JP4217444B2 - 放射線検出装置及びその製造方法 - Google Patents

放射線検出装置及びその製造方法 Download PDF

Info

Publication number
JP4217444B2
JP4217444B2 JP2002247249A JP2002247249A JP4217444B2 JP 4217444 B2 JP4217444 B2 JP 4217444B2 JP 2002247249 A JP2002247249 A JP 2002247249A JP 2002247249 A JP2002247249 A JP 2002247249A JP 4217444 B2 JP4217444 B2 JP 4217444B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
conversion element
radiation detection
detection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002247249A
Other languages
English (en)
Other versions
JP2004085383A (ja
Inventor
孝昌 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002247249A priority Critical patent/JP4217444B2/ja
Priority to US10/648,916 priority patent/US7148487B2/en
Publication of JP2004085383A publication Critical patent/JP2004085383A/ja
Priority to US11/428,837 priority patent/US7271392B2/en
Priority to US11/428,839 priority patent/US7408169B2/en
Application granted granted Critical
Publication of JP4217444B2 publication Critical patent/JP4217444B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置等に好適な放射線検出装置及びその製造方法に関する。
【0002】
【従来の技術】
従来、代表的な放射線検出装置として、MIS型光電変換素子及びスイッチTFTから構成されたMIS−TFT構造の光センサと、放射線を可視光線に変換するための蛍光体とを組み合わせたものがある。なお、本明細書では、α線、β線、γ線等の他に、可視光線、X線等の電磁波も、放射線に含まれるものとする。
【0003】
図9は、従来の放射線検出装置の回路構成を示す等価回路図であり、図10は、図9に示す従来の放射線検出装置のレイアウト構成を示す平面図である。図9及び図10には、画素エリアに4行4列(16個)の画素が設けられている例を示すが、実際には例えば2000×2000画素が絶縁基板に配置されている。
【0004】
放射線検出装置の一例としては、画素毎に、1個の光電変換素子(半導体変換素子)と1個の薄膜トランジスタ(TFT)とが設けられている構成が考えられる。具体的には、図9及び図10中の上から第a行、第b列の画素には、1個の光電変換素子Mbaと1個の薄膜トランジスタTbaとが設けられている(a、b=1、2、3、4)。
【0005】
また、第b列に配置された4個の光電変換素子は共通のバイアス線Vsbに接続されており、読み出し装置から一定バイアスが印加されている。第a行に配置された4個のTFTのゲート電極は、共通のゲート線Vgaに接続されており、ゲート駆動装置によりゲートのON/OFFが制御される。更に、第b列に配置された4個のTFTのソース電極又はドレイン電極は、共通の信号線Sigbに接続されている。信号線Sig1〜Sig4は、読み出し装置に接続されている。
【0006】
また、放射線検出装置の照射面にはX線を可視光線に変換する蛍光体層が設けられている。
【0007】
このように構成された放射線検出装置上で、人体等の被検体に向けてX線が曝射されると、このX線は被検体により減衰を受けながら、被検体を透過し、蛍光体層で可視光線に変換される。そして、この可視光線が光電変換素子に入射し、電荷に変換される。この電荷は、ゲート駆動装置により印加されるゲート駆動パルスに応じてTFTを介して信号線に転送され、読み出し装置を介して外部に出力される。その後、共通のバイアス線から光電変換素子で発生し転送されなかった電荷が除去される。この動作は、リフレッシュとよばれる。
【0008】
図11は、従来のMIS−TFT構造の光センサの1画素の層構成を示す1画素分の断面図である。図11には、MIS型光電変換素子及びスイッチTFTが互いに並行して形成された光センサの例を示している。
【0009】
絶縁基板111上に、MIS型光電変換素子101及びスイッチTFT102が形成されている。MIS型光電変換素子101には、下部電極117、絶縁体層118、半導体層119、n+半導体層120及び上部電極122が設けられている。スイッチTFT102には、ゲート電極112、ゲート絶縁体層113、半導体層114、オーミックコンタクト層115及び2個のソース・ドレイン電極116が設けられている。
【0010】
下部電極117及びゲート電極112は、同一の電極層から形成されている。絶縁体層118及びゲート絶縁体層113は、同一の絶縁体層から形成されている。半導体層119及び半導体層114は、同一の半導体層から形成されている。上部電極122及びソース・ドレイン電極116は、同一の電極層から形成されている。
【0011】
MIS型光電変換素子101の下部電極117は、スイッチTFT102の一方のソース・ドレイン電極116に接続されている。上部電極122はバイアス線に接続され、他方のソース・ドレイン電極は信号線に接続され、ゲート電極112はゲート線に接続されている。更に、各素子の上には、絶縁体層(保護層)125、有機保護層126、接着層127及び蛍光体層128が形成されている。
【0012】
次に、放射線検出装置において、X線源から照射されるX線の露出を自動的に制御するX線自動露出制御装置(AEC)について説明する。
【0013】
一般に、2次元に配設されたセンサを有する放射線検出装置においては、被検体毎に又は撮影毎に入射するX線量を調整(AEC制御)する必要がある。このX線量の調整方法は、以下の2つに分類することができる。
(1)AEC制御用センサを放射線検出装置とは別に別途設ける。
(2)放射線検出装置内の画像撮像用センサの全部又はは一部からX線量を高速で読み出して、この信号をAEC制御用信号とする。
【0014】
従来、(1)の方法を採用する場合には、X線の減衰率が5%程度の薄型の複数個のAEC制御用センサを放射線検出装置の前面に、即ち放射線検出装置の蛍光体層よりも被検知体側に別途設けている。そして、これらのAEC制御用センサの出力に基づいてX線の曝射を停止させ、画像化に適切なX線量を得ている。この方法で使用されるAEC制御用センサとしては、X線をイオンチャンバで直接電荷として取り出すものや、蛍光体を介して蛍光体光をファイバーで外部に取り出し、フォトマルで電荷に変換するものがある。
【0015】
【発明が解決しようとする課題】
しかしながら、2次元状に配設された放射線検出装置において、別途AEC制御用センサを設け、入射する放射線量を調整(AEC制御)する場合、このセンサの配置が問題となる。
【0016】
つまり、一般にAEC制御に必要な情報は被写体の中央部にあるため、画像撮像用センサによる撮像に支障の無いようにAEC制御用センサを配置するためには、別途放射線の減衰が非常に小さいAEC制御用センサが必要となる。このため、装置全体のコスト上昇が引き起こされる。また、全く減衰の無いセンサは存在しないため、その分の撮像画像の画質低下は避けられない。
【0017】
また、放射線検出装置内の画像撮像用センサをAEC制御用センサと兼用する方法は、画素数の比較的少ないセンサでは、特段の問題は生じないが、例えば画素数が2000×2000画素のようなセンサでは、高速駆動用回路が必要となり、装置全体のコストの上昇が引き起こされる。更に、高速で駆動する必要があるために、画像撮像用センサにおいて、電荷の蓄積時間、電荷の転送時間及び容量のリセット時間等を十分に確保することが困難である。この結果、撮像画像の画質低下を引き起こすという問題が生じる。
【0018】
本発明は、かかる問題点に鑑みてなされたものであって、検出前での放射線の減衰を抑制しながら、高速駆動を必要とせずに入射する放射線量を自動調整することができる放射線検出装置及びその製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明に係る放射線検出装置は、基板上に複数の画素を備えてなる放射線検出装置であって、前記複数の画素は、放射線を電気信号に変換する第1の半導体変換素子と、前記第1の半導体変換素子に接続されたスイッチ素子と、を備えた第1及び第2の画素を含み、前記第2の画素は、更に、前記複数の画素に入射した放射線の照射量を検出するために放射線を電気信号に変換する第2の半導体変換素子を備え、前記第1及び第2の半導体変換素子は、互いに前記スイッチ素子よりも上方に配設された同一の層から形成された半導体層を有し、前記第2の画素における前記第1の半導体変換素子は、前記第1の画素における前記第1の半導体変換素子より減少された開口率を有することを特徴とする。
【0021】
本発明に係る放射線検出装置の製造方法は、放射線を電気信号に変換する第1の半導体変換素子と、前記第1の半導体変換素子に接続されたスイッチ素子と、を備えた第1及び第2の画素を含む複数の画素を基板上に備えてなり、前記第2の画素は、更に、前記複数の画素に入射した放射線の照射量を検出するために放射線を電気信号に変換する第2の半導体変換素子を備えた放射線検出装置の製造方法であって、前記基板上に前記スイッチ素子を形成する工程と、前記スイッチ素子上に準備された同一の層から前記第1の半導体変換素子の半導体層及び前記第2の半導体変換素子の半導体層を同時に形成する工程と、を有することを特徴とする。
【0023】
これらの本発明においては、第2の半導体変換素子を介して検出された放射線量に基づいてAEC制御を行うことが可能である。このとき、第2の半導体変換素子が第1の半導体変換素子と同一の基板上に形成されているので、第2の半導体変換素子による放射線の減衰は生じない。また、第1の半導体変換素子を自動制御用に使用する必要がないため、これらを高速駆動する必要もない。
【0024】
【発明の実施の形態】
以下、本発明の実施形態に係る放射線検出装置及びその製造方法について、添付の図面を参照して具体的に説明する。
【0025】
(第1の実施形態)
先ず、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る放射線検出装置の回路構成を示す等価回路図であり、図2は、第1の実施形態に係る放射線検出装置のレイアウト構成を示す平面図であり、図3は、第1の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。図1及び図2には、画素エリアに4行4列(16個)の画素が設けられている例を示すが、その数はこれに限定されるものではなく、例えば2000×2000画素が設けられていてもよい。
【0026】
本実施形態においては、画素毎に、MIS型光電変換素子(第1の半導体変換素子)と読出用薄膜トランジスタ(TFT)(スイッチ素子)との組み合わせ、又はMIS型光電変換素子(第1の半導体変換素子)と読出用TFT(スイッチ素子)とAEC制御用のTFT型センサ(第2の半導体変換素子)との組み合わせが設けられている。具体的には、図1及び図2中の上から第a行、第b列の画素には、1個の光電変換素子Mbaと1個の薄膜トランジスタTbaとが設けられており(a、b=1、2、3、4)、第a行、第3列の画素には、更に、1個のTFT型センサMA3aが設けられている。
【0027】
また、第b列に配置された4個のMIS型光電変換素子は共通のバイアス線Vsbに接続されており、読み出し装置から一定バイアスが印加されている。第a行に配置された4個の読出用TFTのゲート電極は、共通のゲート線Vgaに接続されており、ゲート駆動装置によりゲートのON/OFFが制御される。更に、第b列に配置された4個の読出用TFTのソース電極又はドレイン電極は、共通の信号線Sigbに接続されている。信号線Sig1〜Sig4は、読み出し装置に接続されている。
【0028】
ここで、図3を参照して、TFT型センサが設けられた画素の層構成について説明する。この画素には、チャネルエッチ型の読出用TFT1、MIS型光電変換素子2及びTFT型センサ3が設けられている。
【0029】
この画素の層構成としては、絶縁基板11上に、読出用TFT1のゲート電極12、及びこのゲート電極12を覆う第1の絶縁体層13が形成されている。第1の絶縁体層13は、読出用TFT1のゲート絶縁膜として機能する。
【0030】
第1の絶縁体層13上には、読出用TFT1の半導体層(チャネル層)14が形成されている。半導体層14上には、オーミックコンタクト層15が形成され、オーミックコンタクト層15上にソース・ドレイン電極16が形成されている。一方のソース・ドレイン電極16は、オーミックコンタクト層15上から第1の絶縁体層13上で拡がるようにして形成されている。このソース・ドレイン電極16は、MIS型光電変換素子2の下部電極としても機能する。第1の絶縁体層13上には、更に、TFT型センサ3のゲート電極17が形成されている。そして、ゲート電極17及びソース・ドレイン電極16等を覆う第2の絶縁体層18が形成されている。第2の絶縁体層18は、TFT型センサ3のゲート絶縁膜として機能する。
【0031】
第2の絶縁体層18上には、半導体層19及びn+半導体層20が、平面視でMIS型光電変換素子2の下部電極としても機能するソース・ドレイン電極16と整合するようにして形成され、TFT型センサ3の半導体層(チャネル層)21が形成されている。半導体層19及び21は、後述のように、互いに同一の層から形成されている。n+半導体層20上には、MIS型光電変換素子2の上部電極22が形成されている。n+半導体層20は、上部電極として機能する。半導体層21上には、オーミックコンタクト層(n+半導体層)23が形成され、オーミックコンタクト層23上にソース・ドレイン電極24が形成されている。そして、上部電極22及びソース・ドレイン電極23等を覆う第3の絶縁体層25が形成されている。
【0032】
第3の絶縁体層25上には、有機保護層26、接着層27及び蛍光体層28が順次形成されている。
【0033】
ここで、読出用TFT1としては転送速度が速いものを使用することが望ましい。従って、半導体層14は薄膜とする。一方、MIS型光電変換素子2及びTFT型センサ3については、入射光を十分に吸収できることが望ましい。従って、半導体層19及び21は半導体層14より厚いことが望ましい。また、読出用TFT1として、ポリシリコンからなるものを用いることによりさらに速度を向上させてもよい。
【0034】
TFT型センサ3が設けられていない画素の層構成は、図3に示すものから、ゲート電極17、半導体層21、オーミックコンタクト層23及びソース・ドレイン電極24が除かれたものとなっている。
【0035】
MIS型光電変換素子2の上部電極22はバイアス線に接続されている。ソース・ドレイン電極16のうち、下部電極と兼用されていないものは、信号線に接続されている。ゲート電極12はゲート線に接続されている。また、TFT型センサ3については、ゲート電極17及びソース・ドレイン電極24は、いずれも読み出し装置に接続されている。
【0036】
次に、上述のように構成された第1の実施形態に係る放射線検出装置の動作について説明する。
【0037】
このように構成された放射線検出装置上で、人体等の被検体に向けてX線が曝射されると、このX線は被検体により減衰を受けながら、被検体を透過し、蛍光体層28で可視光線に変換される。そして、この可視光線がMIS型光電変換素子2に入射し、電荷に変換される。この電荷は、ゲート駆動装置により印加されるゲート駆動パルスに応じて読出用TFT1を介して信号線に転送され、読み出し装置を介して外部に出力される。その後、共通のバイアス線からMIS型光電変換素子2で発生し転送されなかった電荷が除去される。
【0038】
この一方で、TFT型センサ3に対しては、例えば半導体層21空乏化させる一定バイアスをソース・ドレイン電極24間に印加しておく。このように、一定バイアスを印加しておくことにより、入射光に応じた電荷が常に出力される。従って、この出力値を増幅器(AMP)で増幅させ、加算することにより、X線の総照射量を読み出し装置により検出することができる。そして、X線の総照射量に基づいてX線の曝射を制御する。
【0039】
このような第1の実施形態によれば、絶縁基板上にAEC制御用のセンサを画像撮像用のセンサとは別に設けているため、画像撮像用のセンサ(MIS型光電変換素子2)を高速に駆動しなくても、十分にX線の総照射量を検出することができる。また、MIS型光電変換素子2を高速で駆動する必要がないため、電荷の蓄積時間、電荷の転送時間及び容量のリセット時間等を十分に確保することが可能である。従って、良好な画質の撮像画像を得ることができる。
【0040】
また、MIS型光電変換素子2にX線が入射するまでの間に、AEC制御用のセンサによりX線が減衰を受けることはない。従って、良好な画質を得ることができる。
【0041】
なお、TFT型センサ3は必要な場所に選択的に配置することができる。つまり、図1に示すように、画素の1列内に全てのTFT型センサ3が収められている必要はない。TFT型センサ3が存在する画素においては、MIS型光電変換素子2の開口率が減少してしまうが、この面積の減少分は読み出した後の画像補正により容易に補うことが可能である。
【0042】
次に、第1の実施形態に係る放射線検出装置を製造する方法について説明する。
【0043】
先ず、絶縁基板11上に第1の電極層を形成し、これをパターニングすることにより、ゲート電極12を形成する。次に、全面に第1の絶縁体層13を形成する。
【0044】
次いで、第1の絶縁体層13上に第1の半導体層を形成し、これをパターニングすることにより、半導体層14を形成する。その後、半導体層14上にオーミックコンタクト層15を形成する。続いて、全面に第2の電極層を形成し、これをパターニングすることにより、ソース・ドレイン電極16及びゲート電極17を形成する。次に、全面に第2の絶縁体層18を形成する。
【0045】
次いで、全面に第2の半導体層を形成し、これをパターニングすることにより、半導体層19及び21を同時に形成する。その後、半導体層19上にn+半導体層20を、半導体層21上にオーミックコンタクト層23を形成する。次に、全面に第3の電極層を形成し、これをパターニングすることにより、上部電極22及びソース・ドレイン電極24を形成する。次いで、全面に第3の絶縁体層25を形成する。
【0046】
その後、全面に有機保護層26、接着層27及び蛍光体層28を順次形成する。また、本発明においてn+半導体層20又はオーミックコンタクト層23と、第3の絶縁体層25との間に、ITO(Indium Tin Oxide)等からなる透明電極層を形成することによって、n+半導体層20の膜厚を薄くすることが可能となり、これによって入射光量自体を増大させることができる。また、TFT型センサ3においても、ソース・ドレイン電極24に透明電極層を使用すれば、入射光量を増大させることができるため、TFT型センサの感度が向上する。
【0047】
このようにして、第1の実施形態に係る放射線検出装置を製造することができる。
【0048】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図4は、本発明の第2の実施形態に係る放射線検出装置の回路構成を示す等価回路図であり、図5は、第2の実施形態に係る放射線検出装置のレイアウト構成を示す平面図であり、図6は、第2の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。図4及び図5には、第1の実施形態と同様、画素エリアに4行4列(16個)の画素が設けられている例を示すが、その数はこれに限定されるものではなく、例えば2000×2000画素が設けられていてもよい。
【0049】
本実施形態においては、画素毎に、PIN型光電変換素子(第1の半導体変換素子)と読出用TFT(スイッチ素子)との組み合わせ、又はPIN型光電変換素子(第1の半導体変換素子)と読出用TFT(スイッチ素子)とAEC制御用のPIN型センサ(第2の半導体変換素子)との組み合わせが設けられている。具体的には、図4及び図5中の上から第a行、第b列の画素には、1個の光電変換素子Pbaと1個の薄膜トランジスタTbaとが設けられており(a、b=1、2、3、4)、第a行、第3列の画素には、更に、1個のPIN型センサPA3aが設けられている。
【0050】
また、第b列に配置された4個のPIN型光電変換素子は共通のバイアス線Vsbに接続されており、読み出し装置から一定バイアスが印加されている。第a行に配置された4個の読出用TFTのゲート電極は、共通のゲート線Vgaに接続されており、ゲート駆動装置によりゲートのON/OFFが制御される。更に、第b列に配置された4個の読出用TFTのソース電極又はドレイン電極は、共通の信号線Sigbに接続されている。信号線Sig1〜Sig4は、読み出し装置に接続されている。
【0051】
ここで、図6を参照して、PIN型センサが設けられた画素の層構成について説明する。この画素には、エッチストッパ型の読出用TFT4、PIN型光電変換素子5及びPIN型センサ6が設けられている。
【0052】
この画素の層構成としては、絶縁基板11上に、読出用TFT4のゲート電極12、及びこのゲート電極12を覆う第1の絶縁体層13が形成されている。第1の絶縁体層13は、読出用TFT4のゲート絶縁膜として機能する。
【0053】
第1の絶縁体層13上には、読出用TFT4の半導体層(チャネル層)14が形成されている。半導体層14上には、第4の絶縁体層31が形成され、更に、この第4の絶縁体層31を間に挟むようにしてオーミックコンタクト層15が形成されている。一方のオーミックコンタクト層15は、第4の絶縁体層31及び半導体層14上から第1の絶縁体層13上で拡がるようにして形成されている。そして、オーミックコンタクト層15上にソース・ドレイン電極16が形成されている。更に、ソース・ドレイン電極16等を覆う第2の絶縁体層18が形成されている。
【0054】
第2の絶縁体層18には、第1の絶縁体層13上で拡がるようにして形成されたソース・ドレイン電極16まで到達するコンタクトホールが形成されている。そして、このコンタクトホールを介してソース・ドレイン電極16に接続されたPIN型光電変換素子5の下部電極32が第2の絶縁体層18上に形成されている。下部電極32上には、n型半導体層33、真性半導体層34及びp型半導体層35が順次形成されている。更に、p型半導体層35上には、PIN型光電変換素子5の上部電極36が形成されている。
【0055】
第2の絶縁体層18上には、更に、PIN型センサ6の下部電極37が形成されている。下部電極37上には、n型半導体層38、真性半導体層39及びp型半導体層40が順次形成されている。後述のように、n型半導体層33及び38は互いに同一の層から形成され、真性半導体層34及び39は互いに同一の層から形成され、p型半導体層35及び40は互いに同一の層から形成されている。p型半導体層40上には、PIN型センサ6の上部電極41が形成されている。そして、上部電極36及び41等を覆う第3の絶縁体層25が形成されている。
【0056】
第3の絶縁体層25上には、第1の実施形態と同様に、有機保護層26、接着層27及び蛍光体層28が順次形成されている。
【0057】
ここで、読出用TFT4としては転送速度が速いものを使用することが望ましい。従って、半導体層14は薄膜とする。一方、PIN型光電変換素子5及びPIN型センサ6については、入射光を十分に吸収できることが望ましい。従って、真性半導体層34及び39は半導体層14より厚いことが望ましい。また、ポリシリコンからなるTFTを用いることも可能である。
【0058】
PIN型センサ6が設けられていない画素の層構成は、図6に示すものから、下部電極37、n型半導体層38、真性半導体層39、p型半導体層40及び上部電極41が除かれたものとなっている。
【0059】
PIN型光電変換素子5の上部電極36はバイアス線に接続されている。ソース・ドレイン電極16のうち、下部電極32に接続されていないものは、信号線に接続されている。ゲート電極12はゲート線に接続されている。また、PIN型センサ6については、下部電極37及び上部電極41は、いずれも読み出し装置に接続されている。
【0060】
次に、上述のように構成された第2の実施形態に係る放射線検出装置の動作について説明する。
【0061】
このように構成された放射線検出装置上で、人体等の被検体に向けてX線が曝射されると、このX線は被検体により減衰を受けながら、被検体を透過し、蛍光体層28で可視光線に変換される。そして、この可視光線がPIN型光電変換素子5に入射し、電荷に変換される。この電荷は、ゲート駆動装置により印加されるゲート駆動パルスに応じて読出用TFT4を介して信号線に転送され、読み出し装置を介して外部に出力される。
【0062】
この一方で、PIN型センサ6に対しては、例えば一定バイアスを下部電極37と上部電極41との間に印加しておく。このように、一定バイアスを印加しておくことにより、入射光に応じた電荷が常に出力される。従って、この出力値を増幅器(AMP)で増幅させ、加算することにより、X線の総照射量を読み出し装置により検出することができる。そして、X線の総照射量に基づいてX線の曝射を制御する。
【0063】
このような第2の実施形態においても、第1の実施形態と同様の効果が得られる。また、第2の実施形態においては、PIN型光電変換素子5の下部電極32が、第1の実施形態におけるMIS型光電変換素子2の下部電極(一方のソース・ドレイン電極16)よりも広くなるので、より高い効率で放射線を検出することができる。
【0064】
なお、PIN型センサ6は必要な場所に選択的に配置することができる。つまり、図4に示すように、画素の1列内に全てのPIN型センサ6が収められている必要はない。PIN型センサ6が存在する画素においては、PIN型光電変換素子5の開口率が減少してしまうが、この面積の減少分は読み出した後の画像補正により容易に補うことが可能である。
【0065】
次に、第2の実施形態に係る放射線検出装置を製造する方法について説明する。
【0066】
先ず、絶縁基板11上に第1の電極層を形成し、これをパターニングすることにより、ゲート電極12を形成する。次に、全面に第1の絶縁体層13を形成する。
【0067】
次いで、第1の絶縁体層13上に第1の半導体層を形成し、これをパターニングすることにより、半導体層14を形成する。次に、半導体層14の中央に、第4の絶縁体層31を形成する。その後、半導体層14上にオーミックコンタクト層15を形成する。続いて、全面に第2の電極層を形成し、これをパターニングすることにより、ソース・ドレイン電極16を形成する。次に、全面に第2の絶縁体層18を形成し、この第2の絶縁体層18に、ソース・ドレイン電極16まで到達するコンタクトホールを形成する。
【0068】
次いで、コンタクトホールを埋め込むようにして第4の電極層を形成し、これをパターニングすることにより、下部電極32及び37を同時に形成する。その後、全面に第3乃至第5の半導体層を形成し、これらをパターニングすることにより、n型半導体層33及び38を同時に形成し、真性半導体層34及び49を同時に形成し、p型半導体層35及び40を同時に形成する。続いて、全面に第5の電極層を形成し、これをパターニングすることにより、上部電極36及び41を形成する。次いで、全面に第3の絶縁体層25を形成する。
【0069】
その後、全面に有機保護層26、接着層27及び蛍光体層28を順次形成する。
【0070】
このようにして、第2の実施形態に係る放射線検出装置を製造することができる。
【0071】
なお、PIN型光電変換素子5及びPIN型センサ6を形成せずに、下部電極33上に絶縁膜を形成して、その上にMIS型光電変換素子及びTFT型センサを形成してもよい。
【0072】
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。本実施形態においては、画素毎に、光伝導素子(第1の光伝導素子)と読出用TFT(スイッチ素子)と画像撮像用コンデンサ(容量素子)との組み合わせ、又は光伝導素子(第1の光伝導素子)と読出用TFT(スイッチ素子)と画像撮像用コンデンサ(容量素子)とAEC制御用の光伝導センサ(第2の光伝導素子)との組み合わせが設けられている。
【0073】
ここで、図7を参照して、光伝導センサが設けられた画素の層構成について説明する。図7は、本発明の第3の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。この画素には、エッチストッパ型の読出用TFT4、光伝導素子7、光伝導センサ8及び画像撮像用コンデンサ9が設けられている。読出用TFT4の構成は、第2の実施形態と同様である。
【0074】
この画素の層構成としては、絶縁基板11上に、読出用TFT4のゲート電極12及び画像撮像用コンデンサ9の下部電極42、並びにこれらを覆う第1の絶縁体層13が形成されている。第1の絶縁体層13は、読出用TFT4のゲート絶縁膜として機能する。
【0075】
第1の絶縁体層13上には、読出用TFT4の半導体層(チャネル層)14が、平面視でゲート電極12と整合するようにして形成されている。半導体層14上には、第4の絶縁体層31が形成され、更に、この第4の絶縁体層31を間に挟むようにしてオーミックコンタクト層15が形成されている。一方のオーミックコンタクト層15は、第4の絶縁体層31及び半導体層14上から第1の絶縁体層13上で、平面視で下部電極42と整合して拡がるようにして形成されている。そして、オーミックコンタクト層15上にソース・ドレイン電極16が形成されている。更に、ソース・ドレイン電極16等を覆う第2の絶縁体層18が形成されている。第2の絶縁体層18は、例えばBCB(ベンゾシクロブテン)から形成されている。
【0076】
第2の絶縁体層18には、第1の絶縁体層13上で拡がるようにして形成されたソース・ドレイン電極16まで到達するコンタクトホールが形成されている。そして、このコンタクトホールを介してソース・ドレイン電極16に接続された光伝導素子7の下部電極(電荷収集用電極)43が第2の絶縁体層18上に形成されている。第2の絶縁体層18上には、更に、光伝導センサ8の下部電極(電荷収集用電極)44が形成されている。そして、下部電極43及び44を覆うアモルファスセレン層45が形成されている。アモルファスセレン層45は、光伝導素子7及び光伝導センサ8により共有されている。
【0077】
更に、アモルファスセレン層45上に、光伝導素子7及び光伝導センサ8が共有する上部電極(共通電極)46、第5の絶縁体層47及び有機保護層48が順次形成されている。下部電極44及び上部電極46は、例えばp型半導体又はn型半導体から形成されていてもよい。
【0078】
光伝導センサ8が設けられていない画素の層構成は、図7に示すものから、下部電極44が除かれたものとなっている。
【0079】
上部電極46は、各画素間で共有されており、バイアス線に接続されている。2個のソース・ドレイン電極16のうち、下部電極43に接続されていないものは、信号線に接続されている。ゲート電極12はゲート線に接続されている。また、光伝導センサ8については、下部電極44は読み出し装置に接続されている。
【0080】
次に、上述のように構成された第3の実施形態に係る放射線検出装置の動作について説明する。
【0081】
このように構成された放射線検出装置上で、人体等の被検体に向けてX線が曝射されると、このX線は被検体により減衰を受けながら、被検体を透過し、アモルファスセレン層45に入射される。アモルファスセレン層45では、内部光電効果(光伝導効果)により、入射したX線のエネルギに応じた量のプラス電荷及びマイナス電荷が発生する。本実施形態においては、予め上部電極46と下部電極43との間に数キロボルトの電圧を印加しておく。このように電圧が印加された状態で、上述のように、アモルファスセレン層45内に光伝導効果により電荷が発生すると、これらの電荷は電場に沿って移動するため、光電流が発生する。そして、この光電流の発生によって、画像撮像用コンデンサ9に電荷が蓄電される。この電荷は、その後、ゲート駆動装置により印加されるゲート駆動パルスに応じて読出用TFT4を介して信号線に転送され、読み出し装置を介して外部に出力される。
【0082】
この一方で、光伝導センサ8に対しては、例えば一定バイアスを上部電極46と下部電極44との間に印加しておく。このように、一定バイアスを印加しておくことにより、入射したX線のエネルギに応じた電荷が常に出力される。従って、この出力値を増幅器(AMP)で増幅させ、加算することにより、X線の総照射量を読み出し装置により検出することができる。そして、X線の総照射量に基づいてX線の曝射を制御する。
【0083】
このような第3の実施形態においても、第1及び第2の実施形態と同様の効果が得られる。
【0084】
なお、光伝導センサ8は必要な場所に選択的に配置することができる。光伝導センサ8が存在する画素においては、光伝導素子7の開口率が減少してしまうが、この面積の減少分は読み出した後の画像補正により容易に補うことが可能である。
【0085】
また、本実施形態において、オーミックコンタクト層15や有機保護層48は形成されていなくてもよい。
【0086】
次に、第3の実施形態に係る放射線検出装置を製造する方法について説明する。
【0087】
先ず、絶縁基板11上に第1の電極層を形成し、これをパターニングすることにより、ゲート電極12及び下部電極42を形成する。次に、全面に第1の絶縁体層13を形成する。
【0088】
次いで、第1の絶縁体層13上に第1の半導体層を形成し、これをパターニングすることにより、半導体層14を形成する。次に、半導体層14の中央に、第4の絶縁体層31を形成する。その後、半導体層14上にオーミックコンタクト層15を形成する。続いて、全面に第2の電極層を形成し、これをパターニングすることにより、ソース・ドレイン電極16を形成する。次に、全面に、例えばBCBからなる第2の絶縁体層18を形成し、この第2の絶縁体層18に、ソース・ドレイン電極16まで到達するコンタクトホールを形成する。第2の絶縁体層18は、平坦化しておく。
【0089】
次いで、コンタクトホールを埋め込むようにして第6の電極層を形成し、これをパターニングすることにより、下部電極43及び44を形成する。その後、全面にアモルファスセレン層45を形成する。続いて、全面に第7の電極層として上部電極46を形成する。
【0090】
次に、全面に第5の絶縁体層47及び有機保護層48を順次形成する。
【0091】
このようにして、第3の実施形態に係る放射線検出装置を製造することができる。
【0092】
(第4の実施形態)
次に、本発明の第4の実施形態について説明する。本実施形態においては、画素毎に、光伝導素子(第1の光伝導素子)と読出用TFT(スイッチ素子)と画像撮像用コンデンサ(容量素子)との組み合わせ、又は光伝導素子(第1の光伝導素子)と読出用TFT(スイッチ素子)と画像撮像用コンデンサ(容量素子)と光伝導センサ(第2の光伝導素子)とAEC制御用コンデンサとの組み合わせが設けられている。
【0093】
ここで、図8を参照して、光伝導センサが設けられた画素の層構成について説明する。図8は、本発明の第4の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。この画素には、エッチストッパ型の読出用TFT4、光伝導素子7、光伝導センサ8、画像撮像用コンデンサ9及びAEC制御用コンデンサ10が設けられている。読出用TFT4、光伝導素子7、光伝導センサ8及び画像撮像用コンデンサ9の構成は、第3の実施形態と同様であるため、これらについての説明は省略する。
【0094】
AEC制御用コンデンサ10には、絶縁基板11上に形成された下部電極49、並びに第1の絶縁体層13上に順次形成された導電層50及び上部電極51が設けられている。また、第2の絶縁体層18には、上部電極51まで到達するコンタクトホールが形成されており、このコンタクトホールを介して下部電極44が上部電極51に接続されている。
【0095】
ここで、本実施形態においては、第3の実施形態とは異なり、光伝導センサ8及びAEC制御用コンデンサ10に関し、下部電極44の代わりに上部電極51又は導電層50が読み出し装置に接続されている。
【0096】
次に、上述のように構成された第4の実施形態に係る放射線検出装置の動作について説明する。
【0097】
このように構成された放射線検出装置上で、人体等の被検体に向けてX線が曝射されると、このX線は被検体により減衰を受けながら、被検体を透過し、アモルファスセレン層45に入射される。アモルファスセレン層45では、内部光電効果(光伝導効果)により、入射したX線のエネルギに応じた量のプラス電荷及びマイナス電荷が発生する。本実施形態においても、第3の実施形態と同様に、予め上部電極46と下部電極43との間に数キロボルトの電圧を印加しておく。このように電圧が印加された状態で、上述のように、アモルファスセレン層45内に光伝導効果により電荷が発生すると、これらの電荷は電場に沿って移動するため、光電流が発生する。そして、この光電流の発生によって、画像撮像用コンデンサ9に電荷が蓄電される。この電荷は、その後、ゲート駆動装置により印加されるゲート駆動パルスに応じて読出用TFT4を介して信号線に転送され、読み出し装置を介して外部に出力される。
【0098】
この一方で、光伝導センサ8に対しては、例えば一定バイアスを上部電極46と下部電極44との間に印加しておく。このように、一定バイアスを印加しておくことにより、入射したX線のエネルギに応じた電荷が、AEC制御用コンデンサ10を介して常に出力される。従って、この出力値を増幅器(AMP)で増幅させ、加算することにより、X線の総照射量を読み出し装置により検出することができる。そして、X線の総照射量に基づいてX線の曝射を制御する。
【0099】
このような第4の実施形態においても、第1乃至第3の実施形態と同様の効果が得られる。
【0100】
なお、光伝導センサ8及びAEC制御用コンデンサ10は必要な場所に選択的に配置することができる。光伝導センサ8及びAEC制御用コンデンサ10が存在する画素においては、光伝導素子7の開口率が減少してしまうが、この面積の減少分は読み出した後の画像補正により容易に補うことが可能である。
【0101】
また、本実施形態において、オーミックコンタクト層15及び導電層50や有機保護層48は形成されていなくてもよい。
【0102】
次に、第4の実施形態に係る放射線検出装置を製造する方法について説明する。下部電極49は、第1の電極層をパターニングすることにより、ゲート電極12及び下部電極42と同時に形成することができる。導電層50は、オーミックコンタクト層15と同時に形成することができる。上部電極51は、第2の電極層をパターニングすることにより、ソース・ドレイン電極16と同時に形成することができる。上部電極51まで到達するコンタクトホールは、一方のソース・ドレイン電極16まで到達するコンタクトホールと同時に形成することができる。他の構成要素は、第3の実施形態と同様にして形成する。
【0103】
このようにして、第4の実施形態に係る放射線検出装置を製造することができる。
【0104】
なお、第3及び第4の実施形態において、アモルファスセレン層45の代わりにガリウム砒素層等の他の光電動効果を示す層が形成されていてもよい。
【0105】
【発明の効果】
以上説明したように、本発明によれば、第2の半導体変換素子を介して検出された放射線量に基づいてAEC制御を行うことができる。このとき、第2の半導体変換素子が第1の半導体変換素子と同一の基板上に形成されているので、第2の半導体変換素子による放射線の減衰を防止することができる。また、第1の半導体変換素子をAEC制御のために使用する必要はないため、これらを高速駆動する必要がない。従って、電荷の蓄積時間、電荷の転送時間及び容量のリセット時間等を十分に確保することができる。このため、本発明によれば、良好な画質の撮像画像を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る放射線検出装置の回路構成を示す等価回路図である。
【図2】本発明の第1の実施形態に係る放射線検出装置のレイアウト構成を示す平面図である。
【図3】本発明の第1の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。
【図4】本発明の第2の実施形態に係る放射線検出装置の回路構成を示す等価回路図である。
【図5】本発明の第2の実施形態に係る放射線検出装置のレイアウト構成を示す平面図である。
【図6】本発明の第2の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。
【図7】本発明の第3の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。
【図8】本発明の第4の実施形態に係る放射線検出装置の層構成を示す1画素分の断面図である。
【図9】従来の放射線検出装置の回路構成を示す等価回路図である。
【図10】図9に示す従来の放射線検出装置のレイアウト構成を示す平面図である。
【図11】従来のMIS−TFT構造の光センサの1画素の層構成を示す1画素分の断面図である。
【符号の説明】
1、4;読出用薄膜トランジスタ(スイッチ素子)
2;MIS型光電変換素子(第1の光電変換素子)
3;TFT型センサ(第2の光電変換素子)
5;PIN型光電変換素子(第1の光電変換素子)
6;PIN型センサ(第2の光電変換素子)
7;光伝導素子(第1の光伝導素子)
8;光伝導センサ(第2の光伝導素子)
9;画像撮像用コンデンサ
10;AEC制御用コンデンサ
M11〜M14、M21〜M24、M31〜M34、M41〜M44;MIS型光電変換素子
P11〜P14、P21〜P24、P31〜P34、P41〜P44;PIN型光電変換素子
MA31〜MA34;TFT型センサ
PA31〜PA34;PIN型センサ
T11〜T14、T21〜T24、T31〜T34、T41〜T44;読出用TFT
Vs1〜Vs4;バイアス線
Sig1〜Sig4;信号線
Vg1〜Vg4;ゲート線

Claims (10)

  1. 基板上に複数の画素を備えてなる放射線検出装置であって、
    前記複数の画素は、放射線を電気信号に変換する第1の半導体変換素子と、前記第1の半導体変換素子に接続されたスイッチ素子と、を備えた第1及び第2の画素を含み、
    前記第2の画素は、更に、前記複数の画素に入射した放射線の照射量を検出するために放射線を電気信号に変換する第2の半導体変換素子を備え、
    前記第1及び第2の半導体変換素子は互いに前記スイッチ素子よりも上方に配設された同一の層から形成された半導体層を有し、前記第2の画素における前記第1の半導体変換素子は、前記第1の画素における前記第1の半導体変換素子より減少された開口率を有することを特徴とする放射線検出装置。
  2. 前記半導体層は、前記同一の層から同時に形成されたことを特徴とする請求項1に記載の放射線検出装置。
  3. 前記第1及び第2の半導体変換素子はMIS型の光電変換素子であることを特徴とする請求項1又は2に記載の放射線検出装置。
  4. 前記第1の半導体変換素子はMIS型の光電変換素子であり、前記第2の半導体変換素子電界効果トランジスタ型の光電変換素子であることを特徴とする請求項1又は2に記載の放射線検出装置。
  5. 前記第1及び第2の半導体変換素子はPIN型の光電変換素子であることを特徴とする請求項1又は2に記載の放射線検出装置。
  6. 前記第1及び第2の半導体変換素子よりも上方に配設され、照射された放射線の波長を変換する波長変換材を有することを特徴とする請求項1乃至5のいずれか1項に記載の放射線検出装置。
  7. 前記第1及び第2の半導体変換素子は光伝導素子であり、前記半導体層は光伝導層であることを特徴とする請求項1又は2に記載の放射線検出装置。
  8. 前記光伝導層は、アモルファスセレン層又はガリウム砒素層からなることを特徴とする請求項7に記載の放射線検出装置。
  9. 前記第1及び第2の半導体変換素子は、前記スイッチ素子よりも上方に積層して配設されることを特徴とする請求項1乃至8のいずれか1項に記載の放射線検出装置。
  10. 放射線を電気信号に変換する第1の半導体変換素子と、前記第1の半導体変換素子に接続されたスイッチ素子と、を備えた第1及び第2の画素を含む複数の画素を基板上に備えてなり、
    前記第2の画素は、更に、前記複数の画素に入射した放射線の照射量を検出するために放射線を電気信号に変換する第2の半導体変換素子を備えた放射線検出装置の製造方法であって、
    前記基板上に前記スイッチ素子を形成する工程と、
    前記スイッチ素子上に準備された同一の層から前記第1の半導体変換素子の半導体層及び前記第2の半導体変換素子の半導体層を同時に形成する工程と、
    を有することを特徴とする放射線検出装置の製造方法。
JP2002247249A 2002-08-27 2002-08-27 放射線検出装置及びその製造方法 Expired - Fee Related JP4217444B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002247249A JP4217444B2 (ja) 2002-08-27 2002-08-27 放射線検出装置及びその製造方法
US10/648,916 US7148487B2 (en) 2002-08-27 2003-08-27 Image sensing apparatus and method using radiation
US11/428,837 US7271392B2 (en) 2002-08-27 2006-07-06 Image sensing apparatus and method using radiation
US11/428,839 US7408169B2 (en) 2002-08-27 2006-07-06 Image sensing apparatus and method using radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247249A JP4217444B2 (ja) 2002-08-27 2002-08-27 放射線検出装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004085383A JP2004085383A (ja) 2004-03-18
JP4217444B2 true JP4217444B2 (ja) 2009-02-04

Family

ID=32054944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247249A Expired - Fee Related JP4217444B2 (ja) 2002-08-27 2002-08-27 放射線検出装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4217444B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848047B2 (ja) 2011-07-07 2016-01-27 富士フイルム株式会社 放射線検出素子、放射線画像撮影装置、及び放射線画像撮影システム
JP6494204B2 (ja) 2014-07-17 2019-04-03 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6088628B2 (ja) * 2015-11-26 2017-03-01 富士フイルム株式会社 放射線検出素子、放射線画像撮影装置、及び放射線画像撮影システム
JP6934394B2 (ja) * 2017-11-02 2021-09-15 ローム株式会社 Dcモータの駆動回路、駆動方法およびそれを用いた電子機器

Also Published As

Publication number Publication date
JP2004085383A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
US7408169B2 (en) Image sensing apparatus and method using radiation
JP5978625B2 (ja) 放射線撮像装置、放射線撮像表示システムおよびトランジスタ
US7541617B2 (en) Radiation image pickup device
US8901562B2 (en) Radiation imaging device, radiation imaging display system, and transistor
JP5439984B2 (ja) 光電変換装置および放射線撮像装置
JP3624165B2 (ja) 電磁波検出装置
US20100054418A1 (en) X-ray detecting element
US20100051820A1 (en) X-ray detecting element
US9357143B2 (en) Image pickup unit and image pickup display system
TW200814309A (en) Radiation imaging apparatus and radiation imaging system
JPH11307756A (ja) 光電変換装置および放射線読取装置
US7932500B2 (en) Radiation image detection method and apparatus
US9608120B2 (en) Image pickup unit and image pickup display system
CN103456753A (zh) 摄像装置和摄像显示系统
JP2004325261A (ja) 放射線画像撮像装置
US20120305777A1 (en) Radiation image pickup device and radiation image pickup display system including the same
JP5974654B2 (ja) 撮像装置および撮像表示システム
JP4026377B2 (ja) 放射線検出装置
JP4217444B2 (ja) 放射線検出装置及びその製造方法
JP4217443B2 (ja) 放射線画像撮影装置及びその製造方法並びに撮像回路基板
JP4723789B2 (ja) X線平面検出器
JP2013157347A (ja) 撮像装置およびその製造方法ならびに撮像表示システム
US20120205549A1 (en) Detector unit for detecting electromagnetic radiation
JP6166128B2 (ja) 放射線撮像装置および放射線撮像表示システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4217444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees