JPH0119487B2 - - Google Patents

Info

Publication number
JPH0119487B2
JPH0119487B2 JP22326583A JP22326583A JPH0119487B2 JP H0119487 B2 JPH0119487 B2 JP H0119487B2 JP 22326583 A JP22326583 A JP 22326583A JP 22326583 A JP22326583 A JP 22326583A JP H0119487 B2 JPH0119487 B2 JP H0119487B2
Authority
JP
Japan
Prior art keywords
pile
steel pipe
head
reinforced concrete
bending moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22326583A
Other languages
Japanese (ja)
Other versions
JPS60115717A (en
Inventor
Hiroaki Nagaoka
Kimihisa Takano
Hiromichi Matsumura
Hitoshi Sakuma
Masayoshi Saito
Tetsuzo Hirose
Tomonobu Fukuya
Takeshi Todoroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP22326583A priority Critical patent/JPS60115717A/en
Publication of JPS60115717A publication Critical patent/JPS60115717A/en
Publication of JPH0119487B2 publication Critical patent/JPH0119487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、地震等の地盤変位に対処した二重管
杭頭場所打ち鉄筋コンクリート杭を提供すること
を目的とするものである。 現在行なわれている場所打ち鉄筋コンクリート
杭の耐震設計においては、第1図に示すように、
杭頭に水平力Pの作用した状態を考え、これによ
り発生した曲げモーメントに対し杭断面の設計を
行つている。結果的には、杭1の杭頭近傍(例え
ば杭径1250mmの場所打ち杭においては杭頭からほ
ぼ10mの間)に大きな曲げモーメントが発生する
ことから、杭頭近傍においてのみ耐震設計を行
い、杭1の中間部及び下部においては実質的に耐
震設計を行なつていなかつた。なお第1図におい
て、aは杭構造、bは杭の曲げモーメント分布を
示す。 しかしながら、実際に地震が発生した場合に
は、杭頭近傍以外の場所に、大きな曲げ歪が発生
していることが観測され始めている。例えば第2
図のように、上部が軟弱沖積層でN≒O、深さ約
21m以下の沖積層でN>50のN値分布を有する地
盤に、直杭1aとして径600mm、肉厚9mmの鋼管
杭を、斜杭1bとして径600mm、肉厚12mmの鋼管
杭が、第3図aに示すように合計64本打設されて
おり、この基礎に対し地震が発生したときの杭各
部における歪が観測されている。地震の強さが基
盤最大加速度2.4galの場合、直杭1aの深度に対
する歪は第3図bに、また斜杭1bの深度に対す
る歪はcに示す如くなる。すなわち、直杭1aの
杭頭部の曲げ歪は最大15.4μであるが、従来耐震
設計上考慮に入れていない支持層上端部において
も最大8.9μの曲げ歪が生じている。 この観測結果から、地震の強さが基盤最大加速
度200galの場合の歪を推定すると、第1表のよう
になる。
An object of the present invention is to provide a cast-in-place reinforced concrete pile with a double pipe pile cap that can cope with ground displacement due to earthquakes and the like. In the seismic design of cast-in-place reinforced concrete piles currently being carried out, as shown in Figure 1,
Considering the situation in which a horizontal force P acts on the pile head, the pile cross section is designed to handle the bending moment generated by this. As a result, a large bending moment will occur near the pile cap of pile 1 (for example, approximately 10 m from the pile cap for a cast-in-place pile with a diameter of 1250 mm), so seismic design was performed only in the vicinity of the pile cap. There was virtually no seismic design for the middle and lower parts of Pile 1. In Fig. 1, a indicates the pile structure, and b indicates the bending moment distribution of the pile. However, when an earthquake actually occurs, it is beginning to be observed that large bending strains occur in locations other than the vicinity of the pile cap. For example, the second
As shown in the figure, the upper part is a soft alluvial layer with N≒O and the depth is approximately
A steel pipe pile with a diameter of 600 mm and a wall thickness of 9 mm was used as the straight pile 1a, and a steel pipe pile with a diameter of 600 mm and a wall thickness of 12 mm was installed as the oblique pile 1b in the ground with an N value distribution of N > 50 in an alluvial layer of 21 m or less. As shown in Figure a, a total of 64 piles have been driven, and the strain in each part of the piles when an earthquake occurs on this foundation has been observed. When the earthquake strength is 2.4 gal at the maximum foundation acceleration, the strain with respect to the depth of the straight pile 1a is shown in Figure 3b, and the strain with respect to the depth of the slanted pile 1b is shown in Figure 3c. That is, the maximum bending strain of the pile head of the straight pile 1a is 15.4μ, but the maximum bending strain of 8.9μ occurs even at the upper end of the support layer, which has not been taken into consideration in conventional seismic design. Based on these observation results, we can estimate the strain when the earthquake strength is 200 gal at the maximum foundation acceleration, as shown in Table 1.

