JP4224309B2 - 配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 - Google Patents
配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 Download PDFInfo
- Publication number
- JP4224309B2 JP4224309B2 JP2003009791A JP2003009791A JP4224309B2 JP 4224309 B2 JP4224309 B2 JP 4224309B2 JP 2003009791 A JP2003009791 A JP 2003009791A JP 2003009791 A JP2003009791 A JP 2003009791A JP 4224309 B2 JP4224309 B2 JP 4224309B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- tap
- power flow
- secondary side
- reverse power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Description
【発明の属する技術分野】
本発明は、配電系統の電圧調整方法とその方法に使用する自動電圧調整装置(SVRとも言う)に関する。
【0002】
【従来の技術】
現在、配電系統は複数の配電線により連系しており、また配電線は複数の開閉器によって分割されている。従って、工事や自然災害などで配電線がある一箇所で分断されても、開閉器を開閉操作して系統切替を行い、停電が広い範囲で起きないようにしている。図9に示す簡単なモデルで説明すると、図9(イ)は順送時の状態を示しており、中間の開閉器90cが開放されていて、配電線93のa〜dの区間は変電所91aより電力が供給され、e〜hの区間は変電所91bより電力が供給されている。各配電系統には、負荷変動に伴う電圧変動を補正するために、自動電圧調整装置92a,92bがそれぞれ設置されている。自動電圧調整装置にとって順送時の電源側(変電所側)を一次側といい、反対側の負荷側を二次側という。図中の矢印は電力潮流の向きを示している。自動電圧調整装置は、二次側の電圧と電流を計測し、計測した二次側の電圧と負荷電流に応じた目標地点までの電圧降下(上昇する場合もある。以下、同じ。)分から目標地点の電圧を算出し、算出した値と目標の電圧値との差に応じて内蔵するタップ付変圧器のタップを切り替えて、目標地点の電圧を一定の目標電圧に近付ける自動制御を行っている。このような制御状態を、以後、二次側調整制御という。
【0003】
ここでaの区間で工事等によって配電線が分断されると、a〜dの区間はそのままでは停電することになる。そこで図9(ロ)に示すように開閉器90cを投入し且つ開閉器90aを開放することで、b〜dの区間にも変電所91bから電力が供給され、停電区間はaのみとなる。つまりb〜dの区間は電力が逆送され、自動電圧調整装置92aを通過する電力潮流の向きは二次側から一次側に向う方向となり、自動電圧調整装置92aはいわゆる逆潮流の状態になる。このように逆潮流は、まず系統切替によって起こる。現在、配電系統は配電自動化システムによって管理されており、配電自動化システムは配電経路の故障等に応じて開閉器の開閉等を通信手段を介して遠隔操作し、系統切替を自動的に行っている。
【0004】
配電線の系統切替による逆潮流が起こった状態で自動電圧調整装置が二次側調整制御を維持すると、不都合が生じる。すなわち自動電圧調整装置は、二次側の電圧を目標値に近付けようとするが、電源となる変電所が一次側から二次側に切り替わっているので、タップを切り替えても二次側の電圧はほとんど変化せず、一次側の電圧が逆向きに変化することになる。例えば二次側の電圧が目標値よりも低ければタップは昇圧側に切り替わるが、これは一次側電圧を降下させる方向であり、またタップを切り替えても二次側の電圧は低いままであるために昇圧側へのタップ切替が連続してなされ、結果として一次側の電圧が異常に低下することになる。この不都合を防止するため、配電自動化システムは系統切替を行う際に、自動電圧調整装置に対して二次側調整制御を止めて、タップを所定のタップ(通常は素通しタップ)に固定するように指令を出している。この制御状態を、以後、タップ固定制御といい、特に素通しタップに固定する場合を素通し制御という。
【0005】
タップを固定すれば一次側の電圧が異常に低下することは防止できるが、一次側の電圧を調整することはできない。そこで、一次側と二次側の両方の電圧を調整する機能を備え、内蔵する逆流継電器によって電力潮流の向きを検出し、電力潮流の向きに応じてどちら側の電圧を調整するか選択する双方向型自動電圧調整装置も知られている。しかし、一般的な双方向型自動電圧調整装置は、一次側と二次側の両方に電圧検出手段を設置しなければならないので、大型で値段も高くなる。特異なものとしては特許文献1に記載されたものがあり、これは逆潮流が起こった時に、回転駆動する接触子を有するタップ選択器を動作させ、変圧器にタップ切り替え指令を出す電圧調整継電器への配電線の入出力の方向を切り替えることで、一次側と二次側の両方の電圧を調整できるようになっている。この方式によれば一次側の電圧検出手段は不要となるものの、特殊なタップ選択器を構成するためにコストが嵩む。
【0006】
また逆潮流は、系統切替だけが原因で起こるわけではない。近年、風力発電機等の自家発電設備が分散型電源として配電系統に連系設置されることが少なくなく、逆潮流はこの分散型電源によっても引き起こされる。今、図9(イ)に示すように自動電圧調整装置92aの二次側に分散型電源94が連系設置されており、この分散型電源94が大きな電力を発生したために逆潮流が起きたとする。自動電圧調整装置は、先に述べたように逆潮流になると、二次側調整制御からタップ固定制御又は素通し制御、若しくは一次側電圧を調整する制御(一次側調整制御)に切り替わる。例えば素通し制御を行ったとすると、分散型電源94の出力により配電系統の電圧が上昇するため、自動電圧調整装置二次側の電圧が管理範囲以上に上昇する問題がある。一方、一次側調整制御を行ったとすると、一次側電圧を目標値に近付けようとタップを切り替えても、一次側の配電線に変電所が接続されているために一次側の電圧はほとんど変化しない。その結果、タップ切替が連続してなされ、二次側の電圧が異常に低下、又は上昇することになる。このような問題を起さないために、分散型電源に起因する逆潮流の場合には、自動電圧調整装置は素通し制御や一次側調整制御に切り替わらずに、二次側調整制御を維持するのが好ましい。
【0007】
つまり自動電圧調整装置は、逆潮流が起こった時には、それが系統切替によるものなのか分散型電源によるものなのかを判定し、その後の制御状態を変える必要がある。これまでに提案されている逆潮流の原因を判定する方法としては、特許文献2に記載されているように、逆潮流が起こった後で、タップ切替動作を行った時の一次側と二次側の電圧変化をそれぞれ検出し、一次側の電圧変化が二次側よりも大きい場合には系統切替に起因するものと判定し、二次側の電圧変化が一次側よりも大きい場合には分散型電源に起因するものと判定する方法がある。また特許文献3には、一次側と二次側のどちらか一方で電圧を検出し、検出した方の電圧を調整している場合において、逆潮流を検出したときには、タップを切り替える前の電圧Vxと切り替えた後の電圧Vy比較し、Vx≒Vyであれば変電所が電圧検出側にあると判断して電圧検出点を反対側(電圧調整側)に移動させ、Vx≠Vyであれば変電所が電圧検出側と反対側にあると判断して、電圧検出点を移動させない方法が記載されている。この二つの方法は、自動電圧調整装置が単独で逆潮流の原因を判定するものであり、タップを切り替えた時に、変電所に接続されている方の電圧がほとんど変化しないことを利用して逆潮流の原因を判定している。
【0008】
上記のような方法で逆潮流の原因を判定するためには、自動電圧調整装置の一次側と二次側の両方の電圧を検出する必要があるので、一次側と二次側に電圧検出手段をそれぞれ設置しなければならず、自動電圧調整装置の値段が高くなる問題がある。また、逆潮流の原因を判定するために、不必要なタップ切替動作や演算処理が必要となる場合がある。
【0009】
また、これまでの配電自動化システムは、自動電圧調整装置において分散型電源による逆潮流が起こっていても、そのことを把握できなかった。
【0010】
【特許文献1】
特開平9−84266号公報
【特許文献2】
特開2000−295774号公報
【特許文献3】
特開2002−204575号公報
【0011】
【発明が解決しようとする課題】
本発明は以上に述べたような実情に鑑みてなされたものであって、逆潮流が起こった時に、自動電圧調整装置一次側の電圧を検出することなく一次側の電圧調整を行うこと、さらには逆潮流の原因に応じて、自動電圧調整装置一次側ないし二次側の電圧調整を選択して行うことを課題とする。加えて、配電自動化システムが、分散型電源による逆潮流を把握できるようにすることを課題とする。
【0012】
【課題を解決するための手段】
上記の課題を達成するために、請求項1記載の発明による配電系統の電圧調整方法は、配電経路にタップ切替式の自動電圧調整装置を設置し、自動電圧調整装置は、通常は二次側の電圧を検出してこれを目標値に近付けるようにタップ切替を行って二次側の電圧調整を行い、逆潮流が起こった時は、検出した二次側の電圧とその時のタップ位置から一次側の電圧を算出し、これを目標値に近付けるようにタップ切替を行って一次側の電圧調整を行うことを特徴とする。ここで「通常」とは、逆潮流になっていない時をいう。本発明の方法によれば、一次側の電圧検出手段を持たず、本来なら二次側の電圧調整しかできない自動電圧調整装置を、逆潮流に対応した双方向型の自動電圧調整装置として働かせることができ、配電設備のコストダウンと高性能化を同時に実現できる。なお本発明の方法には、検出した二次側の電圧ないし算出した一次側の電圧を直接目標値に近付けるように制御する場合のみならず、二次側ないし一次側の負荷電流に応じた目標地点までの電圧降下を補償する場合も含まれる。
【0013】
請求項2記載の発明による配電系統の電圧調整方法は、配電経路にタップ切替式の自動電圧調整装置を設置し、自動電圧調整装置に配電自動化システムからの情報に基づいて系統切替による逆潮流を認識させ、自動電圧調整装置は、系統切替による逆潮流を認識した時は、検出した二次側の電圧とその時のタップ位置から一次側の電圧を算出し、これを目標値に近付けるようにタップ切替を行って一次側の電圧調整を行い、それ以外の時は、二次側の電圧を検出してこれを目標値に近付けるようにタップ切替を行って二次側の電圧調整を行うことを特徴とする。配電自動化システムとは、開閉器や自動電圧調整装置を遠方制御して配電系統を管理するシステムをいう。自動電圧調整装置が、配電自動化システムからの情報に基づいて系統切替による逆潮流を認識する態様としては、例えば、配電自動化システムは系統切替を行う際に、その系統切替に関連する配電経路に設置された自動電圧調整装置に系統切替を行うことを知らせる情報を与え、自動電圧調整装置はその情報が与えられ且つ逆潮流を検出することで、系統切替による逆潮流を認識できる。また配電自動化システムは、各配電経路に電力が逆送することを把握しており、電力が逆送すれば必ず逆潮流が起きることから、配電自動化システムから自動電圧調整装置に対して逆送の情報を与えることで、自動電圧調整装置に系統切替による逆潮流を認識させることができる。したがって自動電圧調整装置は、配電自動化システムからそのような情報が与えられていない状態で逆潮流を検出することで、分散型電源による逆潮流を認識できる。本発明の方法によれば、自動電圧調整装置が系統切替による逆潮流が起こった場合にのみ一次側の電圧調整を行い、分散型電源による逆潮流の場合は二次側の電圧調整を維持することから、結果として逆潮流の原因に応じて最適な電圧調整を行うことが可能となる。
【0014】
請求項3記載の発明による自動電圧調整装置は、請求項1記載の電圧調整方法の発明に対応するもので、変圧用の複数のタップを有する電圧調整変圧器と、タップ切替器と、二次側の電圧検出手段と、タップ切替器に対してタップ切替指令を出力する制御装置とを備え、制御装置は逆潮流検出手段を有し、逆潮流を検出している間は、検出した二次側の電圧とタップ位置から一次側の電圧を算出し、これを目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、それ以外の時は、検出した二次側の電圧を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うことを特徴とする。
【0015】
請求項4記載の発明による自動電圧調整装置は、請求項2記載の電圧調整方法の発明に対応するもので、変圧用の複数のタップを有する電圧調整変圧器と、タップ切替器と、二次側の電圧検出手段と、タップ切替器に対してタップ切替指令を出力する制御装置とを備え、制御装置は配電自動化システムとの通信手段を有し、配電自動化システムからの情報に基づいて系統切替による逆潮流を認識した時は、検出した二次側の電圧とタップ位置から一次側の電圧を算出し、これを目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、それ以外の時は、検出した二次側の電圧を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うことを特徴とする。
【0016】
また、請求項5記載の発明による自動電圧調整装置は、変圧用の複数のタップを有する電圧調整変圧器と、タップ切替器と、タップ切替器に対してタップ切替指令を出力する制御装置とを備え、制御装置は配電自動化システムとの通信手段と逆潮流検出手段を有し、配電自動化システムからの情報に基づいて逆潮流の原因を判定し、系統切替による逆潮流を認識したときは、一次側の電圧を目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、分散型電源による逆潮流を認識したときは、二次側の電圧を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うと共に、逆潮流の情報を配電自動化システムに送信することを特徴とする。逆潮流の情報とは、逆潮流が起こっていること及び逆潮流の原因を示す情報、その時の自動電圧装置二次側の電流や電圧の情報などをいう。逆潮流の情報の送信は、逆潮流の原因が系統切替による場合は必ずしも行わなくてもよい。なおこの請求項5の発明では、一次側調整制御を行うにあたり、一次側の電圧を電圧検出手段により直接検出してもよいし、先に述べたように二次側の電圧とタップ位置から一次側の電圧を算出してもよい。
【0017】
本発明の自動電圧調整装置は、配電自動化システムからの情報を利用することで系統切替による逆潮流を認識し、逆潮流が検出され且つそれが系統切替によるものでなければ、分散型電源によるものと認識できる。すなわち、逆潮流の原因を判定することができる。そして、分散型電源による逆潮流の情報を配電自動化システムに送信することで、配電自動化システムは分散型電源による逆潮流を把握できることとなる。これにより配電自動化システムは、分散型電源による逆潮流が起こったときに、例えば分散型電源が連系している区間に、その区間に隣接する他系統の配電線の区間を接続する処理を行うことにより、分散型電源による逆潮流を解消し、配電系統の末端側の電圧調整が可能となる。また、分散型電源に隣接する区間を接続することは、送電ロスを小さくすることに繋がる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の配電系統の電圧調整方法の実施に用いる自動電圧調整装置1の構成を示している。自動電圧調整装置1は、電圧調整変圧器2、タップ切替器3、二次側の電圧を検出する電圧検出用トランス(以後、VT)4、二次側の電流を検出する電流検出用トランス(以後、CT)8、制御装置5、等で構成されている。図中9は一次側配電線、10は二次側配電線である。電圧調整変圧器2は、一次側巻線と二次側巻線に共通部分を有する単巻変圧器であり、t1,t2,…,t9の計9つのタップを有している。タップ切替器3は、制御装置5からの指令に基づいて電圧調整変圧器2のタップを切り替えるとともに、現在選択されているタップのVtap(定格二次電圧に対応した一次電圧)の情報を制御装置5に入力する。VT4とCT8は二次側の電圧と電流をそれぞれ検出し、検出した二次側の電圧値V2と電流値を制御装置5に入力する。
【0019】
制御装置5は、VT4、CT8からの信号を取り込んで、タップ切替器3に昇圧ないし降圧指令を出すものであって、主に電圧調整継電器11、電圧降下補償器(LDC)12、逆流継電器6、子局7から構成される。電圧調整継電器11は、VT4で検出した二次側の電圧V2と目標とする二次側電圧との偏差を求め、これを時間で積分する等の演算を行い、その結果に応じてタップ切替器3に昇圧ないし降圧指令を出力する。電圧降下補償器12は、二次側の配電線路インピーダンスを模擬した抵抗とリアクタンスから構成されており、これにCT8で検出した電流値を入力して配電線路インピーダンスによる電圧降下を予測し、その電圧降下分をVTが検出した二次側電圧V2から差し引くことにより、目標地点の電圧をより正確に調整するためのものである。逆流継電器6は、電圧と電流の位相差から電力の逆潮流を検出するものである。子局7は、電気通信回線により、配電自動化システム(図示省略)との間で情報をやり取りするものであり、主に配電自動化システムから系統切替に関わる情報等が自動電圧調整装置に与えられる。電圧調整継電器11、電圧降下補償器12、逆流継電器6は、アナログ式のものであってもデジタル式のものであっても良い。
【0020】
以上に述べたところは、自動電圧調整装置が通常有している構成と比べて特に新しいわけではない。本発明は、この自動電圧調整装置をどのように運転させるかという点に特徴を有する。以下、自動電圧調整装置の制御フローを示し、その点を明らかにする。まず、参考のために従来の自動電圧調整装置の制御フローがどうなっていたかを図4に即して説明する。自動電圧調整装置は、運転モードを自動運転と手動運転に切り替えることができ、手動でタップを切り替えることもできるが、通常は自動運転が選択され、タップ切替を自動的に行っている。配電自動化システムは、先にも述べたように配電系統の系統切替を自動的に管理するシステムであり、現状において当該配電自動化システムは、系統切替を行う際には自動電圧調整装置に素通し制御指令を出している。自動電圧調整装置は、素通し制御指令が解除され且つ逆流継電器が逆潮流を検出していない状態では、二次側の電圧V2を目標値に近付けようにタップを自動的に切り替える二次側調整制御を行い、素通し制御指令が入力された時、素通し制御指令が解除され且つ逆流継電器が逆潮流を検出した時は、タップを素通しタップt4に固定する素通し制御を実行する。
【0021】
図2は、本発明の電圧調整方法に係る自動電圧調整装置1の制御フローを示している。図4に示したものと異なる点は、配電自動化システムからの素通し制御指令が入力されると、ひとまずタップが素通しタップt4に固定され、その後に逆流継電器6が逆潮流を検出したときには、一次側電圧V1を目標の電圧に近付けようとタップを自動的に切り替える制御、すなわち一次側調整制御を行う点である。二次側調整制御中に逆流継電器6が逆潮流を検出しても、素通し制御や一次側調整制御に切り替わらずに二次側調整制御を継続する。その一次側調整制御を行うにあたり、一次側電圧V1を実際に検出することはせず、二次側電圧V2の電圧と選択されているタップt1〜t9の位置から一次側電圧V1を算出するところにも、本発明の一つの特徴がある。
【0022】
変圧器の基本的な性質から、一次側の電圧V1、二次側の電圧V2、一次側巻線の巻数N1、二次側巻線の巻数N2との間には、数式1の関係がある。これを一次側の電圧V1について変形すると数式2となり、一次側の電圧V1は、二次側の電圧V2に一次側と二次側巻線の巻数の比N1/N2を掛ければ計算で求まる。実際に各タップ位置における巻線の巻数の比をとって計算しても良いが、自動電圧調整装置の各タップには定格二次電圧に対応した一次電圧Vtapが付されており、その値は巻数と比例関係にあるから、Vtapの数字を用いた数式3によれば、より簡明に行うことができる。こうして一次側の電圧V1を算出したら、一次側の電圧V1と一次側の目標電圧Vrefとの偏差VRHが数式4から求まる。一次側の目標電圧Vrefは任意に設定することができ、例えば一次側の柱上変圧器のタップ系列における上限値とするのが有効である。また、電流は自動電圧調整装置の一次側で検出しても二次側で検出してもほとんど変わらないので、CT8で検出した二次側の電流から一次側の任意の目標地点までの電圧降下を補償して目標値に近付けるようにすることもできる。その際、電圧降下を計算する電圧降下補償器12は、一台で二次側調整制御用と一次側調整制御用に兼用することができる。デジタル式の電圧降下補償器12は、配電線の抵抗降下分とリアクタンス降下分に対応した数値を設定し、ソフト的な処理によって電圧降下を算出するものであり、一次側と二次側の配電線の当該数値を共通に設定してもよいが、一次側と二次側の配電線の当該数値を別々に設定し、一次側ないし二次側の何れを調整するかに応じて適宜選択されるようにするのがより好ましい。
【0023】
【数1】
【数2】
【数3】
【数4】
【0024】
偏差VRHの値は制御装置5内の電圧調整継電器11により、二次側調整制御の時と同じように演算処理され、偏差VRHが所定の範囲に納まるように、電圧調整継電器11からタップ切替器3に対して昇圧指令ないし降圧指令が出される。例えば二次側の電圧V2が6400V、選択されているタップの一次電圧Vtapが6700V、定格二次電圧が6600V、一次側の目標電圧Vrefが6600Vであった場合を考えると、数式3より一次側電圧V1は約6500Vとなり、目標の6600Vに達していないので、一次側に対して昇圧方向の指令(一次電圧Vtapが一つ大きい6800Vのタップに切り替える指令)が出されることになる。タップ切替を段階的に行って、偏差VRHが所定の範囲内に納まったところでタップ切替動作を中止する。
【0025】
以上に述べた本発明の方法は、現行の配電自動化システムが系統切替の際に自動電圧調整装置に対して素通し制御指令を出すことから、自動電圧調整装置は、素通し制御指令が入力され、且つ逆潮流が検出されることで系統切替による逆潮流を認識し、一次側調整制御を行う。素通し制御指令が解除されている状態では、逆潮流が検出されても二次側調整制御を維持する(この時は、分散型電源に起因する逆潮流である。)。結果として、自動電圧調整装置は逆潮流の原因に応じてその制御状態を異ならせ、最適な電圧調整を行うことになる。
【0026】
また図5に示すように、素通し制御指令が解除されている状態で逆流継電器6が逆潮流を検出することにより、分散型電源による逆潮流が起こっていることを制御装置5が認識し、子局7より配電自動化システムに設けてある親局に対して、分散型電源による逆潮流の情報を送信する。この情報は、例えば分散型電源による逆潮流が起こっていることを示す情報、VT4で検出した二次側の電圧、CT8で検出した二次側の電流とすることができる。
【0027】
図3は、本発明の電圧調整方法に係る自動電圧調整装置の制御フローのもう一つの例を示している。ここでは、配電自動化システムより自動電圧調整装置1に対して、逆送制御の実行指令を出すこととし、自動電圧調整装置1はその指令が子局7を通じて入力されれば無条件に一次側調整制御を行い、逆送制御指令が解除されているときは二次側調整制御を行うこととしている。配電自動化システムは開閉器の開閉等を適宜行い、配電系統の切替を管理しており、各自動電圧調整装置の設置点において逆送状態になることを当然把握できる。逆送状態になれば、自動電圧調整装置においては必ず系統切替による逆潮流の状態になるから、それに対応して一次側調整制御を行えば良く、逆送状態でなければ逆潮流が起きる起きないに関係なく二次側調整制御を行えば良い。したがって、自動電圧調整装置が逆潮流の原因を判定することはおろか、逆潮流を検出する必要さえもなくなる。なお、自動電圧調整装置に分散型電源による逆潮流を認識させるには、逆潮流を検出する必要があり、図6に示すように、逆送制御指令が解除されている状態で逆流継電器が逆潮流を検出することで分散型電源による逆潮流を認識でき、配電自動化システムに対して逆潮流の情報を送信する。
【0028】
上記のことを配電自動化システムが行う系統切替動作と関連付けて説明する。図7(イ)は配電経路の順送時の状態を示しており、開閉器14bを開放して配電線のa〜cの区間に変電所13aから電力が供給されており、この時自動電圧調整装置1は二次側調整制御を行っている。系統切替を行う際、配電自動化システムは、自動電圧調整装置1に対して素通し制御指令を出力し、開閉器14bを開く(図7(ロ)の状態)。次に図7(ハ)に示すように配電自動化システムは開閉器14aを閉じ、すると自動電圧調整装置1に変電所13bより電力が逆送されるので、自動電圧調整装置1に対して逆送制御指令を出力する。自動電圧調整装置1はその指令に基づいて一次側調整制御に切り替わる。
【0029】
図8は、分散型電源による逆潮流の一つのモデルと、そのときに配電自動化システムが行う処理の一例を示している。図8(イ)中、Lは配電線に接続している負荷を示し、その下の添字は負荷の大きさを示している。また、Gは分散型電源を示している。分散型電源15が1800kWの電力を出力したとすると、自動電圧調整装置16の地点では、途中の負荷によって800kW消費され、100kW分が逆潮流することになる。この分散型電源による逆潮流の情報は、先に述べたように自動電圧調整装置16から配電自動化システムに与えられる。配電自動化システムは、開閉器17a,17b,17c,17dの開閉操作を行って、分散型電源に隣接して連系している他の配電系統の区間(この区間には18a,18bの計1000kWの負荷が接続している)を、逆潮流が起こっている配電系統の末端に接続する。これにより分散型電源15の電力が負荷18a,18bに流れ、分散型電源による逆潮流が解消され、配電系統の末端側の電圧調整が可能となる。また、分散型電源に隣接する区間を接続することは、送電ロスを小さくすることに繋がる。
【0030】
本発明は以上に述べた実施形態に限定されるものではない。分散型電源による逆潮流を考慮しなくても良い場合には、自動電圧調整装置は逆潮流の原因を判定する必要はなく、逆潮流を検出したらすぐに二次側調整制御から一次側調整制御に切り替わるようにすれば良い。
【0031】
【発明の効果】
請求項1記載の配電系統の電圧調整方法、請求項3記載の自動電圧調整装置の発明によれば、一次側の電圧検出手段を持たず、本来なら二次側の電圧調整しかできない自動電圧調整装置を、逆潮流に対応した双方向型の自動電圧調整装置として働かせることができ、配電設備のコストダウンと高性能化を同時に実現できる。分散型電源による逆潮流を考慮しなければならないケースはまだそれほど多いわけではないから、本発明は十分に実用的である。
【0032】
さらに請求項2記載の方法、請求項4記載の自動電圧調整装置の発明によれば、以上に述べた効果に加えて、系統切替による逆潮流と分散型電源による逆潮流の両方が起こり得る場合であっても、逆潮流の原因に応じた電圧調整を簡易且つ確実に行うことができる。
【0033】
請求項5記載の発明による自動電圧調整装置によれば、配電自動化システムが分散型電源による逆潮流を把握できることとなり、配電自動化システムは例えば分散型電源が系統連系している区間へ、これに隣接する他の配電系統の区間を接続する処理を行って、分散型電源による逆潮流を解消させ、送電ロスの小さい効率的な電力供給が可能となる。
【図面の簡単な説明】
【図1】本発明の自動電圧調整装置の構成例を示す回路図である。
【図2】本発明の電圧調整方法に係る自動電圧調整装置の制御フローの一例を示すフローチャートである。
【図3】本発明の電圧調整方法に係る自動電圧調整装置の制御フローの別の例を示すフローチャートである。
【図4】現状の自動電圧調整装置の制御フローを示すフローチャートである。
【図5】自動電圧調整装置が分散型電源による逆潮流を認識し、逆潮流の情報を送信する部分のフローチャートの一例である。
【図6】自動電圧調整装置が分散型電源による逆潮流を認識し、逆潮流の情報を送信する部分のフローチャートの一例である。
【図7】(イ)(ロ)(ハ)配電系統の系統切替動作の手順を示す説明図である。
【図8】(イ)(ロ)分散型電源による逆潮流が起こったときに配電自動化システムが行う処理の一例を示すモデル図とフローチャートである。
【図9】(イ)(ロ)配電系統の配電線の形態を示す説明図である。
【符号の説明】
1 自動電圧調整装置
2 電圧調整変圧器
3 タップ切替器
4 VT(二次側の電圧検出手段)
5 制御装置
6 逆流継電器(逆潮流検出手段)
7 子局(通信手段)
t1〜t9 タップ
V1 一次側電圧
V2 二次側電圧
Claims (5)
- 配電経路にタップ切替式の自動電圧調整装置(1)を設置し、自動電圧調整装置は、通常は二次側の電圧(V2)を検出してこれを目標値に近付けるようにタップ切替を行って二次側の電圧調整を行い、逆潮流が起こった時は、検出した二次側の電圧(V2)とその時のタップ位置から一次側の電圧(V1)を算出し、これを目標値に近付けるようにタップ切替を行って一次側の電圧調整を行うことを特徴とする配電系統の電圧調整方法。
- 配電経路にタップ切替式の自動電圧調整装置(1)を設置し、自動電圧調整装置に配電自動化システムからの情報に基づいて系統切替による逆潮流を認識させ、自動電圧調整装置は、系統切替による逆潮流を認識した時は、検出した二次側の電圧(V2)とその時のタップ位置から一次側の電圧(V1)を算出し、これを目標値に近付けるようにタップ切替を行って一次側の電圧調整を行い、それ以外の時は、二次側の電圧(V2)を検出してこれを目標値に近付けるようにタップ切替を行って二次側の電圧調整を行うことを特徴とする配電系統の電圧調整方法。
- 変圧用の複数のタップ(t1〜t9)を有する電圧調整変圧器(2)と、タップ切替器(3)と、二次側の電圧検出手段(4)と、タップ切替器に対してタップ切替指令を出力する制御装置(5)とを備え、制御装置は逆潮流検出手段(6)を有し、逆潮流を検出している間は、検出した二次側の電圧(V2)とタップ位置から一次側の電圧(V1)を算出し、これを目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、それ以外の時は、検出した二次側の電圧(V2)を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うことを特徴とする自動電圧調整装置。
- 変圧用の複数のタップ(t1〜t9)を有する電圧調整変圧器(2)と、タップ切替器(3)と、二次側の電圧検出手段(4)と、タップ切替器に対してタップ切替指令を出力する制御装置(5)とを備え、制御装置は配電自動化システムとの通信手段(7)を有し、配電自動化システムからの情報に基づいて系統切替による逆潮流を認識した時は、検出した二次側の電圧(V2)とタップ位置から一次側の電圧(V1)を算出し、これを目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、それ以外の時は、検出した二次側の電圧(V2)を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うことを特徴とする自動電圧調整装置。
- 変圧用の複数のタップ(t1〜t9)を有する電圧調整変圧器(2)と、タップ切替器(3)と、タップ切替器に対してタップ切替指令を出力する制御装置(5)とを備え、制御装置は配電自動化システムとの通信手段(7)と逆潮流検出手段(6)を有し、配電自動化システムからの情報に基づいて逆潮流の原因を判定し、系統切替による逆潮流を認識したときは、一次側の電圧(V1)を目標値に近付けるようにタップ切替指令を出力する一次側調整制御を行い、分散型電源による逆潮流を認識したときは、二次側の電圧(V2)を目標値に近付けるようにタップ切替指令を出力する二次側調整制御を行うと共に、逆潮流の情報を配電自動化システムに送信することを特徴とする自動電圧調整装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003009791A JP4224309B2 (ja) | 2003-01-17 | 2003-01-17 | 配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003009791A JP4224309B2 (ja) | 2003-01-17 | 2003-01-17 | 配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004220500A JP2004220500A (ja) | 2004-08-05 |
JP4224309B2 true JP4224309B2 (ja) | 2009-02-12 |
Family
ID=32899179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003009791A Expired - Lifetime JP4224309B2 (ja) | 2003-01-17 | 2003-01-17 | 配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4224309B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006262609A (ja) * | 2005-03-16 | 2006-09-28 | Tohoku Electric Mfg Co Ltd | 単相3線式電圧適正化装置 |
JP2008199703A (ja) * | 2007-02-08 | 2008-08-28 | Kansai Electric Power Co Inc:The | 低圧配電系統 |
JP2009065817A (ja) * | 2007-09-10 | 2009-03-26 | Kansai Electric Power Co Inc:The | 配電系統の電圧管理方法 |
JP2009065816A (ja) * | 2007-09-10 | 2009-03-26 | Kansai Electric Power Co Inc:The | 配電系統の電圧管理方法 |
JP5981257B2 (ja) * | 2012-07-27 | 2016-08-31 | 九州電力株式会社 | 遠隔制御機能を有する分散型電源対応自動電圧調整器及びその制御方法 |
JP5608780B1 (ja) * | 2013-04-05 | 2014-10-15 | 中国電力株式会社 | 自動電圧調整器の制御システム及び自動電圧調整器 |
JP2015008610A (ja) * | 2013-06-26 | 2015-01-15 | 株式会社日立製作所 | 電圧調整装置 |
JP6627560B2 (ja) * | 2016-02-18 | 2020-01-08 | 富士電機株式会社 | 自律分散型電圧制御方式および同方式における隣接機器の検出方法 |
JP7029360B2 (ja) * | 2018-08-02 | 2022-03-03 | 株式会社ダイヘン | 電圧調整装置及び線間電圧検出方法 |
-
2003
- 2003-01-17 JP JP2003009791A patent/JP4224309B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004220500A (ja) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarimuthu et al. | A review on voltage control methods using on-load tap changer transformers for networks with renewable energy sources | |
JP4891851B2 (ja) | 分散電源装置を連系した低圧配電系統における電圧上昇抑制方法および電圧上昇抑制装置 | |
US9819188B1 (en) | Direct current transmission system and method | |
JP4101788B2 (ja) | 電圧調整装置および電圧調整方法 | |
JP4224309B2 (ja) | 配電系統の電圧調整方法とその方法に使用する自動電圧調整装置 | |
JP6877295B2 (ja) | 電圧調整装置及び電圧調整装置の判定方法 | |
JP6517857B2 (ja) | 電圧調整機器の電圧制御装置およびその電圧制御方法 | |
US20120025616A1 (en) | Dc power system having a power architecture for optimizing efficiency and a system controller of the system | |
US20220253080A1 (en) | Smart voltage reduction and reverse power operating mode determination for load tap charging transformers and voltage regulators | |
JP5457949B2 (ja) | 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法 | |
JPH09322404A (ja) | 配電系統制御装置 | |
JP3992212B2 (ja) | 配電用自動電圧調整器の電力逆潮流原因判定方法及び装置、並びに電力逆潮流時配電用自動電圧調整器制御方法 | |
CN116961005B (zh) | 一种基站引电端调压方法、装置及设备 | |
JP6161880B2 (ja) | 自動電圧調整器及びその制御方法 | |
JPH0578250B2 (ja) | ||
JP5608780B1 (ja) | 自動電圧調整器の制御システム及び自動電圧調整器 | |
JP6070077B2 (ja) | 電圧制御装置及び電圧制御方法 | |
JP2014023303A (ja) | 配電用自動電圧調整器の電力逆潮流原因判定方法及び装置 | |
US20150261232A1 (en) | Method for regulating the voltage of a transformer | |
JP4212744B2 (ja) | 配電用自動電圧調整器及びその電力逆潮流原因判定方法 | |
JP6333668B2 (ja) | 電力自立システム | |
JP2003102128A (ja) | 自己完結型双方向自動電圧調整装置 | |
JP2013078237A (ja) | 電圧調整装置及び電圧調整方法 | |
JP2014027810A (ja) | 遠隔制御機能を有する分散型電源対応自動電圧調整器及びその制御方法 | |
JP2011055599A (ja) | 自動電圧調整器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4224309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |