、物体側に凸面を向けた正メニスカスレンズL51、および両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズを配置して第5レンズ群G5とし、物体側から順に、両凹レンズL61と両凸レンズL62との接合正レンズ、および物体側に凹面を向けた負メニスカスレンズL63を配置して第6レンズ群G6とする。 Hereinafter, an outline of a manufacturing method of the variable magnification optical system ZL of the present embodiment will be described with reference to FIG. First, each lens is arranged and a lens group is prepared (step S100). Specifically, in the present embodiment, for example, as illustrated in FIG. 1, in order from the object side, a negative negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined, and the convex surface is directed to the object side. The positive meniscus lens L13 and the positive meniscus lens L14 having a convex surface facing the object side are arranged as a first lens group G1, and in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, A cemented positive lens with a biconvex lens L23 and a biconcave lens L24 are arranged to form a second lens group G2, and in order from the object side, a biconvex lens L31, a biconvex lens L32, and a negative meniscus lens L33 with a concave surface facing the object side Are arranged as a third lens group G3, and a negative meniscus lens L41 having a concave surface facing the object side is arranged as a fourth lens group G4. In order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side are arranged as a fifth lens. In order from the object side, a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side are arranged in order from the object side to form a sixth lens group G6.
 この際、これらの第1~第6レンズ群のうち、いずれか1つのレンズ群の少なくとも一部(図1の場合、第5レンズ群G5の一部)を光軸と直交する方向の成分を含むように移動可能に配置する(ステップS200)。 At this time, at least a part of any one of the first to sixth lens groups (a part of the fifth lens group G5 in the case of FIG. 1) has a component in a direction perpendicular to the optical axis. It arrange | positions so that a movement is included (step S200).
 そして、これらのレンズ群G1~G6を、第1レンズ群の焦点距離をf1とし、第3レンズ群の焦点距離をf3とし、第4レンズ群の焦点距離をf4とし、第5レンズ群の焦点距離をf5としたとき、前述の条件式(1)および(2)を満足するよう配置する(ステップS300)。 In these lens groups G1 to G6, the focal length of the first lens group is f1, the focal length of the third lens group is f3, the focal length of the fourth lens group is f4, and the focal length of the fifth lens group. When the distance is set to f5, it arrange | positions so that the above-mentioned conditional expression (1) and (2) may be satisfied (step S300).
 次に、本実施形態に係る別の観点から見た変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、を有する。また、本実施形態に係る別の観点から見た変倍光学系ZLは、変倍に際し、第1レンズ群G1が像面に対して光軸方向に固定されている。第1レンズ群G1を像面に対して光軸方向に固定することにより、変倍のための駆動機構を簡素化することができ、これにより鏡筒の小型化を図ることができる。 Next, the variable magnification optical system ZL viewed from another viewpoint according to this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens having a negative refractive power And Group G6. Further, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane during the variable magnification. By fixing the first lens group G1 in the optical axis direction with respect to the image plane, it is possible to simplify the drive mechanism for zooming, thereby reducing the size of the lens barrel.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、変倍に際し、上記第1~第6レンズ群G1~G6どうしの間隔、すなわち第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔が変化することが好ましい。この構成により、変倍時の球面収差の変動、像面湾曲の変動を小さくすることができる。 Further, the variable magnification optical system ZL viewed from another point of view according to the present embodiment has an interval between the first to sixth lens groups G1 to G6, that is, the first lens group G1 and the second lens group, at the time of zooming. The distance between G2, the distance between the second lens group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and It is preferable that the distance between the fifth lens group G5 and the sixth lens group G6 changes. With this configuration, fluctuations in spherical aberration and field curvature during zooming can be reduced.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、上記第1~第6レンズ群G1~G6のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を持つように移動させて像を変位させる防振レンズ群として機能させるように構成されている。このように、レンズ群の一部を移動させることにより、移動機構の小型化を図ることができる。 Further, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, at least a part of any one of the first to sixth lens groups G1 to G6 is orthogonal to the optical axis. It is configured to function as an anti-vibration lens group that displaces an image by moving it so as to have a directional component. Thus, by moving a part of the lens group, the moving mechanism can be reduced in size.
 それでは、本実施形態に係る別の観点から見た変倍光学系ZLを構成するための条件について説明する。まず、本実施形態に係る別の観点から見た変倍光学系ZLは、第1レンズ群G1の焦点距離をf1とし、第2レンズ群G2の焦点距離をf2としたとき、以下の条件式(5)を満足する。
3.10 < f1/(-f2) < 5.00        (5)
The conditions for configuring the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment will now be described. First, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, when the focal length of the first lens group G1 is f1, and the focal length of the second lens group G2 is f2, the following conditional expression Satisfies (5).
3.10 <f1 / (− f2) <5.00 (5)
 条件式(5)は第2レンズ群G2の焦点距離に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(5)を満足することにより、望遠端状態における球面収差と色収差を良好に補正することができる。f1/(-f2)の値が、条件式(5)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端状態における球面収差と色収差の補正が困難となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の下限値を3.40にすることが好ましい。また、f1/(-f2)の値が、条件式(5)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、全長の増大を招いてしまうため好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の上限値を4.50とすることが好ましい。 Conditional expression (5) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the second lens group G2. By satisfying conditional expression (5), it is possible to satisfactorily correct spherical aberration and chromatic aberration in the telephoto end state. If the value of f1 / (− f2) is less than the lower limit value of the conditional expression (5), the refractive power of the first lens group G1 increases, and it becomes difficult to correct spherical aberration and chromatic aberration in the telephoto end state. Absent. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 3.40. On the other hand, if the value of f1 / (− f2) exceeds the upper limit value of the conditional expression (5), the refractive power of the first lens group G1 becomes small, which leads to an increase in the total length. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 4.50.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、第3レンズ群G3の焦点距離をf3としたとき、以下の条件式(6)を満足する。
0.40 < (-f2)/f3 < 0.60        (6)
In addition, the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment satisfies the following conditional expression (6) when the focal length of the third lens group G3 is f3.
0.40 <(− f2) / f3 <0.60 (6)
 条件式(6)は第3レンズ群G3の焦点距離に対する、適正な第2レンズ群G2の焦点距離を規定するものである。条件式(6)を満足することにより、広角端状態におけるコマ収差、および望遠端状態における球面収差を良好に補正することができる。(-f2)/f3の値が、条件式(6)の下限値を下回ると、第2レンズ群G2の屈折力が大きくなり、広角端状態におけるコマ収差、および望遠端における球面収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の下限値を0.42にすることが好ましい。また、(-f2)/f3の値が、条件式(6)の上限値を上回ると、第2レンズ群G2の屈折力が小さくなり、第1レンズ群G1の径が大きくなってしまうため好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の上限値を0.55とすることが好ましい。 Conditional expression (6) defines an appropriate focal length of the second lens group G2 with respect to the focal length of the third lens group G3. By satisfying conditional expression (6), coma aberration in the wide-angle end state and spherical aberration in the telephoto end state can be corrected well. When the value of (−f2) / f3 falls below the lower limit value of conditional expression (6), the refractive power of the second lens group G2 increases, and the coma aberration at the wide-angle end state and the spherical aberration at the telephoto end are corrected. It becomes difficult and undesirable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.42. Further, if the value of (−f2) / f3 exceeds the upper limit value of the conditional expression (6), the refractive power of the second lens group G2 decreases, and the diameter of the first lens group G1 increases, which is preferable. Absent. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 0.55.
 このように本実施形態に係る別の観点から見た変倍光学系ZLは、条件式(5)又は条件式(6)を満足するように構成することにより、変倍時の収差変動および像ぶれ補正時の収差変動を良好に抑えた変倍光学系を実現することができる。 As described above, the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment is configured to satisfy the conditional expression (5) or the conditional expression (6). It is possible to realize a variable magnification optical system that satisfactorily suppress aberration fluctuations during blur correction.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、第4レンズ群G4の焦点距離をf4とし、第6レンズ群G6の焦点距離をf6としたとき、以下の条件式(7)を満足することが好ましい。
2.00 < f4/f6 < 3.00           (7)
Further, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, when the focal length of the fourth lens group G4 is f4 and the focal length of the sixth lens group G6 is f6, the following conditional expression It is preferable to satisfy (7).
2.00 <f4 / f6 <3.00 (7)
 条件式(7)は第4レンズ群G4の焦点距離に対する、適正な第6レンズ群G6の焦点距離を規定するものである。条件式(7)を満足することにより、変倍時の球面収差の変動を良好に補正することができる。f4/f6の値が、条件式(7)の下限値を下回ると、第4レンズ群G4の屈折力が大きくなり、製造誤差による偏心コマ収差の発生が顕著になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の下限値を2.20にすることが好ましい。また、f4/f6の値が、条件式(7)の上限値を上回ると、第4レンズ群G4の屈折力が小さくなり、変倍時の球面収差の変動を補正することが困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の上限値を2.80にすることが好ましい。 Conditional expression (7) defines an appropriate focal length of the sixth lens group G6 with respect to the focal length of the fourth lens group G4. By satisfying conditional expression (7), it is possible to satisfactorily correct the variation in spherical aberration during zooming. If the value of f4 / f6 is less than the lower limit value of conditional expression (7), the refractive power of the fourth lens group G4 increases, and the occurrence of decentration coma due to manufacturing errors becomes significant. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 2.20. On the other hand, if the value of f4 / f6 exceeds the upper limit value of the conditional expression (7), the refractive power of the fourth lens group G4 becomes small, which makes it difficult to correct the variation of spherical aberration during zooming, which is not preferable. . In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (7) to 2.80.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、第5レンズ群G5の焦点距離をf5とし、第6レンズ群G6の焦点距離をf6としたとき、以下の条件式(8)を満足することが好ましい。
0.66 < f5/(-f6) < 1.50        (8)
Further, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, when the focal length of the fifth lens group G5 is f5 and the focal length of the sixth lens group G6 is f6, the following conditional expression It is preferable to satisfy (8).
0.66 <f5 / (− f6) <1.50 (8)
 条件式(8)は第6レンズ群G6の焦点距離に対する、適正な第5レンズ群G5の焦点距離を規定するものである。条件式(8)を満足することにより、変倍時の像面湾曲の変動を良好に補正することができる。f5/(-f6)の値が、条件式(8)の下限値を下回ると、第5レンズ群G5の屈折力が大きくなり、広角端状態における像面湾曲および非点収差の補正が困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(8)の下限値を0.80にすることが好ましい。また、f5/(-f6)の値が、条件式(8)の上限値を上回ると、第5レンズ群G5の屈折力が小さくなり、変倍時の像面湾曲の変動を補正することが困難となり好ましくない。なお、本実施形態の効果を確実にするために、条件式(8)の上限値を1.30にすることが好ましい。 Conditional expression (8) defines an appropriate focal length of the fifth lens group G5 with respect to the focal length of the sixth lens group G6. By satisfying conditional expression (8), it is possible to satisfactorily correct the variation in field curvature at the time of zooming. If the value of f5 / (− f6) is less than the lower limit value of conditional expression (8), the refractive power of the fifth lens group G5 increases, and it becomes difficult to correct curvature of field and astigmatism in the wide-angle end state. It is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (8) to 0.80. Further, when the value of f5 / (− f6) exceeds the upper limit value of the conditional expression (8), the refractive power of the fifth lens group G5 becomes small, and the fluctuation of the field curvature at the time of zooming can be corrected. It becomes difficult and undesirable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (8) to 1.30.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、第3レンズ群G3と第6レンズ群G6の間(レンズ群とレンズ群との間、または、レンズ群中に配置されることも含む)に開口絞りSを有することが好ましい。この構成により、コマ収差と像面湾曲を良好に補正することができる。 In addition, the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment is disposed between the third lens group G3 and the sixth lens group G6 (between the lens group and the lens group or in the lens group). It is preferable to have an aperture stop S. With this configuration, coma and curvature of field can be favorably corrected.
 また、本実施形態に係る別の観点から見た変倍光学系ZLは、合焦に際し、第3レンズ群G3の少なくとも一部が光軸に沿って移動することが好ましい。さらに、第3レンズ群G3の全てのレンズが、合焦に際し、光軸に沿って物体側に移動することがより好ましい。この構成により、迅速な合焦を行うことができ、また合焦時の球面収差の変動を小さくすることができる。 Further, in the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment, it is preferable that at least a part of the third lens group G3 moves along the optical axis during focusing. Furthermore, it is more preferable that all the lenses of the third lens group G3 move toward the object side along the optical axis during focusing. With this configuration, rapid focusing can be performed, and fluctuations in spherical aberration during focusing can be reduced.
 以下、本実施形態に係る別の観点から見た変倍光学系ZLの製造方法の概略を、図15を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS400)。具体的に、本実施形態では、例えば、図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合負レンズ、物体側に凸面を向けた正メニスカスレンズL13、および物体側に凸面を向けた正メニスカスレンズL14を配置して第1レンズ群G1とし、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と両凸レンズL23との接合正レンズ、および両凹レンズL24を配置して第2レンズ群G2とし、物体側から順に、両凸レンズL31、および両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合負レンズを配置して第3レンズ群G3とし、物体側に凹面を向けた負メニスカスレンズL41を配置して第4レンズ群G4とし、物体側から順に、開口絞りS、物体側に凸面を向けた正メニスカスレンズL51、および両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズを配置して第5レンズ群G5とし、物体側から順に、両凹レンズL61と両凸レンズL62との接合正レンズ、および物体側に凹面を向けた負メニスカスレンズL63を配置して第6レンズ群G6とする。 Hereinafter, an outline of a manufacturing method of the variable magnification optical system ZL viewed from another viewpoint according to the present embodiment will be described with reference to FIG. First, each lens is arranged and a lens group is prepared (step S400). Specifically, in the present embodiment, for example, as illustrated in FIG. 1, in order from the object side, a negative negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined, and the convex surface is directed to the object side. The positive meniscus lens L13 and the positive meniscus lens L14 having a convex surface facing the object side are arranged as a first lens group G1, and in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, A cemented positive lens with a biconvex lens L23 and a biconcave lens L24 are arranged to form a second lens group G2, and in order from the object side, a biconvex lens L31, a biconvex lens L32, and a negative meniscus lens L33 with a concave surface facing the object side Are arranged as a third lens group G3, and a negative meniscus lens L41 having a concave surface facing the object side is arranged as a fourth lens group G4. In order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side are arranged as a fifth lens. In order from the object side, a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side are arranged in order from the object side to form a sixth lens group G6.
 この際、第1レンズ群G1は、像面に対して光軸方向に固定されるよう配置する(ステップS500)。 At this time, the first lens group G1 is arranged so as to be fixed in the optical axis direction with respect to the image plane (step S500).
 そして、これらのレンズ群G1~G6を、第1レンズ群G1の焦点距離をf1とし、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3としたとき、前述の条件式(5)および(6)を満足するよう配置する(ステップS600)。 When these lens groups G1 to G6 have the focal length of the first lens group G1 as f1, the focal length of the second lens group G2 as f2, and the focal length of the third lens group G3 as f3. (5) and (6) are satisfied (step S600).
(実施例)
 以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図5、および図9は、各実施例に係る変倍光学系ZL(ZL1~ZL3)の構成を示す断面図である。これらの変倍光学系ZL1~ZL3は、いずれも、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、から構成されている。
(Example)
Hereinafter, each example of the present application will be described with reference to the drawings. 1, FIG. 5, and FIG. 9 are sectional views showing the configuration of the variable magnification optical system ZL (ZL1 to ZL3) according to each example. Each of these variable magnification optical systems ZL1 to ZL3 has, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power. ing.
 また、これらの変倍光学系ZL1~ZL3の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1~G6の光軸に沿った移動方向が矢印で示されている。具体的には、第1レンズ群G1と第2レンズ群G2との軸上空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との軸上空気間隔が変化し、第3レンズ群G3と第4レンズ群G4との軸上空気間隔が変化し、第4レンズ群G4と第5レンズ群G5との軸上空気間隔が減少し、第5レンズ群G5と第6レンズ群G6との軸上空気間隔が増大するように、第1レンズ群G1は像面に対して光軸方向に固定され、第2レンズ群G2は像面側へ移動し、第3レンズ群G3は一旦像面側へ移動した後に物体側へ移動し、第4レンズ群G4は一旦像面側に移動した後に物体側へ移動し、第5レンズ群G5は物体側へ移動し、第6レンズ群G6は物体側へ移動する。 Further, in the lower part of the sectional views of these zoom optical systems ZL1 to ZL3, along the optical axis of each lens group G1 to G6 when zooming from the wide-angle end state (W) to the telephoto end state (T) The direction of movement is indicated by an arrow. Specifically, the axial air gap between the first lens group G1 and the second lens group G2 increases, the axial air gap between the second lens group G2 and the third lens group G3 changes, and the third lens. The axial air gap between the group G3 and the fourth lens group G4 changes, the axial air gap between the fourth lens group G4 and the fifth lens group G5 decreases, and the fifth lens group G5 and the sixth lens group G6. The first lens group G1 is fixed in the optical axis direction with respect to the image plane, the second lens group G2 moves toward the image plane side, and the third lens group G3 is temporarily moved. After moving to the image plane side, it moves to the object side, the fourth lens group G4 once moves to the image plane side, then moves to the object side, the fifth lens group G5 moves to the object side, and the sixth lens group G6. Moves to the object side.
 また、これらの変倍光学系ZL1~ZL3は、無限遠から最至近物体に合焦するときに、第3レンズ群G3が物体側から像面側に光軸に沿って移動する。また、第1および第2実施例に係る変倍光学系ZL1,ZL2においては、第5レンズ群G5の一部が防振レンズ群として光軸と直交する方向の成分を含むように移動し、第3実施例に係る変倍光学系ZL3においては、第6レンズ群G6の一部が防振レンズ群として光軸と直交する方向の成分を含むように移動する。 Further, in these variable magnification optical systems ZL1 to ZL3, the third lens group G3 moves along the optical axis from the object side to the image plane side when focusing on the closest object from infinity. In the variable magnification optical systems ZL1 and ZL2 according to the first and second examples, a part of the fifth lens group G5 moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group. In the variable magnification optical system ZL3 according to the third example, a part of the sixth lens group G6 moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group.
<第1実施例>
 図1は、本願の第1実施例に係る変倍光学系ZL1の構成を示す図である。図1の変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合負レンズ、物体側に凸面を向けた正メニスカスレンズL13、および物体側に凸面を向けた正メニスカスレンズL14から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21、両凹レンズL22と両凸レンズL23との接合正レンズ、および両凹レンズL24から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、および両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合負レンズから構成されている。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成されている。第5レンズ群G5は、物体側から順に、開口絞りS、物体側に凸面を向けた正メニスカスレンズL51、および両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズから構成されている。第6レンズ群G6は、物体側から順に、両凹レンズL61と両凸レンズL62との接合正レンズ、および物体側に凹面を向けた負メニスカスレンズL63から構成されている。
<First embodiment>
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example of the present application. In the variable magnification optical system ZL1 of FIG. 1, the first lens group G1 has, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. It is composed of a positive meniscus lens L13 and a positive meniscus lens L14 having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a cemented positive lens of a biconcave lens L22 and a biconvex lens L23, and a biconcave lens L24. The third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented negative lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. The fifth lens group G5 includes, in order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side. It is configured. The sixth lens group G6 includes, in order from the object side, a cemented positive lens made up of a biconcave lens L61 and a biconvex lens L62, and a negative meniscus lens L63 with a concave surface facing the object side.
 以下の表1に、第1実施例の諸元の値を掲げる。この表1において、(全体諸元)は、広角端状態(W)、中間焦点距離状態(M)および望遠端状態(T)のそれぞれにおける焦点距離f、FナンバーFNO、画角2ω、像高Y、および全長TLをそれぞれ表している。さらに、(レンズデータ)において、第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の間隔(面間隔)を、第4欄νdおよび第5欄ndは、d線(λ=587.6nm)に対するアッベ数および屈折率を示している。また、全長TLは、無限遠合焦時のレンズ面の第1面から像面までの光軸上の距離を表している。また、本変倍光学系ZL1において、全系の焦点距離がfで、防振係数、すなわちぶれ補正での移動レンズ群(防振レンズ群)の移動量に対する結像面での像移動量の比がKのレンズで、角度θの回転ぶれを補正するには、ぶれ補正用の防振レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させれば良い(以降の実施例においても同様である)。また、(防振補正データ)に、第1実施例に係る変倍光学系ZL1の広角端状態(M)、中間焦点距離状態(M)、および望遠端状態(T)における焦点距離f、防振係数K、回転ぶれθ(単位:度)、および防振レンズ群移動量Dvr(単位:mm)を示す。また、(レンズ群データ)は第1~第6レンズ群G1~G6の各々の始面STと焦点距離を示している。ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。なお、曲率半径0.00はレンズ面の場合は平面を示し、絞りの場合は開口又は絞り面を示す。また、空気の屈折率1.00000は省略してある。また、これらの符号の説明および諸元表の説明は以降の実施例においても同様である。 Table 1 below lists the values of the specifications of the first embodiment. In Table 1, (total specifications) are the focal length f, the F number FNO, the angle of view 2ω, the image height in each of the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T). Y and full length TL are shown respectively. Further, in (lens data), the first column m indicates the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each lens surface, The third column d indicates the distance (surface interval) on the optical axis from each optical surface to the next optical surface, and the fourth column νd and the fifth column nd indicate Abbe numbers with respect to the d-line (λ = 587.6 nm). And the refractive index. The total length TL represents the distance on the optical axis from the first surface of the lens surface to the image surface at the time of focusing on infinity. In the variable magnification optical system ZL1, the focal length of the entire system is f, and the image movement amount on the imaging surface with respect to the image stabilization coefficient, that is, the amount of movement of the moving lens group (anti-vibration lens group) in shake correction. In order to correct rotational shake at an angle θ with a lens having a ratio of K, the image stabilization lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. The same applies to the examples). Further, (anti-shake correction data) includes the focal length f in the wide-angle end state (M), the intermediate focal length state (M), and the telephoto end state (T) of the variable magnification optical system ZL1 according to the first example. The vibration coefficient K, the rotational shake θ (unit: degree), and the vibration-proof lens group movement amount Dvr (unit: mm) are shown. Further, (lens group data) indicates the start surface ST and the focal length of each of the first to sixth lens groups G1 to G6. Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. A radius of curvature of 0.00 indicates a plane in the case of a lens surface, and indicates an aperture or a diaphragm surface in the case of a stop. Further, the refractive index of air of 1.0000 is omitted. The description of these symbols and the description of the specification table are the same in the following examples.
(表1)
(全体諸元)
         W        M        T
f=     81.6    240.0     392.0
FNO=    4.59     5.00      5.77
2ω=   29.4      9.9       6.1
Y=     21.6     21.6      21.6
TL=   272.2    272.2     272.2
(レンズデータ)
m    r    d   νd  nd
1    296.532  2.500  32.35  1.85026
2    99.157  7.768  82.51  1.49782
3    -5648.049  0.100
4     107.361  6.853  82.51  1.49782
5    1442.619  0.100
6     87.207  7.958  82.51  1.49782
7    1442.621   D1
8    1295.063  2.000  46.62  1.81600
9     43.784  5.132
10    -72.122  2.000  65.46  1.60300
11    40.058  6.018  23.78  1.84666
12   -127.005  1.379
13    -58.482  2.000  42.72  1.83481
14    184.347   D2 
15    110.569   5.196  53.87   1.71300
16    -65.335   0.200
17    280.819   6.998  82.51   1.49782
18    -46.060   1.800  29.37   1.95000
19   -129.313   D3
20    -80.102   2.000  60.09   1.64000
21   -422.530   D4
22     0.000  2.000          開口絞りS
23    44.633   3.987  82.51   1.49782
24    224.471  13.809
25    71.214   5.405  52.30   1.51742
26    -74.260   1.500  23.78   1.84666
27   -191.536   D5
28   -997.616   1.500  40.76   1.88300
29    24.061   7.006  33.80   1.64769
30    -45.482  1.665
31    -29.745  1.500  46.62   1.81600
32   -102.450   BF
(レンズ群データ)
レンス゛群   ST    焦点距離
   G1       1      111.246
   G2       8      -28.407
   G3       15       60.186
   G4       20     -154.790
   G5       22       66.241
   G6       28      -63.117
 (可変間隔データ)
     W          M          T
D1  12.385   45.589    51.052
D2  42.241   16.728     2.000
D3   8.980   19.588    17.980
D4  39.432   11.781     2.000
D5  18.379   18.556    19.067
BF  52.4    61.6     81.7
 (防振補正データ)
                f    K    θ    Dvr
広角端W      81.6   0.76  0.3  0.56
中間焦点距離M  240.0   0.86  0.2  0.98
望遠端T     392.0   1.07  0.2  1.28
 (条件式対応値)
(1)f1/f3=1.85
(2)(-f4)/f5=2.34
(3)f1/TLw=0.41
(4)f2/TLw=0.10
(5)f1/(-f2)=3.92
(6)(-f2)/f3=0.47
(7)f4/f6=2.45
(8)f5/(-f6)=1.05
(Table 1)
(Overall specifications)
W M T
f = 81.6 240.0 392.0
FNO = 4.59 5.00 5.77
2ω = 29.4 9.9 6.1
Y = 21.6 21.6 21.6
TL = 272.2 272.2 272.2
(Lens data)
m r d νd nd
1 296.532 2.500 32.35 1.85026
2 99.157 7.768 82.51 1.49782
3 -5648.049 0.100
4 107.361 6.853 82.51 1.49782
5 1442.619 0.100
6 87.207 7.958 82.51 1.49782
7 1442.621 D1
8 1295.063 2.000 46.62 1.81600
9 43.784 5.132
10 -72.122 2.000 65.46 1.60300
11 40.058 6.018 23.78 1.84666
12 -127.005 1.379
13 -58.482 2.000 42.72 1.83481
14 184.347 D2
15 110.569 5.196 53.87 1.71300
16 -65.335 0.200
17 280.819 6.998 82.51 1.49782
18 -46.060 1.800 29.37 1.95000
19 -129.313 D3
20 -80.102 2.000 60.09 1.64000
21 -422.530 D4
22 0.000 2.000 Aperture stop S
23 44.633 3.987 82.51 1.49782
24 224.471 13.809
25 71.214 5.405 52.30 1.51742
26 -74.260 1.500 23.78 1.84666
27 -191.536 D5
28 -997.616 1.500 40.76 1.88300
29 24.061 7.006 33.80 1.64769
30 -45.482 1.665
31 -29.745 1.500 46.62 1.81600
32 -102.450 BF
(Lens group data)
Lens group ST Focal length G1 1 111.246
G2 8 -28.407
G3 15 60.186
G4 20 -154.790
G5 22 66.241
G6 28 -63.117
(Variable interval data)
W M T
D1 12.385 45.589 51.052
D2 42.241 16.728 2.000
D3 8.980 19.588 17.980
D4 39.432 11.781 2.000
D5 18.379 18.556 19.067
BF 52.4 61.6 81.7
(Image stabilization data)
f K θ Dvr
Wide-angle end W 81.6 0.76 0.3 0.56
Intermediate focal length M 240.0 0.86 0.2 0.98
Telephoto end T 392.0 1.07 0.2 1.28
(Conditional value)
(1) f1 / f3 = 1.85
(2) (-f4) /f5=2.34
(3) f1 / TLw = 0.41
(4) f2 / TLw = 0.10
(5) f1 / (-f2) = 3.92
(6) (-f2) /f3=0.47
(7) f4 / f6 = 2.45
(8) f5 / (-f6) = 1.05
 図2A、2Bは、第1実施例に係る変倍光学系の広角端状態における諸収差図であり、図2Aは無限遠合焦時を示し、図2Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。図3A、3Bは、第1実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図3Aは無限遠合焦時を示し、図3Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。図4A、4Bは、第1実施例に係る変倍光学系の望遠端状態における諸収差図であり、図4Aは無限遠合焦時を示し、図4Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。各収差図において、FNOはFナンバーを、Aは半画角を、dはd線(λ=587.6nm)を、gはg線(λ=435.6nm)を、それぞれ示している。また、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。なお、これらの収差図の説明は以降の実施例においても同様である。各収差図から明らかなように、第1実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 2A and 2B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the first example. FIG. 2A shows the state at the infinite focus, and FIG. 2B shows 0.3 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. FIGS. 3A and 3B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the first example. FIG. 3A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. FIGS. 4A and 4B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the first example. FIG. 4A shows an infinite focus state, and FIG. 4B shows 0.2 ° in an infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. In each aberration diagram, FNO represents an F number, A represents a half field angle, d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.6 nm). In the aberration diagram showing astigmatism, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The description of these aberration diagrams is the same in the following examples. As is apparent from each aberration diagram, it is clear that in the first example, various aberrations are satisfactorily corrected and the imaging performance is excellent.
<第2実施例>
 図5は、本願の第2実施例に係る変倍光学系ZL2の構成を示す図である。この図5の変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合負レンズ、物体側に凸面を向けた正メニスカスレンズL13、および物体側に凸面を向けた正メニスカスレンズL14から構成されている。第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22との接合負レンズ、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合負レンズ、および両凹レンズL25から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、および両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合正レンズから構成されている。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成されている。第5レンズ群G5は、物体側から順に、開口絞りS、物体側に凸面を向けた正メニスカスレンズL51、および両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズから構成される。第6レンズ群G6は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL61と両凸レンズL62との接合正レンズ、および物体側に凹面を向けた負メニスカスレンズL63から構成されている。
<Second embodiment>
FIG. 5 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example of the present application. In the variable magnification optical system ZL2 of FIG. 5, the first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side. The second lens group G2, in order from the object side, is a cemented negative lens composed of a biconvex lens L21 and a biconcave lens L22, a cemented negative lens composed of a biconcave lens L23 and a positive meniscus lens L24 having a convex surface facing the object, and a biconcave lens L25. It is composed of The third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented positive lens formed by a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. The fifth lens group G5 includes, in order from the object side, an aperture stop S, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens of a biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side. Composed. The sixth lens group G6 includes, in order from the object side, a cemented positive lens formed by a negative meniscus lens L61 having a convex surface facing the object side and a biconvex lens L62, and a negative meniscus lens L63 having a concave surface facing the object side. .
 以下の表2に、第2実施例の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the second embodiment.
(表2)
(全体諸元)
         W        M        T
f=     81.6    240.0     392.0
FNO=    4.59     4.96      5.77
2ω=   29.6     10.0       6.1
Y=     21.6     21.6      21.6
TL=   259.3    259.3     259.3
(レンズデータ)
m        r        d       νd       nd
1   335.544  2.500  32.35  1.85026
2   93.505  7.996  82.51  1.49782
3  -1086.225  0.100
4   96.595  7.149  82.51  1.49782
5  2728.493  0.100
6   88.859  7.036  82.51  1.49782
7  1101.814   D1
8  1028.718  3.605  23.78  1.84666
9   -72.545  2.000  63.37  1.61800
10   54.820  2.862
11  -227.525  2.000  54.66  1.72916
12   40.357  3.253  22.79  1.80809
13   150.185  2.893
14   -53.892  2.000  42.72  1.83481
15   136.842   D2
16   141.465  4.145  54.66  1.72916
17   -67.855  0.200
18   128.206  4.357  82.51  1.49782
19   -60.471  2.000  25.45  2.00069
20  -168.761   D3
21   -75.436  2.000  54.66  1.72916
22  -170.623   D4
23    0.000  2.000           開口絞り
24   39.720  3.230  82.51  1.49782
25   107.621  4.538
26   84.859  4.750  52.30  1.51742
27   -54.303  2.000  28.46  1.72825
28  -156.848   D5
29   125.494  2.000  46.62  1.81600
30   20.977  4.948  36.30  1.62004
31   -39.213  2.487
32   -30.042  2.000  40.76  1.88300
33  -376.111   BF
(レンズ群データ)
レンス゛群   ST    焦点距離
   G1          1    107.465
   G2          8    -26.561
   G3         16    57.782
   G4         21   -187.102
   G5         23    69.602
   G6         29    -76.319
(可変間隔データ)
     W          M          T
D1   6.027   41.419    47.116
D2  38.421   16.139     2.000
D3   9.884   18.100    16.200
D4  39.081   10.416     2.000
D5  17.135   17.511    17.879
BF  64.6     71.5      89.9
(防振補正データ)
                f    K    θ    Dvr
広角端W      81.6   0.80  0.3   0.53
中間焦点距離M  240.0   0.87  0.2   0.98
望遠端T     392.0   1.05  0.2   1.30
(条件式対応値)
(1)f1/f3=1.86
(2)(-f4)/f5=2.69
(3)f1/TLw=0.42
(4)f2/TLw=0.10
(5)f1/(-f2)=4.05
(6)(-f2)/f3=0.46
(7)f4/f6=2.45
(8)f5/(-f6)=0.91
(Table 2)
(Overall specifications)
W M T
f = 81.6 240.0 392.0
FNO = 4.59 4.96 5.77
2ω = 29.6 10.0 6.1
Y = 21.6 21.6 21.6
TL = 259.3 259.3 259.3
(Lens data)
m r d νd nd
1 335.544 2.500 32.35 1.85026
2 93.505 7.996 82.51 1.49782
3 -1086.225 0.100
4 96.595 7.149 82.51 1.49782
5 2728.493 0.100
6 88.859 7.036 82.51 1.49782
7 1101.814 D1
8 1028.718 3.605 23.78 1.84666
9 -72.545 2.000 63.37 1.61800
10 54.820 2.862
11 -227.525 2.000 54.66 1.72916
12 40.357 3.253 22.79 1.80809
13 150.185 2.893
14 -53.892 2.000 42.72 1.83481
15 136.842 D2
16 141.465 4.145 54.66 1.72916
17 -67.855 0.200
18 128.206 4.357 82.51 1.49782
19 -60.471 2.000 25.45 2.00069
20 -168.761 D3
21 -75.436 2.000 54.66 1.72916
22 -170.623 D4
23 0.000 2.000 Aperture stop
24 39.720 3.230 82.51 1.49782
25 107.621 4.538
26 84.859 4.750 52.30 1.51742
27 -54.303 2.000 28.46 1.72825
28 -156.848 D5
29 125.494 2.000 46.62 1.81600
30 20.977 4.948 36.30 1.62004
31 -39.213 2.487
32 -30.042 2.000 40.76 1.88300
33 -376.111 BF
(Lens group data)
Lens group ST Focal length G1 1 107.465
G2 8 -26.561
G3 16 57.782
G4 21 -187.102
G5 23 69.602
G6 29 -76.319
(Variable interval data)
W M T
D1 6.027 41.419 47.116
D2 38.421 16.139 2.000
D3 9.884 18.100 16.200
D4 39.081 10.416 2.000
D5 17.135 17.511 17.879
BF 64.6 71.5 89.9
(Image stabilization data)
f K θ Dvr
Wide-angle end W 81.6 0.80 0.3 0.53
Intermediate focal length M 240.0 0.87 0.2 0.98
Telephoto end T 392.0 1.05 0.2 1.30
(Values for conditional expressions)
(1) f1 / f3 = 1.86
(2) (-f4) /f5=2.69
(3) f1 / TLw = 0.42
(4) f2 / TLw = 0.10
(5) f1 / (-f2) = 4.05
(6) (-f2) /f3=0.46
(7) f4 / f6 = 2.45
(8) f5 / (-f6) = 0.91
 図6A、6Bは、第2実施例に係る変倍光学系の広角端状態における諸収差図であり、図6Aは無限遠合焦時を示し、図6Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。図7A、7Bは、第2実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図7Aは無限遠合焦時を示し、図7Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。図8A、8Bは、第2実施例に係る変倍光学系の望遠端状態における諸収差図であり、図8Aは無限遠合焦時を示し、図8Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。各収差図から明らかなように、第2実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 FIGS. 6A and 6B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the second example. FIG. 6A shows the infinite focus state, and FIG. 6B shows 0.3 o in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. FIGS. 7A and 7B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the second example. FIG. 7A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. FIGS. 8A and 8B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the second example. FIG. 8A shows the infinite focus state, and FIG. 8B shows the 0.2 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. As is apparent from the respective aberration diagrams, it is clear that in the second embodiment, various aberrations are corrected well and the imaging performance is excellent.
<第3実施例>
 図9は、本願の第3実施例に係る変倍光学系ZL3の構成を示す図である。この図9の変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合負レンズ、物体側に凸面を向けた正メニスカスレンズL13、および物体側に凸面を向けた正メニスカスレンズL14から構成されている。第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹レンズL22との接合負レンズ、両凸レンズL23と両凹レンズL24との接合負レンズ、および物体側に凹面を向けた負メニスカスレンズL25から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、および両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合負レンズから構成されている。第4レンズ群G4は、物体側に凹面を向けた負メニスカスレンズL41から構成されている。第5レンズ群G5は、物体側から順に、開口絞りS、物体側に凸面を向けた負メニスカスレンズL51と両凸レンズL52との接合正レンズ、および物体側に凸面を向けた正メニスカスレンズL53から構成されている。第6レンズ群G6は、物体側から順に、両凸レンズL61と両凹レンズL62との接合負レンズ、物体側に凸面を向けた負メニスカスレンズL63と物体側に凸面を向けた正メニスカスレンズL64との接合正レンズ、および物体側に凹面を向けた負メニスカスレンズL65から構成されている。
<Third embodiment>
FIG. 9 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the third example of the present application. In the variable magnification optical system ZL3 of FIG. 9, the first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a cemented negative lens composed of a positive meniscus lens L21 and a biconcave lens L22 having a concave surface directed toward the object side, a cemented negative lens composed of a biconvex lens L23 and a biconcave lens L24, and an object side. It is composed of a negative meniscus lens L25 having a concave surface. The third lens group G3 includes, in order from the object side, a biconvex lens L31, and a cemented negative lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side. The fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the object side. The fifth lens group G5 includes, in order from the object side, an aperture stop S, a cemented positive lens composed of a negative meniscus lens L51 having a convex surface facing the object side and a biconvex lens L52, and a positive meniscus lens L53 having a convex surface facing the object side. It is configured. The sixth lens group G6 includes, in order from the object side, a cemented negative lens composed of a biconvex lens L61 and a biconcave lens L62, a negative meniscus lens L63 having a convex surface facing the object side, and a positive meniscus lens L64 having a convex surface facing the object side. It is composed of a cemented positive lens and a negative meniscus lens L65 having a concave surface facing the object side.
 以下の表3に、第3実施例の諸元の値を掲げる。 Table 3 below lists the values of the specifications of the third example.
(表3)
(全体諸元)
         W        M        T
f=     81.6    240.0     392.0
FNO=    4.59     5.00      5.77
2ω=   29.6     10.0       6.1
Y=     21.6     21.6      21.6
TL=   283.6    283.6     283.6
(レンズデータ)
m        r        d       νd       nd
1   320.893  2.500  31.27  1.90366
2   112.834  6.507  82.51  1.49782
3  -3554.736  0.100
4   115.342  5.868  82.51  1.49782
5  1458.395  0.100
6   111.883  5.830  82.51  1.49782
7  1458.395   D1
8  -4213.036  2.473  23.78  1.84666
9  -133.478  2.000  54.66  1.72916
10   59.984  1.578
11   128.930  4.222  23.78  1.84666
12   -77.994  2.000  54.66  1.72916
13   77.642  4.034
14   -57.953  2.000  47.38  1.78800
15  -3369.986   D2
16   130.165  6.000  54.66  1.72916
17   -68.142  0.200
18   284.742  4.725  58.93  1.51823
19   -50.235  2.000  29.37  1.95000
20  -241.532   D3
21   -56.158  2.000  40.76  1.88300
22  -110.578   D4
23    0.000  2.000          開口絞りS
24   59.819  2.000  37.16  1.83400
25   40.409  7.114  64.11  1.51680
26   -91.984  0.100
27   90.161  2.573  82.51  1.49782
28   904.396   D5 
29   110.032  2.314  25.43  1.80518
30  -108.778  1.500  40.76  1.88300
31   55.519  22.382
32   58.247  1.500  40.76  1.88300
33   30.631  4.891  38.01  1.60342
34   598.923  5.810
35   -34.467  1.500  40.76  1.88300
36   -68.483   BF
(レンズ群データ)
レンス゛群   ST    焦点距離
   G1          1    135.000
   G2          8    -36.474
   G3         16    73.876
   G4         21   -131.497
   G5         23    61.193
   G6         29    -55.551
(可変間隔データ)
     W          M          T
D1   8.441   49.813    58.145
D2  59.847   22.570     3.383
D3  17.930   17.586    23.344
D4  26.917    9.136     2.573
D5  16.815   23.327    26.470
BF  45.8    53.4     61.9
(防振補正データ)
                f    K    θ    Dvr
広角端W      81.6   0.80  0.3   0.53
中間焦点距離M  240.0   0.89  0.2   0.95
望遠端T     392.0   0.98  0.2   1.39
(条件式対応値)
(1)f1/f3=1.83
(2)(-f4)/f5=2.15
(3)f1/TLw=0.48
(4)f2/TLw=0.13
(5)f1/(-f2)=3.70
(6)(-f2)/f3=0.49
(7)f4/f6=2.37
(8)f5/(-f6)=1.10
(Table 3)
(Overall specifications)
W M T
f = 81.6 240.0 392.0
FNO = 4.59 5.00 5.77
2ω = 29.6 10.0 6.1
Y = 21.6 21.6 21.6
TL = 283.6 283.6 283.6
(Lens data)
m r d νd nd
1 320.893 2.500 31.27 1.90366
2 112.834 6.507 82.51 1.49782
3 -3554.736 0.100
4 115.342 5.868 82.51 1.49782
5 1458.395 0.100
6 111.883 5.830 82.51 1.49782
7 1458.395 D1
8 -4213.036 2.473 23.78 1.84666
9 -133.478 2.000 54.66 1.72916
10 59.984 1.578
11 128.930 4.222 23.78 1.84666
12 -77.994 2.000 54.66 1.72916
13 77.642 4.034
14 -57.953 2.000 47.38 1.78800
15 -3369.986 D2
16 130.165 6.000 54.66 1.72916
17 -68.142 0.200
18 284.742 4.725 58.93 1.51823
19 -50.235 2.000 29.37 1.95000
20 -241.532 D3
21 -56.158 2.000 40.76 1.88300
22 -110.578 D4
23 0.000 2.000 Aperture stop S
24 59.819 2.000 37.16 1.83400
25 40.409 7.114 64.11 1.51680
26 -91.984 0.100
27 90.161 2.573 82.51 1.49782
28 904.396 D5
29 110.032 2.314 25.43 1.80518
30 -108.778 1.500 40.76 1.88300
31 55.519 22.382
32 58.247 1.500 40.76 1.88300
33 30.631 4.891 38.01 1.60342
34 598.923 5.810
35 -34.467 1.500 40.76 1.88300
36 -68.483 BF
(Lens group data)
Lens group ST Focal length G1 1 135.000
G2 8 -36.474
G3 16 73.876
G4 21 -131.497
G5 23 61.193
G6 29 -55.551
(Variable interval data)
W M T
D1 8.441 49.813 58.145
D2 59.847 22.570 3.383
D3 17.930 17.586 23.344
D4 26.917 9.136 2.573
D5 16.815 23.327 26.470
BF 45.8 53.4 61.9
(Vibration correction data)
f K θ Dvr
Wide-angle end W 81.6 0.80 0.3 0.53
Intermediate focal length M 240.0 0.89 0.2 0.95
Telephoto end T 392.0 0.98 0.2 1.39
(Values for conditional expressions)
(1) f1 / f3 = 1.83
(2) (-f4) /f5=2.15
(3) f1 / TLw = 0.48
(4) f2 / TLw = 0.13
(5) f1 / (-f2) = 3.70
(6) (-f2) /f3=0.49
(7) f4 / f6 = 2.37
(8) f5 / (-f6) = 1.10
 図10A、10Bは、第3実施例に係る変倍光学系の広角端状態における諸収差図であり、図10Aは無限遠合焦時を示し、図10Bは無限遠合焦状態において0.3oの回転ぶれ補正を行ったときのコマ収差図を示す。図11A、11Bは、第3実施例に係る変倍光学系の中間焦点距離状態における諸収差図であり、図11Aは無限遠合焦時を示し、図11Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。図12A、12Bは、第3実施例に係る変倍光学系の望遠端状態における諸収差図であり、図12Aは無限遠合焦時を示し、図12Bは無限遠合焦状態において0.2oの回転ぶれ補正を行ったときのコマ収差図を示す。各収差図から明らかなように、第3実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 FIGS. 10A and 10B are graphs showing various aberrations in the wide-angle end state of the variable magnification optical system according to the third example. FIG. 10A shows the infinite focus state, and FIG. 10B shows 0.3 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. 11A and 11B are graphs showing various aberrations in the intermediate focal length state of the variable magnification optical system according to the third example. FIG. 11A shows the infinite focus state, and FIG. A coma aberration diagram when 2o rotational blur correction is performed is shown. 12A and 12B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to the third example. FIG. 12A shows the infinite focus state, and FIG. 12B shows 0.2 ° in the infinite focus state. The coma aberration figure when performing the rotational shake correction of is shown. As is apparent from each aberration diagram, in the third example, it is clear that various aberrations are corrected favorably and the imaging performance is excellent.
 図13に、上述の変倍光学系ZLを備える光学機器として、一眼レフカメラ1(以後、単にカメラと記す)の概略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(変倍光学系ZL)で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。 FIG. 13 is a schematic cross-sectional view of a single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL. In this camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 (variable magnification optical system ZL) and imaged on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図13に記載のカメラ1は、変倍光学系ZLを着脱可能に保持するものでも良く、変倍光学系ZLと一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良い。また、クイックリターンミラーを有しないカメラであっても、上記カメラと同様の効果を奏することができる。 Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 2 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1. The camera 1 shown in FIG. 13 may hold the variable magnification optical system ZL in a detachable manner, or may be formed integrally with the variable magnification optical system ZL. The camera 1 may be a so-called single-lens reflex camera. Further, even a camera that does not have a quick return mirror can achieve the same effects as the above camera.
 なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 本実施形態では、6群構成の変倍光学系ZLを示したが、以上の構成条件等は、7群構成等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時、または合焦時に変化する空気間隔で分離された、若しくは光軸と略直交成分を持つように移動するか否かで分離された少なくとも1枚のレンズを有する部分を示す。
The contents described below can be appropriately adopted as long as the optical performance is not impaired.
In the present embodiment, the variable magnification optical system ZL having a six-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as a seven-group configuration. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group includes at least one lens that is separated by an air interval that changes at the time of zooming or focusing, or that is separated depending on whether or not it moves so as to have a component substantially orthogonal to the optical axis. The part which has is shown.
 また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、本実施形態では前述したように第3レンズ群G3を合焦レンズ群とするのが好ましい。 Also, a focusing lens group that performs focusing from an object at infinity to a near object by moving a single lens group, a plurality of lens groups, or a partial lens group in the optical axis direction may be used. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, in the present embodiment, as described above, it is preferable that the third lens group G3 is a focusing lens group.
 また、レンズ群または部分レンズ群を光軸と直交する方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第5レンズ群G5若しくは第6レンズ群G6の少なくとも一部を防振レンズ群とするのが好ましい。 In addition, the lens group or the partial lens group is moved so as to have a component in a direction orthogonal to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the fifth lens group G5 or the sixth lens group G6 is an anti-vibration lens group.
 また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。本実施形態に示す変倍光学系ZLのように非球面を用いずに全てのレンズ面を球面で形成すると、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を妨げるので好ましい。レンズ面に平面が含まれていても同様である。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。また、レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。 Further, the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface. If all lens surfaces are formed with spherical surfaces without using an aspherical surface as in the variable magnification optical system ZL shown in this embodiment, lens processing and assembly adjustment are facilitated, and optical performance is deteriorated due to errors in processing and assembly adjustment. This is preferable. The same applies even if the lens surface includes a flat surface. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. If the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。 In addition, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
 また、本実施形態に係る変倍光学系ZLは、変倍比が2.5~8程度である。
 なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。
In the variable magnification optical system ZL according to this embodiment, the variable magnification ratio is about 2.5 to 8.
In addition, in order to explain this application in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.

Claims (18)

  1.  物体側から順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     負の屈折力を有する第4レンズ群と、
     正の屈折力を有する第5レンズ群と、
     負の屈折力を有する第6レンズ群と、を有し、
     前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
     前記第1レンズ群の焦点距離をf1とし、前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4とし、前記第5レンズ群の焦点距離をf5としたとき、次式
    1.62 < f1/f3 < 2.23
    1.71 < (-f4)/f5 < 2.99
    の条件を満足することを特徴とする変倍光学系。
    From the object side,
    A first lens group having a positive refractive power;
    A second lens group having negative refractive power;
    A third lens group having positive refractive power;
    A fourth lens group having negative refractive power;
    A fifth lens group having positive refractive power;
    A sixth lens group having negative refractive power;
    The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
    When the focal length of the first lens group is f1, the focal length of the third lens group is f3, the focal length of the fourth lens group is f4, and the focal length of the fifth lens group is f5, The following formula 1.62 <f1 / f3 <2.23
    1.71 <(− f4) / f5 <2.99
    A variable power optical system characterized by satisfying the following conditions.
  2.  変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記第5レンズ群と前記第6レンズ群との間隔が変化することを特徴とする請求項1に記載の変倍光学系。 Upon zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group and the fourth lens The distance between the fourth lens group and the fifth lens group is changed, and the distance between the fifth lens group and the sixth lens group is changed. 2. The variable magnification optical system according to 1.
  3.  広角端状態での全長をTLwとしたとき、次式
    0.30 < f1/TLw < 0.60
    の条件を満足することを特徴とする請求項1記載の変倍光学系。
    When the total length in the wide-angle end state is TLw, the following expression 0.30 <f1 / TLw <0.60
    2. The variable magnification optical system according to claim 1, wherein the following condition is satisfied.
  4.  前記第2レンズ群の焦点距離をf2とし、広角端状態での全長をTLwとしたとき、次式
    0.08 < (-f2)/TLw < 0.15
    の条件を満足することを特徴とする請求項1記載の変倍光学系。
    When the focal length of the second lens group is f2 and the total length in the wide-angle end state is TLw, the following expression 0.08 <(− f2) / TLw <0.15
    2. The variable magnification optical system according to claim 1, wherein the following condition is satisfied.
  5.  前記第3レンズ群と前記第6レンズ群との間に開口絞りを有することを特徴とする請求項1記載の変倍光学系。 2. The variable magnification optical system according to claim 1, further comprising an aperture stop between the third lens group and the sixth lens group.
  6.  変倍に際し、前記第1レンズ群は、像面に対して光軸方向に固定されていることを特徴とする請求項1記載の変倍光学系。 2. The zoom optical system according to claim 1, wherein the first lens unit is fixed in the optical axis direction with respect to the image plane during zooming.
  7.  合焦に際し、前記第3レンズ群の少なくとも一部は、光軸に沿って移動することを特徴とする請求項1記載の変倍光学系。 2. The variable magnification optical system according to claim 1, wherein at the time of focusing, at least a part of the third lens group moves along the optical axis.
  8.  請求項1記載の変倍光学系を有することを特徴とする光学機器。 An optical apparatus comprising the variable magnification optical system according to claim 1.
  9.  物体側から順に、
     正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     負の屈折力を有する第4レンズ群と、
     正の屈折力を有する第5レンズ群と、
     負の屈折力を有する第6レンズ群と、を有し、
     変倍に際し、前記第1レンズ群は、像面に対して光軸方向に固定されており、
     前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、次式
    3.10 < f1/(-f2) < 5.00
    0.40 < (-f2)/f3 < 0.60
    の条件を満足することを特徴とする変倍光学系。
    From the object side,
    A first lens group having a positive refractive power;
    A second lens group having negative refractive power;
    A third lens group having positive refractive power;
    A fourth lens group having negative refractive power;
    A fifth lens group having positive refractive power;
    A sixth lens group having negative refractive power;
    During zooming, the first lens group is fixed in the optical axis direction with respect to the image plane,
    When the focal length of the first lens group is f1, the focal length of the second lens group is f2, and the focal length of the third lens group is f3, the following expression 3.10 <f1 / (− f2) <5.00
    0.40 <(− f2) / f3 <0.60
    A variable power optical system characterized by satisfying the following conditions.
  10.  変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記第5レンズ群と前記第6レンズ群との間隔が変化することを特徴とする請求項9に記載の変倍光学系。 Upon zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the third lens group and the fourth lens The distance between the fourth lens group and the fifth lens group is changed, and the distance between the fifth lens group and the sixth lens group is changed. 9. The zoom optical system according to 9.
  11.  前記第4レンズ群の焦点距離をf4とし、前記第6レンズ群の焦点距離をf6としたとき、次式
    2.00 < f4/f6 < 3.00
    の条件を満足することを特徴とする請求項9記載の変倍光学系。
    When the focal length of the fourth lens group is f4 and the focal length of the sixth lens group is f6, the following expression 2.00 <f4 / f6 <3.00
    The variable magnification optical system according to claim 9, wherein the following condition is satisfied.
  12.  前記第5レンズ群の焦点距離をf5とし、前記第6レンズ群の焦点距離をf6としたとき、次式
    0.66 < f5/(-f6) < 1.50
    の条件を満足することを特徴とする請求項9記載の変倍光学系。
    When the focal length of the fifth lens group is f5 and the focal length of the sixth lens group is f6, the following formula 0.66 <f5 / (− f6) <1.50
    The variable magnification optical system according to claim 9, wherein the following condition is satisfied.
  13.  前記第3レンズ群と前記第6レンズ群との間に開口絞りを有することを特徴とする請求項9記載の変倍光学系。 10. The zoom optical system according to claim 9, further comprising an aperture stop between the third lens group and the sixth lens group.
  14.  前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することを特徴とする請求項9記載の変倍光学系。 10. The zoom optical system according to claim 9, wherein at least a part of any one of the lens groups moves so as to include a component in a direction orthogonal to the optical axis.
  15.  合焦に際し、前記第3レンズ群の少なくとも一部は、光軸に沿って移動することを特徴とする請求項9記載の変倍光学系。 10. The zoom optical system according to claim 9, wherein at the time of focusing, at least a part of the third lens group moves along the optical axis.
  16.  請求項9記載の変倍光学系を有することを特徴とする光学機器。 An optical apparatus comprising the variable magnification optical system according to claim 9.
  17.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有する変倍光学系の製造方法であって、
     前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部を光軸と直交する方向の成分を含むように移動可能に配置し、
     前記第1レンズ群の焦点距離をf1と、前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4とし、前記第5レンズ群の焦点距離をf5としたとき、次式
    1.62 < f1/f3 < 2.23
    1.71 < (-f4)/f5 < 2.99
    の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power A variable magnification optical system having a group, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power,
    Arranging at least a part of any one of the lens groups so as to include a component in a direction orthogonal to the optical axis,
    When the focal length of the first lens group is f1, the focal length of the third lens group is f3, the focal length of the fourth lens group is f4, and the focal length of the fifth lens group is f5, The following formula 1.62 <f1 / f3 <2.23
    1.71 <(− f4) / f5 <2.99
    A method of manufacturing a variable magnification optical system, wherein the zoom lens system is arranged so as to satisfy the above condition.
  18.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、負の屈折力を有する第6レンズ群と、を有する変倍光学系の製造方法であって、
     変倍に際し、前記第1レンズ群は、像面に対して光軸方向に固定されるように配置され、
     前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、次式
    3.10 < f1/(-f2) < 5.00
    0.40 < (-f2)/f3 < 0.60
    の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
     
     
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power A variable magnification optical system having a group, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power,
    During zooming, the first lens group is disposed so as to be fixed in the optical axis direction with respect to the image plane,
    When the focal length of the first lens group is f1, the focal length of the second lens group is f2, and the focal length of the third lens group is f3, the following expression 3.10 <f1 / (− f2) <5.00
    0.40 <(− f2) / f3 <0.60
    A method of manufacturing a variable magnification optical system, wherein the zoom lens system is arranged so as to satisfy the above condition.

PCT/JP2011/078870 2010-12-15 2011-12-14 Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system WO2012081602A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/994,730 US9091841B2 (en) 2010-12-15 2011-12-14 Zooming optical system, optical apparatus having the zooming optical system, and method for manufacturing zooming optical system
CN201180060509.XA CN103443687B (en) 2010-12-15 2011-12-14 Become focus optical system, the optical device with this change focus optical system and the method for the manufacture of change focus optical system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-278869 2010-12-15
JP2010278869 2010-12-15
JP2010-278868 2010-12-15
JP2010278868 2010-12-15
JP2010285367A JP5740965B2 (en) 2010-12-15 2010-12-22 Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2010285366A JP5674125B2 (en) 2010-12-15 2010-12-22 Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2010-285366 2010-12-22
JP2010-285367 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012081602A1 true WO2012081602A1 (en) 2012-06-21

Family

ID=46244699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078870 WO2012081602A1 (en) 2010-12-15 2011-12-14 Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system

Country Status (1)

Country Link
WO (1) WO2012081602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983391B2 (en) 2012-11-14 2018-05-29 Nikon Corporation Variable power optical assembly, optical device, and variable power optical assembly fabrication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174325A (en) * 1997-12-15 1999-07-02 Canon Inc Zoom lens
JPH11223770A (en) * 1998-02-06 1999-08-17 Canon Inc Zoom lens
JPH11237552A (en) * 1998-02-19 1999-08-31 Canon Inc Zoom lens
JP2000047107A (en) * 1998-07-30 2000-02-18 Canon Inc Zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174325A (en) * 1997-12-15 1999-07-02 Canon Inc Zoom lens
JPH11223770A (en) * 1998-02-06 1999-08-17 Canon Inc Zoom lens
JPH11237552A (en) * 1998-02-19 1999-08-31 Canon Inc Zoom lens
JP2000047107A (en) * 1998-07-30 2000-02-18 Canon Inc Zoom lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983391B2 (en) 2012-11-14 2018-05-29 Nikon Corporation Variable power optical assembly, optical device, and variable power optical assembly fabrication method

Similar Documents

Publication Publication Date Title
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP4904842B2 (en) Zoom lens having anti-vibration function and image pickup apparatus having the same
JP5448028B2 (en) Zoom lens and optical apparatus having the same
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5641680B2 (en) Zoom lens and optical apparatus having the same
US20230258907A1 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
JP2010181518A (en) Zoom lens, optical apparatus with the zoom lens, and method for manufacturing zoom lens
JP5344279B2 (en) Zoom lens, optical apparatus having the same, and zooming method
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5660311B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5333896B2 (en) Zoom lens, optical apparatus having the same, and vibration isolation method
JP5888004B2 (en) Optical system and optical apparatus having this optical system
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5545531B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5326434B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5765533B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system
WO2015079679A1 (en) Zoom lens, optical device, and production method for zoom lens
JP5359558B2 (en) Lens system, optical equipment
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5740965B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
WO2012081602A1 (en) Variable power optical system, optical device comprising the variable power optical system, and method for producing variable power optical system
JP5201461B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5326433B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13994730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849876

Country of ref document: EP

Kind code of ref document: A1