JP4445341B2 - Building foundation and its construction method - Google Patents

Building foundation and its construction method Download PDF

Info

Publication number
JP4445341B2
JP4445341B2 JP2004227872A JP2004227872A JP4445341B2 JP 4445341 B2 JP4445341 B2 JP 4445341B2 JP 2004227872 A JP2004227872 A JP 2004227872A JP 2004227872 A JP2004227872 A JP 2004227872A JP 4445341 B2 JP4445341 B2 JP 4445341B2
Authority
JP
Japan
Prior art keywords
foundation
building
foamed resin
strained material
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004227872A
Other languages
Japanese (ja)
Other versions
JP2006045891A (en
Inventor
拓造 中村
Original Assignee
中村物産有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中村物産有限会社 filed Critical 中村物産有限会社
Priority to JP2004227872A priority Critical patent/JP4445341B2/en
Publication of JP2006045891A publication Critical patent/JP2006045891A/en
Application granted granted Critical
Publication of JP4445341B2 publication Critical patent/JP4445341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、建築物用基礎構造であって、接合部を形成することにより杭基礎部とベタ基礎部とが一体化された構造を有する建築物用基礎構造及びその構築工法に関する。 TECHNICAL FIELD The present invention relates to a building foundation structure, and relates to a building foundation structure having a structure in which a pile foundation portion and a solid foundation portion are integrated by forming a joint portion and a construction method thereof.

一般的に、表層地盤に建築物の荷重を支持することができる程度の支持耐力がない場合には、ベタ基礎又は布基礎等の直接基礎を採用して表層地盤の荷重支持力を利用するのではなく、表層地盤の下方に位置する堅強な地盤において荷重を支持させることが必要である。かかる場合において、上記堅強な地盤を支持層として、該支持層から鉛直方向に起立した支持杭体及び該支持杭体上部と結合する杭頭を有する杭基礎が従来より採用されている(例えば、非特許文献1参照)。杭基礎によれば、建築物の荷重は、主に支持杭体と支持層とにより支持されるため、表層に位置する軟弱な地盤によらず建築物の荷重を支持することができるという点で優れている。   In general, if the surface ground does not have sufficient bearing strength to support the load of the building, use a solid foundation such as a solid foundation or cloth foundation and use the load bearing capacity of the surface ground. Rather, it is necessary to support the load on a strong ground located below the surface ground. In such a case, a pile foundation having a pile head connected to the support pile body standing upright from the support layer and the upper part of the support pile body has been conventionally employed, with the solid ground as a support layer (for example, Non-patent document 1). According to the pile foundation, since the load of the building is mainly supported by the support pile body and the support layer, the load of the building can be supported regardless of the soft ground located on the surface layer. Are better.

従来の杭基礎は、上述のとおり建築物の荷重のほぼ全てを支持杭体及び支持層に支持せしめる構造が採用されているため、支持杭体に対する負荷が非常に大きい。従って、地震等により振動が生じて水平方向及び鉛直方向の力が地盤内に発生した際に、支持杭体が荷重を支持しきれなくなり該支持杭体の破損が生じやすいという問題がある。しかし上述のとおり、杭基礎構造が採用される場合は、構築される建築物の荷重に対して表層地盤に該荷重を支持するだけの支持耐力がないことが一般的である。従って、杭基礎と直接基礎とを併用し、支持杭体の支持力とともに直接基礎とそれに接する表層地盤とにおける建築物の荷重支持力を利用することはできなかった。   Since the conventional pile foundation employs a structure in which almost all the load of the building is supported by the support pile body and the support layer as described above, the load on the support pile body is very large. Therefore, there is a problem that when a vibration is generated due to an earthquake or the like and a force in the horizontal direction and the vertical direction is generated in the ground, the support pile body cannot support the load and the support pile body is easily damaged. However, as above-mentioned, when a pile foundation structure is employ | adopted, it is common that there is no support yield strength which supports this load on the surface layer ground with respect to the load of the building constructed. Therefore, the pile foundation and the direct foundation were used together, and the load bearing capacity of the building on the foundation and the surface ground in contact with the foundation could not be used together with the bearing capacity of the supporting pile body.

また支持杭体に荷重負荷が集中することにより、以下に述べる別の問題点がある。
一般的に、建築物の荷重は水平面に対して偏りがある。このため各支持杭体が支持する荷重も一律ではなくバランスが悪い場合がある。これを放置すると地盤環境や周辺環境の変化、或いは地震振動等の外力発生といった種々の後発要因により、上記荷重偏重に対する杭支持体の負荷が増大して支持杭体が破損すると、建築物が安定に支持されなくなり非常に危険である。
Moreover, there is another problem described below due to the concentrated load on the support pile.
Generally, the building load is biased with respect to the horizontal plane. For this reason, the load which each support pile body supports is not uniform, and a balance may be bad. If this is left unattended, the building will be stable if the load on the pile support increases due to the above load imbalance and the support pile breaks due to various subsequent factors such as changes in the ground environment and surrounding environment, or the occurrence of external forces such as earthquake vibration. It is very dangerous because it will not be supported by.

さらにまた、建築物の荷重に対し支持耐力が発揮されない程度に軟弱である表層地盤は、外力による地盤形状の変形が生じ易い傾向にあることから以下の別の問題がある。即ち、地震等による振動の発生や地盤の液状化現象等により、杭基礎周辺の地盤に空洞、空隙が形成されやすいという問題がある。上記空洞、空隙の形成により支持杭体の安定性が損なわれ、その結果、建築物の安定性が損なわれることとなり非常に危険である。   Furthermore, the surface layer ground that is so soft that the bearing strength is not exhibited against the load of the building tends to cause deformation of the ground shape due to external force, and thus has the following another problem. That is, there is a problem that cavities and voids are likely to be formed in the ground around the pile foundation due to the occurrence of vibration due to an earthquake or the like or the liquefaction phenomenon of the ground. The formation of the cavities and voids impairs the stability of the support pile, and as a result, the stability of the building is impaired, which is very dangerous.

社団法人日本建築学会、「建築基礎構造設計指針」、第1版第8刷、社団法人日本建築学会、1996年7月25日、p.197−214The Architectural Institute of Japan, “Basic Design Guidelines for Architectural Foundations”, 1st Edition, 8th Edition, The Architectural Institute of Japan, July 25, 1996, p. 197-214

本発明は、上記従来の杭基礎の問題点を鑑みてなされたものである。即ち本発明は、杭基礎とベタ基礎とを併用することにより支持杭体の支持負担が軽減され、且つ各支持杭体の荷重負荷のバランスが良好に調整され、さらには本発明の基礎構造周囲における地盤において、空洞、空隙が形成されることを防止することにより安定に建築物を支持することのできる基礎構造を提供することを目的とするものである。 This invention is made | formed in view of the problem of the said conventional pile foundation. That is, according to the present invention, by using a pile foundation and a solid foundation in combination, the support load of the support pile body is reduced, and the balance of the load load of each support pile body is well adjusted. An object of the present invention is to provide a foundation structure capable of stably supporting a building by preventing the formation of cavities and voids in the ground.

また本発明の別の目的は、上記本発明の基礎構造を構築する工法を提供することにあり、詳しくは、建築物の構築にともない各支持杭体にかかる建築物の荷重の偏りを調整し且つ基礎周囲に存する表層地盤を適度に圧縮して杭基礎とベタ基礎との併用を可能とし、これにより支持杭体の荷重支持負担を軽減させることを可能とする基礎構造構築工法を提供することを目的とするものである。 Another object of the present invention is to provide a construction method for constructing the foundation structure of the present invention, and more specifically, it is possible to adjust the load bias of the building applied to each supporting pile body as the building is constructed. In addition, to provide a foundation construction method that enables the combined use of pile foundations and solid foundations by appropriately compressing the surface ground around the foundations, thereby reducing the load bearing load of the supporting pile bodies. It is intended.

本発明は、
(1)支持杭体と杭頭とを備える杭基礎部及びベタ基礎部を有し、前記杭頭と前記ベタ基礎部との間に接して、ポリスチレン系樹脂発泡、ポリエチレン樹脂発泡体、及びポリプロピレン系樹脂発泡体並びにこれらの組み合わせのいずれかから選択される歪み材が設置されており、前記歪み材を有してなる接合部を備え、且つ、地盤中において前記歪み材と接する面を除く前記ベタ基礎部に接して発泡樹脂盤が埋設されており、前記歪み材と前記発泡樹脂盤との圧縮クリープ比が、歪み材:発泡樹脂盤=2:1〜200:1であることを特徴とする建築物用基礎構造、
(2)前記歪み材が、ビーズ状の発泡粒子を充填し加熱して該発泡粒子同士を融着させる型内発泡により形成された発泡樹脂ブロックであることを特徴とする上記(1)に記載の建築物用基礎構造、
を要旨とするものである。
The present invention
(1) it has a pile foundation and a solid base portion and a bearing pile body and the pile head, in contact between the pile head and the solid foundation, a polystyrene resin foam, polyethylene resin foam, and A strained material selected from any of polypropylene resin foams and combinations thereof is installed , and includes a joint portion having the strained material, and excludes a surface in contact with the strained material in the ground wherein is embedded foam resin plate is in contact with the solid foundation, compressive creep ratio of the foamed resin board and the strain member is distorted material: foamed resin Release = 2: 1 to 200: 1 der Rukoto Characteristic building foundations,
(2) The strained material is a foamed resin block formed by in-mold foaming in which bead-like foam particles are filled and heated to fuse the foam particles together. Foundation structure for buildings,
Is a summary.

本発明は、杭頭ベタ基礎部との間に歪み材が設けられており、基礎構造上方に建築物が構築されるにつれて、該建築物の荷重により上記歪み材が歪み、これにともない周囲の表層地盤をも圧縮せしめる作用が発揮される。圧縮された表層地盤は地盤密度が高くなり、該表層地盤に荷重支持耐力が発生する。これにより該表層地盤に接するベタ基礎部に荷重支持力が発生し、その結果、杭基礎部とベタ基礎部との併用が可能となる。
そして、歪み材に所望の量の歪みが生じたところで、該歪み材を含み剛性を有する接合部を形成することにより、杭基礎部とベタ基礎部とが一体化され本発明の基礎構造が完成される。
従って建築物を支持するだけの荷重支持耐力を有しない表層地盤においても、本発明の基礎構造を構築することにより、支持杭体に過剰な負荷をかけることなく建築物を安定に支持することができる。
In the present invention, a strained material is provided between the pile head and the solid foundation, and as the building is constructed above the foundation structure, the strained material is distorted by the load of the building, and the surroundings are accordingly The effect of compressing the surface layer of is also demonstrated. The compressed surface layer ground has a high ground density, and load bearing strength is generated in the surface layer ground. As a result, a load supporting force is generated in the solid foundation part in contact with the surface ground, and as a result, the pile foundation part and the solid foundation part can be used in combination.
When a desired amount of strain is generated in the strained material, a pile foundation portion and a solid foundation portion are integrated by forming a rigid joint including the strained material, thereby completing the foundation structure of the present invention. Is done.
Therefore, even on the surface layer ground that does not have the load bearing strength to support the building, it is possible to stably support the building without applying excessive load to the support pile by constructing the foundation structure of the present invention. it can.

即ち本発明の基礎構造では、その上方に構築された建築物の荷重を、支持杭体及び支持層によって支持するのみならず、ベタ基礎部及びその下方の表層地盤の荷重支持力をあわせて支持することができる。その結果、従来の杭基礎に比べて、支持杭体の荷重支持負担が著しく軽減され、より安定して建築物を支持することができる。
また地震振動や交通振動が発生し支持杭体に対して水平方向及び鉛直方向の力がかかる場合であっても、本発明の基礎構造であればベタ基礎部と杭基礎部とが設けられているので、支持杭体の受ける負荷が軽減される。従って本発明は、地震等により振動が発生しても支持杭体の破損が防止され、良好に建築物を支持することができる。
That is, in the foundation structure of the present invention, not only the load of the building constructed above is supported by the support pile body and the support layer, but also the load support force of the solid foundation part and the surface layer ground below it is supported together. can do. As a result, compared with the conventional pile foundation, the load support burden of the support pile body is remarkably reduced, and the building can be supported more stably.
Even if earthquake vibration or traffic vibration occurs and horizontal and vertical forces are applied to the support pile body, the foundation structure of the present invention is provided with a solid foundation and a pile foundation. As a result, the load received by the support pile is reduced. Therefore, according to the present invention, even if vibration occurs due to an earthquake or the like, the support pile body is prevented from being damaged, and the building can be favorably supported.

上述のとおり本発明には歪み材が用いられているので、支持杭体に対する建築物の荷重の偏りを歪み材により調整することができる。即ち、該建築物の荷重の重い構造部分の下方に位置する一方の歪み材及び表層地盤の歪み量は多く、相対的に荷重の軽い構造部分の下方に位置する他方の歪み材及び表層地盤の歪み量は少なくなる。これに対し予め各歪み材の圧縮強度を適宜決定しておき、かかる歪み量の差を調整することによって建築物の荷重偏重のバランスを調整することができ、その結果、歪み材下方に位置する支持杭体に対して建築物の荷重偏重による負荷を解消することができる。   As described above, since the strained material is used in the present invention, the bias of the load of the building with respect to the support pile body can be adjusted by the strained material. That is, the strain amount of one strained material and the surface layer ground located below the heavy load structural portion of the building is large, and the other strain material and the surface layer ground located below the relatively lightly loaded structural portion. The amount of distortion is reduced. On the other hand, the compressive strength of each strained material is appropriately determined in advance, and the balance of the load deviation of the building can be adjusted by adjusting the difference in the amount of strain, and as a result, located below the strained material. It is possible to eliminate the load caused by the load weight of the building against the support pile.

さらにまた上述のとおり歪み材に歪みが生じるにつれて周囲の表層地盤が圧縮され、施工前に比べて地盤密度が高くなる結果、地震等による振動が発生し、或いは地盤の液状化現象が発生しても、基礎周辺の表層地盤における空隙の発生を防止或いは軽減することができる。   Furthermore, as described above, as the strain material is distorted, the surrounding surface ground is compressed, resulting in a higher ground density than before construction, resulting in vibration due to earthquakes, etc., or liquefaction of the ground. In addition, it is possible to prevent or reduce the generation of voids in the surface ground around the foundation.

特に、本発明は、発泡樹脂盤をベタ基礎部に接して配置せしめるため、該発泡樹脂盤により地震振動、交通振動、機械振動等の振動が吸収される。これにより基礎構造が受ける振動の影響が軽減されるとともに、直接基礎を介して建築物に伝達される振動の大きさが縮小し、建築物の揺れを防止、或いは軽減せしめることができる。
In particular, the present invention, since the allowed to place in contact the foamed resin board in a solid foundation, seismic vibration by foam resin plate, traffic vibration, vibration such as mechanical vibration is absorbed. As a result, the influence of vibration received by the foundation structure is reduced, and the magnitude of vibration transmitted directly to the building via the foundation is reduced, thereby preventing or reducing the shaking of the building.

そして本発明の構築工法であれば、支持杭体とベタ基礎部との間に歪み材を設置することにより、建築物を構築する際に、該建築物の荷重により除々に歪み材を歪ませることができ、且つ歪み材の歪みにともない基礎下方に位置する表層地盤をも圧縮させることができる。従って建築物の荷重の偏りがある場合でも、各歪み材の歪み量によって該偏りが調整されるので、支持杭体の負荷を軽減することができる。また、地固め等の特別な作業を行わなくても、容易且つ適度に、表層地盤を圧縮させて該表層地盤に支持耐力を付与することができる。その結果、建築物荷重の支持耐力の充分でない表層地盤においても、杭基礎部とベタ基礎部とを備える本発明の基礎構造を構築することができ、さらに歪み材を含んで剛性のある接合部を形成することにより杭基礎部とベタ基礎部とを容易に一体化することができる。 And if it is the construction method of this invention, when constructing a building by installing a distortion material between a support pile body and a solid foundation part, a distortion material will be gradually distorted by the load of this building. It is possible to compress the surface ground located below the foundation as the strain material is distorted. Therefore, even when there is a bias in the load of the building, the bias is adjusted by the strain amount of each strained material, so the load on the support pile body can be reduced. Moreover, even if it does not perform special operations, such as consolidation, a surface layer ground can be compressed easily and moderately and support strength can be provided to this surface layer ground. As a result, even in the surface ground where the bearing strength of the building load is not sufficient, the foundation structure of the present invention including the pile foundation part and the solid foundation part can be constructed, and further, a rigid joint including a distortion material. By forming the pile foundation part and the solid foundation part can be easily integrated.

以下、本発明を実施するための最良の形態について、本発明を例示する図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings illustrating the present invention.

図1は、本発明の実施態様において歪み材の圧縮を示す説明図である。本発明の基礎構造を構築するには、まず図1(1A)に示されるように支持杭体3及び杭頭2を備える杭基礎部を構築し、杭頭2の上面に厚さPの歪み材1aを設置し、次いで直接基礎部であるベタ基礎4aを構築する。次いでこれらの上方に建築物7を構築する。建築物7を構築する途中において歪み材1aが除々に歪み、図1(1B)に示すように厚さQの歪み材1bとなる。歪み材1bは縦方向に圧縮されることにより圧縮クリープ限界を超え剛性を発揮するに至り、これにより歪み材1bよりなる接合部が形成され、杭頭2及び支持杭体3からなる杭基礎部とベタ基礎4aとが該接合部を介して接合一体化されて本発明の基礎構造が完成される。
尚、本明細書においてGLとは、グランドレベルを意味する。
FIG. 1 is an explanatory view showing compression of a strained material in an embodiment of the present invention. In order to construct the foundation structure of the present invention, first, as shown in FIG. 1 (1A), a pile foundation portion including a supporting pile body 3 and a pile head 2 is constructed, and a strain of thickness P is formed on the upper surface of the pile head 2 The material 1a is installed, and then a solid foundation 4a which is a direct foundation is constructed. Next, a building 7 is constructed above them. During the construction of the building 7, the strained material 1a is gradually distorted to become a strained material 1b having a thickness Q as shown in FIG. 1 (1B). When the strained material 1b is compressed in the longitudinal direction, the compression creep limit is exceeded and the rigidity is exhibited. As a result, a joint made of the strained material 1b is formed, and the pile foundation portion composed of the pile head 2 and the support pile body 3 is formed. And the solid foundation 4a are joined and integrated through the joining portion to complete the foundation structure of the present invention.
In this specification, GL means the ground level.

図2は、本発明の基礎構造の実施形態を示す縦断面概略図である。図2に示される基礎構造は、発泡樹脂盤8を直接基礎部であるベタ基礎4aに接して敷設すること以外は、図1に示す基礎構造と同様に構築することができる。   FIG. 2 is a schematic longitudinal sectional view showing an embodiment of the basic structure of the present invention. The foundation structure shown in FIG. 2 can be constructed in the same manner as the foundation structure shown in FIG. 1 except that the foamed resin board 8 is directly laid in contact with the solid foundation 4a that is the foundation portion.

以下に、主として図1を用い本願発明の基礎構造の構築工法について説明する。
まず所定の位置において支持杭体3をその先端が支持層6に埋設されるよう打設し、次いで表層地盤5の一部を排土し、露出した支持杭体3の上部を包含して杭頭2を形成する。上記、支持杭体3の打設及び杭頭2の形成は、従来から知られる一般的な杭基礎の構築方法と同様の方法により施工することができる。
Below, the construction method of the basic structure of this invention is demonstrated mainly using FIG.
First, the support pile body 3 is placed in a predetermined position so that the tip thereof is embedded in the support layer 6, and then a part of the surface layer ground 5 is discharged, and the pile including the exposed upper portion of the support pile body 3 is included. Head 2 is formed. The above-mentioned placement of the support pile body 3 and formation of the pile head 2 can be performed by a method similar to a conventionally known method for constructing a pile foundation.

次いで上記杭頭2の上面に歪み材1aを設置する。歪み材1aの配置は、杭頭2の上面に単に載置するだけでもよいし、接着剤又は粘着材を用いて杭頭2の上面と歪み材1aの下面とを接着してもよい。そして歪み材1aを設置後、該歪み材1a側面周囲を歪み材1aの上面の高さまで、土壌で埋め戻すか、或いは図2に示すように発泡樹脂盤8を歪み材1aの上面の高さまで敷設することにより施工面を整える。
後の工程で杭頭2と直接基礎であるベタ基礎4aとの間に接合部を形成するため、上記歪み材1を設置する工程において、図3に示すように予め歪み材1及び杭頭2の側面周囲にコンクリート充填スペース10を設けておくことができる。また図4に示すようにコンクリート充填スペース10に加えてさらに杭頭2とベタ基礎4に鉄筋14を設けておくこともできる。
Next, the strain material 1 a is installed on the upper surface of the pile head 2. The strained material 1a may be simply placed on the upper surface of the pile head 2, or the upper surface of the pile head 2 and the lower surface of the strained material 1a may be bonded using an adhesive or an adhesive material. Then, after the strained material 1a is installed, the periphery of the side surface of the strained material 1a is backfilled to the height of the upper surface of the strained material 1a, or the foamed resin board 8 is raised to the height of the upper surface of the strained material 1a as shown in FIG. Arrange the construction surface by laying.
In order to form a joint between the pile head 2 and the solid foundation 4a which is a direct foundation in a later process, in the step of installing the strained material 1, the strained material 1 and the pile head 2 are previously shown in FIG. A concrete filling space 10 can be provided around the side surface of the steel sheet. Further, as shown in FIG. 4 , reinforcing bars 14 may be provided on the pile head 2 and the solid foundation 4 in addition to the concrete filling space 10.

本発明における歪み材は、杭頭ベタ基礎部との間に設けられ、該ベタ基礎部の上方に構築される建築物7の荷重により歪みを生じることが重要である。 It is important that the strained material in the present invention is provided between the pile head and the solid foundation, and is distorted by the load of the building 7 constructed above the solid foundation.

特に本発明、直接基礎部4に接してさらに発泡樹脂盤8を設けるため、例えば図2に示すように発泡樹脂盤8を所定の位置に敷設することができる。発泡樹脂盤8は、任意の寸法及び形状の複数の発泡樹脂ブロックを組み合わせて発泡樹脂盤8とすることができる。上記複数の発泡樹脂ブロックにより発泡樹脂盤8を形成するには、発泡樹脂盤8を埋設するために形成された穴部において、該ブロックを単に組み合わせて又は積み重ねて発泡樹脂盤8を形成してもよいし、或いは各発泡樹脂ブロック間を任意の接着剤や粘着テープで接着するか、又はボルトや締結用金具等の固定具を用いて発泡樹脂ブロック間を接合して発泡樹脂盤8を形成してもよい。
尚、発泡樹脂盤8の配置は図2に開示される配置位置に限定されるものではない。例えば発泡樹脂盤8は、ベタ基礎4aと表層地盤5との一部あるいは全部が隔離されるように敷設されていてよく、さらに歪み材1及び杭頭2と表層地盤5との一部或いは全部とが隔離されるように敷設されてもよい。またさらに、地下室を有する建築物の基礎として本発明の基礎構造を採用する場合には、該地下室の側面と地盤との間にも上記発泡樹脂盤が敷設されていることが好ましい。
In particular, the present invention further to provide a foamed resin board 8 in direct contact with the base portion 4 can be laid for example a foamed resin plate 8 as shown in FIG. 2 in a predetermined position. The foamed resin board 8 can be formed into a foamed resin board 8 by combining a plurality of foamed resin blocks having arbitrary dimensions and shapes. In order to form the foamed resin board 8 by the plurality of foamed resin blocks, the foamed resin board 8 is formed by simply combining or stacking the blocks in the hole formed for embedding the foamed resin board 8. Alternatively, the foamed resin board 8 is formed by bonding the foamed resin blocks with an arbitrary adhesive or adhesive tape, or joining the foamed resin blocks with a fastener such as a bolt or a fastening metal fitting. May be.
The arrangement of the foamed resin board 8 is not limited to the arrangement position disclosed in FIG. For example, the foamed resin board 8 may be laid so that a part or the whole of the solid foundation 4a and the surface layer ground 5 is isolated, and further, a part or all of the strained material 1 and the pile head 2 and the surface layer ground 5. May be laid so as to be isolated from each other. Furthermore, when the foundation structure of the present invention is adopted as the foundation of a building having a basement, it is preferable that the foamed resin board is also laid between the side surface of the basement and the ground.

本発明においてベタ基礎4aは、従来から直接基礎として知られるベタ基礎の構築工法を用いて構築することができる。ただし本発明の工法においては、ベタ基礎4aを構築後、建築物7を構築するにしたがって歪み材1aが歪み、その歪み量だけ該歪み材1aより上に位置するベタ基礎4aの位置も下がる。従ってベタ基礎が最終的に位置すべき高さよりも、歪み材1aに見込まれる歪み量(P−Q)の分だけ高い位置に、ベタ基礎4aを設ける必要がある。   In the present invention, the solid foundation 4a can be constructed by using a solid foundation construction method known as a direct foundation. However, in the construction method of the present invention, after the solid foundation 4a is constructed, the strained material 1a is distorted as the building 7 is constructed, and the position of the solid foundation 4a located above the strained material 1a is also lowered by the amount of the strain. Therefore, it is necessary to provide the solid foundation 4a at a position higher than the height at which the solid foundation should be finally positioned by the amount of distortion (PQ) expected in the strained material 1a.

上記支持杭体3、杭頭2、歪み材1a、及びベタ基礎4aを構築した時点では、上記歪み材1aは、接合部を形成する程度に歪んでいない。そこで続いて、ベタ基礎4a上方に建築物7を構築していく。建築物7を構築するにつれて、歪み材1aに建築物7の荷重がかかり歪みが生じる。またそれとともに歪み材1aが配置されていないベタ基礎4a下方に位置する表層地盤5も圧縮される。   At the time of constructing the support pile body 3, the pile head 2, the strained material 1a, and the solid foundation 4a, the strained material 1a is not distorted to the extent that a joint is formed. Then, the building 7 is constructed above the solid foundation 4a. As the building 7 is constructed, the distortion material 1a is subjected to the load of the building 7 and is distorted. At the same time, the surface ground 5 located below the solid foundation 4a where the strained material 1a is not disposed is also compressed.

本発明において特に発泡樹脂盤8を設けて建築物7を構築すると、歪み材1aが歪むにつれて、発泡樹脂盤8が圧縮される場合、発泡樹脂盤8とその下方に位置する表層地盤5がともに圧縮される場合、或いは表層地盤5だけが圧縮される場合がある。上方から荷重がかかることによる発泡樹脂盤8及び表層地盤5のいずれか或いは両方が圧縮されるかは、発泡樹脂盤8の圧縮強度と表層地盤5の支持耐力との関係による。しかしいずれの場合においても、基礎構造周囲の軟弱な層が圧縮され、そこに荷重支持耐力が生じることとなる。   In particular, when the building 7 is constructed by providing the foamed resin board 8 in the present invention, when the foamed resin board 8 is compressed as the strained material 1a is distorted, both the foamed resin board 8 and the surface layer ground 5 located below the foamed resin board 8 are provided. In some cases, only the surface ground 5 is compressed. Whether one or both of the foamed resin board 8 and the surface layer ground 5 due to the load applied from above is compressed depends on the relationship between the compressive strength of the foamed resin board 8 and the support strength of the surface layer ground 5. However, in any case, the soft layer around the foundation structure is compressed, and load bearing strength is generated there.

次いで、建築物7の構築の途中において、歪み材1bの歪み量を測定する。本明細書において用いられる歪み材の歪み量とは、上方からの荷重が負荷される前後の歪み材の高さの差を意味するものである。
歪み材の歪み量の測定方法としては、歪み材1bの厚さQを直接測定し、歪み材1a設置時の寸法Pと上記Qとからその歪み量(P−Q)を算出することができる。また別の測定方法として、グランドレベルを基準に、建築物7或いはベタ基礎4aの沈下量を測定しこれを歪み量に換算することもできる。
Next, during the construction of the building 7, the strain amount of the strained material 1 b is measured. The strain amount of the strained material used in the present specification means a difference in height between the strained material before and after the load from above is applied.
As a measuring method of the strain amount of the strained material, the thickness Q of the strained material 1b is directly measured, and the strain amount (PQ) can be calculated from the dimension P when the strained material 1a is installed and the above Q. . As another measuring method, the amount of settlement of the building 7 or the solid foundation 4a can be measured based on the ground level and converted into the amount of distortion.

上述のとおり歪み材1bの歪み量(P−Q)を測定し、その歪み量が所望の量、好ましくは1cm以上20cm以下の歪み量だけ歪んだことを確認後、接合部を形成する。このとき、歪み量は各歪み材によって異なっていても良いし、同じであっても良い。ただし各歪み材の歪み量の差があまりに大きいと建築物の水平性に支障をきたす恐れがあるので、建築物7の荷重が水平面に対して大きく偏りがある場合等には、各歪み材の圧縮強度をそれぞれの支持荷重にあわせて適宜決定し、各歪み材の歪み量を調整することが望ましい。このように建築物の荷重の偏りを歪み材により調整することによって、該歪み材より下位に位置する支持杭体に対し、建築物の荷重の偏重による負荷を軽減させることができる。また歪み材設置時に油圧ジャッキを設置し該油圧ジャッキを操作することで、歪み材の歪み量を所望の量に調整してもよい。   As described above, the strain amount (PQ) of the strained material 1b is measured, and after confirming that the strain amount is distorted by a desired amount, preferably 1 cm or more and 20 cm or less, a joint portion is formed. At this time, the strain amount may be different depending on each strain material, or may be the same. However, if the difference in the amount of strain of each strained material is too large, the horizontality of the building may be hindered. Therefore, if the load on the building 7 is largely biased with respect to the horizontal plane, etc. It is desirable to appropriately determine the compressive strength in accordance with each supporting load and adjust the strain amount of each strained material. Thus, by adjusting the bias of the load of the building with the strained material, the load due to the unbalanced load of the building can be reduced with respect to the support pile positioned below the strained material. Further, the strain amount of the strained material may be adjusted to a desired amount by installing a hydraulic jack at the time of installing the strained material and operating the hydraulic jack.

本発明における接合部は、建築物の荷重により圧縮され剛性が生じた歪み材を接合部とすることができる。例えば、発泡樹脂体は、圧縮されると圧縮方向に歪み、圧縮クリープ限界を超えると非常に硬くなることが知られている。この性質を利用して、歪み材に発泡樹脂体を用いれば、建築物の荷重を上方からかけることによりコンクリート相当の硬さにまで該発泡樹脂体からなる歪み材を歪ませることが可能であり、この硬く歪んだ歪み材を接合部とすることができる。
また別の接合部形成方法としては、建築物の荷重により歪み材1を歪ませた後、コンクリート充填スペース10にコンクリートを充填し、歪み材を周囲から固めて接合部とする方法がある(図3参照)。さらに、予め杭頭2及び直接基礎部4に鉄筋14を設けておけば、上記コンクリート充填スペース10にコンクリートを充填する際に鉄筋14がコンクリート内の骨組みを構成し、より頑強な接合部を形成することができる(図4参照)。
The joint part in this invention can use as a joint part the distortion material which was compressed by the load of the building and produced rigidity. For example, it is known that a foamed resin body is distorted in the compression direction when compressed, and becomes very hard when the compression creep limit is exceeded. By using this property, if a foamed resin body is used for the strain material, it is possible to distort the strain material made of the foamed resin body to a hardness equivalent to concrete by applying a building load from above. This hard and distorted strain material can be used as a joint.
As another method for forming the joint, there is a method in which the strained material 1 is distorted by the load of the building, and then the concrete filling space 10 is filled with concrete, and the strained material is solidified from the surroundings to form the joint (see FIG. 3 ). Furthermore, if reinforcing bars 14 are provided on the pile head 2 and the direct foundation 4 in advance, when the concrete filling space 10 is filled with concrete, the reinforcing bars 14 form a framework in the concrete and form a more robust joint. (See FIG. 4 ).

上述した本発明の基礎構造の構築工法であれば、杭頭ベタ基礎部との間の任意の位置に歪み材を設置して建築物を構築するだけで、該建築物の荷重により歪み材を除々に歪ませることができ、また歪み材の歪み量だけ周囲の表層地盤(あるいは発泡樹脂盤)をも圧縮せしめることができる。そして、適当な歪み量を得た後、歪み材を含む剛性を有する接合部を形成し、杭基礎部とベタ基礎部とを容易に一体化することができる。これにより特に複雑な施工作業を要することなく、建築物の荷重を杭基礎部とベタ基礎部とで良好に支持することのできる本発明の基礎構造が完成される。 If it is the construction method of the foundation structure of the present invention described above, it is only necessary to construct the building by installing the distortion material at an arbitrary position between the pile head and the solid foundation portion, and the distortion material by the load of the building. Can be gradually distorted, and the surrounding surface ground (or foamed resin board) can be compressed by the amount of strain of the strain material. Then, after obtaining an appropriate amount of strain, a joint having rigidity including a strained material can be formed, and the pile foundation and the solid foundation can be easily integrated. This completes the foundation structure of the present invention that can favorably support the load of the building between the pile foundation and the solid foundation without requiring a particularly complicated construction work.

本発明の基礎構造を完成した後、建築物7の残りの部分を構築することができる。このとき、接合部を構成する歪み材1bは圧縮クリープ限界を超えているので該歪み材1がさらに歪むことはない。また図3または図4に示す歪み材を含む接合部はコンクリートで周囲が固められておりさらに歪み材に歪みが生じることはない。 After completing the basic structure of the present invention, the rest of the building 7 can be constructed. At this time, since the strained material 1b constituting the joint exceeds the compression creep limit, the strained material 1 is not further distorted. Further, the joint portion including the strained material shown in FIG. 3 or FIG. 4 is solidified with concrete, and further, the strained material is not distorted.

以上、説明した本発明の構築工法により構築される基礎構造は、地下室部分を有する建築物の基礎にも採用することが可能であり、この際には該地下室スペースの下に基礎構造を構築すればよい。また特に、図2に示すように発泡樹脂盤8を本発明における直接基礎部4に接して設ける場合には、上記地下室外側面に接して発泡樹脂盤8をさらに配置せしめることができる。これによれば、基礎構造のみならず、地盤中に埋設される建築物部分も発泡樹脂盤8により地盤と隔離されるため、地震振動、交通振動、或いは機械振動等が建築物7に伝達されにくくなり、建築物7の揺れを減少させることができるので好ましい。   The foundation structure constructed by the construction method of the present invention described above can also be adopted for the foundation of a building having a basement part. In this case, the foundation structure is constructed under the basement space. That's fine. In particular, as shown in FIG. 2, when the foamed resin board 8 is provided in direct contact with the base portion 4 in the present invention, the foamed resin board 8 can be further disposed in contact with the outer surface of the basement. According to this, since not only the foundation structure but also the part of the building buried in the ground is isolated from the ground by the foamed resin board 8, earthquake vibration, traffic vibration, mechanical vibration, etc. are transmitted to the building 7. This is preferable because it becomes difficult and the shaking of the building 7 can be reduced.

尚、本願発明の建築物用基礎構造は、上述の構築工法により新設の建築物の基礎構造として構築することができる他、杭基礎の採用された既設の建築物に対しても適用可能である。既設の建築物に本願発明の基礎構造を利用する際には、建築物の所定の位置の床、スラブ等の構造部分を除去して杭上端を露出させ、本願発明における杭頭、歪み材、及びベタ基礎部等の設置スペースを確保するため杭上端を切断する。そして、杭頭、歪み材、ベタ基礎を順次形成し、同時に歪み材の設置位置に油圧ジャッキを設置し、該ジャッキを操作することにより徐々に歪み材を歪ませた後、ジャッキを除去する。次いで上述した接合部形成方法と同様に所望の量に歪んだ歪み材を接合部とするか、或いは該歪み材の周囲にコンクリートを充填することによって接合部を形成し、既存の支持杭体と新たに設けた直接基礎とを一体化させることにより、本願発明の基礎構造を完成することができる。 In addition, the foundation structure for a building of the present invention can be constructed as a foundation structure of a new building by the above construction method, and can also be applied to an existing building where a pile foundation is adopted. . When using the foundation structure of the present invention for an existing building, the structural portion such as the floor and slab at a predetermined position of the building is removed to expose the upper end of the pile, the pile head in the present invention, the distortion material, And the top of the pile is cut to secure the installation space for the solid foundation. Then, the pile head, the strained material, and the solid foundation are sequentially formed, and at the same time, a hydraulic jack is installed at the position where the strained material is installed, and the jack is removed by gradually distorting the strained material by operating the jack. Next, a strained material distorted to a desired amount is used as a joint, as in the above-described joint formation method, or a joint is formed by filling concrete around the strained material, and an existing support pile body and The basic structure of the present invention can be completed by integrating the newly provided direct foundation.

次に、本発明の基礎構造について各構成ごとに詳細に説明する。
本発明における支持杭体とは、支持層から鉛直に起立し、建築物の荷重を支持層に伝達することのできるものであればいずれの形式のものでも用いることができる。具体的には、既成の杭体を用いて地盤に打ち込む打ち込み杭、地盤に穴部を設け既成の杭体を埋め込む埋め込み杭、又はオールケーシング杭若しくはアースドリル工法杭等の場所打コンクリート杭等があるが、上記に制限されるものではない。
Next, the basic structure of the present invention will be described in detail for each configuration.
The support pile body in the present invention may be of any type as long as it stands vertically from the support layer and can transmit the load of the building to the support layer. Specifically, there are driven piles that are driven into the ground using existing pile bodies, embedded piles that are provided with holes in the ground and embedded in existing pile bodies, or cast-in-place concrete piles such as all-casing piles or earth drill method piles, etc. However, it is not limited to the above.

そして上記支持杭体の上部において杭頭が設けられる。本発明における杭頭は、建築物の荷重を上方より受け、これを支持杭体に伝達せしめることができるものであれば、特にその大きさ及び素材において制限を受けるものではない。即ち、上記支持杭体及び上記杭頭は、従来から知られる杭基礎を構成するものであれば適宜選択して用いることができる。   And the pile head is provided in the upper part of the said support pile body. If the pile head in this invention can receive the load of a building from upper direction and can transmit this to a support pile body, it will not receive a restriction | limiting in particular in the magnitude | size and a raw material. That is, the support pile body and the pile head can be appropriately selected and used as long as they constitute a conventionally known pile foundation.

本発明に用いられる歪み材は、上方から伝達された荷重によって一定の歪み量を示す材質或いは形状で形成される必要がある。具体的には、発泡樹脂体を用いて形成することができる。発泡樹脂により形成される歪み材の形状は、特に制限されないが、該歪み材は杭頭とベタ基礎との間に設置されるため、両者間において設置安定性が良好であることが望ましく、この点から、例えば直方体或いは円筒形等の形状であることが好ましい。 The strained material used in the present invention needs to be formed of a material or a shape that exhibits a certain amount of strain due to a load transmitted from above. Specifically, it can be formed using a foamed resin body. The shape of the strained material formed by the foamed resin body is not particularly limited, but since the strained material is installed between the pile head and the solid foundation, it is desirable that the installation stability is good between the two. From this point, for example, a rectangular parallelepiped shape or a cylindrical shape is preferable.

歪み材に用いられる発泡樹脂体としては、ポリスチレン系樹脂発泡体、ポリエチレン系樹脂発泡体、及びポリプロピレン系樹脂発泡体並びにこれらの組み合わせ、重量及び強度等の点から好ましい。尚、ポリウレタン系樹脂発泡体は、地盤中において加水分解が生じると耐久性に劣化が生じる場合があり、またポリ塩化ビニル系樹脂発泡体は、燃えると塩酸ガスを発生し公害上の問題を生じる。 As the foamed resin body used for the strained material, a polystyrene resin foam, a polyethylene resin foam, a polypropylene resin foam, and a combination thereof are preferable in terms of weight and strength. Polyurethane resin foams may deteriorate in durability when hydrolysis occurs in the ground. Polyvinyl chloride resin foams generate hydrochloric acid gas when burned, causing pollution problems. .

上記発泡樹脂体から形成される歪み材は、所望の形状に形成された容器にビーズ状の発泡粒子を充填し加熱して該発泡粒子同士を融着させる所謂型内発泡により、所望の形状の発泡樹脂ブロックとして形成することができる。或いは、適当な形状の容器に球状の発泡粒子を充填し加熱して該発泡粒子同士を融着させて適当な形状の発泡樹脂ブロックを形成し、さらに所望の形状となるよう加工することによって所望の形状の発泡樹脂ブロックとして形成することができる。   The strained material formed from the foamed resin body has a desired shape by so-called in-mold foaming in which a bead-like foam particle is filled in a container formed in a desired shape and heated to fuse the foam particles together. It can be formed as a foamed resin block. Alternatively, a desired shape can be obtained by filling spherical foamed particles in a suitably shaped container and heating them to fuse the foamed particles together to form a suitably shaped foamed resin block and then processing it into the desired shape. It can be formed as a foamed resin block of the shape.

歪み材を構成する発泡樹脂体の圧縮クリープは5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。上記圧縮クリープが5%以上であれば、歪み材を設置した基礎上方において構築される建築物の荷重により圧縮され除々に歪むことができるため好ましい。一方、上記圧縮クリープの上限は特に、制限されるものではないが、建築物を構築する前に直接基礎部の重みにより歪み材がクリープ限界に達することを防止する観点からは、圧縮クリープが90%以下であることが好ましく、80%以下であることがより好ましく、70%以下であることがさらに好ましい。   The compression creep of the foamed resin body constituting the strained material is preferably 5% or more, more preferably 10% or more, and further preferably 15% or more. It is preferable that the compression creep is 5% or more because the compression creep can be gradually distorted by being compressed by the load of the building constructed above the foundation on which the strain material is installed. On the other hand, the upper limit of the compression creep is not particularly limited, but from the viewpoint of preventing the strained material from reaching the creep limit due to the weight of the foundation directly before building the building, the compression creep is 90%. % Or less, more preferably 80% or less, and even more preferably 70% or less.

上記歪み材の圧縮クリープは、JIS K 6767に則して測定することができる。具体的には、歪み材を構成する発泡樹脂体を用いて縦寸法約50mm×横寸法約50mm×厚さ約25mmの試験片を作成し、温度20±2℃、相対湿度65±5%の標準状態において該試験片に2g/cm2の荷重をかけた際の試験片の厚さをT0とし、上記荷重をかけた状態で放置し24時間後の厚さをTdとしたときに、(T0−Td)÷T0×100で算出される。 The compression creep of the strained material can be measured according to JIS K 6767. Specifically, a test piece having a vertical dimension of about 50 mm, a horizontal dimension of about 50 mm, and a thickness of about 25 mm is prepared using a foamed resin body constituting a strained material, and the temperature is 20 ± 2 ° C. and the relative humidity is 65 ± 5%. When the thickness of the test piece when a load of 2 g / cm 2 is applied to the test piece in the standard state is T 0, and the thickness after 24 hours is Td when the load is left under the above load. Calculated by (T 0 −T d ) ÷ T 0 × 100.

また歪み材の寸法は、歪み材の圧縮クリープ及び建築物荷重を勘案し、建築物の建築途中において、所望の歪み量、好ましくは1cm以上20cm以下の歪み量が得られるように決定することができる。   The dimension of the strained material may be determined so as to obtain a desired strain amount, preferably a strain amount of 1 cm or more and 20 cm or less, during the construction of the building in consideration of the compression creep of the strain material and the building load. it can.

本発明の歪み材に用いられる発泡樹脂体の圧縮強度は、特に限定されず杭基礎部の支持力及び建築物の荷重の偏りを勘案して決定することができる。発泡樹脂の圧縮強度は30N/cm2以上100N/cm2以下であることが好ましい。
尚、上記発泡樹脂の圧縮強度は、JIS K 7220に示される短期圧縮強度の計測方法に準じて計測することができる。具体的には、縦寸法約50mm×横寸法約50mm×厚さ約50mmの試験片を作成し、該試験片を載荷速度10mm/分で圧縮せしめ5%圧縮ひずみ時の圧縮応力を測定することによって、本発明における圧縮強度を求めることができる。
The compressive strength of the foamed resin body used for the strained material of the present invention is not particularly limited, and can be determined in consideration of the supporting force of the pile foundation and the load of the building. Compressive strength of the foamed resin is preferably 30 N / cm 2 or more 100 N / cm 2 or less.
In addition, the compressive strength of the said foamed resin body can be measured according to the measuring method of the short-term compressive strength shown by JISK7220. Specifically, a test piece having a vertical dimension of about 50 mm, a horizontal dimension of about 50 mm, and a thickness of about 50 mm is prepared, the test piece is compressed at a loading speed of 10 mm / min, and the compressive stress at 5% compression strain is measured. Thus, the compression strength in the present invention can be obtained.

本発明において、直接基礎に接して用いられる発泡樹脂盤は、上述したとおり任意の形状及び寸法の複数の発泡樹脂ブロックを組み合わせて形成することができる。該発泡樹脂ブロックは、上述の歪み材に用いることのできる発泡樹脂体ブロックと同様の樹脂を用い、同様の成形方法で成形することができる。   In the present invention, the foamed resin board used in direct contact with the foundation can be formed by combining a plurality of foamed resin blocks having arbitrary shapes and dimensions as described above. The foamed resin block can be molded by the same molding method using the same resin as the foamed resin body block that can be used for the strain material.

上記発泡樹脂盤は、地盤から伝達される地震振動、交通振動或いは機械振動等の振動を減衰する効果を発揮し、これら振動が基礎構造さらには建築物に伝達されることを防止或いは低減させることができる。従って、本発明において上記発泡樹脂盤を用いることは、振動発生による基礎構造の破損を防止し、また建築物内における体感震度を減少させることができるので好ましい。   The foamed resin board exhibits an effect of attenuating vibrations such as earthquake vibrations, traffic vibrations or mechanical vibrations transmitted from the ground, and prevents or reduces the transmission of these vibrations to the foundation structure or the building. Can do. Therefore, it is preferable to use the above-mentioned foamed resin board in the present invention because it can prevent the foundation structure from being damaged due to the occurrence of vibration and can reduce the body seismic intensity in the building.

本発明において上記発泡樹脂盤を敷設する際には、歪み材の圧縮クリープ値が該発泡樹脂盤の圧縮クリープ値より大きくなることが必要である。好ましい両者の圧縮クリープ比は、歪み材と発泡樹脂盤とが直接基礎に接する面積比によって異なるが、歪み材:発泡樹脂盤=2:1〜200:1の範囲内であることが必要である。上記範囲内の圧縮クリープ比を確保することによって、歪み材と発泡樹脂盤とに建築物の荷重がかかった際に歪み材を優先的に歪ませることができる。一方、このとき歪み材とともに発泡樹脂盤が圧縮されて歪むか否かは、発泡樹脂盤の圧縮クリープ値と該発泡樹脂盤の下方に位置する表層地盤の荷重支持耐力との関係による。即ち、発泡樹脂盤と表層地盤とにおいてより荷重に対する耐力の弱い層が圧縮され、これにより圧縮された層の密度が高まり、圧縮前に比べて荷重に対する耐力が向上し、直接基礎による建築物の荷重支持が可能となるものである。   In laying the foamed resin board in the present invention, it is necessary that the compression creep value of the strained material is larger than the compression creep value of the foamed resin board. The preferable compression creep ratio of the two differs depending on the area ratio in which the strained material and the foamed resin board are in direct contact with the foundation, but the strained material: foamed resin board is required to be in the range of 2: 1 to 200: 1. . By securing the compression creep ratio within the above range, the strained material can be preferentially distorted when a load is applied to the strained material and the foamed resin board. On the other hand, whether or not the foamed resin board is compressed and distorted together with the strained material at this time depends on the relationship between the compression creep value of the foamed resin board and the load bearing strength of the surface layer ground located below the foamed resin board. That is, in the foamed resin board and the surface ground, the layer with weaker load resistance is compressed, which increases the density of the compressed layer, improves the load resistance compared to before compression, The load can be supported.

本発明の実施態様を説明する説明図であり、(1A)は建築物構築前の基礎構造の縦断面概略図、(1B)は(1A)に示される基礎構造の上方において建築物が構築され歪み材に歪みが生じ、該歪み材により接合部が形成された本発明の基礎構造の縦断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the embodiment of this invention, (1A) is the longitudinal cross-sectional schematic of the foundation structure before building construction, (1B) is a building constructed above the foundation structure shown by (1A). It is the longitudinal cross-sectional schematic of the basic structure of this invention by which distortion generate | occur | produced in the distortion material and the junction part was formed with this distortion material. 本発明の基礎構造の一実施形態を示す縦断面概略図である。It is a longitudinal section schematic diagram showing one embodiment of the basic structure of the present invention. 本発明の部分縦断面概略図である。It is a partial longitudinal section schematic diagram of the present invention. 本発明の部分縦断面概略図である。It is a partial longitudinal section schematic diagram of the present invention.

符号の説明Explanation of symbols

1 歪み材
1a 建築物構築前の歪み材
1b 接合部を構成する歪み材
2 杭頭
3 支持杭体
4 直接基礎部
4a ベタ基礎
5 表層地盤
6 支持層
7 建築物
8 発泡樹脂盤
10 コンクリート充填スペース
14 鉄筋
16 コンクリートスラブ
17 コンクリート板
P 歪み材1aの厚さ
Q 歪み材1bの厚さ
1 Distorted material
DESCRIPTION OF SYMBOLS 1a Strained material before building construction 1b Strained material composing the joint 2 Pile head 3 Support pile body 4 Direct foundation 4a Solid foundation 5 Surface ground 6 Support layer 7 Building 8 Foamed resin board 10 Concrete filling space 14 Reinforcement 16 Concrete slab 17 Concrete plate P Thickness of strained material 1a Q Thickness of strained material 1b

Claims (2)

支持杭体と杭頭とを備える杭基礎部及びベタ基礎部を有し、前記杭頭と前記ベタ基礎部との間に接して、ポリスチレン系樹脂発泡、ポリエチレン樹脂発泡体、及びポリプロピレン系樹脂発泡体並びにこれらの組み合わせのいずれかから選択される歪み材が設置されており、前記歪み材を有してなる接合部を備え、且つ、地盤中において前記歪み材と接する面を除く前記ベタ基礎部に接して発泡樹脂盤が埋設されており、前記歪み材と前記発泡樹脂盤との圧縮クリープ比が、歪み材:発泡樹脂盤=2:1〜200:1であることを特徴とする建築物用基礎構造。 It has a pile foundation and a solid base portion and a bearing pile body and the pile head, in contact between the pile head and the solid foundation, a polystyrene resin foam, polyethylene resin foam, and a polypropylene resin The solid foundation provided with a strained material selected from any one of a foam and a combination thereof, including a joint having the strained material, and excluding a surface in contact with the strained material in the ground parts in contact with and foamed resin board is embedded, compression creep ratio of the foamed resin board and the strain member is distorted material: foamed resin Release = 2: 1 to 200: wherein the 1 der Rukoto Foundation structure for buildings. 前記歪み材が、ビーズ状の発泡粒子を充填し加熱して該発泡粒子同士を融着させる型内発泡により形成された発泡樹脂ブロックであることを特徴とする請求項1に記載の建築物用基礎構造。 The building material according to claim 1, wherein the strain material is a foamed resin block formed by in-mold foaming in which bead-like foam particles are filled and heated to fuse the foam particles together. Foundation structure.
JP2004227872A 2004-08-04 2004-08-04 Building foundation and its construction method Active JP4445341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227872A JP4445341B2 (en) 2004-08-04 2004-08-04 Building foundation and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227872A JP4445341B2 (en) 2004-08-04 2004-08-04 Building foundation and its construction method

Publications (2)

Publication Number Publication Date
JP2006045891A JP2006045891A (en) 2006-02-16
JP4445341B2 true JP4445341B2 (en) 2010-04-07

Family

ID=36024789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227872A Active JP4445341B2 (en) 2004-08-04 2004-08-04 Building foundation and its construction method

Country Status (1)

Country Link
JP (1) JP4445341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951537A (en) * 2016-04-29 2016-09-21 中铁第四勘察设计院集团有限公司 Rib column distributed turnout foundation structure of middle-low speed magnetic levitation low-arranged line

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922674B2 (en) * 2006-06-22 2012-04-25 株式会社竹中工務店 Basic structure of the structure
JP5480682B2 (en) * 2010-03-16 2014-04-23 大成建設株式会社 Liquefaction countermeasure structure
JP5590447B2 (en) * 2010-06-18 2014-09-17 すてきナイスグループ 株式会社 Building ground structure capable of suppressing earthquake motion and its construction method
JP5938454B2 (en) * 2014-09-11 2016-06-22 株式会社プラント・ツリース Seismic isolation structure in structures
JP6664697B2 (en) * 2016-01-08 2020-03-13 清水建設株式会社 Foundation structure using existing piles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951537A (en) * 2016-04-29 2016-09-21 中铁第四勘察设计院集团有限公司 Rib column distributed turnout foundation structure of middle-low speed magnetic levitation low-arranged line
CN105951537B (en) * 2016-04-29 2017-10-03 中铁第四勘察设计院集团有限公司 A kind of medium-and low-speed maglev is low to put circuit rib post distributing track switch foundation structure

Also Published As

Publication number Publication date
JP2006045891A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5378860B2 (en) Foundation structure of buildings in soft ground
JP2007070859A (en) Base isolation construction method and base isolation structure of building
JP5254871B2 (en) Ground improvement method and structure for ground improvement
US8096732B2 (en) Methods and apparatus for foundation system
JP2013167144A (en) Foundation structure and construction method for foundation
JP4445341B2 (en) Building foundation and its construction method
JP5984083B2 (en) Foundation structure and foundation construction method
JP3780816B2 (en) Seismic isolation method for existing buildings
CN102808420B (en) Bearing platform and construction method for connection between bearing platform and foundation pile
JP2016194227A (en) Anchor frame, foundation structure, and construction method thereof
KR20110038050A (en) Elastic construction foundation method
KR101623377B1 (en) Reinforcing structure for pipe head
JP2007070858A (en) Base isolation structure and base isolation construction method for building
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP3772981B2 (en) Pile head joining device and structure
JP2006207288A (en) Base isolating foundation structure, wooden house, and base isolation bearing body for building
JP6334970B2 (en) Temporary support method for foundation
KR200223113Y1 (en) A structure preventing for bulging of retaining wall
JP4217189B2 (en) Pile foundation structure for buildings
JP3690485B2 (en) Support structure of structure
JP2006348531A (en) Building foundation construction method and building foundation structure
CN105887926A (en) Open trench tunnel structure capable of preventing inhomogeneous deformation of foundation for soft soil seismic subsidence stratum
JP6372605B1 (en) Lightweight embankment structure
JP3589296B2 (en) Construction method of seismic isolation structure
CN205776354U (en) Weak soil shake falls into stratum and prevents the open trench tunnel structure of ground inhomogeneous deformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250