JP2001020558A - Base isolation structure of building - Google Patents

Base isolation structure of building

Info

Publication number
JP2001020558A
JP2001020558A JP11196775A JP19677599A JP2001020558A JP 2001020558 A JP2001020558 A JP 2001020558A JP 11196775 A JP11196775 A JP 11196775A JP 19677599 A JP19677599 A JP 19677599A JP 2001020558 A JP2001020558 A JP 2001020558A
Authority
JP
Japan
Prior art keywords
foundation
seismic isolation
upper edge
building
concrete pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11196775A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawachi
保弘 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11196775A priority Critical patent/JP2001020558A/en
Publication of JP2001020558A publication Critical patent/JP2001020558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation structure of a building capable of increasing the durability of a rubber composite base isolation element and providing a high base isolation capability. SOLUTION: A rubber composite base isolation element 3 is provided between a foundation beam or a foundation bottom plate of a building and the upper edge of a concrete pile 2 provided in the ground under the foundation beam or foundation bottom plate or the upper edge of a base rock, the foundation beam or foundation bottom plate is placed in contact partly with the underground or the ground, and crushed stone or soil and sand are filled between the foundation 1 and the upper edge of the concrete pile 2 or the upper edge of the base rock. When a plurality of high-strength rigid short rods are fixed vertically on the lower surface of the foundation beam or foundation bottom plate near an area occupied by the rubber composite base isolation element 3, the lateral vibration of the foundation 1 and further the building caused at the earthquake can be attenuated by the slidable contact of the foundation or building with the crushed stone or soil and sand.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の免震構造
に関し、特にゴム複合体免震要素の耐久性を向上させ、
かつ高い免震性能が得られる建築物の基礎免震構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure for a building, and more particularly to a rubber composite seismic isolation element having improved durability.
The present invention relates to a base seismic isolation structure of a building that provides high seismic isolation performance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
地震による被害を大きくしないために、建築物に耐震対
策がなされている。耐震対策の主なものとして、鉛直方
向には剛性が高く水平方向には剛性が引き、周期の長い
ばねで支えて振動を減衰させるダンパを併用した方法が
採られている。特に、地盤と建築物の揺れの相対変位を
ばねの部分で生じさせ、地震の際、地盤と建築物の揺れ
の共振を低減するために、建築物と地盤との間に免震要
素を設けて、建築物の固有周期を延ばすとともに、地震
のエネルギーを免震要素の変形によって吸収させる構造
となっている免震構造が実施されている。前記免震構造
としては、基礎と建築物の間にゴム複合体免震要素を介
在固定する構造のものがあげられる。そして、前記ゴム
複合体免震要素は、ゴム板と鉄板を交互に重ね合わせ接
合して構成されている。しかし、ゴム複合体免震要素を
基礎と建築物の間に介在固定する免震構造は、同要素
が、建築物の垂直荷重を支える構造であるために、建築
物の重量が重い場合、垂直荷重の負担が大きく、免震機
能が低下する。そこで、ゴム複合体免震要素を用いた免
震構造の採用は、建築物が著しく重くない範囲に限られ
ている。しかるに、前記免震構造は、前記免震要素が建
築物全体の垂直荷重を支えているので、ゴム板の耐圧
性、耐久性において問題があった。
2. Description of the Related Art In recent years,
In order not to increase the damage caused by the earthquake, seismic measures are taken for buildings. As a major measure against seismic resistance, a method is adopted in which rigidity is high in the vertical direction and rigidity is low in the horizontal direction, and a damper that damps vibration by supporting it with a long-period spring is used. In particular, a seismic isolation element is provided between the building and the ground to generate the relative displacement of the ground and the building's sway at the spring part and to reduce the resonance of the ground and the building's sway during an earthquake. Therefore, seismic isolation structures have been implemented in which the natural period of buildings is extended and the energy of earthquakes is absorbed by deformation of seismic isolation elements. Examples of the seismic isolation structure include a structure in which a rubber composite seismic isolation element is interposed and fixed between a foundation and a building. The rubber composite seismic isolation element is configured by alternately overlapping and joining rubber plates and iron plates. However, the seismic isolation structure in which the rubber composite seismic isolation element is interposed and fixed between the foundation and the building is a structure that supports the vertical load of the building. The burden of the load is large, and the seismic isolation function is reduced. Therefore, the adoption of a seismic isolation structure using a rubber composite seismic isolation element is limited to an area where a building is not extremely heavy. However, in the seismic isolation structure, since the seismic isolation element supports the vertical load of the whole building, there is a problem in the pressure resistance and durability of the rubber plate.

【0003】[0003]

【課題を解決するための手段】本発明は前記問題の解決
を目的とするものであって、免震要素の耐圧性、耐久性
を向上させ、免震効果の高い建築物の基礎免震構造を提
供するものである。すなわち、本発明は、 (1)建築物の基礎梁又は基礎底板とその下方の地中に
設けられたコンクリート杭の上縁又は岩盤の上縁との間
にゴム複合体免震要素が介設され、また前記基礎梁又は
基礎底板はその一部が地中又は地面に接して載置され、
そしてこれら基礎とコンクリート杭の上縁又は岩盤の上
縁との間には砕石又は土砂が充填されてなることを特徴
とする建築物の基礎免震構造。 (2)建築物の基礎梁又は基礎底板とその下方の地中に
設けられたコンクリート杭の上縁又は岩盤の上縁との間
にゴム複合体免震要素が介設され、また前記基礎梁又は
基礎底板はその一部が地中又は地面に接して載置され、
そしてこれら基礎とコンクリート杭の上縁又は岩盤の上
縁との間には砕石又は土砂が充填されてなり、かつ前記
ゴム複合体免震要素占有部近傍のコンクリート杭の上端
に高強度剛性短ロッドが立設固定されてなることを特徴
とする建築物の基礎免震構造。 (3)建築物の基礎梁又は基礎底板とその下方の地中に
設けられたコンクリート杭の上縁又は岩盤の上縁との間
にゴム複合体免震要素が介設され、また前記基礎梁又は
基礎底板はその一部が地中又は地面に接して載置され、
そしてこれら基礎とコンクリート杭の上縁又は岩盤の上
縁との間には砕石又は土砂が充填されてなり、かつ前記
ゴム複合体免震要素占有部近傍の基礎梁又は基礎底板下
面に、高強度剛性短ロッドが垂設固定されてなることを
特徴とする建築物の基礎免震構造。 (4)建築物の基礎梁又は基礎底板とその下方の地中に
設けられたコンクリート杭の上縁又は岩盤の上縁との間
にゴム複合体免震要素が介設され、また前記基礎梁又は
基礎底板はその一部が地中又は地面に接して載置され、
そしてこれら基礎とコンクリート杭の上縁又は岩盤の上
縁との間には砕石又は土砂が充填されてなり、かつ前記
ゴム複合体免震要素占有部近傍のコンクリート杭の上端
に高強度剛性短ロッドが立設固定され、さらに前記ゴム
複合体免震要素占有部近傍の基礎梁又は基礎底板下面
に、高強度剛性短ロッドが垂設固定されてなることを特
徴とする建築物の基礎免震構造。 (5)建築物の基礎梁又は基礎底板とその下方の地中に
設けられたコンクリート杭の上縁又は岩盤の上縁との間
にゴム複合体免震要素が介設され、また前記基礎梁又は
基礎底板はその一部が地中又は地面に接して載置され、
また、前記コンクリート杭の上縁又は岩盤の上縁には前
記ゴム複合体免震要素を取り囲んで土留め鋼管が、その
上端縁を前記基礎梁又は基礎底板に非接触状態で定着さ
れ、そしてまた前記基礎とコンクリート杭又は岩盤の上
縁との間の土留め鋼管外方には砕石又は土砂が充填され
てなることを特徴とする建築物の基礎免震構造。であ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to improve the pressure resistance and durability of a seismic isolation element and to provide a base seismic isolation structure for a building having a high seismic isolation effect. Is provided. That is, the present invention provides: (1) A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a rock under the ground. The foundation beam or foundation bottom plate is partially placed underground or in contact with the ground,
A foundation seismic isolation structure for a building characterized by being filled with crushed stone or earth and sand between the foundation and an upper edge of a concrete pile or an upper edge of a bedrock. (2) A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided below the foundation beam. Or a part of the base plate is placed underground or in contact with the ground,
Crushed stone or earth and sand is filled between the foundation and the upper edge of the concrete pile or the upper edge of the bedrock, and a high-strength rigid short rod is provided at the upper end of the concrete pile near the rubber composite seismic isolation element occupying portion. The base seismic isolation structure of a building, characterized by being fixed upright. (3) A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder, and the foundation beam is provided. Or a part of the base plate is placed underground or in contact with the ground,
Crushed stones or earth and sand are filled between the foundation and the upper edge of the concrete pile or the upper edge of the bedrock, and a high strength is provided on the lower surface of the foundation beam or the foundation bottom plate in the vicinity of the rubber composite seismic isolation element occupying portion. A base seismic isolation structure for a building characterized by a rigid short rod being fixed vertically. (4) A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. Or a part of the base plate is placed underground or in contact with the ground,
Crushed stone or earth and sand is filled between the foundation and the upper edge of the concrete pile or the upper edge of the bedrock, and a high-strength rigid short rod is provided at the upper end of the concrete pile near the rubber composite seismic isolation element occupying portion. And a high-strength rigid short rod is vertically fixed to a lower surface of a foundation beam or a base plate in the vicinity of the rubber composite seismic isolation element occupying portion. . (5) A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. Or a part of the base plate is placed underground or in contact with the ground,
In addition, an earth retaining steel pipe surrounding the rubber composite seismic isolation element is fixed to an upper edge of the concrete pile or an upper edge of the bedrock in a non-contact state with an upper edge of the seismic isolation element, and A foundation seismic isolation structure for a building, characterized in that crushed stone or earth and sand is filled outside a retaining steel pipe between the foundation and an upper edge of a concrete pile or a bedrock. It is.

【0004】[0004]

【発明の実施の形態】ここで、本願発明の実施の形態に
ついて図に基づいて説明する。図1〜図5は、本発明の
建築物の基礎免震構造の一例の拡大断面図であり、図
6、図7、図8は本発明の建築物の基礎免震構造の一例
の全体断面図である。図中、1は基礎、2はコンクリー
ト杭、3はゴム複合体免震要素であり、4は敷鉄板、5
は振れ減衰用砂利又は砕石、6は柱である。また、7は
建築物、8、8’は高強度剛性短ロッドである。9はゴ
ムキャップであり、10は土留め鋼管である。本発明の
建築物の基礎免震構造は、図1に示すように、建築物の
基礎1とその下方の地中に打設されたコンクリート杭2
の間にゴム複合体免震要素3が設置されており、前記基
礎1とコンクリート杭2の上縁との間の空隙部11に、
振れ減衰用の砂利又は砕石5が、充填された構造となっ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described with reference to the drawings. 1 to 5 are enlarged cross-sectional views of an example of the base seismic isolation structure of the building of the present invention, and FIGS. 6, 7, and 8 are overall cross sections of an example of the base seismic isolation structure of the building of the present invention. FIG. In the figure, 1 is a foundation, 2 is a concrete pile, 3 is a rubber composite seismic isolation element, 4 is an iron plate, 5
Is a gravel or crushed stone for damping runout, and 6 is a pillar. 7 is a building, and 8 and 8 'are high-strength rigid short rods. 9 is a rubber cap, and 10 is a retaining steel pipe. As shown in FIG. 1, a base seismic isolation structure for a building according to the present invention includes a foundation 1 for a building and a concrete pile 2 cast into the ground below the foundation.
A rubber composite seismic isolation element 3 is installed between the foundation 1 and the upper edge of the concrete pile 2 in the gap 11 between the foundation 1 and the concrete pile 2.
Gravel or crushed stone 5 for vibration damping is filled.

【0005】一般に建築物の柱や壁、土台などからの荷
重を地盤又は地業に伝えるために設けられる構造部分で
ある基礎は、基礎梁と基礎底板に大別される。基礎梁は
建物の各基礎を結ぶ水平材で、柱脚の曲げモーメント及
びそれによる剪断力を負担しており、この梁の剛性を大
にすることによって、基礎の不同沈下を防ぎ建築物全体
の剛性が高められる。また、基礎底板は、基礎の底のス
ラブであり、基礎反力が上向きに加わる構造となってい
る。そして、前記基礎に関する基礎工事には、以下に説
明する直接基礎工法と杭基礎工法、ケーソン工法の3種
類が挙げられる。 建築物の全荷重を基礎梁と基礎底板により、直接支持
地盤に伝える直接基礎工法、杭の先端が堅固な支持地
盤まで到達し、建物の全荷重を杭を通じて支持地盤に伝
える支持杭と深い粘性度の高い地盤層中に定着され、杭
に作用する粘性地盤層の付着力と摩擦力によって建築物
の全荷重を支持する摩擦杭で構成される杭基礎工法、
あらかじめ地上または地下に作った建築物の下部を堀削
して、自重や積載荷重を利用して所定の深さの地盤まで
沈下させて設置するケーソンを施工するケーソン工法。
そして、特に上記直接基礎工法で採用される基礎に
は、独立基礎、複合基礎、布基礎、ベタ基礎などが挙げ
られる。ここで、ベタ基礎は、建築物全体または大部分
を一枚の基礎で受けるように構成される基礎であり、隙
間なく一面に設けられる。通常は柱脚を縦横に連続した
つなぎ梁とそれに囲まれた基礎スラブとからなってお
り、柱下を平坦基礎スラブ又は曲面板で受けた構造の場
合などがある。前記ベタ基礎は、建築物が重い場合や地
耐力が少ない場合などに用いられている。本発明におけ
る基礎免震構造は、基礎梁又は基礎底板と、その下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設される構造となって
おり、基礎梁又は基礎底板は、建築物を支持する基礎部
であり、ベタ基礎など建築物を支持する基礎部であれ
ば、その形状に関係なく本基礎免震構造は適応できる。
また、基礎梁又は基礎底板は、図1において、地中に載
置されているが、地面に接して載置されていてもよい。
[0005] In general, a foundation, which is a structural portion provided for transmitting loads from pillars, walls, foundations, and the like of a building to the ground or earthwork, is roughly classified into foundation beams and foundation bottom plates. The foundation beam is a horizontal member connecting the foundations of the building and bears the bending moment of the column base and the shearing force due to it. By increasing the rigidity of this beam, the uneven settlement of the foundation is prevented and the entire building is The rigidity is increased. The foundation bottom plate is a slab at the bottom of the foundation, and has a structure in which a foundation reaction force is applied upward. The foundation work for the foundation includes three types of a direct foundation method, a pile foundation method, and a caisson method described below. The direct foundation method, in which the entire load of the building is directly transmitted to the supporting ground by the foundation beam and the base plate, the piles reach the solid supporting ground at the tip of the pile, and the supporting pile, which transmits the entire load of the building to the supporting ground through the pile, and the deep viscosity Pile foundation method consisting of friction piles that are fixed in a high-grade ground layer and support the full load of the building by the adhesive force and frictional force of the viscous ground layer acting on the pile,
A caisson method in which a caisson is constructed by excavating the lower part of a building made in advance on the ground or under the ground and submerging it to the ground at a predetermined depth using its own weight or loading load.
In particular, examples of the foundation employed in the direct foundation method include an independent foundation, a composite foundation, a cloth foundation, and a solid foundation. Here, the solid foundation is a foundation configured to receive the whole or most of the building with one foundation, and is provided on one surface without gaps. Usually, the column base is composed of a connecting beam continuously and vertically and horizontally and a foundation slab surrounded by the column base, and there is a case where the bottom of the column is received by a flat foundation slab or a curved plate. The solid foundation is used, for example, when the building is heavy or the ground strength is low. In the base seismic isolation structure according to the present invention, a rubber composite seismic isolation element is interposed between a foundation beam or a base plate and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. It is a structure, and the foundation beam or base plate is the foundation that supports the building, and if it is the foundation that supports the building such as solid foundation, this foundation seismic isolation structure can be applied regardless of its shape .
In addition, the foundation beam or foundation bottom plate is placed underground in FIG. 1, but may be placed in contact with the ground.

【0006】また、一般に地中に打設されるコンクリー
ト杭としては、遠心力鉄筋コンクリート杭(RC杭)を
始め、ひび割れや破損を防ぐために杭軸方向にプレスト
レストを導入したプレテンション方式プレストレストコ
ンクリート杭(PC杭)や、建築物の大規模化及び軟弱
地盤における長尺化が可能で、一本当たりの支持力の高
負担化に適応できるプレテンション方式遠心力高強度プ
レストレストコンクリート杭(PHC杭)、また、軟弱
地盤や液状化が予想される地盤でも適応できるコンクリ
ートの圧縮特性と鋼管杭の引張特性・靱性を合成した外
殻鋼管付きコンクリート杭(SC杭)などが挙げられ
る。本発明におけるコンクリート杭2は、上部建築物の
垂直荷重を支えられるように設置されており、垂直荷重
による沈みこみなどを防止しているので、建設地の荷重
条件や地盤条件及び施工条件を考慮した上で、最適なコ
ンクリート杭2が選定されるのが望ましい。また、コン
クリート杭の他に、上部建築物の垂直荷重を支えられる
程度の強度を有していれば、岩盤なども利用できる。
[0006] In general, concrete piles to be poured into the ground, such as centrifugal reinforced concrete piles (RC piles) and pretensioned prestressed concrete piles in which prestresses are introduced in the pile axis direction to prevent cracks and breakage, are introduced. Pre-tension type centrifugal high-strength prestressed concrete piles (PHC piles), which can be used to increase the scale of buildings and lengths in soft ground, and can be used to increase the load per bearing. In addition, concrete piles with outer shell steel pipes (SC piles) that combine the compressive properties of concrete and the tensile properties and toughness of steel pipe piles that can be applied to soft ground or ground where liquefaction is expected can be cited. The concrete pile 2 according to the present invention is installed so as to support the vertical load of the upper building and prevents sinking due to the vertical load, so that the load condition, the ground condition and the construction condition of the construction site are considered. After that, it is desirable that the optimum concrete pile 2 is selected. In addition to concrete piles, rocks and the like can also be used as long as they have strength enough to support the vertical load of the upper building.

【0007】また、ゴム複合体免震要素3は、上下の面
板の間に、硬質板と軟質板とを、それぞれ複数個、交互
に積層接合されてなる複合積層体であり、硬質板が金属
板や、セラミックス板、軟質板が熱可塑ゴムや、加硫ゴ
ムなどで構成され、荷重支持能力、大変形性能及び、地
震時終了時に原位置に復帰する復元力性能などが、備え
られているものである。特に、免震要素としては、温度
変化による物性変化の少ない天然ゴムを使用した天然ゴ
ム系積層ゴム、ゴム材料に特殊配合のゴムを使用した高
減衰型積層ゴム、鉛プラグ入り積層ゴムなどが挙げら
る。それぞれ、天然ゴム系積層ゴムは、引張強さや伸
び、耐クリープ性に優れ、荷重変形特性は、軸力の変動
や変位履歴による依存性が殆どなく、微少変形から大変
形まで安定したバネ特性を有しているという特徴をも
ち、また、高減衰型積層ゴムは、ゴム材料に特殊配合の
ゴムを使用することで、ゴム材料の粘性を高くして、そ
れ自身でエネルギー吸収も行うという特徴があり、ダン
パー機能一体型であるため、省スペース型である。ま
た、鉛プラグ入り積層ゴムは、天然ゴム系積層ゴム中央
部に設けた円柱状の中空孔に鉛を圧入しており、積層ゴ
ムの剪断変形時には、内部の鉛プラグの塑性変形によ
り、エネルギーを吸収するというダンパー内蔵という特
徴をもっている。本発明の建築物の基礎免震構造におい
て、使用されるゴム複合体免震要素3は、これらのどの
免震要素を用いてもよく、建築物の重量及び形状、立地
条件に合わせて、適宜選択したものを用いることが可能
である。
The rubber composite seismic isolation element 3 is a composite laminate in which a plurality of hard plates and soft plates are alternately laminated and joined between upper and lower face plates, and the hard plate is made of metal. Plates, ceramic plates, and soft plates are made of thermoplastic rubber, vulcanized rubber, etc., and have load carrying capacity, large deformation performance, and restoring force performance to return to the original position at the end of an earthquake. Things. In particular, seismic isolation elements include natural rubber-based laminated rubber that uses natural rubber with little change in physical properties due to temperature changes, high-damping laminated rubber that uses rubber specially formulated for rubber materials, and laminated rubber with lead plugs. Rara. Each natural rubber-based laminated rubber has excellent tensile strength, elongation, and creep resistance, and its load deformation characteristics are almost independent of fluctuations in axial force and displacement history. The high-damping type laminated rubber has the characteristic that the viscosity of the rubber material is increased and the energy is absorbed by itself by using a specially formulated rubber for the rubber material. Yes, it is a space-saving type because of the integrated damper function. In addition, lead rubber with a lead plug presses lead into a cylindrical hollow hole provided at the center of a natural rubber-based laminated rubber, and during shear deformation of the laminated rubber, energy is generated by plastic deformation of the internal lead plug. It has a characteristic of built-in damper that absorbs. In the basic seismic isolation structure of the building of the present invention, the rubber composite seismic isolation element 3 used may be any of these seismic isolation elements, and may be appropriately adjusted according to the weight and shape of the building and location conditions. Selected ones can be used.

【0008】図2〜図3は、本発明の建築物の基礎免震
構造の一例の拡大断面図で、図2では、ゴム複合体免震
要素3占有部近傍のコンクリート杭2の上端に複数本の
高強度剛性短ロッド8が立設固定されており、図3で
は、ゴム複合体免震要素3占有部近傍の基礎梁又は基礎
底板(基礎1)下面に、複数本の高強度剛性短ロッド
8’が垂設固定されている。また、図4では、ゴム複合
体免震要素3占有部近傍のコンクリート杭2の上端に複
数本の高強度剛性短ロッド8が立設固定され、さらに前
記ゴム複合体免震要素3占有部近傍の基礎梁又は基礎底
板(基礎1)下面に複数本の高強度剛性短ロッド8’が
垂設固定されている。ゴム複合体免震要素3占有部近傍
のコンクリート杭の上縁に立設固定、あるいは基礎梁又
は基礎底板(基礎1)下面に垂設固定される複数本の高
強度剛性短ロッド8、8’は、地震時の横揺れを減衰さ
せるために設置されている。そのため、高強度剛性短ロ
ッド8、8’は、地震時の横揺れに抵抗できる程度の曲
げ強度を有している超硬合金製や、ステンレス鋼製など
のロッドが好ましい。
FIGS. 2 and 3 are enlarged sectional views of an example of a base seismic isolation structure of a building according to the present invention. In FIG. In FIG. 3, a plurality of high-strength rigid short rods 8 are fixed on the lower surface of the foundation beam or the base plate (foundation 1) near the occupied portion of the rubber composite seismic isolation element 3. A rod 8 'is fixed vertically. In FIG. 4, a plurality of high-strength rigid short rods 8 are erected and fixed on the upper end of the concrete pile 2 near the occupation area of the rubber composite seismic isolation element 3, and further, near the occupation area of the rubber composite seismic isolation element 3. A plurality of high-strength rigid short rods 8 'are vertically fixed to the lower surface of the foundation beam or foundation bottom plate (foundation 1). A plurality of high-strength rigid short rods 8, 8 ′ that are erected and fixed on the upper edge of a concrete pile near the occupied portion of the rubber composite seismic isolation element 3, or are vertically fixed to the lower surface of a foundation beam or a bottom plate (foundation 1). Is installed to attenuate the roll during an earthquake. For this reason, the high-strength rigid short rods 8 and 8 'are preferably rods made of cemented carbide or stainless steel having a bending strength enough to resist the roll during an earthquake.

【0009】さらに、図5も本発明の建築物の基礎免震
構造の一例であり、図5(a)は拡大断面図、(b)は
そのA−A矢視の平面図である。本例はコンクリート杭
2の上縁にゴム複合体免震要素3を取り囲んで土留め鋼
管10が、その上端縁を基礎梁又は基礎底板(基礎1)
に非接触状態で定着されている。そして前記土留め鋼管
10の外方には砂利又は砕石5が充填されている。土留
め鋼管10は、基礎梁又は基礎底板(基礎1)下面とコ
ンクリート杭2の間に充填される土砂や横振れ減衰用の
砂利又は砕石5が、ゴム複合体免震要素3を覆うのを防
止し、ゴム複合体免震要素3がその機能を充分に発揮で
きるように、基礎梁又は基礎底板(基礎1)に非接触の
状態で定着されており、基礎1との隙間から、地下水な
どの水分が土留め鋼管10内に侵入して、免震要素3を
劣化するのを防止するために、土留め鋼管10の上端縁
には、ゴムキャップ9が装着されている。また、ゴムキ
ャップ9は、土留め鋼管10の上端縁を嵌挿する環状溝
9aを備え、かつ地震時の土留め鋼管10の揺れによる
伸縮に対応できるようにたわみ部9bを備えた構造とす
ることが好ましい。ところで、土留め鋼管10は、その
外方の土砂、砂利又は砕石5の土留めとしてはもちろ
ん、地震時にゴム複合体免震要素3が変形する際、土留
め鋼管10に当接してその変形を最小限にするという効
果ももつ。そのため、土留め鋼管10は、前記ゴム複合
体免震要素3の変形時の衝撃にも耐えうる強固な構造で
あることが望ましい。例えば8mm程度の厚さの鋼管な
どである。
FIG. 5 also shows an example of a base seismic isolation structure for a building according to the present invention. FIG. 5 (a) is an enlarged sectional view and FIG. 5 (b) is a plan view taken along the line AA. In this example, a concrete retaining pile 10 surrounds a rubber composite seismic isolation element 3 on the upper edge of a concrete pile 2 and has an upper edge of a foundation beam or foundation bottom plate (foundation 1).
Is fixed in a non-contact state. The outside of the earth retaining steel pipe 10 is filled with gravel or crushed stone 5. The earth retaining steel pipe 10 is used to prevent the earth and sand or the gravel or crushed stone 5 for damping the lateral vibration to be filled between the lower surface of the foundation beam or the bottom plate (foundation 1) and the concrete pile 2 from covering the rubber composite seismic isolation element 3. It is fixed to the foundation beam or foundation bottom plate (foundation 1) in a non-contact state so that the rubber composite seismic isolation element 3 can fully perform its function. A rubber cap 9 is attached to the upper end edge of the retaining steel pipe 10 in order to prevent the moisture from entering the retaining steel pipe 10 and deteriorating the seismic isolation element 3. The rubber cap 9 has an annular groove 9a into which the upper end edge of the retaining steel pipe 10 is inserted, and has a flexure 9b so as to cope with expansion and contraction caused by shaking of the retaining steel pipe 10 during an earthquake. Is preferred. Incidentally, the retaining steel pipe 10 is used not only as a retaining material for earth and sand, gravel, or crushed stone 5 on its outer side, but also when the rubber composite seismic isolation element 3 is deformed during an earthquake, it comes into contact with the retaining steel pipe 10 to reduce the deformation. It also has the effect of minimizing it. Therefore, it is desirable that the earth retaining steel pipe 10 has a strong structure that can withstand the impact when the rubber composite seismic isolation element 3 is deformed. For example, a steel pipe having a thickness of about 8 mm is used.

【0010】本発明において、基礎1とコンクリート杭
2の上縁との間には、土砂や砂利又は砕石5が充填され
る。土砂や砂利又は砕石5を充填させることによって、
建築物の垂直荷重を、ゴム複合体免震要素3と土砂、砂
利又は砕石5で緩衝的に支えることができ、ゴム複合体
免震要素3の垂直荷重の負担を小さくできる。また、建
築物の垂直荷重を緩衝的に支えることができれば、土
砂、砂利又は砕石5以外のものを充填することも可能で
ある。特に玉砂利は、緩衝性の高いものとして採用でき
る。
In the present invention, the space between the foundation 1 and the upper edge of the concrete pile 2 is filled with earth and sand, gravel or crushed stone 5. By filling earth and sand or gravel or crushed stone 5,
The vertical load of the building can be supported in a cushioned manner by the rubber composite seismic isolation element 3 and the earth, sand, gravel or crushed stone 5, so that the load of the rubber composite seismic isolation element 3 on the vertical load can be reduced. In addition, if the vertical load of the building can be supported in a buffered manner, it is also possible to fill things other than earth and sand, gravel or crushed stone 5. Particularly, gravel can be employed as a material having a high buffering property.

【0011】図6〜図8は、本発明の建築物の基礎免震
構造の一例の全体断面図である。図6は、要部図図1を
採用した全体断面図であり、基礎1とその下方の地中に
設けられたコンクリート杭2の上縁との間にゴム複合体
免震要素3が介設され、基礎1の上方に建築物7の柱6
が構築され、基礎1とコンクリート杭2の上縁との間に
は、砂利又は砕石5が充填されている。図7は、要部図
図2を採用した全体断面図であり、基礎1とその下方の
地中に設けられたコンクリート杭2の上縁との間にゴム
複合体免震要素3が介設され、コンクリート杭2の上縁
基礎1の上方に建築物7の柱6が構築され、かつ基礎1
とコンクリート杭2の上端に、高強度剛性短ロッド8が
立設固定されている。図8は、要部図図5を採用した全
体断面図であり、図6、図7と同様に基礎1とコンクリ
ート杭2の上縁との間にゴム複合体免震要素3が介設さ
れ、基礎1の上方に建築物7の柱6が構築され、コンク
リート杭2の上縁にゴム複合体免震要素3を取り囲むよ
うに土留め鋼管10が、その上端縁を基礎1に非接触状
態で載置されており、また基礎1とコンクリート杭2の
上縁との間の土留め鋼管10外方には、砂利又は砕石5
が充填されている。
FIG. 6 to FIG. 8 are whole sectional views of an example of a base seismic isolation structure for a building according to the present invention. FIG. 6 is a cross-sectional view of the main part adopting FIG. 1, in which a rubber composite seismic isolation element 3 is interposed between a foundation 1 and an upper edge of a concrete pile 2 provided underground. And the pillars 6 of the building 7 above the foundation 1
Is constructed, and gravel or crushed stone 5 is filled between the foundation 1 and the upper edge of the concrete pile 2. FIG. 7 is an overall cross-sectional view employing FIG. 2 in which the rubber composite seismic isolation element 3 is interposed between the foundation 1 and the upper edge of the concrete pile 2 provided under the ground. The pillar 6 of the building 7 is constructed above the upper edge foundation 1 of the concrete pile 2 and the foundation 1
A high-strength rigid short rod 8 is erected and fixed on the upper end of the concrete pile 2. FIG. 8 is an overall sectional view that employs FIG. 5 of the main part, and a rubber composite seismic isolation element 3 is interposed between the foundation 1 and the upper edge of the concrete pile 2 as in FIGS. 6 and 7. A pillar 6 of a building 7 is constructed above the foundation 1, and an earth retaining steel pipe 10 is arranged on the upper edge of the concrete pile 2 so as to surround the rubber composite seismic isolation element 3, and the upper edge thereof is in non-contact with the foundation 1. And outside the retaining steel pipe 10 between the foundation 1 and the upper edge of the concrete pile 2, gravel or crushed stone 5
Is filled.

【0012】次に本発明における基礎免震構造の一例を
構築する施工手順を図9、図10に基づいて説明する。
まず、図9(a)に示すように、地盤をコンクリート杭
打ち込み位置より深めに削土した後に、コンクリート杭
2を打ち込む。次に、図9(b)のように、コンクリー
ト杭2の上縁にゴム複合体免震要素3をボルトで固定す
る。その際、確実にゴム複合体免震要素3を固定定着さ
せるために、コンクリート杭2の上縁とゴム複合体免震
要素3の間に、敷鉄板4を狭着する(図1参照)。本構
造においては、コンクリート杭2の上縁で、ゴム複合体
免震要素3の近傍に複数本の高強度剛性短ロッド8を立
設してもよい(図3参照)。これら高強度剛性短ロッド
8により、地震時における基礎1ひいては建築物7の横
揺れを減衰することができる。また、コンクリート杭2
の上縁に、ゴム複合体免震要素3を取り囲むように土留
め鋼管10を載置してもよい(図5参照)。その際に
は、敷鉄板4に確実に溶接接合する。次に、ゴム複合体
免震要素3をコンクリート杭2に定着固定後、(a)工
程で堀削した空隙部11に、(c)図工程のように横振
れ減衰用の砕石5を充填し、上面を均一にならす。土留
め鋼管10を載置した場合には、土留め鋼管10の外方
に振れ減衰用の土砂や砂利又は砕石5を充填する。
Next, a construction procedure for constructing an example of a base seismic isolation structure according to the present invention will be described with reference to FIGS.
First, as shown in FIG. 9A, the ground is cut deeper than the concrete pile driving position, and then the concrete pile 2 is driven. Next, as shown in FIG. 9B, the rubber composite seismic isolation element 3 is fixed to the upper edge of the concrete pile 2 with bolts. At that time, in order to securely fix and fix the rubber composite seismic isolation element 3, the iron sheet 4 is tightly fitted between the upper edge of the concrete pile 2 and the rubber composite seismic isolation element 3 (see FIG. 1). In this structure, a plurality of high-strength rigid short rods 8 may be erected near the rubber composite seismic isolation element 3 at the upper edge of the concrete pile 2 (see FIG. 3). These high-strength rigid short rods 8 can attenuate the roll of the foundation 1 and thus the building 7 during an earthquake. In addition, concrete pile 2
An earth retaining steel pipe 10 may be placed on the upper edge of the rubber composite seismic isolation element 3 so as to surround the same (see FIG. 5). In that case, it is securely welded to the iron sheet 4. Next, after the rubber composite seismic isolation element 3 is fixedly fixed to the concrete pile 2, the crushed stone 5 for damping lateral vibration is filled in the void portion 11 dug in the step (a) as shown in the step (c). , Smooth the top surface. When the earth retaining steel pipe 10 is placed, the outside of the earth retaining steel pipe 10 is filled with earth and sand, gravel, or crushed stone 5 for vibration damping.

【0013】次に図10(d)に示すように、(c)図
工程でならした土砂、砂利又は砕石5とゴム複合体免震
要素3の上に、基礎1を打設する。その際、基礎1の重
量及びその上部に構築される建築物(7)の重量を、砕
石5とゴム複合体免震要素3で支えることが出来るよう
に、基礎1を打設する。また、高強度剛性短ロッド8’
を砂利又は砕石5に立設した後に基礎1の打設をしても
よい(図2参照)。さらに、コンクリート杭2の上縁に
ゴム複合体免震要素3を取り囲んで土留め鋼管10を載
置した場合には、土留め鋼管10の上端縁にゴムキャッ
プ9の嵌挿溝9aを装着した後に、水分の侵入を確実に
防止できるように基礎1のコンクリート打設を行う(図
5参照)。そして、上記工程を経た後、基礎1と周辺地
盤を土砂などで平坦にならし(e工程)、(d)工程で
打設したベタ基礎1の上部に建築物7を建築する。
Next, as shown in FIG. 10D, the foundation 1 is cast on the sediment, gravel or crushed stone 5 and the rubber composite seismic isolation element 3 which have been smoothed in the step (c). At this time, the foundation 1 is cast so that the weight of the foundation 1 and the weight of the building (7) built thereon can be supported by the crushed stone 5 and the rubber composite seismic isolation element 3. In addition, high strength rigid short rod 8 '
May be erected on the gravel or crushed stone 5 before the foundation 1 is cast (see FIG. 2). Further, when the earth retaining steel pipe 10 was placed around the upper edge of the concrete pile 2 around the rubber composite seismic isolation element 3, the fitting groove 9 a of the rubber cap 9 was attached to the upper end edge of the earth retaining steel pipe 10. Thereafter, concrete is cast on the foundation 1 so as to reliably prevent intrusion of moisture (see FIG. 5). After the above steps, the foundation 1 and the surrounding ground are leveled with earth and sand (step e), and a building 7 is built on the solid foundation 1 cast in step (d).

【0014】[0014]

【発明の効果】本発明において提供される建築物の基礎
免震構造によれば、建築物の垂直荷重が、砕石又は土砂
とゴム弾性体免震要素とに分散支持され、建築物の垂直
荷重をゴム複合体免震要素のみで支える必要がなくなる
ので、免震要素の負荷を減少させることができ、免震要
素の耐久性、耐圧性を向上させることができ、かつ免震
要素の大きさを小さくすることもできる。また、ゴム複
合体免震要素の周囲に砕石又は土砂が充填されていて、
それが、地震時の横揺れの緩衝材となるため、建築物の
横揺れも低減することができる。さらに、高強度剛性短
ロッドや、土留め鋼管を立設、定着することにより、横
の揺れに対しても強く、高い免震性能を備えた建築物の
基礎免震構造となる。
According to the base seismic isolation structure for a building provided in the present invention, the vertical load of the building is dispersed and supported by crushed stone or earth and sand and the rubber elastic seismic isolation element, and the vertical load of the building is It is no longer necessary to support the seismic isolation element only with rubber composite elements, so the load on the seismic isolation element can be reduced, the durability and pressure resistance of the seismic isolation element can be improved, and the size of the seismic isolation element Can also be reduced. In addition, crushed stone or earth and sand is filled around the rubber composite seismic isolation element,
Since it serves as a shock-absorbing material in the event of an earthquake, the rolling of the building can also be reduced. In addition, by standing and anchoring high strength rigid short rods and earth retaining steel pipes, it becomes a basic seismic isolation structure of a building that is strong against lateral shaking and has high seismic isolation performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の建築物の基礎免震構造の一例の拡大
断面図
FIG. 1 is an enlarged sectional view of an example of a base seismic isolation structure of a building according to the present invention.

【図2】 本発明の建築物の基礎免震構造の他の例の拡
大断面図
FIG. 2 is an enlarged sectional view of another example of the base seismic isolation structure of the building of the present invention.

【図3】 本発明の建築物の基礎免震構造のさらに他の
例の拡大断面図
FIG. 3 is an enlarged sectional view of still another example of the base seismic isolation structure of the building of the present invention.

【図4】 本発明の建築物の基礎免震構造のその他の例
の拡大断面図
FIG. 4 is an enlarged sectional view of another example of the base seismic isolation structure of the building of the present invention.

【図5】 本発明の建築物の基礎免震構造のさらにその
他の例の拡大断面図
FIG. 5 is an enlarged sectional view of still another example of the base seismic isolation structure of the building of the present invention.

【図6】 本発明の建築物の基礎免震構造の一例の全体
断面図
FIG. 6 is an overall sectional view of an example of the base seismic isolation structure of the building of the present invention.

【図7】 本発明の建築物の基礎免震構造の他の例の全
体断面図
FIG. 7 is an overall sectional view of another example of the base seismic isolation structure of the building of the present invention.

【図8】 本発明の建築物の基礎免震構造のその他の例
の全体断面図
FIG. 8 is an overall sectional view of another example of the base seismic isolation structure of the building of the present invention.

【図9】 本発明の建築物の基礎免震構造の構築施工手
順図
FIG. 9 is a construction procedure diagram of a base seismic isolation structure of a building according to the present invention.

【図10】 本発明の建築物の基礎免震構造の構築施工
手順図
FIG. 10 is a construction procedure diagram of a base seismic isolation structure of a building according to the present invention.

【符号の説明】[Explanation of symbols]

1 基礎 2 コンクリート杭 3 ゴム複合体免震要素 4 敷鉄板 5 振れ減衰用砕石 6 柱 7 建築物 8、8’高強度剛性短ロッド 9 ゴムキャップ 9a 環状溝 9b たわみ部 10 土留め鋼管 11 空隙部 REFERENCE SIGNS LIST 1 foundation 2 concrete pile 3 rubber composite seismic isolation element 4 iron sheet 5 crushed stone for vibration damping 6 pillar 7 building 8, 8 'high-strength rigid short rod 9 rubber cap 9a annular groove 9b flexure 10 earth retaining steel pipe 11 gap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】建築物の基礎梁又は基礎底板とその下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設され、また前記基礎
梁又は基礎底板はその一部が地中又は地面に接して載置
され、そしてこれら基礎とコンクリート杭の上縁又は岩
盤の上縁との間には砕石又は土砂が充填されてなること
を特徴とする建築物の基礎免震構造。
1. A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. The foundation beam or base plate shall be partially laid underground or in contact with the ground, and be filled with crushed stone or earth and sand between the foundation and the upper edge of concrete pile or rock. The basic seismic isolation structure of a building.
【請求項2】建築物の基礎梁又は基礎底板とその下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設され、また前記基礎
梁又は基礎底板はその一部が地中又は地面に接して載置
され、そしてこれら基礎とコンクリート杭の上縁又は岩
盤の上縁との間には砕石又は土砂が充填されてなり、か
つ前記ゴム複合体免震要素占有部近傍のコンクリート杭
の上端に高強度剛性短ロッドが立設固定されてなること
を特徴とする建築物の基礎免震構造。
2. A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. The foundation beam or foundation plate is partly placed underground or in contact with the ground, and the space between these foundations and the upper edge of concrete pile or rock is filled with crushed stone or earth and sand, and A base seismic isolation structure for a building, wherein a high-strength rigid short rod is erected and fixed at the upper end of a concrete pile near the rubber composite seismic isolation element occupying portion.
【請求項3】建築物の基礎梁又は基礎底板とその下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設され、また前記基礎
梁又は基礎底板はその一部が地中又は地面に接して載置
され、そしてこれら基礎とコンクリート杭の上縁又は岩
盤の上縁との間には砕石又は土砂が充填されてなり、か
つ前記ゴム複合体免震要素占有部近傍の基礎梁又は基礎
底板下面に、高強度剛性短ロッドが垂設固定されてなる
ことを特徴とする建築物の基礎免震構造。
3. A rubber composite seismic isolation element is interposed between a foundation beam or a bottom plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. The foundation beam or foundation plate is partly placed underground or in contact with the ground, and the space between these foundations and the upper edge of concrete pile or rock is filled with crushed stone or earth and sand, and A basic seismic isolation structure for a building, wherein a high-strength rigid short rod is vertically fixed to a lower surface of a foundation beam or a foundation bottom plate near the rubber composite seismic isolation element occupying portion.
【請求項4】建築物の基礎梁又は基礎底板とその下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設され、また前記基礎
梁又は基礎底板はその一部が地中又は地面に接して載置
され、そしてこれら基礎とコンクリート杭の上縁又は岩
盤の上縁との間には砕石又は土砂が充填されてなり、か
つ前記ゴム複合体免震要素占有部近傍のコンクリート杭
の上端に高強度剛性短ロッドが立設固定され、さらに前
記ゴム複合体免震要素占有部近傍の基礎梁又は基礎底板
下面に、高強度剛性短ロッドが垂設固定されてなること
を特徴とする建築物の基礎免震構造。
4. A rubber composite seismic isolation element is interposed between a foundation beam or a base plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. The foundation beam or foundation plate is partly placed underground or in contact with the ground, and the space between these foundations and the upper edge of concrete pile or rock is filled with crushed stone or earth and sand, and A high-strength rigid short rod is erected and fixed at the upper end of the concrete pile near the rubber composite seismic isolation element occupation part. Basic seismic isolation structure for buildings, characterized by short rods fixed vertically.
【請求項5】建築物の基礎梁又は基礎底板とその下方の
地中に設けられたコンクリート杭の上縁又は岩盤の上縁
との間にゴム複合体免震要素が介設され、また前記基礎
梁又は基礎底板はその一部が地中又は地面に接して載置
され、また、前記コンクリート杭の上縁又は岩盤の上縁
には前記ゴム複合体免震要素を取り囲んで土留め鋼管
が、その上端縁を前記基礎梁又は基礎底板に非接触状態
で定着され、そしてまた前記基礎とコンクリート杭又は
岩盤の上縁との間の土留め鋼管外方には砕石又は土砂が
充填されてなることを特徴とする建築物の基礎免震構
造。
5. A rubber composite seismic isolation element is interposed between a foundation beam or a bottom plate of a building and an upper edge of a concrete pile or an upper edge of a bedrock provided thereunder. A part of the foundation beam or foundation plate is placed underground or in contact with the ground, and an earth retaining steel pipe surrounding the rubber composite seismic isolation element is provided on the upper edge of the concrete pile or the upper edge of the rock. The upper edge is fixed to the foundation beam or foundation plate in a non-contact state, and the outside of the retaining steel pipe between the foundation and the upper edge of the concrete pile or rock is filled with crushed stone or earth and sand. The base seismic isolation structure of a building characterized by the following.
JP11196775A 1999-07-09 1999-07-09 Base isolation structure of building Pending JP2001020558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11196775A JP2001020558A (en) 1999-07-09 1999-07-09 Base isolation structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11196775A JP2001020558A (en) 1999-07-09 1999-07-09 Base isolation structure of building

Publications (1)

Publication Number Publication Date
JP2001020558A true JP2001020558A (en) 2001-01-23

Family

ID=16363434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11196775A Pending JP2001020558A (en) 1999-07-09 1999-07-09 Base isolation structure of building

Country Status (1)

Country Link
JP (1) JP2001020558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146419A (en) * 2005-11-25 2007-06-14 Jsp Corp Base-isolation foundation structure of building, and construction method for base-isolation foundation
JP2011032832A (en) * 2009-08-05 2011-02-17 Kihara Corporation:Kk Quake-absorbing support, and ground quake-absorbing construction using the same
CN107313527A (en) * 2017-07-28 2017-11-03 中国地震局工程力学研究所 Shock resistance antiknock based on elastic cement material subtracts shock insulation stake and its application method
CN110397091A (en) * 2019-08-08 2019-11-01 河北建筑工程学院 Ancient building shock insulation barrier
JP2020051226A (en) * 2018-09-28 2020-04-02 株式会社フジタ Foundation structure
CN114658125A (en) * 2022-03-24 2022-06-24 澳创国际工程设计(深圳)有限公司 Shock insulation support for recycling temporary building and use method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146419A (en) * 2005-11-25 2007-06-14 Jsp Corp Base-isolation foundation structure of building, and construction method for base-isolation foundation
JP2011032832A (en) * 2009-08-05 2011-02-17 Kihara Corporation:Kk Quake-absorbing support, and ground quake-absorbing construction using the same
CN107313527A (en) * 2017-07-28 2017-11-03 中国地震局工程力学研究所 Shock resistance antiknock based on elastic cement material subtracts shock insulation stake and its application method
JP2020051226A (en) * 2018-09-28 2020-04-02 株式会社フジタ Foundation structure
JP7198623B2 (en) 2018-09-28 2023-01-04 株式会社フジタ foundation structure
CN110397091A (en) * 2019-08-08 2019-11-01 河北建筑工程学院 Ancient building shock insulation barrier
CN114658125A (en) * 2022-03-24 2022-06-24 澳创国际工程设计(深圳)有限公司 Shock insulation support for recycling temporary building and use method thereof
CN114658125B (en) * 2022-03-24 2023-09-05 澳创国际工程设计(深圳)有限公司 Shock insulation support for temporary building cyclic utilization and use method thereof

Similar Documents

Publication Publication Date Title
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP3780816B2 (en) Seismic isolation method for existing buildings
JP2001020558A (en) Base isolation structure of building
CN211171579U (en) Take seamless antidetonation abutment of disconnect-type strap
KR101742438B1 (en) Integral abutment bridge having rotation receptive device at abutment-pile jointing site
JP7338119B2 (en) Floating control structure and reversed construction method
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP3690495B2 (en) Building construction method and building
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP2000120079A (en) Base isolation structure of pile
JP4445341B2 (en) Building foundation and its construction method
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JPH08184064A (en) Foundation structure of building
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP2002201816A (en) Base isolation foundation structure of building
JP2000064327A (en) Base isolation structure of structure
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
CN206346220U (en) A kind of pile foundation barricade antidetonation retaining structure of the cushion containing EPS
JP3132876U (en) Reinforcement foundation structure of building
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JPH0119487B2 (en)
KR102667832B1 (en) Design method of underground exterior wall using PHC retaining wall as permanent exterior wall
CN214301871U (en) Sleeve pile-foundation cushion combined shock insulation system
JP3773134B2 (en) Seismic isolation method for structures using micropile