JP4217189B2 - Pile foundation structure for buildings - Google Patents

Pile foundation structure for buildings Download PDF

Info

Publication number
JP4217189B2
JP4217189B2 JP2004135340A JP2004135340A JP4217189B2 JP 4217189 B2 JP4217189 B2 JP 4217189B2 JP 2004135340 A JP2004135340 A JP 2004135340A JP 2004135340 A JP2004135340 A JP 2004135340A JP 4217189 B2 JP4217189 B2 JP 4217189B2
Authority
JP
Japan
Prior art keywords
pile
building
foamed resin
resin board
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004135340A
Other languages
Japanese (ja)
Other versions
JP2005314991A (en
Inventor
拓造 中村
Original Assignee
中村物産有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中村物産有限会社 filed Critical 中村物産有限会社
Priority to JP2004135340A priority Critical patent/JP4217189B2/en
Publication of JP2005314991A publication Critical patent/JP2005314991A/en
Application granted granted Critical
Publication of JP4217189B2 publication Critical patent/JP4217189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、建築物用の杭基礎構造及びその構築工法に関する。さらに詳しくは、杭基礎の構成部材として所望の範囲の圧縮永久歪を示す発泡樹脂盤を有し、地震等の振動から杭基礎構造及び建築物を保護することのできる建築物用杭基礎構造及びその構築工法に関する。   The present invention relates to a pile foundation structure for a building and a construction method thereof. More specifically, a pile foundation structure for a building having a foamed resin board exhibiting a desired range of compression set as a component of the pile foundation and capable of protecting the pile foundation structure and the building from vibration such as an earthquake, and It relates to the construction method.

従来から、建築物用基礎として支持杭体や杭頭等によって建築物の荷重を支持する杭基礎が採用されている(例えば、非特許文献1参照)。上記杭基礎は、建築物の鉛直下方に位置する堅強な地盤を支持層として、該支持層から鉛直方向に起立した支持杭体及び該支持杭体上部と結合する杭頭を有する。また建築物と上記支持層との間には、地盤表面の比較的弱い或いは軟弱な表面層(以下、単に「軟弱層」ともいう。)が存在するのが一般的である。ここで上記軟弱層としては、地盤の元来の性質として軟弱である層に加えて、杭基礎を設けるために形成された穴部に基礎を構築した後、該杭基礎周辺を埋め戻した際に形成される軟弱な地盤部分も含まれる。
上記杭基礎によれば、建築物荷重を支持層に伝達することによって、建築物を安定に支持することができる。そのため特に、軟弱地盤上に建築物を構築する場合や大型建築物を構築する場合に適した基礎構造として採用されるものである。
Conventionally, the pile foundation which supports the load of a building with a support pile body, a pile head, etc. is employ | adopted as a foundation for buildings (for example, refer nonpatent literature 1). The said pile foundation has a pile head which couple | bonds with the support pile body which stood up in the perpendicular direction from this support layer, and this support pile body upper part by making the firm ground located in the perpendicular downward direction of a building into a support layer. In general, a relatively weak or soft surface layer of the ground surface (hereinafter also simply referred to as “soft layer”) exists between the building and the support layer. Here, as the soft layer, in addition to the layer that is soft as an original property of the ground, when the foundation is built in the hole formed to provide the pile foundation, the periphery of the pile foundation is backfilled Also included is a soft ground portion that is formed.
According to the said pile foundation, a building can be stably supported by transmitting a building load to a support layer. Therefore, in particular, it is employed as a foundation structure suitable for building a building on soft ground or for building a large building.

ところで地震の振動の影響により水平方向又は鉛直方向等からの圧力を受けると、杭基礎で支持された建築物と支持層との間に位置する上記軟弱層は、圧縮変形し堅強な層(以下、単に「圧縮変形層」ともいう。)になる場合がある。かかる場合に、一度圧縮され堅強となった上記層を、元の地盤形状に人工的に復元させることは困難である。杭基礎及び建築物は上記軟弱層の圧縮変形に拘束されるため、種々の問題が発生する。従来の杭基礎に関する種々の問題について図9から図11を用いて説明する。   By the way, when the pressure from the horizontal direction or the vertical direction is received due to the vibration of the earthquake, the soft layer located between the building supported by the pile foundation and the support layer is compressed and deformed to be a strong layer May be simply referred to as “compressed deformation layer”). In such a case, it is difficult to artificially restore the layer once compressed and strong to the original ground shape. Since pile foundations and buildings are constrained by the compression deformation of the soft layer, various problems occur. Various problems related to the conventional pile foundation will be described with reference to FIGS. 9 to 11.

図9(9A)は、支持層107及び軟弱層106の上方に構築された建築物105と、支持杭体102、杭頭103及び地中梁104を有する従来の杭基礎を示す。支持杭体102の下端は堅強な支持層107に結合し、かつ上端は杭頭103及び地中梁104を介して建築物と結合している。
該杭基礎の周囲で地震による振動が発生すると、同図(9B)に示すように、建築物105に鉛直方向の圧力Pがかかり、建築物下方に位置する軟弱層が圧縮変形して圧縮変形層108が形成され、同時に建築物105が沈下量ロの分だけ沈下する場合がある。また上下端が結合により拘束されている支持杭体102には、鉛直方向の圧力Pによって負荷がかかり、その結果、支持杭体102のひび割れや断絶が生じるという問題がある。
また鉛直方向の圧力Pの発生後、さらなる振動が生じることにより同図(9C)に示すように鉛直方向の圧力Pと異なる方向の圧力Qが生じる場合がある。この時、建築物105は上記圧力Qの方向に押し上げられるが、一度圧縮変形した圧縮変形層108は元の地盤形状に自立的に復元しないため、建築物105の底面と圧縮変形層108とが剥離し、両者の間に空隙109が形成される現象が知られている。建築物105の下方に空隙109が形成されることによって、支持杭体102の水平抵抗や耐久性に大きな影響が与えられ、また建築物105の傾斜或いは転倒が起こりうるという問題がある。
空隙109によるさらなる別の問題としては、建築物105と圧縮変形層108とが接しなくなったことにより、建築物105と地盤との摩擦抵抗が失われ、空隙109形成後に新たな振動が生じた場合、空隙109形成前よりも、建築物105の揺れが増大するという問題がある。
FIG. 9 (9 A) shows a conventional pile foundation having a building 105 constructed above the support layer 107 and the soft layer 106, a support pile body 102, a pile head 103, and an underground beam 104. The lower end of the support pile 102 is connected to a strong support layer 107, and the upper end is connected to the building via the pile head 103 and the underground beam 104.
When vibration due to an earthquake occurs around the pile foundation, as shown in FIG. 9B, vertical pressure P is applied to the building 105, and the soft layer located below the building is compressed and deformed. The layer 108 is formed, and at the same time, the building 105 may sink by the amount of sinking. Further, the support pile body 102 whose upper and lower ends are constrained by the connection is subjected to a load due to the pressure P in the vertical direction, and as a result, there is a problem that the support pile body 102 is cracked or disconnected.
Further, after the generation of the pressure P in the vertical direction, further vibrations may occur to generate a pressure Q in a direction different from the pressure P in the vertical direction as shown in FIG. At this time, the building 105 is pushed up in the direction of the pressure Q. However, since the compression deformation layer 108 once compressed and deformed does not autonomously restore to the original ground shape, the bottom surface of the building 105 and the compression deformation layer 108 are separated from each other. A phenomenon is known in which separation occurs and a gap 109 is formed between the two. By forming the gap 109 below the building 105, there is a problem that the horizontal resistance and durability of the support pile 102 are greatly affected, and the building 105 may be inclined or toppled.
Another problem caused by the gap 109 is that the friction resistance between the building 105 and the ground is lost due to the fact that the building 105 and the compression deformation layer 108 are not in contact with each other, and a new vibration occurs after the gap 109 is formed. There is a problem that the shaking of the building 105 increases compared to before the formation of the gap 109.

建築物に鉛直方向の圧力がかかる上記現象とは別に、地震発生時において杭基礎を採用した建築物に水平力及び曲げモーメントがかかり、かつ一部の支持杭体にも曲げモーメントがかかるという現象が知られている。この現象は、支持杭体の上下端が建築物及び支持層に拘束されていること及び支持層と軟弱層と建築物との固有周期がそれぞれ相異することから生じるものである。即ち、地震振動を受けて地層間及び地層と建築物との間に変位が生じ、これに支持杭体が拘束されて建築物及び一部の支持杭体に曲げモーメントがかかるのである。   Aside from the above phenomenon, where vertical pressure is applied to the building, a horizontal force and bending moment are applied to the building using the pile foundation in the event of an earthquake, and a bending moment is also applied to some supporting pile bodies. It has been known. This phenomenon arises from the fact that the upper and lower ends of the support pile are constrained by the building and the support layer, and that the natural periods of the support layer, the soft layer, and the building are different. That is, the seismic vibration causes displacement between the stratum and between the strata and the building, and the support pile body is constrained by this, and a bending moment is applied to the building and some of the support pile bodies.

以下に図10を用いて上記現象及びその問題点について説明する。図10(10A)は、図9(9A)と同様に従来の杭基礎及びその上に構築された建築物105を示す。
地震等により振動が発生した場合に、同図(10B)に示すように建築物105に水平力H及び曲げモーメントMがかかる場合があることが知られている。この時、支持杭体102は上下端が拘束されているため、上記水平力H及び曲げモーメントMの働く方向に位置する支持杭体102には押し込み力Sが働くとともに曲げモーメントがかかり、一方、上記方向とは逆方向に位置する支持杭体102には引き抜き力Rが働く。
この結果、建築物105が傾いてその一部が地盤に埋没することにより軟弱層が圧縮変形し、圧縮変形層108が形成される。また建築物105の傾斜に耐え切れずに支持杭体102が破損する虞がある。圧縮変形層108が自立的に復元することが困難であること、及び新たな別方向への圧力によって空隙109が形成される問題は、上記図9において説明した問題点と同様である。
The above phenomenon and its problems will be described below with reference to FIG. FIG. 10 (10A) shows a conventional pile foundation and a building 105 constructed thereon as in FIG. 9 (9A).
It is known that when a vibration occurs due to an earthquake or the like, a horizontal force H and a bending moment M may be applied to the building 105 as shown in FIG. At this time, since the upper and lower ends of the support pile body 102 are constrained, the support pile body 102 located in the direction in which the horizontal force H and the bending moment M are applied exerts a pushing force S and a bending moment, A pulling force R acts on the support pile 102 located in the direction opposite to the above direction.
As a result, the building 105 is inclined and part of the building 105 is buried in the ground, whereby the soft layer is compressively deformed, and the compressive deformation layer 108 is formed. Moreover, there is a possibility that the support pile body 102 may be damaged without enduring the inclination of the building 105. The problem that it is difficult for the compressive deformation layer 108 to self-recover and that the gap 109 is formed by a new pressure in another direction is the same as the problem described in FIG.

また図11に示すように、地下室を有する建築物105には、地震時においてさらに以下の問題がある。即ち、同図(11B)に示すように建築物105に水平力H及び曲げモーメントMがかかると、図10(10B)で説明した現象と同様に、建築物105が傾き、支持杭体102は位置によって引き抜き力R或いは押し込み力Sと曲げモーメントがかかる。これに加えて、地下室110も地盤中で傾き、圧縮変形層108が形成されるとともに地盤と地下室110の外側面とが剥離して空隙109が形成される。
この結果、地下室110を含む建築物105の立地が不安定になり危険であるという問題がある。また建築物105の傾斜に耐え切れずに支持杭体102が破損する虞がある。圧縮変形層108が自立的に復元することが困難であること、及び新たな別方向への圧力によって空隙109が形成される問題は、上記図9において説明した問題点と同様である。
Further, as shown in FIG. 11, the building 105 having a basement has the following problems in the event of an earthquake. That is, as shown in FIG. 11B, when the horizontal force H and the bending moment M are applied to the building 105, the building 105 is tilted and the support pile 102 is Depending on the position, pulling force R or pushing force S and bending moment are applied. In addition to this, the basement 110 is also tilted in the ground, the compressive deformation layer 108 is formed, and the ground and the outer surface of the basement 110 are separated to form a gap 109.
As a result, there is a problem that the location of the building 105 including the basement 110 becomes unstable and dangerous. Moreover, there is a possibility that the support pile body 102 may be damaged without enduring the inclination of the building 105. The problem that it is difficult for the compressive deformation layer 108 to self-recover and that the gap 109 is formed by a new pressure in another direction is the same as the problem described in FIG.

上述した問題が発生すると、建築物の安全性が図られず非常に危険である。しかし地震の振動により発生する特定方向への圧力、固有周期の相異による水平力及び曲げモーメントの影響を建築物及び基礎の設計時において正確に予測することは困難である。さらに上記影響により、地盤が圧縮変形する量や生じる空隙の体積を正確に予想することも困難である。   When the problems described above occur, the safety of the building cannot be achieved and it is very dangerous. However, it is difficult to accurately predict the influence of the pressure in a specific direction generated by the vibration of the earthquake, the horizontal force due to the difference in natural period, and the bending moment when designing buildings and foundations. Furthermore, due to the above effects, it is difficult to accurately predict the amount of ground deformation and the resulting void volume.

従って建築物の基礎として杭基礎構造を採用した際に、地震等の振動が発生しても、地盤の圧縮変形を防止或いは低減し、これによって空隙の発生を防止或いは低減することが望まれていた。また地震発生時において、地層及び建築物の固有周期の相異により、杭基礎を採用した建築物にかかる水平力並びに建築物及び一部の支持杭体にかかる曲げモーメントの影響を低減することが望まれていた。   Therefore, when a pile foundation structure is adopted as the foundation of a building, it is desired to prevent or reduce the compressive deformation of the ground even if vibration such as an earthquake occurs, thereby preventing or reducing the generation of voids. It was. Also, in the event of an earthquake, due to differences in the natural period of the stratum and the building, it is possible to reduce the influence of the horizontal force on the building adopting the pile foundation and the bending moment on the building and some supporting pile bodies. It was desired.

社団法人日本建築学会、「建築基礎構造設計指針」、第1版第8刷、社団法人日本建築学会、1996年7月25日、p.197−214The Architectural Institute of Japan, “Basic Design Guidelines for Architectural Foundations”, 1st Edition, 8th Edition, The Architectural Institute of Japan, July 25, 1996, p. 197-214

本発明は、上記従来の杭基礎の問題点を鑑みてなされたものである。即ち本発明は、杭基礎を採用した建築物周辺において地震等の振動が発生しても、軟弱層の圧縮変形を防止或いは低減して杭基礎構造又は建築物と地盤との間に空隙が発生することを防止すること、並びに地層と建築物との固有周期の相異及び支持杭体の上下端の拘束によって建築物にかかる水平力及び曲げモーメントを低減することのできる杭基礎構造を提供することを目的とするものである。また本発明は、特に地下室を有する建築物において、地震等の振動が発生しても、該地下室の側面と地盤とが剥離して空隙が生じることを防止することのできる杭基礎構造を提供することを目的とするものである。   This invention is made | formed in view of the problem of the said conventional pile foundation. That is, according to the present invention, even if vibration such as an earthquake occurs around a building using a pile foundation, a compressive deformation of the soft layer is prevented or reduced, and a gap is generated between the pile foundation structure or the building and the ground. Provided is a pile foundation structure that can reduce the horizontal force and bending moment applied to the building due to the difference in the natural period between the stratum and the building and the restraint of the upper and lower ends of the supporting pile body It is for the purpose. In addition, the present invention provides a pile foundation structure that can prevent a gap from being generated due to separation of a side surface of the basement and the ground even if vibration such as an earthquake occurs in a building having a basement. It is for the purpose.

また本発明の別の目的は、上記本発明の杭基礎構造を簡易に構築する工法を提供することを目的とするものである。   Another object of the present invention is to provide a method for easily constructing the pile foundation structure of the present invention.

本発明は、
(1)杭支持構造及び発泡樹脂盤を備える建築物用杭基礎構造であって、
上記杭支持構造が、支持杭体と杭頭と地中梁とからなり、
上記発泡樹脂盤が、圧縮永久歪が0.1%以上30%以下であり、且つ、
建築物の下方であって、少なくとも、杭頭側面部全周と地盤とに接する位置、及び/または、杭頭底面部全面と地盤とに接する位置を含む杭支持構造上部を覆うように上記発泡樹脂盤が配置されていることを特徴とする建築物用杭基礎構造、
(2)上記地中梁が上記杭頭の周囲に設けられており、
上記地中梁側面部全面及び上記地中梁底面部全面と、地盤との間に上記発泡樹脂盤が配置されていることを特徴とする上記(1)に記載の建築物用基礎構造、
(3)杭支持構造及び発泡樹脂盤を備える地下室を備える建築物の建築物用杭基礎構造であって、建築物地下室の外側面と地盤との間に上記発泡樹脂盤が介在していることを特徴とする上記(1)または(2)に記載の建築物用杭基礎構造、
を要旨とするものである。
The present invention
(1) A pile foundation structure for buildings comprising a pile support structure and a foamed resin board,
The above pile support structure consists of a support pile body, pile head and underground beam,
The foamed resin board has a compression set of 0.1% to 30%, and
Above the foam, so as to cover the upper part of the pile support structure that is below the building and includes at least the position in contact with the entire circumference of the pile head side surface and the ground and / or the position in contact with the entire bottom surface of the pile head and the ground. Pile foundation structure for buildings, characterized in that resin boards are arranged,
(2) The underground beam is provided around the pile head,
The foundation structure for building according to (1) above, wherein the foamed resin board is disposed between the entire surface of the underground beam side surface and the entire surface of the underground beam bottom surface, and the ground,
(3) A pile foundation structure for a building having a basement with a pile support structure and a foamed resin board, wherein the foamed resin board is interposed between the outer surface of the building basement and the ground. The pile foundation structure for buildings as set forth in (1) or (2) above,
Is a summary.

本発明の建築物用杭基礎構造であれば、建築物の下方であって、少なくとも、杭頭側面部全周と地盤とに接する位置、及び/または、杭頭底面部全面と地盤とに接する位置を含む杭支持構造上部を覆う位置に所望の範囲の圧縮永久歪を示す発泡樹脂盤を配置し、該発泡樹脂盤が杭支持構造の一部と地盤とに接することにより、地震等による振動から建築物及び杭基礎構造を保護することができる。これにより、従来の杭基礎構造を用いた建築物において振動の発生により生じていた建築物の沈下、支持杭体の破損及び地盤中に形成される空隙による弊害等の問題を防止或いは低減することができる。
If it is the pile foundation structure for buildings of the present invention, it is the lower part of a building, and at least the position which touches a pile head side part perimeter and the ground, and / or the pile head bottom part whole surface and the ground Place a foamed resin board showing a desired range of compression set at a position covering the upper part of the pile support structure including the position, and the foamed resin board is in contact with a part of the pile support structure and the ground, so that vibration due to earthquakes, etc. Can protect the building and pile foundation structure. This prevents or reduces problems such as settlement of buildings, damage to support pile bodies, and adverse effects caused by voids formed in the ground that have occurred due to vibration in buildings using conventional pile foundation structures. Can do.

具体的には本発明の杭基礎構造によれば、振動の発生により建築物に対して鉛直方向等の圧力、水平力及び曲げモーメント等の力が生じ建築物が沈下或いは傾斜した場合でも、軟弱層に先んじて本発明における発泡樹脂盤が圧縮される。同時に上記発泡樹脂盤は、上記振動により発生する鉛直方向等の圧力、水平力及び曲げモーメント等の力を吸収することができる。この結果、軟弱層が圧縮されて圧縮変形層が形成されることを防止することができ、また建築物の沈下量及び傾きも低減することができるのである。また上下端が拘束されている支持杭体にかかる負荷を低減することができ、支持杭体の破損を防止することができる。
さらに圧縮変形層の形成が防止或いは低減されることによって、新たな別方向への圧力が生じても、地盤と建築物或いは杭基礎構造部分とが剥離して、空隙が形成されること防止することができる。
Specifically, according to the pile foundation structure of the present invention, even when a building is subsidenced or inclined due to the occurrence of vibrations, such as vertical pressure, horizontal force, and bending moment, etc. Prior to the layer, the foamed resin board in the present invention is compressed. At the same time, the foamed resin board can absorb pressure such as vertical direction, horizontal force and bending moment generated by the vibration. As a result, it is possible to prevent the soft layer from being compressed and the compression deformation layer from being formed, and to reduce the amount of settlement and inclination of the building. Moreover, the load concerning the support pile body by which the upper and lower ends are restrained can be reduced, and the breakage of the support pile body can be prevented.
Furthermore, by preventing or reducing the formation of the compressive deformation layer, even if a new pressure is generated in another direction, the ground and the building or the pile foundation structure part are separated to prevent the formation of a void. be able to.

本発明における発泡樹脂盤は、所望の範囲の圧縮永久歪を示すため、一度圧縮されても、時間の経過とともに元の形状に近い形状に自立的に回復することができる。従って、振動の発生により発泡樹脂盤が圧縮されて変形しても、継続して杭基礎構造の構成部分の一部として使用することができる。   Since the foamed resin board in the present invention exhibits a desired range of compression set, even if it is compressed once, it can recover autonomously to a shape close to the original shape over time. Therefore, even if the foamed resin board is compressed and deformed due to the occurrence of vibration, it can be continuously used as a part of the component of the pile foundation structure.

発泡樹脂盤をさらに地下室外側面と地盤との間に介在させる本発明によれば、上記効果に加えて、地下室側面と地盤との剥離による空隙の形成をも防止することができる。   According to the present invention in which the foamed resin board is further interposed between the outer surface of the basement and the ground, in addition to the above effects, it is possible to prevent the formation of voids due to the separation of the side of the basement and the ground.

上記杭基礎構造を構築する本発明の構築工法であれば、簡易な施工により杭支持構造の少なくとも一部と発泡樹脂盤とを接合することができる。また本発明に用いられる発泡樹脂盤は、安価かつ大量生産可能なので安い費用で振動に耐性のある杭基礎構造を構築することができる。   If it is the construction method of this invention which builds the said pile foundation structure, at least one part of a pile support structure and a foamed resin board can be joined by simple construction. In addition, since the foamed resin board used in the present invention is inexpensive and can be mass-produced, it is possible to construct a pile foundation structure that is resistant to vibration at a low cost.

加えて、発泡樹脂盤を備える本発明の杭基礎構造は、地震振動の減衰効果を有する。従って地盤から建築物へと伝達される振動が本発明の杭基礎構造を介する際に減衰されるので、建築物内での体感震度を低減することができる。従って本発明の杭基礎構造によれば非常に優れた耐震性能を建築物に付与することができる。   In addition, the pile foundation structure of the present invention provided with the foamed resin board has a damping effect of seismic vibration. Therefore, since the vibration transmitted from the ground to the building is attenuated when passing through the pile foundation structure of the present invention, the seismic intensity in the building can be reduced. Therefore, according to the pile foundation structure of the present invention, very excellent seismic performance can be imparted to the building.

本発明に用いられる発泡樹脂盤であれば、地盤に埋設されても自然環境に何ら悪影響を及ぼすものではない。従って、付近で地下水の利用等がある立地環境においても安心して本発明の杭基礎構造を利用することができる。   The foamed resin board used in the present invention has no adverse effect on the natural environment even if it is buried in the ground. Therefore, the pile foundation structure of the present invention can be used with peace of mind even in a location environment where there is use of groundwater in the vicinity.

以下、本発明を実施するための最良の形態について、本発明を例示する図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings illustrating the present invention.

図1〜図3は、発泡樹脂盤1及び支持杭体2と杭頭3と地中梁4とからなる杭支持構造8を備える本発明の杭基礎構造と、その上に構築された建築物105を示す垂直断面概略図である。上記杭基礎構造は、所定の位置において軟弱層6を通って支持層7に結合する支持杭体2を打ち、次いで軟弱層6を排土して形成した穴部底面において、発泡樹脂盤1を配置せしめ、杭頭3、地中梁4を構築することによって形成することができる。発泡樹脂盤1は、上記杭支持構造8における地中梁側面部18及び杭頭側面部14と軟弱層6とに接している。尚、本明細書においてGLとは、グランドレベルを意味する。   1 to 3 show a pile foundation structure of the present invention including a pile support structure 8 including a foamed resin board 1, a support pile body 2, a pile head 3, and an underground beam 4, and a building constructed thereon. FIG. The pile foundation structure hits the support pile body 2 which is bonded to the support layer 7 through the soft layer 6 at a predetermined position, and then the foam resin board 1 is formed on the bottom surface of the hole formed by soiling the soft layer 6. It can be formed by arranging the pile head 3 and the underground beam 4. The foamed resin board 1 is in contact with the underground beam side face 18 and the pile head side face 14 and the soft layer 6 in the pile support structure 8. In this specification, GL means the ground level.

図4は、本発明の杭基礎構造A1の垂直断面概略図である。杭基礎構造A1は、発泡樹脂盤1及び支持杭体2と支持杭体2の上部と結合する杭頭3と杭頭3の周囲に設けられた地中梁4とからなる杭支持構造8を備えて形成されている。杭基礎構造A1における発泡樹脂盤1は、杭支持構造8における地中梁底面部17、地中梁側面部18及び杭頭底面部14と軟弱層6とに接している。   FIG. 4 is a schematic vertical sectional view of the pile foundation structure A1 of the present invention. The pile foundation structure A1 includes a pile support structure 8 including a foamed resin board 1, a support pile body 2, a pile head 3 coupled to the upper portion of the support pile body 2, and an underground beam 4 provided around the pile head 3. It is formed in preparation. The foamed resin board 1 in the pile foundation structure A <b> 1 is in contact with the underground beam bottom surface portion 17, the underground beam side surface portion 18, the pile head bottom surface portion 14, and the soft layer 6 in the pile support structure 8.

図5は、本発明の杭基礎構造A2の垂直断面概略図である。杭基礎構造A2は、発泡樹脂盤1及び支持杭体2と杭頭3と地中梁4とからなる杭支持構造8を備えて形成されている。また複数の杭頭3間には、水平方向に建築物の一部である床板9が設けられ、さらにその上に1階床11が設けられている。これによって1階床11、杭頭3、地中梁4及び床板9に囲まれるピット13が形成されている。さらに発泡樹脂盤1が地表に露出することを防ぐために杭基礎構造の外周に位置する発泡樹脂盤1の上面にはコンクリート板12が設けられている。杭基礎構造A2における発泡樹脂盤1は、杭支持構造8における杭頭側面部14及び一部の地中梁側面部18と軟弱層6である地盤とに接している。さらに、発泡樹脂盤1は建築物の構造部分の一部である床板9の底面とも接している。尚、本明細書において用いられるピットという用語は、各構成部材に囲まれることによって形成された空間を意味し、例えば配管等が設置されるスペース等がある。   FIG. 5 is a schematic vertical sectional view of the pile foundation structure A2 of the present invention. The pile foundation structure A <b> 2 includes a pile support structure 8 including the foamed resin board 1, the support pile body 2, the pile head 3, and the underground beam 4. Moreover, between the several pile heads 3, the floor board 9 which is a part of building is provided in the horizontal direction, and also the 1st floor 11 is provided on it. Thus, a pit 13 surrounded by the first floor 11, the pile head 3, the underground beam 4 and the floor board 9 is formed. Furthermore, in order to prevent the foamed resin board 1 from being exposed to the ground surface, a concrete plate 12 is provided on the upper surface of the foamed resin board 1 located on the outer periphery of the pile foundation structure. The foamed resin board 1 in the pile foundation structure A <b> 2 is in contact with the pile head side face part 14 and a part of the underground beam side face part 18 in the pile support structure 8 and the ground which is the soft layer 6. Furthermore, the foamed resin board 1 is also in contact with the bottom surface of the floor board 9 which is a part of the structural part of the building. Note that the term pit used in the present specification means a space formed by being surrounded by each constituent member, for example, a space in which piping or the like is installed.

図6は、本発明の杭基礎構造A2のV−V線における水平断面概略図である。支持杭体2の断面の周囲に杭頭3が形成されて両者が結合しており、さらに杭頭3の周囲には発泡樹脂盤1が配置され、杭頭側面部14と発泡樹脂盤1とが接していることが示されている。   FIG. 6 is a schematic horizontal sectional view taken along line VV of the pile foundation structure A2 of the present invention. A pile head 3 is formed around the cross-section of the support pile body 2 and both are coupled. Further, a foamed resin board 1 is arranged around the pile head 3, and the pile head side face 14, the foamed resin board 1, Is shown touching.

図7は、本発明の杭基礎構造A3の垂直断面概略図である。杭基礎構造A3は、杭頭底面部15が発泡樹脂盤1と接していること以外は、図5に示した杭基礎構造A2と同様に形成することができる。   FIG. 7 is a schematic vertical sectional view of the pile foundation structure A3 of the present invention. The pile foundation structure A3 can be formed in the same manner as the pile foundation structure A2 shown in FIG. 5 except that the pile head bottom surface portion 15 is in contact with the foamed resin board 1.

図8は、本発明の杭基礎構造A4の垂直断面概略図である。杭基礎構造A4は、地下室10及び杭基礎構造A4の寸法を勘案して形成した穴部において、地下室10下方に形成されており、地下室外側面部16に発泡樹脂盤1が配置されたこと以外は、図4に示す杭基礎構造A1と同様に形成することができる。尚、本発明のおいて用いられる地下室という用語は、独立した底面及び側面を有して形成された地盤中の空間を意味し、例えば居住空間、車庫又は倉庫等がある。従ってピット等のように、他の構成部材によって囲まれた結果、形成された空間まで含むものではない。   FIG. 8 is a schematic vertical sectional view of the pile foundation structure A4 of the present invention. The pile foundation structure A4 is formed below the basement 10 in the hole formed in consideration of the dimensions of the basement 10 and the pile foundation structure A4, except that the foamed resin board 1 is disposed on the basement outer surface 16. 4 can be formed in the same manner as the pile foundation structure A1 shown in FIG. The term “basement” used in the present invention means a space in the ground formed with an independent bottom surface and side surfaces, such as a living space, a garage, or a warehouse. Therefore, it does not include the space formed as a result of being surrounded by other components such as pits.

本発明における杭支持構造とは、建築物の総荷重を支持し、かつ該荷重を支持層に伝達することのできる構造を意味し、少なくとも支持杭体を有するものである。従って、本発明によれば、建築物の総荷重は、上記杭支持構造及び支持層とによって支持される結果となる。杭支持構造としては、一般的に知られる杭基礎の荷重支持部材よりなる構造であれば適宜用いることができるが、例えば、支持杭体及び杭頭、或いは支持杭体、杭頭及び地中梁からなる杭支持構造等がある。
本発明において用いられる支持杭体は、支持層から鉛直に起立しその上端が直接或いは間接的に建築物と結合し建築物の荷重を支持層に伝達するものであればいずれの形式のものでも用いることができる。具体的には、既成の杭体を用いて地盤に打ち込む打ち込み杭、地盤に穴部を設け既成の杭体を埋め込む埋め込み杭、又はオールケーシング杭若しくはアースドリル工法杭等の場所内コンクリート杭等があるが、上記に制限されるものではない。
また支持杭体以外の構成部材、例えば杭頭または地中梁等も、従来の杭基礎において一般的に知られるものであれば適宜選択して用いることができる。
The pile support structure in the present invention means a structure capable of supporting the total load of the building and transmitting the load to the support layer, and has at least a support pile body. Therefore, according to the present invention, the total load of the building is supported by the pile support structure and the support layer. As the pile support structure, any structure including a load support member of a generally known pile foundation can be used as appropriate. For example, the support pile body and the pile head, or the support pile body, the pile head, and the underground beam There is a pile support structure and so on.
The support pile used in the present invention may be of any type as long as it stands vertically from the support layer and its upper end is directly or indirectly connected to the building and transmits the load of the building to the support layer. Can be used. Specifically, there are driven piles that are driven into the ground using existing pile bodies, embedded piles that are provided with holes in the ground and embedded in existing pile bodies, or in-situ concrete piles such as all-casing piles or earth drill method piles, etc. However, it is not limited to the above.
Further, components other than the supporting pile body, for example, pile heads or underground beams, can be appropriately selected and used as long as they are generally known in conventional pile foundations.

尚、本発明の趣旨を逸脱しない範囲において、必要に応じて杭支持構造及び発泡樹脂盤以外の他の構成部材、例えば摩擦杭体等をさらに追加することは可能である。   In addition, in the range which does not deviate from the meaning of this invention, it is possible to further add other structural members other than a pile support structure and a foamed resin board as needed, for example, a friction pile body.