【表】 この場合、直杭1aの支持層上部の最大歪は
1058μとなり、杭の降伏点を超えてしまうという
問題が生じる。 このように、実際に地震が発生した場合の観測
結果から、現在行われている杭の耐震設計法は不
十分であることが判明したので、地震時に杭に生
じる歪の分布を模型振動実験により詳細に調査し
たところ、以下のことが明らかになつた。実験模
型としては、第4図に示すように、地盤、杭、上
部構造物よりなるものを考え、地盤モデルが表
層、軟弱層、N値30程度の砂層からなる中間層、
粘土等の軟弱層及び支持層からなり、実地盤、基
礎及び構造物が相似律を満足している構造とし
た。 第5図は上記の実験結果を示すもので、aは場
所打ち杭モデルを使用し、入力加速度10gal、地
盤共振周波数3.3Hzの振動を加えた場合の曲げ歪
分布を示し、bは鋼管杭モデルを使用し、入力加
速度10gal、地盤共振周波数3.2Hzの振動を加え
た場合の曲げ歪分布を示す。 なお、図において、ヤング係数Emの数値は、
地盤モデルとして使用した各地盤層のヤング係数
を示す。第5図a,bから明らかなように、曲げ
歪は中間層の上下端、支持層上端等地層の境界で
大きな値を示している。 以上のように、実際に発生した地震の際の観測
結果及び模型実験の結果から、杭の曲げモーメン
トを発生させる要因は、第6図aに示すような杭
頭部の水平力Pによる歪のみならず、bに示すよ
うな地震時における地盤変位による杭の強制変位
も大きく影響する。このため杭の耐震設計にあた
つてはeに示すように、cに示す地盤変位による
曲げモーメントと、dに示す杭頭部の水平力によ
る曲げモーメントが合成した曲げモーメントを考
慮する必要がある。 ところで、従来の場所打ち鉄筋コンクリート杭
は、例えば、軸部のコンクリート許容応力度を常
時60Kg/cm2とすると、先端地盤の許容支持力度は
最大で約25Kg/cm2となることから、軸部のコンク
リート許容応力度を全部利用するために杭先端部
を約2倍程度に拡底しており、このため杭が支持
する常時鉛直荷重は約2倍に増大する。地震時に
作用する杭頭への水平力は、大略(常時鉛直荷重
×水平振動)で表わされるので、常時鉛直荷重が
増大すると水平力も増大するため、杭頭部がこの
水平力に耐え得るためには、杭頭部における鉄筋
の量を増大する必要があり、このため、第7図に
示ように杭頭部を拡径しないと配筋が不可能にな
る。したがつて、地下室等の如く、上部構造から
の水平力を軽減するものがある場合以外は、拡底
と共に拡頭した拡頭杭としなければならない。な
お、第7図において、1は杭、2はコンクリー
ト、3は拡底部、4は拡頭部、5は鉄筋である。 この拡頭杭に対する地震時の地盤変位によつて
発生する杭頭曲げモーメント分布の一例を第8図
aに示す。図において、イは軸径1250mmの非拡場
所打ち鉄筋コンクリート杭の地盤変位による曲げ
モーメント分布を示し、ロは拡頭部径1750mm、拡
頭部の長さ8m、軸径1250mmの拡頭場所打ち鉄筋
コンクリート杭の地盤変位による曲げモーメント
分布を示す。なお、杭を設置した地盤は、b図に
示すようにN=7の細砂が約5m、N=3のシル
トが約5mから約18mの間、それより深部はN=
50の砂礫からなつている。 第8図aに示した例では、杭頭曲げモーメント
が非拡頭杭においては約130t・mであるのに対
し、拡頭杭では約430t・mとなつている。すなわ
ち、地盤変位により発生する杭頭曲げモーメント
は、拡頭杭の場合は拡頭により拡頭部の曲げ剛性
が大となるため、非拡頭杭の数倍になつてしま
う。したがつて、従来の場所打ち鉄筋コンクリー
ト杭では、地震時の地盤変位を考慮すると、杭頭
曲げモーメントに抗し得るためにはさらに拡頭し
なければならないが、拡頭の径を大にすると杭頭
部の剛性はさらに増大するという悪循環が生ず
る。 本発明は、上記のような問題点を解決した二重
管杭頭場所打ち鉄筋コンクリート杭を提供するこ
とを目的とするものである。 本発明に係る二重管杭頭場所打ち鉄筋コンクリ
ート杭は、杭頭部が鉛直抵抗用部材として下杭の
鉄筋コンクリート杭に植え込む内部の鋼管または
鋼管コンクリート(以下内部鋼管等という。)と、
水平抵抗用部材として内部鋼管等より管長が短か
い外部鋼管とからなり、外部鋼管が頭部以外では
内部鋼管及び下杭の鉄筋コンクリート杭に接触し
ないように設置することにより、地盤変位による
曲げモーメントの発生を小さくおさえ、かつ上部
構造からの水平力及び鉛直力を支持するものであ
る。 以下、実施例に基いて本発明を説明する。 第9図は、本発明実施例の縦断面図で、6は内
部鋼管、7は外部鋼管、8は内外管接合鋼板、9
は鉄筋コンクリート杭である。 内部鋼管6とこの内部鋼管6を取り囲む外部鋼
管7の頭部が内外管接合鋼板8により接合されて
いる。また、外部鋼管7の管長は内部鋼管6の管
長より短かく、外部鋼管7は頭部以外では内部鋼
管6及び下杭の鉄筋コンクリート杭9に接触しな
いように、内部鋼管6の下部が鉄筋コンクリート
杭9に植え込まれる。内部鋼管6と外部鋼管7と
の間隙11は空隙あるいは軟弱土又はポリウレタ
ン等の軟弱充填材10を充填して、内部鋼管6と
外部鋼管7を遮断している。この内部鋼管6及び
鉄筋コンクリート杭9が鉛直抵抗用部材として作
用し、外部鋼管7が水平抵抗用部材として作用す
る。 内部鋼管6が径600mm肉厚19mmの鋼管、外部鋼
管7が径1200mm、肉厚12mm、長さ6mの鋼管、鉄
筋コンクリート杭9の杭径が1250mmの場合の地盤
変動により発生する曲げモーメント分布を第10
図に示す。なお地盤条件は第8図bと同一構造で
ある。図においてハは外部鋼管7の曲げモーメン
ト分布、ニは内部鋼管6と鉄筋コンクリート杭9
の曲げモーメント分布を示す。また点ホは内部鋼
管6と鉄筋コンクリート杭9の境界部を示す。図
から明らかなように、外部鋼管7の杭頭曲げモー
メントは約40t・mであり、第8図aのロに示し
た拡頭・拡底場所打ち鉄筋コンクリート杭とほぼ
同一機能をもつにもかかわらず、地盤変位によつ
て発生する曲げモーメントは非常に小さくなつて
いる。すなわち第10図で対象とした杭の場合、
地震時の地盤変位により杭頭部に発生する曲げモ
ーメントは内部鋼管で約12t・m、外部鋼管で約
40t・mであり、第8図aのロで対象とした拡
頭・拡底場所打ち鉄筋コンクリート杭の約430t・
mの値を考えると、杭自体の経済設計及び基礎梁
の経済設計が図れることは明白である。 なお、第9図において、内外管接合鋼板8を用
いないで、内部鋼管6と外部鋼管7を接合せず、
フーチングに埋め込む場合も同様の経済設計がで
き、また内部の鋼管を鋼管コンクリートとする場
合も同様である。 また、第11図に本発明の他の実施例を示す。
図において、第9図と同一符号は同一構成を示
す。12は内部鋼管6の下部に接合された位置ぎ
め鋼板で、鉄筋コンクリート杭9の鉄筋5に接合
され、杭頭部の植え込みが容易となる。 以上の説明から明らかなように、本発明によれ
ば、杭頭部を拡頭鉄筋コンクリート杭ほど剛にせ
ず、地盤変位により発生する杭頭曲げモーメント
を小さく抑えることができ、さらに拡底した場合
も拡底により大きくなつた水平力を処理すること
ができ、耐振設計上経済性のある場所打ち鉄筋コ
ンクリート杭を実現でき、実施による効果が大で
ある。
[Table] In this case, the maximum strain at the top of the support layer of straight pile 1a is
1058μ, which causes the problem of exceeding the yield point of the pile. In this way, based on the observation results when an earthquake actually occurs, it has become clear that the currently used seismic design methods for piles are insufficient, so we conducted model vibration experiments to examine the distribution of strain that occurs in piles during earthquakes. A detailed investigation revealed the following: As shown in Figure 4, the experimental model consists of the ground, piles, and superstructure, and the ground model consists of a surface layer, a soft layer, an intermediate layer consisting of a sand layer with an N value of about 30,
The structure consists of a soft layer such as clay and a supporting layer, and the actual ground, foundation, and structure satisfy the law of similarity. Figure 5 shows the above experimental results, where a shows the bending strain distribution when using a cast-in-place pile model and applying vibration with an input acceleration of 10 gal and a ground resonance frequency of 3.3 Hz, and b shows the steel pipe pile model. The bending strain distribution is shown when vibration is applied at an input acceleration of 10 gal and a ground resonance frequency of 3.2 Hz. In addition, in the figure, the numerical value of Young's coefficient Em is
The Young's modulus of each ground layer used as a ground model is shown. As is clear from FIGS. 5a and 5b, the bending strain shows large values at the boundaries of the strata, such as the upper and lower ends of the intermediate layer and the upper end of the supporting layer. As mentioned above, based on the observation results and model experiment results during actual earthquakes, the only factor that causes the bending moment of a pile is the strain caused by the horizontal force P on the pile head as shown in Figure 6a. In addition, forced displacement of piles due to ground displacement during an earthquake as shown in b also has a large effect. Therefore, when designing the seismic resistance of piles, it is necessary to consider the combined bending moment of the bending moment due to ground displacement shown in c and the bending moment due to the horizontal force on the pile head shown in d, as shown in e. . By the way, for conventional cast-in-place reinforced concrete piles, for example, if the concrete allowable stress of the shaft is always 60Kg/cm 2 , the maximum allowable bearing capacity of the ground at the tip is about 25Kg/cm 2 , so the shaft In order to utilize the full allowable stress level of the concrete, the bottom of the pile tip is approximately doubled, and as a result, the normal vertical load supported by the pile increases approximately twice as much. The horizontal force that acts on the pile head during an earthquake is roughly expressed as (continuous vertical load x horizontal vibration), so as the constant vertical load increases, the horizontal force also increases, so in order for the pile head to withstand this horizontal force, In this case, it is necessary to increase the amount of reinforcing bars at the pile head, and therefore reinforcement cannot be arranged unless the diameter of the pile head is expanded as shown in FIG. Therefore, unless there is something to reduce the horizontal force from the superstructure, such as in a basement, piles with an expanded head and an expanded bottom should be used. In addition, in FIG. 7, 1 is a pile, 2 is concrete, 3 is an enlarged bottom part, 4 is an enlarged head part, and 5 is a reinforcing bar. An example of the pile head bending moment distribution generated by ground displacement during an earthquake for this expanded head pile is shown in Figure 8a. In the figure, A shows the bending moment distribution due to ground displacement of a non-expanded cast-in-place reinforced concrete pile with a shaft diameter of 1250 mm, and B shows the bending moment distribution due to ground displacement of an expanded cast-in-place reinforced concrete pile with an expanded head diameter of 1750 mm, an expanded head length of 8 m, and a shaft diameter of 1250 mm. The bending moment distribution due to displacement is shown. As shown in Figure b, the ground on which the piles were installed is about 5 m of fine sand with N=7, about 5 m to about 18 m of silt with N=3, and deeper than that is N=
It is made up of 50 gravels. In the example shown in Figure 8a, the pile cap bending moment is approximately 130 t·m for non-expanded piles, while it is approximately 430 t·m for expanded piles. That is, in the case of an expanded pile, the bending moment of the pile head caused by ground displacement is several times that of a non-expanded pile because the bending rigidity of the expanded head increases due to the expanded head. Therefore, when considering ground displacement during an earthquake, conventional cast-in-place reinforced concrete piles must be further expanded in order to withstand the pile head bending moment. A vicious cycle occurs in which the stiffness of the material further increases. An object of the present invention is to provide a cast-in-place reinforced concrete pile with a double pipe pile cap that solves the above-mentioned problems. The cast-in-place reinforced concrete pile with a double pipe pile head according to the present invention includes an internal steel pipe or steel pipe concrete (hereinafter referred to as internal steel pipe, etc.) whose pile head is implanted into the reinforced concrete pile of the lower pile as a vertical resistance member,
The horizontal resistance member consists of an external steel pipe whose pipe length is shorter than that of the internal steel pipe, etc., and by installing the external steel pipe so that it does not contact the internal steel pipe or the reinforced concrete pile at the bottom except at the head, bending moment due to ground displacement can be reduced. This is to keep the generation to a small level and support horizontal and vertical forces from the upper structure. The present invention will be explained below based on Examples. FIG. 9 is a longitudinal cross-sectional view of an embodiment of the present invention, in which 6 is an internal steel pipe, 7 is an external steel pipe, 8 is a steel plate for joining the inner and outer pipes, and 9
is a reinforced concrete pile. The head of the inner steel pipe 6 and the outer steel pipe 7 surrounding the inner steel pipe 6 are joined by an inner and outer pipe joining steel plate 8. In addition, the length of the external steel pipe 7 is shorter than that of the internal steel pipe 6, and the lower part of the internal steel pipe 6 is connected to the reinforced concrete pile 9 so that the external steel pipe 7 does not contact the internal steel pipe 6 and the reinforced concrete pile 9 of the lower pile except for the head part. be implanted in A gap 11 between the inner steel pipe 6 and the outer steel pipe 7 is filled with a void or a soft filler 10 such as soft earth or polyurethane to isolate the inner steel pipe 6 and the outer steel pipe 7. The internal steel pipe 6 and reinforced concrete pile 9 act as vertical resistance members, and the external steel pipe 7 acts as a horizontal resistance member. The bending moment distribution caused by ground movement when the internal steel pipe 6 is a steel pipe with a diameter of 600 mm and a wall thickness of 19 mm, the external steel pipe 7 is a steel pipe with a diameter of 1200 mm, a wall thickness of 12 mm, and a length of 6 m, and the reinforced concrete pile 9 has a pile diameter of 1250 mm is calculated as follows. 10
As shown in the figure. The ground conditions are the same as in Figure 8b. In the figure, C is the bending moment distribution of the external steel pipe 7, and D is the internal steel pipe 6 and the reinforced concrete pile 9.
shows the bending moment distribution. Further, point E indicates the boundary between the internal steel pipe 6 and the reinforced concrete pile 9. As is clear from the figure, the pile head bending moment of the external steel pipe 7 is approximately 40 t・m, and although it has almost the same function as the expanded head and expanded bottom cast-in-place reinforced concrete pile shown in Figure 8 a, Bending moments generated by ground displacement are becoming much smaller. In other words, in the case of the pile targeted in Figure 10,
The bending moment generated at the pile head due to ground displacement during an earthquake is approximately 12 t・m for the internal steel pipe and approximately 12 t・m for the external steel pipe.
40 t・m, and approximately 430 t・m of the reinforced concrete pile with expanded head and expanded bottom targeted in Figure 8 a.
Considering the value of m, it is clear that the economic design of the pile itself and the foundation beam can be achieved. In addition, in FIG. 9, the inner steel pipe 6 and the outer steel pipe 7 are not joined without using the inner and outer pipe joining steel plates 8,
A similar economical design can be achieved when the pipe is embedded in a footing, and the same is true when the internal steel pipe is made of steel pipe concrete. Further, FIG. 11 shows another embodiment of the present invention.
In the figure, the same symbols as in FIG. 9 indicate the same configurations. A positioning steel plate 12 is connected to the lower part of the internal steel pipe 6, and is connected to the reinforcing bars 5 of the reinforced concrete pile 9, thereby facilitating the planting of the pile head. As is clear from the above description, according to the present invention, the pile head is not made as rigid as an expanded reinforced concrete pile, and the bending moment of the pile head caused by ground displacement can be suppressed to a small level. It is possible to realize cast-in-place reinforced concrete piles that can handle increased horizontal forces and are economical in terms of vibration-resistant design, and the effects of implementation are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の耐震設計法による場所打ち杭
の模式図、bはその曲げモーメント分布図、第2
図は地震発生時の杭の歪を観測したときの地盤条
件図、第3図aは地震発生時の杭の歪を観測した
ときの杭構造図、bはそのときの直杭の曲げ歪分
布図、cは斜杭の曲げ歪分布図、第4図は模型振
動実験のモデル図、第5図a,bは模型振動実験
における杭の曲げ歪分布図、第6図aは場所打ち
杭の模式図、bは地盤変位図、cは地盤変位によ
る曲げモーメント分布図、dは杭頭水平力による
曲げモーメント分布図、eは両者を合成した曲げ
モーメント分布図、第7図は拡頭した場所打ち鉄
筋コンクリート杭の構成図、第8図aは地盤変位
による曲げモーメント分布図、bはその地盤構造
図、第9図は本発明実施例の構造図、第10図は
地盤変位による曲げモーメント分布図、第11図
は本発明他の実施例の構造図である。 1:杭、2:コンクリート、3:拡底部、4:
拡頭部、5:鉄筋、6:内部鋼管、7:外部鋼
管、8:内外管接合鋼管、9:場所打ち鉄筋コン
クリート杭。
Figure 1a is a schematic diagram of a cast-in-place pile based on the conventional seismic design method, b is its bending moment distribution diagram, and Figure 2
Figure 3 is a diagram of the ground conditions when pile strain was observed when an earthquake occurred, Figure 3a is a pile structure diagram when pile strain was observed when an earthquake occurred, and b is the bending strain distribution of straight piles at that time. Figures 1 and 2c are bending strain distribution diagrams of a diagonal pile, Figure 4 is a model diagram of a model vibration experiment, Figures 5a and b are bending strain distribution diagrams of a pile in a model vibration experiment, and Figure 6a is a diagram of a cast-in-place pile. Schematic diagram, b is a ground displacement diagram, c is a bending moment distribution diagram due to ground displacement, d is a bending moment distribution diagram due to horizontal force on the pile head, e is a bending moment distribution diagram that combines both, Figure 7 is an expanded cast-in-place diagram. A configuration diagram of a reinforced concrete pile, Fig. 8a is a bending moment distribution diagram due to ground displacement, b is a diagram of its ground structure, Fig. 9 is a structural diagram of an embodiment of the present invention, Fig. 10 is a bending moment distribution diagram due to ground displacement, FIG. 11 is a structural diagram of another embodiment of the present invention. 1: Pile, 2: Concrete, 3: Expanded bottom, 4:
Expanded head, 5: Rebar, 6: Internal steel pipe, 7: External steel pipe, 8: Jointed inner and outer pipe steel pipe, 9: Cast-in-place reinforced concrete pile.

Claims (1)

【特許請求の範囲】[Claims] 1 下杭の鉄筋コンクリート杭に植え込む鉛直抵
抗用部材としての鋼管または鋼管コンクリートの
内部鋼管と、内部鋼管を取り囲む水平抵抗用部材
としての前記内部鋼管より管長が短い外部鋼管と
からなり、外部鋼管をその頭部以外では内部鋼管
及び下杭の鉄筋コンクリート杭に接触しないよう
に設置したことを特徴とする二重管杭頭場所打ち
鉄筋コンクリート杭。
1 Consisting of an internal steel pipe of steel pipe or steel pipe concrete as a vertical resistance member to be implanted in the reinforced concrete pile of the lower pile, and an external steel pipe with a shorter pipe length than the internal steel pipe as a horizontal resistance member surrounding the internal steel pipe, and the external steel pipe is A cast-in-place reinforced concrete pile with a double pipe pile head, characterized in that the pile is installed so that parts other than the head do not come into contact with the internal steel pipe and the reinforced concrete pile of the lower pile.
JP22326583A 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile Granted JPS60115717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22326583A JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22326583A JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Publications (2)

Publication Number Publication Date
JPS60115717A JPS60115717A (en) 1985-06-22
JPH0119487B2 true JPH0119487B2 (en) 1989-04-12

Family

ID=16795398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22326583A Granted JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Country Status (1)

Country Link
JP (1) JPS60115717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138948A (en) * 1993-11-18 1995-05-30 Elf:Kk Cast-in-place pile driving method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063878A (en) * 2013-09-26 2015-04-09 大東建託株式会社 Method of constructing steel pipe pile and steel pipe pile
JP6873613B2 (en) * 2016-06-14 2021-05-19 三谷セキサン株式会社 How to build foundation piles, foundation pile structure and double ready-made piles
JP7410505B2 (en) * 2018-06-29 2024-01-10 ジャパンパイル株式会社 Concrete piles with double steel pipes, their manufacturing equipment, pile cap joint structure and joint pile structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138948A (en) * 1993-11-18 1995-05-30 Elf:Kk Cast-in-place pile driving method

Also Published As

Publication number Publication date
JPS60115717A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
EP1157169B1 (en) Short aggregate pier techniques
JP3165450B2 (en) Arrangement method of reinforcement and foundation body in foundation formation of ground reinforcement type
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP3756385B2 (en) Composite pile and its construction method
KR101341260B1 (en) Method of reinforcing existing concrete footing structure using micropile
JP3385876B2 (en) Cast-in-place pile construction method just below the existing foundation
JPH0119487B2 (en)
JP2002364006A (en) Construction method for underwater foundation
JP3690495B2 (en) Building construction method and building
JP2001098542A (en) Soil cement composite taper pile
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
JP2001020558A (en) Base isolation structure of building
JP3648646B2 (en) Structure liquefaction countermeasure structure
JPH05132923A (en) Improving method for soft ground
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JPH0713366B2 (en) Reinforcing pile for sandy ground
JP2601702B2 (en) Soft ground improvement method
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP7019905B2 (en) Pile foundation structure and reinforcement method for existing piles
JP3773134B2 (en) Seismic isolation method for structures using micropile
JPH0726569A (en) Pile foundation construction method for structure exposed to partial earth pressure
KR100374200B1 (en) Reinforcement method fot tip of still pile