特に、支持杭体と杭頭と地中梁とからなる杭支持構造を備える本発明の杭基礎構造は、上記発泡樹脂盤が杭頭及び/又は地中梁と地盤とに接して形成されることが好ましい。杭頭及び/又は地中梁と地盤との間に発泡樹脂盤が介在することにより、地震により発生する振動及び圧力等が発泡樹脂盤に減衰或いは吸収されるので好ましい。   In particular, the pile foundation structure of the present invention having a pile support structure including a support pile body, a pile head, and an underground beam is formed in such a manner that the foamed resin board is in contact with the pile head and / or the underground beam and the ground. It is preferable. It is preferable that the foamed resin board is interposed between the pile head and / or the underground beam and the ground because vibrations and pressures generated by an earthquake are attenuated or absorbed by the foamed resin board.

本発明における発泡樹脂盤は、建築物の下方であって、少なくとも、杭頭側面部全周と地盤とに接する位置、及び/または、杭頭底面部全面と地盤とに接する位置を含む杭支持構造上部を覆う位置に配置されることによって、少なくとも上記杭支持構造の一部と地盤とに接しているものであるが、その他の部分と発泡樹脂盤とが接することを除外するものではない。従って図5に示すように、軟弱層6において杭支持構造8の構造部分、例えば床面9の下面と発泡樹脂盤1とが接するのを除外するものではない。
The foamed resin board according to the present invention is a pile support which is below the building and includes at least a position in contact with the entire circumference of the pile head side surface and the ground and / or a position in contact with the entire bottom surface of the pile head and the ground. Although it is in contact with at least a part of the pile support structure and the ground by being disposed at a position covering the upper part of the structure, it does not exclude that other parts and the foamed resin board are in contact. Therefore, as shown in FIG. 5, it does not exclude that the structural portion of the pile support structure 8 in the soft layer 6, for example, the lower surface of the floor surface 9 and the foamed resin board 1 are in contact with each other.

本発明に用いられる発泡樹脂盤は、圧縮永久歪が0.1%以上30%以内の範囲内にあるものであり、0.1%以上25%以下であることがより好ましく、0.1%以上20%以下であることがさらに好ましい。尚、本発明における圧縮永久歪は、JIS K 6767に準じて測定することができる。具体的には、発泡樹脂盤から50×50×厚さ約25mmの試験片を作成し、温度20±2℃、相対湿度65±5%の標準状態において、平面板で該試験片に圧力をかけて試験片の最初の厚みの25%を圧縮し、そのまま固定して1分間放置し、その後、平面板を取り除いて、上記標準状態において10分間放置する。その結果、厚みの変化した試験片の歪量を元の厚みに対する百分率で示したものを圧縮永久歪とする。従って、本発明における圧縮永久歪は、比較的短時間にわたり外力がかかったことによる歪量を示す。   The foamed resin board used in the present invention has a compression set within the range of 0.1% to 30%, more preferably 0.1% to 25%, more preferably 0.1% More preferably, it is 20% or less. In addition, the compression set in the present invention can be measured according to JIS K 6767. Specifically, a test piece of 50 × 50 × about 25 mm in thickness is prepared from a foamed resin board, and pressure is applied to the test piece with a flat plate in a standard state at a temperature of 20 ± 2 ° C. and a relative humidity of 65 ± 5%. 25% of the initial thickness of the test piece is compressed, fixed as it is, and left for 1 minute, and then the flat plate is removed and left for 10 minutes in the above standard state. As a result, a compression permanent strain is defined as a percentage of the original thickness with respect to the strain amount of the test piece having a changed thickness. Therefore, the compression set in the present invention indicates the amount of strain due to an external force applied for a relatively short time.

本発明では、上記所望の範囲の圧縮永久歪を示す発泡樹脂盤を用いることにより、該発泡樹脂盤が、軟弱層に先んじて圧縮変形し、かつ外力を吸収し、外力が除かれた後は、元の形状に近い寸法にまで自立的に復元されることが重要である。これにより、地震に起因して地盤中に圧力が発生しても、人工的に回復困難な軟弱層の圧縮変形を避けることができる。加えて発泡樹脂盤の自立的な復元により、一度圧縮変形した後も継続して杭基礎構造の構成部材として利用することができる。また地震発生により建築物と地盤とに変位差が生じる場合に、該発泡樹脂盤が圧縮変形するとともに上記変位差を吸収し、次いで元の発泡樹脂盤の形状に近い形状まで自立的に回復することが重要である。
本発明における発泡樹脂盤の圧縮変形後の形状の回復率は、圧縮変形前の発泡樹脂盤の縦または横寸法に対して、70%以上100%以下であることが好ましく、80%以上100%以下であることがより好ましく、90%以上100%以下であることがさらに好ましい。
In the present invention, by using a foamed resin board exhibiting compression set within the desired range, after the foamed resin board is compressed and deformed prior to the soft layer and absorbs external force, the external force is removed. It is important that it is restored autonomously to a size close to the original shape. Thereby, even if pressure is generated in the ground due to an earthquake, it is possible to avoid compressive deformation of the soft layer that is difficult to recover artificially. In addition, by the self-recovery of the foamed resin board, it can be continuously used as a constituent member of the pile foundation structure after being once compressed and deformed. When a displacement difference occurs between the building and the ground due to the occurrence of an earthquake, the foamed resin board compresses and absorbs the displacement difference, and then recovers to a shape close to that of the original foamed resin board. This is very important.
The recovery rate of the shape after compression deformation of the foamed resin board in the present invention is preferably 70% or more and 100% or less, and 80% or more and 100% with respect to the vertical or horizontal dimension of the foamed resin board before compression deformation. Or less, more preferably 90% or more and 100% or less.

次に、図1〜図3を用いて、以下に本発明の作用を説明する。   Next, the effect | action of this invention is demonstrated below using FIGS. 1-3.

図1(1A)に示す杭基礎構造及び建築物5に地震等による振動が伝達された場合に、同図(1B)に示すように、鉛直方向の圧力Pが発生する場合がある。この時、軟弱層6に先んじて発泡樹脂盤1が圧縮変形するとともに該圧力Pが発泡樹脂盤1に吸収される。その結果、建築物5は、建築物沈下量イだけ沈下し支持杭体2にたわみが生じる。一方、軟弱層6の圧縮変形は、全く生じないか、或いは非常に小さな変形にすぎない。次いで同図(1C)に示されるように、時間の経過とともに発泡樹脂盤1の歪が自立的に復元し、その形状が回復し、これによって建築物5の沈下も解消され、また支持杭体2のたわみも解消されるものである。
従って、本発明の杭基礎構造を建築物の基礎として採用した場合には、図9に示す従来の杭基礎を採用した建築物105に生じる問題が発生しない。即ち本発明の杭基礎によれば、図9(9B)に示されるように、鉛直方向の圧力Pがかかった建築物105が建築物沈下量ロの分だけ沈下しかつ支持杭体102が破損するという問題、自立的に復元困難な圧縮変形層108が形成されるという問題、さらに同図(9C)に示されるように圧力Pとは異方向の圧力Qがかかることによって空隙109が形成されるという問題が生じない。
また本発明の杭基礎構造における発泡樹脂盤1は、圧力自体を吸収するという作用も有する。これにより図9(9B)に示す従来の杭基礎を採用した建築物105と図1(1B)に示す本発明の杭基礎構造を採用した建築物5とにおいて、等しく鉛直方向の圧力Pがかかった場合には、建築物沈下量イ及びロはイ<ロの関係にあり、本発明の杭基礎構造が採用された建築物5の方が建築物105より沈下量が少ない。
When vibration due to an earthquake or the like is transmitted to the pile foundation structure and the building 5 shown in FIG. 1 (1A), a vertical pressure P may be generated as shown in FIG. 1 (1B). At this time, the foamed resin board 1 is compressed and deformed prior to the soft layer 6 and the pressure P is absorbed by the foamed resin board 1. As a result, the building 5 sinks by the amount of building sinking i, and the support pile body 2 is bent. On the other hand, the compressive deformation of the soft layer 6 does not occur at all or is a very small deformation. Next, as shown in FIG. 1C, the distortion of the foamed resin board 1 is restored autonomously with the passage of time, the shape is restored, and settlement of the building 5 is thereby eliminated, and the supporting pile body The second deflection is also eliminated.
Therefore, when the pile foundation structure of the present invention is employed as the foundation of a building, the problem that occurs in the building 105 employing the conventional pile foundation shown in FIG. 9 does not occur. That is, according to the pile foundation of the present invention, as shown in FIG. 9 (9B), the building 105 to which the vertical pressure P is applied sinks by the amount of building settlement and the supporting pile body 102 is damaged. The gap 109 is formed by applying the pressure Q in a direction different from the pressure P as shown in FIG. 9C. There is no problem.
Moreover, the foamed resin board 1 in the pile foundation structure of this invention also has the effect | action of absorbing pressure itself. Thus, the vertical pressure P is equally applied to the building 105 employing the conventional pile foundation shown in FIG. 9 (9B) and the building 5 employing the pile foundation structure of the present invention shown in FIG. 1 (1B). In such a case, the amount of settlement of buildings B and B has a relationship of A <B, and the amount of settlement of building 5 in which the pile foundation structure of the present invention is adopted is smaller than that of building 105.

また本発明の別の作用を図2を用いて説明する。図2(2A)は、図1(1A)と同様に本発明の杭基礎構造とその上に構築された建築物5を示すものである。上記杭基礎構造及び建築物5に地震等による振動が伝達された場合に、建築物5に水平力H及び曲げモーメントMがかかり、かつ一部の支持杭体2に曲げモーメントがかかる場合がある。この時、建築物5は、同図(2B)に示されるように傾斜し、建築物5の一部はみかけ上、軟弱層6の中に埋没した状態となる。しかし実質的には、軟弱層6に先んじて発泡樹脂盤1が圧縮変形するため、軟弱層6は圧縮変形せず或いは、非常に小さな範囲で変形するにすぎない。加えて、発泡樹脂盤1は、水平力H及び曲げモーメントMを吸収し、これらが建築物5及び支持杭体2に与える力を低減する。その結果、図10(10B)に示す従来の杭基礎を採用した建築物105と図2(2B)に示す本発明の杭基礎構造を採用した建築物5とに対して、等しく水平力Hおよび曲げモーメントMがかかった場合には、建築物105の傾きより建築物5の傾きの方が小さい。また支持杭体2にはたわみが生じるが破損するには至らない。
次いで時間の経過とともに同図(2C)に示されるように、発泡樹脂盤1の歪が自立的に復元されその形状が回復し、これによって建築物5の傾斜も解消され、また支持杭体2のたわみも解消されるものである。
従って本発明の杭基礎構造を建築物の基礎として採用した場合には、図10に示す従来の杭基礎を採用した建築物105に生じる問題が発生しない。即ち、本発明の杭基礎構造によれば、建築物105と支持層107に拘束された支持杭体102に引き抜き力R及び押し込み力Sがかかり、建築物105が大きく傾斜するという問題、同時に支持杭体102が破損するという問題、及び自立的に復元不可能な圧縮変形層108が形成されるという問題が生じない。
Another operation of the present invention will be described with reference to FIG. FIG. 2 (2A) shows the pile foundation structure of the present invention and the building 5 constructed thereon as in FIG. 1 (1A). When vibration due to an earthquake or the like is transmitted to the pile foundation structure and the building 5, a horizontal force H and a bending moment M are applied to the building 5, and a bending moment may be applied to some supporting pile bodies 2. . At this time, the building 5 is inclined as shown in FIG. 2B, and a part of the building 5 is apparently buried in the soft layer 6. However, since the foamed resin board 1 substantially compresses and deforms prior to the soft layer 6, the soft layer 6 does not compress or deforms in a very small range. In addition, the foamed resin board 1 absorbs the horizontal force H and the bending moment M, and reduces the force that they give to the building 5 and the support pile body 2. As a result, the horizontal force H and the building 105 adopting the conventional pile foundation shown in FIG. 10 (10B) and the building 5 adopting the pile foundation structure of the present invention shown in FIG. When the bending moment M is applied, the inclination of the building 5 is smaller than the inclination of the building 105. Further, the support pile body 2 is deflected but not damaged.
Next, as shown in FIG. 2C with the passage of time, the distortion of the foamed resin board 1 is restored autonomously and its shape is restored, whereby the inclination of the building 5 is also eliminated, and the support pile 2 The flexure is also eliminated.
Therefore, when the pile foundation structure of this invention is employ | adopted as a foundation of a building, the problem which arises in the building 105 which employ | adopted the conventional pile foundation shown in FIG. 10 does not generate | occur | produce. That is, according to the pile foundation structure of the present invention, the pulling force R and the pushing force S are applied to the support pile body 102 constrained by the building 105 and the support layer 107, and the problem that the building 105 is greatly inclined, is supported at the same time. The problem that the pile body 102 is damaged and the problem that the compressive deformation layer 108 that cannot be restored independently are not generated.

さらにまた地下室を有する建築物に関する本発明の作用について図3を用いて説明する。図3(3A)は、地下室10を有する建築物5に本発明の杭基礎構造を示すものである。同図(3B)に示すように、上記建築物5に水平力H及び曲げモーメントMがかかった場合、見かけ上、建築物5の一部は軟弱層6に埋没する。またこの時、地下室10は傾斜している。しかし、実質的には軟弱層6に先んじて発泡樹脂盤1が圧縮変形しており、軟弱層6は圧縮変形せず、或いは非常にわずかに変形するにすぎない。従って、地下室10の外側面と地盤との間に空隙が形成されることがない。加えて、図2(2B)を用いて上述した作用と同様に発泡樹脂盤1が水平力H及び曲げモーメントMを吸収する作用を有する。その結果、図11(11B)における建築物105に比べて図3(3B)における建築物の傾きの方が小さい。また支持杭体2にはたわみが生じるが、破損するには至らない。
次いで時間の経過とともに同図(3C)に示されるように、発泡樹脂盤1の歪が自立的に復元しその形状が回復し、これによって建築物5の傾斜も解消され、また支持杭体2のたわみも解消されるものである。
従って本発明の杭基礎構造を建築物の基礎として採用した場合には、図11に示す従来の杭基礎を採用した建築物105に生じる問題が発生しない。即ち、本発明の杭基礎構造によれば、建築物105と支持層107に拘束された支持杭体102に引き抜き力R及び押し込み力Sがかかり、建築物105及び地下室110が大きく傾斜するという問題、同時に支持杭体102が破損するという問題、自立的に復元不可能な圧縮変形層108が形成されるという問題、及び地下室110の外側面と地盤との間に空隙109が形成されるという問題が生じない。
Furthermore, the effect | action of this invention regarding the building which has a basement is demonstrated using FIG. 3 (3A) shows the pile foundation structure of the present invention in the building 5 having the basement 10. FIG. As shown in FIG. 3B, when a horizontal force H and a bending moment M are applied to the building 5, apparently a part of the building 5 is buried in the soft layer 6. At this time, the basement 10 is inclined. However, the foamed resin board 1 substantially compresses and deforms prior to the soft layer 6, and the soft layer 6 does not compress or deforms only very slightly. Accordingly, no gap is formed between the outer surface of the basement 10 and the ground. In addition, the foamed resin board 1 has an action of absorbing the horizontal force H and the bending moment M in the same manner as the action described above with reference to FIG. As a result, the inclination of the building in FIG. 3 (3B) is smaller than that of the building 105 in FIG. 11 (11B). Further, the support pile body 2 is deflected, but does not break.
Next, as shown in the figure (3C) with the passage of time, the distortion of the foamed resin board 1 is restored autonomously and its shape is restored, whereby the inclination of the building 5 is also eliminated, and the support pile 2 The flexure is also eliminated.
Therefore, when the pile foundation structure of the present invention is adopted as the foundation of a building, the problem that occurs in the building 105 employing the conventional pile foundation shown in FIG. 11 does not occur. That is, according to the pile foundation structure of the present invention, the pulling force R and the pushing force S are applied to the support pile body 102 constrained by the building 105 and the support layer 107, and the building 105 and the basement 110 are greatly inclined. The problem that the support pile body 102 is damaged at the same time, the problem that the compressive deformation layer 108 that cannot be restored autonomously is formed, and the problem that the gap 109 is formed between the outer surface of the basement 110 and the ground. Does not occur.

以下に本発明の構造についてさらに詳しく説明する。本発明に用いられる発泡樹脂盤は、建築物下方であって、少なくとも、杭頭側面部全周と地盤とに接する位置、及び/または、杭頭底面部全面と地盤とに接する位置を含む杭基支持構造上部を覆う位置に、或いはさらに地下室外側面に配置され、少なくとも杭支持構造の一部と地盤とに接している。発泡樹脂盤の配置箇所は、建築物の荷重、構造、立地環境、地盤の性質等を勘案し適宜決定することができる。所望の範囲の圧縮永久歪を示す発泡樹脂盤が配置されることによって、杭支持構造及び地盤中における建築物と地盤との接触面積が小さくなる程、該発泡樹脂盤により保護される面積が増大するので好ましい。 The structure of the present invention will be described in detail below. Foamed resin board used in the present invention is a building downward, at least, a position in contact with the pile head side portion all around the ground, and / or pile including a position in contact with the pile head bottom portion entirely and ground It is arrange | positioned in the position which covers the base support structure upper part , or also in the basement outer surface, and is contacting at least a part of pile support structure and the ground. The location of the foamed resin board can be appropriately determined in consideration of the load of the building, the structure, the location environment, the properties of the ground, and the like. By placing the foamed resin board exhibiting a desired range of compression set, the area protected by the foamed resin board increases as the contact area between the pile support structure and the building and the ground in the ground decreases. This is preferable.

例えば本発明における発泡樹脂盤は、図4に示すように杭頭底面部15、地中梁底面部17及び地中梁側面部18の全面に配置されていてもよい。この時、支持杭体2の上部も発泡樹脂盤1で覆われる結果となり好ましい。即ち、支持杭体2の上部が発泡樹脂盤1に覆われて保護されるため、支持杭体2と杭頭3との結合部を保護することができるからである。発泡樹脂盤1によって支持杭体2の上部が地盤と隔離される長さは、杭支持構造の形状、建築物5の荷重、及び立地環境等を勘案し適宜決定することができるが、一般的には、杭頭3と支持杭体2との結合部分から下方にかけて約10cm以上約100cm以下であることが好ましい。
また図5に示すように、地中梁側面部18全面及び各地中梁3の間に設けられた床板9の下面全面に発泡樹脂盤1が配置されていてもよい(図6参照)。本実施形態では、発泡樹脂盤1の底面の高さを揃えることができるので、発泡樹脂盤1を配置するための穴部の形成及び発泡樹脂盤1の配置作業が簡易である。加えて、発泡樹脂盤1の配置し、その後に杭頭3を形成するためのコンクリートを打設する順で施工すれば、発泡樹脂盤1自体が杭頭3の型枠となりうる。従って、杭頭3の型枠を新たに設ける手間が省けるので、施工工程が簡略化でき好ましい。また軟弱層6において杭基礎構造以外の構造部分、例えば床板9と軟弱層6との間にも発泡樹脂盤1が配置されることによって、上記建築物5の構造部分も発泡樹脂盤1によって保護されるので好ましい。
さらに図8に示すように地下室10を有する建築物5においては、地下室外側面部16と地盤との間の一部或いは全面に発泡樹脂盤1が配置されていてもよい。地下室外側面部16と発泡樹脂盤1との接触面積が大きい程、発泡樹脂盤1の保護効果が増大し好ましい。
For example, the foamed resin board in the present invention may be disposed on the entire surface of the pile head bottom surface portion 15, the underground beam bottom surface portion 17, and the underground beam side surface portion 18, as shown in FIG. At this time, the upper part of the support pile body 2 is also preferably covered with the foamed resin board 1, which is preferable. That is, since the upper part of the support pile body 2 is covered and protected by the foamed resin board 1, the joint part of the support pile body 2 and the pile head 3 can be protected. The length by which the upper part of the support pile body 2 is separated from the ground by the foamed resin board 1 can be appropriately determined in consideration of the shape of the pile support structure, the load of the building 5, the location environment, and the like. It is preferable that it is about 10 cm or more and about 100 cm or less from the coupling | bond part of the pile head 3 and the support pile body 2 to the downward direction.
Moreover, as shown in FIG. 5, the foamed resin board 1 may be arrange | positioned in the whole lower surface of the floor board 9 provided between the underground beam side part 18 whole surface and the various middle beams 3 (refer FIG. 6). In this embodiment, since the height of the bottom face of the foamed resin board 1 can be made uniform, the formation of the hole for placing the foamed resin board 1 and the placement work of the foamed resin board 1 are simple. In addition, the foamed resin board 1 itself can be a formwork of the pile head 3 if the foamed resin board 1 is arranged and then the concrete for forming the pile head 3 is placed in that order. Therefore, it is possible to simplify the construction process because it is possible to save the trouble of newly providing the formwork of the pile head 3. Further, the foamed resin board 1 is also disposed in the soft layer 6 other than the pile foundation structure, for example, between the floor board 9 and the soft layer 6, so that the structural part of the building 5 is also protected by the foamed resin board 1. This is preferable.
Furthermore, as shown in FIG. 8, in the building 5 having the basement 10, the foamed resin board 1 may be disposed on a part or the entire surface between the basement outer surface 16 and the ground. The larger the contact area between the basement outer surface 16 and the foamed resin board 1 is, the more preferable the protective effect of the foamed resin board 1 is.

尚、上述において発泡樹脂盤の配置箇所の態様について説明したが、本発明における発泡樹脂盤の配置は上述に限定されるものではない。   In addition, although the aspect of the arrangement | positioning location of a foamed resin board was demonstrated in the above, the arrangement of the foamed resin board in this invention is not limited to the above.

次に、本発明に用いられる発泡樹脂盤についてさらに説明する。本発明における発泡樹脂盤の厚みは、特に限定されず建築物の規模、基礎のタイプ、地盤の性質又は立地環境等によって適宜決定することができるが、好ましい厚みは、約10cm以上約150cm以下である。またかかる発泡樹脂盤の厚みは、配置される各箇所において、一律でもよいし、或いは異なっていてもよい。   Next, the foamed resin board used in the present invention will be further described. The thickness of the foamed resin board in the present invention is not particularly limited and can be appropriately determined depending on the scale of the building, the type of foundation, the nature of the ground, the location environment, etc. The preferred thickness is about 10 cm or more and about 150 cm or less. is there. Further, the thickness of the foamed resin board may be uniform or may be different in each place where the foamed resin board is disposed.

上記発泡樹脂盤に用いられる樹脂発泡体としては、例えば、ポリスチレン系樹脂発泡体、ポリエチレン系樹脂発泡体、ポリプロピレン系樹脂発泡体、ポリウレタン系樹脂発泡体、ポリ塩化ビニル系樹脂発泡体、熱可塑性ポリエステル系樹脂発泡体、ポリカーボネート系樹脂発泡体、ポリアミド系樹脂発泡体、ポリフェニレンエーテル系樹脂発泡体、或いは上述した樹脂の2以上の混合物等がある。特に、ポリスチレン系樹脂発泡体、ポリエチレン系樹脂発泡体、及びポリプロピレン系樹脂発泡体並びにこれらの組み合わせは、重量及び強度等の点から好ましい。尚、ポリウレタン系樹脂発泡体は、地盤中において加水分解が生じると耐久性に劣化が生じる場合があり、またポリ塩化ビニル系樹脂発泡体は、燃えると塩酸ガスを発生し公害上の問題を生じるので、これら樹脂発泡体を使用する際には、上記問題が発生しないよう留意する必要がある。   Examples of the resin foam used for the foamed resin board include polystyrene resin foam, polyethylene resin foam, polypropylene resin foam, polyurethane resin foam, polyvinyl chloride resin foam, and thermoplastic polyester. Resin foam, polycarbonate resin foam, polyamide resin foam, polyphenylene ether resin foam, or a mixture of two or more of the above-described resins. In particular, a polystyrene resin foam, a polyethylene resin foam, a polypropylene resin foam, and a combination thereof are preferable from the viewpoint of weight and strength. Polyurethane resin foams may deteriorate in durability when hydrolysis occurs in the ground. Polyvinyl chloride resin foams generate hydrochloric acid gas when burned, causing pollution problems. Therefore, when using these resin foams, it is necessary to pay attention not to cause the above problem.

上記好ましい樹脂発泡体の1つであるポリスチレン系樹脂発泡体には、具体的には、スチレンの単独重合体樹脂、スチレンと他のモノマーとから製造されたスチレン系共重合体樹脂、スチレンの単独重合体樹脂又は/及びスチレン系共重合体樹脂とスチレン−ブタジエンブロック共重合体との混合物、ゴム状重合体の存在下でスチレン系モノマーを重合することによって得られるゴム変性スチレン系樹脂(耐衝撃性ポリスチレン)、或いは上記したスチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、スチレン成分比率が50重量%以上であるポリスチレン系樹脂或いはポリスチレン系樹脂組成物を発泡して形成した樹脂発泡体が含まれる。上記ポリスチレン系樹脂発泡体は、発泡倍率50倍〜120倍程度のものであれば、本発明における所望の範囲の圧縮永久歪が得られやすいため望ましい。   Specific examples of the polystyrene resin foam, which is one of the above preferred resin foams, include styrene homopolymer resins, styrene copolymer resins produced from styrene and other monomers, and styrene alone. A rubber-modified styrene resin (impact resistant) obtained by polymerizing a styrene monomer in the presence of a polymer resin or / and a mixture of a styrene copolymer resin and a styrene-butadiene block copolymer or a rubber-like polymer. A polystyrene-based resin or a polystyrene-based resin composition having a styrene component ratio of 50% by weight or more, such as a mixture of a styrene-based resin) or a mixture of the above-described styrene-based resin with another resin or / and a rubber-like polymer. The resin foam formed in this way is included. If the said polystyrene-type resin foam is a foaming magnification about 50 times-about 120 times, since the compression set of the desired range in this invention is easy to be obtained, it is desirable.

上記好ましい樹脂発泡体の1つであるポリエチレン系樹脂発泡体には、具体的には、エチレンの単独重合体樹脂、エチレンと他のモノマーとから製造されたエチレン系共重合体樹脂、エチレンの単独重合体樹脂又は/及びエチレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性エチレン系樹脂、或いは上記エチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、エチレン成分比率が50重量%以上であるポリエチレン系樹脂或いはポリエチレン系樹脂組成物を発泡して形成した樹脂発泡体が含まれる。上記ポリプロピレン系樹脂発泡体は、発泡倍率30倍〜70倍程度のものであれば、本発明における所望の範囲の圧縮永久歪が得られやすいため望ましい。   Specific examples of the polyethylene resin foam that is one of the preferred resin foams include ethylene homopolymer resins, ethylene copolymer resins produced from ethylene and other monomers, and ethylene alone A graft-modified ethylene resin obtained by impregnating a polymer resin or / and an ethylene copolymer resin with a vinyl monomer such as a styrene monomer and polymerizing, or the above-mentioned ethylene resin and another resin or / and rubbery heavy A resin foam formed by foaming a polyethylene resin or a polyethylene resin composition having an ethylene component ratio of 50% by weight or more, such as a mixture with a coalescence, is included. If the said polypropylene resin foam is a thing with a foaming magnification of about 30 times-70 times, since the compression set of the desired range in this invention is easy to be obtained, it is desirable.

上記好ましい樹脂発泡体の1つであるポリプロピレン系樹脂発泡体は、具体的には、プロピレンの単独重合体樹脂、プロピレンと他のモノマーとから製造されたプロピレン系共重合体樹脂、プロピレンの単独重合体樹脂又は/及びプロピレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性プロピレン系樹脂、或いは上記プロピレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、プロピレン成分比率が50重量%以上であるポリプロピレン系樹脂或いはポリプロピレン系樹脂組成物を発泡して形成した樹脂発泡体が含まれる。上記ポリスチレン系樹脂発泡体は、発泡倍率50倍〜120倍程度のものであれば、本発明における所望の範囲の圧縮永久歪が得られやすいため望ましい。   Specifically, a polypropylene resin foam, which is one of the preferred resin foams, includes a propylene homopolymer resin, a propylene copolymer resin produced from propylene and another monomer, and a propylene homopolymer. Graft modified propylene resin obtained by impregnating vinyl resin such as styrene monomer into polymer resin or / and propylene copolymer resin, or the above propylene resin and other resin or / and rubber-like polymer And a resin foam formed by foaming a polypropylene resin or a polypropylene resin composition having a propylene component ratio of 50% by weight or more. If the said polystyrene-type resin foam is a foaming magnification about 50 times-about 120 times, since the compression set of the desired range in this invention is easy to be obtained, it is desirable.

上記発泡樹脂盤は、所望の形状に形成された容器にビーズ状の発泡粒子を充填し加熱して該発泡粒子同士を融着させる所謂型内発泡により、上記所望の形状の発泡樹脂ブロックとして形成することができる。或いは、適当な形状の容器に球状の発泡粒子を充填し加熱して該発泡粒子同士を融着させて適当な形状の発泡樹脂ブロックを形成し、さらに所望の形状となるよう加工することによって所望の形状の発泡樹脂ブロックとして形成することができる。   The foamed resin board is formed as a foamed resin block of the desired shape by so-called in-mold foaming in which beads shaped foamed particles are filled in a container formed in a desired shape and heated to fuse the foamed particles together. can do. Alternatively, a desired shape can be obtained by filling spherical foamed particles in a suitably shaped container and heating them to fuse the foamed particles together to form a suitably shaped foamed resin block and then processing it into the desired shape. It can be formed as a foamed resin block of the shape.

本発明に用いられる発泡樹脂盤は圧縮クリープが10%以上であることが好ましく、15%以上であることがより好ましい。発泡樹脂盤の圧縮クリープが10%以上であれば、地震等による振動発生によって杭基礎構造及び建築物に外力がかかった際に、軟弱層に先んじて良好に圧縮変形を示すため好ましい。
上記発泡樹脂盤の圧縮クリープは、JIS K 6767に基づいて測定することができる。具体的には、発泡樹脂盤を形成する発泡樹脂体を用いて50×50×厚さ約25mmの試験を作成し、温度20±2℃、相対湿度65±5%の標準状態において該試験片に2g/cmの荷重をかけた際の試験片の厚さをTとし、上記荷重をかけた状態で放置し168時間後の厚さをTdとしたときに、(T−T)÷T×100で算出される。
The foamed resin board used in the present invention preferably has a compression creep of 10% or more, and more preferably 15% or more. If the compression creep of the foamed resin board is 10% or more, when external force is applied to the pile foundation structure and the building due to the occurrence of vibration due to an earthquake or the like, it is preferable to exhibit compression deformation well before the soft layer.
The compression creep of the foamed resin board can be measured based on JIS K 6767. Specifically, a test of 50 × 50 × thickness of about 25 mm was prepared using a foamed resin body forming a foamed resin board, and the test piece was in a standard state at a temperature of 20 ± 2 ° C. and a relative humidity of 65 ± 5%. When the thickness of the test piece when a load of 2 g / cm 2 is applied to is T 0 , the test piece is allowed to stand with the above load applied, and the thickness after 168 hours is defined as T d (T 0 −T d ) ÷ T 0 × 100

本発明に用いられる発泡樹脂盤の圧縮強度は特に限定されないが、約3KN/m以上約100KN/m以下であることが好ましく、約10KN/m以上約50KN/m以下であることがさらに好ましい。上記圧縮強度が約3KN/m以上であれば、杭基礎構造の一構成部分として充分な強度及び良好な振動吸収性を得ることができるので好ましく、また約100KN/m以下であれば、本発明における所望の範囲の圧縮永久歪が得られやすいので好ましい。本発明の杭基礎構造では、建築物の総荷重は杭支持構造によって支持されるのであって、発泡樹脂盤に支持すべき荷重を分散させるものではない。従って、高い圧縮強度を発泡樹脂盤に求める必要はなく、むしろ好ましい圧縮永久歪を得られる程度に圧縮強度を調整することが望ましい。 Compressive strength of the foamed resin board used in the present invention is not particularly limited, it is preferably, about 10KN / m 2 or more to about 50 KN / m 2 or less than about 3 kN / m 2 or more to about 100KN / m 2 Is more preferable. If the compressive strength is about 3 KN / m 2 or more, it is preferable because sufficient strength and good vibration absorption can be obtained as one component part of the pile foundation structure, and if it is about 100 KN / m 2 or less, This is preferable because a compression set within a desired range in the present invention is easily obtained. In the pile foundation structure of the present invention, the total load of the building is supported by the pile support structure, and the load to be supported by the foamed resin board is not dispersed. Therefore, it is not necessary to obtain a high compressive strength for the foamed resin board, but it is desirable to adjust the compressive strength to such an extent that a preferable compression set can be obtained.

尚、上記発泡樹脂盤の圧縮強度は、JIS K 7220に示される短期圧縮強度の計測方法を用いて計測することができる。   In addition, the compressive strength of the said foamed resin board can be measured using the measuring method of the short-term compressive strength shown by JISK7220.

上記所望の範囲の圧縮永久歪を有する発泡樹脂盤の一実施態様として、空孔を有する発泡樹脂盤を用いることができる。上記空孔とは、発泡樹脂盤の外形状として設けられた溝や穴、発泡樹脂盤を構成する発泡樹脂ビーズ間において形成される空隙、或るいは特定形状のビーズ内に設けられた空間を意味する。上記空孔を有する発泡樹脂盤の形成方法の例としては、発泡ビーズを充填する形成用型に予め所望の形状の溝型、或いは穴型を設けておき、そこに発泡樹脂ビーズを充填して、外側面に溝または穴を有する発泡体、或いは側面を貫通する穴部を有する発泡体を形成することができる。別の方法としては予めチップ状、筒状等の特定形状の発泡樹脂ビーズを形成し、該特定形状の発泡樹脂ビーズを用いて型内発泡することによって形成することができる。ただし、上記形成方法に限定されるものではない。
上述した空孔を設けた発泡樹脂盤は、該空孔に土砂等が入り込まないように透水シートで被覆してもよい。透水シートとしては、地盤中の土、砂及び砂利等が通過することのできない孔径を有する織布、不織布又は合成樹脂性メッシュシート等を用いることができる。樹脂製不織布が好ましく、特にポリプロピレン又はポリエステルの不織布が好ましい。
As an embodiment of the foamed resin board having compression set within the desired range, a foamed resin board having pores can be used. The above holes are grooves and holes provided as the outer shape of the foamed resin board, voids formed between the foamed resin beads constituting the foamed resin board, or spaces provided in beads of a specific shape. means. As an example of a method for forming a foamed resin board having holes, a groove mold or a hole mold having a desired shape is provided in advance in a mold for filling foam beads, and the foam resin beads are filled therewith. A foam having grooves or holes on the outer surface or a foam having holes penetrating the side surfaces can be formed. As another method, a foamed resin bead having a specific shape such as a chip shape or a cylindrical shape may be formed in advance, and foamed in the mold using the foamed resin bead having the specific shape. However, it is not limited to the said formation method.
The above-mentioned foamed resin board provided with holes may be covered with a water-permeable sheet so that earth and sand do not enter the holes. As the water-permeable sheet, a woven fabric, a non-woven fabric, a synthetic resin mesh sheet or the like having a pore diameter through which soil, sand, gravel, etc. in the ground cannot pass can be used. A resin nonwoven fabric is preferable, and a polypropylene or polyester nonwoven fabric is particularly preferable.

本発明おける発泡樹脂盤の空孔率とは、発泡樹脂盤全体の体積に対する発泡樹脂盤側面または内部に設けられる空孔の体積%を意味する。上記空孔率は、発泡樹脂盤に所望の圧縮永久歪、圧縮クリープ、及び圧縮強度等を勘案して決定することができる。発泡樹脂盤における空孔率は、特に制限はないが、好ましくは約10%以上約50%以下、より好ましくは約20%以上約40%以下である。
上記空孔率は、見かけ上同体積であって空孔を有しない発泡樹脂盤と空孔を有する発泡樹脂盤とを水に浸漬させてその体積差より計測することができる。空孔を有しない発泡樹脂盤と好ましい率で空孔を有する発泡樹脂盤とでは、圧縮強度が等しい場合に、一般的に好ましい率で空孔を有する発泡樹脂体の方が、圧縮永久歪が小さいという傾向がある。即ち、圧縮変形した後の自立的な寸法の回復が良好であるという点で、上記好ましい範囲の空孔率を有する発泡樹脂盤を本発明に用いることは好ましい。
The porosity of the foamed resin board in the present invention means the volume% of pores provided on the side or inside of the foamed resin board with respect to the entire volume of the foamed resin board. The porosity can be determined by taking into account the desired compression set, compression creep, compression strength and the like of the foamed resin board. The porosity of the foamed resin board is not particularly limited, but is preferably about 10% to about 50%, more preferably about 20% to about 40%.
The porosity can be measured from the volume difference of a foamed resin board that apparently has the same volume and does not have pores and a foamed resin board that has pores. In the case of a foamed resin board having no pores and a foamed resin board having pores at a preferred rate, when the compressive strength is equal, the foamed resin body having pores at a generally preferred rate has a compression set. There is a tendency to be small. That is, it is preferable to use a foamed resin board having a porosity in the above preferred range for the present invention in that the self-recovering dimension after compression deformation is good.

次に本発明の杭基礎構造の構築工法について説明する。   Next, the construction method of the pile foundation structure of this invention is demonstrated.

(1)建築物、建築物の建造予定地における地盤の地震特性、及び交通の振動データ等を解析し、支持杭構造が支持すべき荷重支持力等を決定し、また支持杭構造を構成する各部材の数、形状及び寸法を決定する。支持杭構造は、少なくとも支持杭体を必要とし、一般的には上記支持杭体上部と結合する杭頭、さらには杭頭と結合する地中梁等により構成される。しかしこれらに限定されるものではない。
他方、発泡樹脂盤についても、地盤特性等を勘案して好ましい範囲の圧縮永久歪、圧縮クリープ及び圧縮強度等を決定し、それらを満たす発泡樹脂盤を形成する。本発明における発泡樹脂盤は、地震による振動発生時において、軟弱層に先んじて圧縮変形させ、かつ振動により生じる圧力を吸収させるために用いられるものであり、建築物の荷重を支持せしめるものではない。従って上記杭基礎構造の荷重支持力に関する設計の際には、発泡樹脂盤に建築物の荷重支持力の負担を求めず、上記杭支持構造により建築物の全荷重を支持せしめるよう設計することが重要である。
(1) Analyzing the earthquake characteristics of the ground in the building, the planned construction site of the building, vibration data of traffic, etc., determining the load bearing capacity etc. that the support pile structure should support, and configuring the support pile structure Determine the number, shape and dimensions of each member. The support pile structure requires at least a support pile body, and is generally composed of a pile head coupled to the upper portion of the support pile body, and an underground beam coupled to the pile head. However, it is not limited to these.
On the other hand, with respect to the foamed resin board, a preferable range of compression set, compression creep, compressive strength and the like are determined in consideration of ground characteristics and the like, and a foamed resin board satisfying them is formed. The foamed resin board in the present invention is used to compress and deform the soft layer prior to the occurrence of vibration due to an earthquake and to absorb the pressure generated by the vibration, and does not support the load of the building. . Therefore, when designing the load bearing capacity of the pile foundation structure, it is possible to design the foam resin board so as to support the entire load of the building without the burden of the load bearing capacity of the building on the foamed resin board. is important.

(2)所定の位置において支持杭体を打ち支持杭体の先端部を支持層に埋設する。支持杭体の先端部分が支持層に埋設される長さは建築物の荷重に合わせて適宜決定することができるが、一般的には支持杭体の下先端から約1m以上約3m以下の部分が支持層に埋設されることが好ましい。
支持杭体を埋設後、所定の範囲の軟弱層の地盤を排土することによって発泡樹脂盤1を埋設するための穴部を形成する。穴部の形状は、発泡樹脂盤の形状、地下室の有無などにより適宜決定することができる。
(2) The support pile body is driven at a predetermined position, and the tip of the support pile body is embedded in the support layer. The length at which the tip of the support pile is embedded in the support layer can be determined appropriately according to the load of the building, but in general, it is a portion of about 1 m to 3 m from the bottom tip of the support pile. Is preferably embedded in the support layer.
After embedding the support pile body, a hole for embedding the foamed resin board 1 is formed by removing the ground of the soft layer in a predetermined range. The shape of the hole can be appropriately determined depending on the shape of the foamed resin board, the presence or absence of the basement, and the like.

(3)次に上記穴部底面において発泡樹脂盤を形成する。発泡樹脂盤は、杭支持構造の形状に併せて適宜配置することができる。例えば、図5に示す杭基礎構造A2を構築する際には、発泡樹脂盤1は穴部底面において、杭頭3のスペースを確保して配置することができる。また図7に示す杭基礎構造A3を形成する際には、穴部底面において、支持杭体2の周囲全面に発泡樹脂盤1を配置し、かつ該発泡樹脂盤1の高さを調整することによって、杭頭3のスペースを確保して配置することができる。
また発泡樹脂盤を形成するには、任意の寸法及び形状の複数の発泡樹脂ブロックを組み合わせて、又は積み重ねて形成することができる。上記複数の発泡樹脂ブロックを、発泡樹脂盤を埋設するために形成された穴部において単に組み合わせて又は積み重ねて発泡樹脂盤を形成してよい。或いは各発泡樹脂ブロック間を任意の接着剤や粘着テープで接着するか、又はボルトや締結用金具等の固定具を用いて発泡樹脂ブロック間を接合して、発泡樹脂盤を形成してもよい。
(3) Next, a foamed resin board is formed on the bottom surface of the hole. The foamed resin board can be appropriately arranged in accordance with the shape of the pile support structure. For example, when constructing the pile foundation structure A2 shown in FIG. 5, the foamed resin board 1 can be disposed while securing the space of the pile head 3 on the bottom surface of the hole. When the pile foundation structure A3 shown in FIG. 7 is formed, the foamed resin board 1 is arranged on the entire periphery of the support pile body 2 on the bottom surface of the hole, and the height of the foamed resin board 1 is adjusted. Thus, the space of the pile head 3 can be secured and arranged.
In order to form a foamed resin board, a plurality of foamed resin blocks having arbitrary dimensions and shapes can be combined or stacked. The foamed resin board may be formed by simply combining or stacking the plurality of foamed resin blocks in a hole formed to embed the foamed resin board. Alternatively, each foamed resin block may be bonded with an arbitrary adhesive or adhesive tape, or a foamed resin board may be formed by joining the foamed resin blocks using a fixture such as a bolt or a fastening metal fitting. .

(4)発泡樹脂盤を形成後、上記支持杭体以外の杭支持構造を形成する部材を形成する。これら部材の形成に必要なスペースが発泡樹脂盤に囲まれて確保されている場合は、該発泡樹脂盤を型枠として利用してもよい。例えば、図5に示す杭頭3を形成する際に、発泡樹脂盤1と地盤とで形成される杭頭3のスペースを杭頭3形成用型枠の一部として利用することができる。
杭支持構造を形成する際には、その上部が発泡樹脂盤と接するように形成する。本発明において杭支持構造の上部とは、杭支持構造の軟弱地盤中に埋設される領域であって、建築物により近い部分を指さす。例えば、支持杭体、杭頭及び地中梁よりなる杭支持構造であれば、杭頭、地中梁、及び支持杭体と杭頭の結合部分を含めて該杭支持構造の上部とする。
(4) After forming the foamed resin board, a member that forms a pile support structure other than the support pile body is formed. When a space necessary for forming these members is secured by being surrounded by a foamed resin board, the foamed resin board may be used as a mold. For example, when the pile head 3 shown in FIG. 5 is formed, the space of the pile head 3 formed by the foamed resin board 1 and the ground can be used as a part of the form for forming the pile head 3.
When the pile support structure is formed, the pile support structure is formed so as to be in contact with the foamed resin board. In this invention, the upper part of a pile support structure is an area | region embed | buried in the soft ground of a pile support structure, Comprising: The part nearer to a building is pointed out. For example, if it is a pile support structure which consists of a support pile body, a pile head, and an underground beam, it will be set as the upper part of this pile support structure including the connection part of a pile head, an underground beam, and a support pile body and a pile head.

(5)次いで、穴部の残余の空間を埋め戻す。これにより、本発明の杭基礎構造が完成する。さらに上記工程に続いて、床板や土間等、地盤中における建築物の構造部分を形成し、次いで1階床を形成し、これにより一般的にピットと呼ばれる空間を形成してもよい。また発泡樹脂盤の上面が地表に露出することを防ぐために、地表近くに配置された発泡樹脂盤の上面にコンクリート板を併せて形成することができる。   (5) Next, the remaining space of the hole is refilled. Thereby, the pile foundation structure of the present invention is completed. Further, following the above process, a structural part of the building in the ground such as a floor board or a soil may be formed, and then a first floor may be formed, thereby forming a space generally called a pit. Moreover, in order to prevent the upper surface of the foamed resin board from being exposed to the ground surface, a concrete board can be formed together on the upper surface of the foamed resin board disposed near the ground surface.

尚、本発明の構築工法は上記順序に制限されず、例えば発泡樹脂盤の一部を埋設し、次いで杭頭を構築した後、発泡樹脂盤の残りの部分を埋設し、最後に穴部の残余部分を埋め戻す等の変更を適宜行うことができる。   The construction method of the present invention is not limited to the above order. For example, after embedding a part of the foamed resin board and then constructing the pile head, the remaining part of the foamed resin board is buried, and finally the hole part Changes such as backfilling the remaining portion can be made as appropriate.

また地下室を備える建築物に用いられる本発明の杭基礎構造を構築する際には、地下室を考慮して、(1)と同様に杭支持構造及び発泡樹脂盤を設計する。次いで地下室を考慮して穴部を形成する以外は、上記(2)〜(4)と同様に、支持杭体を埋設し、発泡樹脂盤を形成し、上記支持杭体以外の杭支持構造部分を形成することができる。さらに地下室床面及び地下室側面を構築し、該地下室側面に沿って発泡樹脂盤を配置し、穴部の残余部分を埋め戻す。これにより本発明の地下室を備える建築物用杭基礎構造が完成する。   Moreover, when building the pile foundation structure of this invention used for the building provided with a basement, a pile support structure and a foamed resin board are designed like (1) in consideration of a basement. Next, except for forming a hole in consideration of the basement, a pile support structure is embedded in the same manner as in (2) to (4) above, a foamed resin board is formed, and a pile support structure portion other than the support pile body Can be formed. Furthermore, a basement floor surface and a basement side surface are constructed, a foamed resin board is disposed along the basement side surface, and the remaining portion of the hole is refilled. Thereby, the pile foundation structure for buildings provided with the basement of this invention is completed.

本発明の杭基礎構造の作用を説明するための説明図Explanatory drawing for demonstrating the effect | action of the pile foundation structure of this invention 本発明の杭基礎構造の作用を説明するための説明図Explanatory drawing for demonstrating the effect | action of the pile foundation structure of this invention 本発明の杭基礎構造の作用を説明するための説明図Explanatory drawing for demonstrating the effect | action of the pile foundation structure of this invention 本発明の杭基礎構造の一実施形態の垂直断面概略図Schematic diagram of a vertical cross section of an embodiment of a pile foundation structure of the present invention 本発明の杭基礎構造の一実施形態の垂直断面概略図Schematic diagram of a vertical cross section of an embodiment of a pile foundation structure of the present invention 図5に示す杭基礎構造のV−V線の水平断面概略図Horizontal cross-sectional schematic of the VV line of the pile foundation structure shown in FIG. 本発明の杭基礎構造の一実施形態の垂直断面概略図Schematic diagram of a vertical cross section of an embodiment of a pile foundation structure of the present invention 本発明の杭基礎構造の一実施形態の垂直断面概略図Schematic diagram of a vertical cross section of an embodiment of a pile foundation structure of the present invention 従来の杭基礎の問題を説明するための説明図Explanatory drawing explaining the problem of the conventional pile foundation 従来の杭基礎の問題を説明するための説明図Explanatory drawing explaining the problem of the conventional pile foundation 従来の杭基礎の問題を説明するための説明図Explanatory drawing explaining the problem of the conventional pile foundation

符号の説明Explanation of symbols

1 発泡樹脂盤
2 支持杭体
3 杭頭
4 地中梁
5 建築物
6 軟弱層
7 支持層
8 杭支持構造
イ 建築物沈下量
ロ 建築物沈下量
M 曲げモーメント
H 水平力
P 鉛直方向の圧力
Q 鉛直方向の圧力Pと逆方向の圧力
R 引き抜き力
S 押し込み力
DESCRIPTION OF SYMBOLS 1 Foam resin board 2 Support pile body 3 Pile head 4 Underground beam 5 Building 6 Soft layer 7 Support layer 8 Pile support structure B Building subsidence amount B Building subsidence amount M Bending moment H Horizontal force P Vertical pressure Q Vertical pressure P Reverse pressure R Pull-out force S Push-in force

Claims (3)

杭支持構造及び発泡樹脂盤を備える建築物用杭基礎構造であって、
上記杭支持構造が、支持杭体と杭頭と地中梁とからなり、
上記発泡樹脂盤が、圧縮永久歪が0.1%以上30%以下であり、且つ、
建築物の下方であって、少なくとも、杭頭側面部全周と地盤とに接する位置、及び/または、杭頭底面部全面と地盤とに接する位置を含む杭支持構造上部を覆うように上記発泡樹脂盤が配置されていることを特徴とする建築物用杭基礎構造。
A pile foundation structure for buildings comprising a pile support structure and a foamed resin board,
The above pile support structure consists of a support pile body, pile head and underground beam,
The foamed resin board has a compression set of 0.1% to 30%, and
Above the foam, so as to cover the upper part of the pile support structure that is below the building and includes at least the position in contact with the entire circumference of the pile head side surface and the ground and / or the position in contact with the entire bottom surface of the pile head and the ground. Pile foundation structure for buildings, characterized in that resin boards are arranged.
上記地中梁が上記杭頭の周囲に設けられており、
上記地中梁側面部全面及び上記地中梁底面部全面と、地盤との間に上記発泡樹脂盤が配置されていることを特徴とする請求項1に記載の建築物用基礎構造。
The underground beam is provided around the pile head,
The building foundation structure according to claim 1, wherein the foamed resin board is disposed between the entire surface of the side surface of the underground beam, the entire surface of the bottom surface of the underground beam, and the ground.
杭支持構造及び発泡樹脂盤を備える地下室を備える建築物の建築物用杭基礎構造であって、建築物地下室の外側面と地盤との間に上記発泡樹脂盤が介在していることを特徴とする請求項1または2に記載の建築物用杭基礎構造。 A pile foundation structure for a building having a basement with a pile support structure and a foamed resin board, wherein the foamed resin board is interposed between the outer surface of the building basement and the ground. The pile foundation structure for buildings according to claim 1 or 2 .
JP2004135340A 2004-04-30 2004-04-30 Pile foundation structure for buildings Expired - Fee Related JP4217189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135340A JP4217189B2 (en) 2004-04-30 2004-04-30 Pile foundation structure for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135340A JP4217189B2 (en) 2004-04-30 2004-04-30 Pile foundation structure for buildings

Publications (2)

Publication Number Publication Date
JP2005314991A JP2005314991A (en) 2005-11-10
JP4217189B2 true JP4217189B2 (en) 2009-01-28

Family

ID=35442702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135340A Expired - Fee Related JP4217189B2 (en) 2004-04-30 2004-04-30 Pile foundation structure for buildings

Country Status (1)

Country Link
JP (1) JP4217189B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912005A (en) * 2014-04-14 2014-07-09 五邑大学 Foundation structure
CN108532394A (en) * 2017-03-04 2018-09-14 北京桥昌混凝土搅拌有限公司 A kind of construction technology of soft base
CN107724411B (en) * 2017-11-23 2023-03-10 中唐空铁集团有限公司 Raft foundation for complex landform
CN108952217B (en) * 2018-07-31 2020-12-01 中地寅岗建设集团有限公司 A soil bearing structure for green building

Also Published As

Publication number Publication date
JP2005314991A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US5713696A (en) Elasticized geosynthetic panel and geofoam composition
Kranthikumar et al. Numerical and experimental investigations of granular anchor piles in loose sandy soil subjected to uplift loading
JP5984085B2 (en) Foundation structure and foundation construction method
Huang Investigations of soil retaining structures damaged during the Chi‐Chi (Taiwan) earthquake
US9222276B2 (en) Seismic isolation system
Kirkwood et al. Considerations for the mitigation of earthquake-induced soil liquefaction in urban environments
JP4217189B2 (en) Pile foundation structure for buildings
Hamada et al. Numerical analysis on seismic response of piled raft foundation with ground improvement based on seismic observation records
JP4445341B2 (en) Building foundation and its construction method
JP4177817B2 (en) Seismic isolation structure and wooden house
Cheng et al. Behavior of a pile group supporting a precast pile cap under combined vertical and lateral loads
Erbrich et al. Numerical modelling of seismically induced settlement for Ichthys riser support structure
CN105887926A (en) Open trench tunnel structure capable of preventing inhomogeneous deformation of foundation for soft soil seismic subsidence stratum
JP4448406B2 (en) Independent foundation structure
JP2001020558A (en) Base isolation structure of building
JP4585987B2 (en) Building basic structure
JP3771436B2 (en) Lightweight embankment structure
JP5863915B1 (en) Liquefaction countermeasure structure on site
CN214169529U (en) Soft-Story shock isolation structure
CN216194966U (en) Anti-seismic foundation supporting device
Bartlett et al. Applications of EPS Geofoam in design and construction of earthquake resilient infrastructure
JP6355089B2 (en) Pile support structure
JP5938454B2 (en) Seismic isolation structure in structures
Booth et al. Basic seismic design principles for buildings
Vazinram et al. Seismic hazards for lifelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees