JPS60115717A - Cast-in-place reinforced concrete pile head with double-tubular pile - Google Patents

Cast-in-place reinforced concrete pile head with double-tubular pile

Info

Publication number
JPS60115717A
JPS60115717A JP22326583A JP22326583A JPS60115717A JP S60115717 A JPS60115717 A JP S60115717A JP 22326583 A JP22326583 A JP 22326583A JP 22326583 A JP22326583 A JP 22326583A JP S60115717 A JPS60115717 A JP S60115717A
Authority
JP
Japan
Prior art keywords
pile
steel tube
head
reinforced concrete
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22326583A
Other languages
Japanese (ja)
Other versions
JPH0119487B2 (en
Inventor
Hiroaki Nagaoka
長岡 弘明
Kimihisa Takano
公寿 高野
Hiromichi Matsumura
松村 弘道
Hitoshi Sakuma
仁 佐久間
Masayoshi Saito
斉藤 政義
Tetsuzo Hirose
廣瀬 鉄蔵
Tomonobu Fukuya
福屋 智亘
Takeshi Todoroki
轟 丈詩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22326583A priority Critical patent/JPS60115717A/en
Publication of JPS60115717A publication Critical patent/JPS60115717A/en
Publication of JPH0119487B2 publication Critical patent/JPH0119487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To lessen bending stress caused by displacement of the ground by a method in which an internal steel tube to be buried in the lower part of a pile as the part for vertical resistance of the pile head and an external steel tube of the pile head consisting of a short steel tube as the part for horizontal resistance are set not to be in contact with an inner steel tube and a lower pile in the portions other than the head. CONSTITUTION:An inner steel tube 6 and head of an outer steel tube 7 are joined with connecting steel plates 8. In portions other than the head of the outer steel tube 7, the lower part of the inner steel tube 6 is buried in a reinforced concrete pile 9 so as not to be touched by the inner steel tube 6 and the reinforced concrete pile 9 of the lower pile. A soft filler 10 is paced into the aperture 11 between the inner steel tube 6 and the outer steel tube 7 to isolate the inner steel tube 6 from the outer steel tube 7. The bending moment of the pile head due to displacement of the ground can thus be lessened without the needs to obtain the same stiffness of the pile head as the expanded head reinforced concrete pile. Even in the case of expanded bottom pile, horizontal forces increased by expanding the bottom can be treated.

Description

【発明の詳細な説明】 本発明は、地震等の地盤変位に対処した二重管杭頭W所
打ち鉄筋コンク11−ト杭を提供することを目的とする
ものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a cast-in-place reinforced concrete pile with a double pipe pile head that can cope with ground displacement due to earthquakes and the like.

覗在行t「われでいる場所打ち鉄筋コンクリート杭の面
1ν設計においては、第1図に示すように、杭頭に水平
力Pの作用した状態を考え、これにより発生tた曲げモ
ーメントに対し杭断面の設計な行っている。結平的には
、杭1の杭頭近傍(例夾ば杭径1250闘の場所打ち杭
においては杭頭からほぼ10rnの間)に太きtc曲げ
モーメントが発生することから、杭頭近傍においてのみ
耐震設計を行い、杭1の中間部及び下部においては実質
的に耐震設計を行なっていながった。なお8′11図に
おいて、(a)は杭構造、(b)は杭の曲げモーメント
分布を示す。
When designing a cast-in-place reinforced concrete pile, consider the situation in which a horizontal force P acts on the pile head, as shown in Figure 1, and consider how the pile will react to the bending moment generated by this, as shown in Figure 1. The cross section is designed.In terms of results, a large TC bending moment occurs near the pile cap of pile 1 (for example, in a cast-in-place pile with a pile diameter of 1250, approximately 10rn from the pile cap). Therefore, seismic design was carried out only in the vicinity of the pile cap, and virtually no seismic design was carried out in the middle and lower part of pile 1. In Figure 8'11, (a) shows the pile structure; (b) shows the bending moment distribution of the pile.

Lかl、なから、実際に地震が発生1〜た場合には、抗
頭近傍以外の場所に、犬Nな曲げ歪が発生していること
が観測され始めている。例えば詑2図のように、−F部
が軟弱沖積層でNキ0、深さ約21m以下の洪積層千N
>50のN値分布を有する地盤に、丘部1aとして径6
UJOmm、肉厚9 tnmの鋼管杭を、斜杭1bとし
て径6(10mπ、肉厚12酵の鋼管杭が、第3図(a
)に示すように合計64本打設されており、この基礎に
対し地震が発生またときの杭各部における歪が観測され
ている。地震の強さが基盤最大加速度2.4ga、/の
炉1合、丘部1aの深度に対する歪は第3図(1))に
、また斜杭1bの深度に対する歪は(C)に示す如くな
る。すなわち、置部1aの杭頭部の曲げ歪は最大15.
4μであるが、従来耐震設計上考慮に入れていない支持
層上端部((おいても菫・犬8,9μの曲げ歪が生じて
いる。
Therefore, when an earthquake actually occurs, it is beginning to be observed that bending strains of a magnitude of N are generated in places other than the vicinity of the head. For example, as shown in Figure 2, the -F section is a soft alluvial layer with 0 N, and the diluvial layer with a depth of about 21 m or less is 1,000 N.
A hill 1a with a diameter of 6 on the ground with an N value distribution of >50.
A steel pipe pile with a diameter of 6 (10 mπ and a wall thickness of 12 tnm) is used as the diagonal pile 1b in Fig. 3 (a).
), a total of 64 piles have been driven, and distortions in various parts of the piles have been observed when earthquakes occur on these foundations. The earthquake strength is as shown in Fig. 3 (1)), and the strain as a function of the depth of the sloped pile 1b is shown in Figure 3 (1)), and the strain as a function of the depth of the hill 1a is as shown in (C) for the furnace 1, where the maximum foundation acceleration is 2.4 ga. Become. In other words, the bending strain of the pile head of the mounting portion 1a is at most 15.
4μ, but bending strain of 8.9μ occurs even at the upper end of the support layer, which has not been taken into consideration in conventional seismic design.

この観測結押−から、地震の強さが基#4:大加速度2
00 ga、eの場合の歪を推定すると、第、1表のよ
うになる。
Based on this observation, the strength of the earthquake is based on #4: Large acceleration 2
Estimating the strain in the case of 00 ga, e, the results are as shown in Table 1.

第1表 この場合、置部1aの支持層土部の最大歪は1058μ
となり、杭の降伏点を超えてしまうという問題が生じる
Table 1: In this case, the maximum strain of the support layer soil part of the installation part 1a is 1058μ
This causes the problem that the yield point of the pile is exceeded.

このように、実際に地震が発生した場合の観測結果から
、現在行われている杭の耐震設計法は不十分であること
が判明したので、地震時に杭に生じる歪の分布を模型振
動実験により詳細に調査したところ、以下のことが明ら
かになった。実験模型としては、第4図に示すように、
地盤、杭、上部構造物よりなるものを考え、地盤モデル
が表層、軟弱層、N値60程度の砂層からなる中間層、
粘土等の軟弱層及び支持層からなり、実地盤、基礎及び
構造物が相似律を満足し、ている構造とした。
In this way, based on the observation results when an earthquake actually occurs, it has become clear that the currently used seismic design methods for piles are insufficient, so we conducted model vibration experiments to examine the distribution of strain that occurs in piles during earthquakes. A detailed investigation revealed the following: As an experimental model, as shown in Figure 4,
Considering the ground, piles, and superstructure, the ground model consists of a surface layer, a soft layer, and an intermediate layer consisting of a sand layer with an N value of about 60.
The structure consists of a soft layer such as clay and a supporting layer, and the actual ground, foundation, and structure satisfy the law of similarity.

第5図は上記の実験結果を示すもので、(a)は場所打
ち杭モデルを使用し、入力加速度10 gap、地盤共
振周波数3.31−Izの振動を加えた場合の曲げ歪分
布を示し、(b)は鋼管杭モデルを使用し、入力加速度
10 gal、地盤共振周波数3.2Hzの振動を加え
た場合の曲げ歪分布を示す。
Figure 5 shows the above experimental results, and (a) shows the bending strain distribution when using a cast-in-place pile model and applying vibration with an input acceleration of 10 gaps and a ground resonance frequency of 3.31-Iz. , (b) shows the bending strain distribution when a steel pipe pile model is used and vibration is applied at an input acceleration of 10 gal and a ground resonance frequency of 3.2 Hz.

なお、図において、ヤング係数Emの数値は、地盤モデ
ルとして使用した各地盤層のヤング係数をボす。第5図
(a)、Φ)から明らかなように、曲げ歪は中間層の上
下端、支持層上端等地層の境界で大きな値を示している
In addition, in the figure, the numerical value of Young's modulus Em is the Young's modulus of each ground layer used as a ground model. As is clear from FIG. 5(a), Φ), the bending strain shows large values at the boundaries of the strata, such as the upper and lower ends of the intermediate layer and the upper end of the supporting layer.

以上のように、実際に発生した地震の際の観測結果及び
模型実験の結果から、杭の曲げモーメントを発生させる
要因をま、第6図(a)に示すような杭頭部の水平力P
による歪のみならず、(b)に示すような地震時におけ
る地盤変位による杭の強制変位も大きく影舎する。この
ため杭の耐震設計にあたっては(e)に示すように、(
C)に示す地盤変位による曲げモーメントと、(d)に
示す杭頭部の水平力による曲げモーメントを合成した曲
げモーメントを考慮する必要がある。
As mentioned above, based on the observation results and model experiment results during actual earthquakes, we have determined the factors that generate the bending moment of the pile, and the horizontal force P at the pile head as shown in Figure 6 (a).
In addition to the strain caused by the earthquake, forced displacement of the pile due to ground displacement during an earthquake as shown in (b) is also greatly affected. Therefore, when designing the earthquake resistance of piles, as shown in (e), (
It is necessary to consider the bending moment that is a combination of the bending moment due to ground displacement shown in C) and the bending moment due to the horizontal force of the pile head shown in (d).

ところで、従来の場所PIち鉄筋コンクリート杭は、例
えば、動部のコンクリート許容応力度を常時60kc“
/dとすると、先端地盤の許容支持力度はル太で約25
 kg/cdとなることから、軸部のコンクリート許容
応力度を全部利用するために杭先端部を約2倍f−,i
 &に拡底し、ており、このため杭が支持する常時鉛直
荷重は約2倍に増大する。地震時に作用する杭頭への水
平力は、大略(常時鉛直荷重×水平振動)で表わされる
ので、常時鉛直荷重が増大すると水平力も増大するため
、杭頭部がこの水平力に耐え得るためKは、杭頭部にお
ける鉄筋の量を増大する必要があり、このため、第7図
に示すように杭頭部を枦″径L2ないと配筋が不可能に
なる。したがって、地下室等の如く、上部構造からの水
平力を軽減するものがあるψ合以外は、拡底と共に波頭
した拡頭部とし2なければならない。
By the way, for conventional site PI reinforced concrete piles, for example, the concrete allowable stress of moving parts is always 60kc.
/d, the allowable bearing capacity of the tip ground is approximately 25 in luta.
kg/cd, so in order to fully utilize the concrete allowable stress of the shaft, the pile tip should be approximately doubled f-,i
The bottom of the pile has been widened and the vertical load supported by the pile increases approximately twice as much. The horizontal force that acts on the pile head during an earthquake is roughly expressed as (continuous vertical load x horizontal vibration), so as the constant vertical load increases, the horizontal force also increases, so the pile head can withstand this horizontal force, so K In this case, it is necessary to increase the amount of reinforcing bars at the pile head, and for this reason, as shown in Figure 7, it is impossible to arrange reinforcement unless the pile head has a diameter of L2. , except for cases where there is something to reduce the horizontal force from the superstructure, the top should be enlarged with a wave crest along with the bottom enlargement.

なお、第7図において、1は杭、2はコンクリート、6
は拡底部、4は拡頭部、5は鉄筋である。
In addition, in Fig. 7, 1 is a pile, 2 is concrete, and 6 is
4 is an expanded bottom part, 4 is an expanded head part, and 5 is a reinforcing bar.

この拡頭部に対する地震時の地酒変位によって発生する
杭頭曲げモーメント分布の一例を第8図(a3 K示す
。図において、(イ)は軸径1250raの11拡頭場
所打ち鉄筋コンクリート杭の地盤変位による曲げモーメ
ント分布を示し、0)は拡頭部径1 ’750mrp、
拡頭部の長さ8m、軸径1250y+iの拡」場所打ち
鉄筋コンクリート杭の地盤変位による曲げモーメント分
布を示す。なお、杭を設値した地盤は、Φ)図に示すよ
うにN==7の細砂が約5.、N=3のシルトが約5m
から約18mの間、そねより深部ハN = 50の砂礫
からなっている。
An example of the pile head bending moment distribution caused by local displacement during an earthquake for this expanded head is shown in Figure 8 (a3 K). The moment distribution is shown, 0) is the enlarged head diameter 1'750mrp,
This figure shows the bending moment distribution due to ground displacement of an expanded cast-in-place reinforced concrete pile with an expanded head length of 8 m and a shaft diameter of 1250y+i. The ground on which the piles were set has approximately 5.5 mm of fine sand with N==7 as shown in the figure Φ). , N=3 silt is about 5m
For about 18 m from the base, the depth is made up of sand and gravel with a diameter of N = 50.

第8図(a)に示した例では、杭頭曲げモーメントが非
波頭杭においては約130t−7+1であるのに対し、
拡頭部では約430 t−mとなっている。すなわち、
地盤変位により発生する杭頭曲げモーメントは、拡頭部
の場合は波頭により拡頭部の曲げ剛性が大となるため、
非波頭杭の数倍になってしまう。したがって、従来の場
所打ち鉄筋コンクリ−ト杭では、:1Ji2宸時の地盤
変位を考慮すると、杭頭曲げモーメントに抗し得るため
にはさらに波頭したけれはならないが、波頭の径を犬に
すると杭頭部の剛性はさらに増大するという悪循環が生
する。
In the example shown in Figure 8(a), the pile cap bending moment is approximately 130t-7+1 for the non-corrugated pile, whereas
When the head is expanded, it is approximately 430 tm. That is,
In the case of an expanded pile head, the bending moment of the pile head caused by ground displacement increases as the bending rigidity of the expanded head increases due to the wave crest.
It becomes several times that of non-wave crest piles. Therefore, for conventional cast-in-place reinforced concrete piles, considering the ground displacement at the time of: The stiffness of the pile head further increases, creating a vicious cycle.

本発明は、上記のような問題点を解決した二重管杭頭場
所打ち釣筋コンクリート杭を提供することを目的とする
ものである。
An object of the present invention is to provide a cast-in-place reinforced concrete pile with a double pipe pile cap that solves the above-mentioned problems.

本発明に係る二負管杭頭場所わち鉄筋コンクリ−、ト杭
は、杭頭部が鉛直抵抗用部材として下部の鉄筋コンクI
J −1−杭に植え込む内部の鋼管または銅jvコンク
リート(以下内部鋼管等という。)と、水平抵抗用部材
として内部鋼管等より管長が短かい外部鋼管とからなり
、外部銅管がyfj部以外では内部鋼管及び下部の鉄筋
コンクリート杭に接触しないように設置することにより
、地盤変位による曲げモーメントの発生を小さくおさえ
、かつ上部棒”造からの水平力及び鉛部カを支持するも
σ)である。
The double-negative pipe pile head according to the present invention, that is, the reinforced concrete,
J-1- Consists of an internal steel pipe or copper JV concrete (hereinafter referred to as internal steel pipe, etc.) to be implanted in the pile, and an external steel pipe whose length is shorter than the internal steel pipe, etc. as a horizontal resistance member, and the external copper pipe is located outside the YFJ section. By installing the pipe so that it does not come into contact with the internal steel pipe and the lower reinforced concrete pile, the generation of bending moment due to ground displacement can be suppressed, and the horizontal force from the upper bar structure and the force of the lead section can be supported. .

却下、実施例に基いて本発明を訝明する。Disclaimer: The present invention will be discussed based on the examples.

第9図は、本発明実加ff1f11の縦I!′i面図で
、6は内部鋼管、7は列部鋼管、8は内外管接合鋼+p
i、9は鉄筋コンクリート杭である。
FIG. 9 shows the vertical I! of the actual addition ff1f11 of the present invention! 'I side view, 6 is internal steel pipe, 7 is row steel pipe, 8 is inner and outer pipe joint steel +p
i and 9 are reinforced concrete piles.

内部fA管6と外部1鎖4管7のν1部が内々(管接合
鋼板8により接合されている。fた、外部銅管7の管長
は内部俤1管6の管長より灼がく、外部鋼(臂7は頭部
以外では内部’j%11管6及び1杭の鉄筋コンクリー
ト杭9に接触t、ないように、内部@・」管6の下部が
多4か1コンクリート杭9に枦え込ま才]ろ。内部鋼管
6と外部鋼・管7との間隙11は空隙あるいは軟弱土又
はポリウレタンΦ)−の軟弱充填材1oを充填して、内
部鋼管6と外部銅管7を迎、断している。
The internal fA pipe 6 and the ν1 part of the external one-chain four-pipe 7 are internally joined by a pipe joining steel plate 8.The pipe length of the external copper pipe 7 is longer than that of the internal one-chain pipe 6, and the external steel (The lower part of the internal pipe 6 should be pushed into the concrete pile 9 of 4 or 1 so that the arm 7 does not come in contact with the internal pipe 6 or the reinforced concrete pile 9 of 1 pile except for the head part.) The gap 11 between the inner steel pipe 6 and the outer steel pipe 7 is filled with a void or a soft filler 1o of soft earth or polyurethane Φ) to meet and cut the inner steel pipe 6 and the outer copper pipe 7. ing.

この内部鉢16及び鉄筋コンク1.1 )杭9が鉛直抵
抗用部側として作用し、外部銅管7が水平抵抗用部材と
して作用する。
The internal pot 16 and the reinforced concrete pile 9 act as a vertical resistance member, and the external copper pipe 7 acts as a horizontal resistance member.

内部鋼¥f6が径60(1酊肉厚191mの鋼管、外部
伶管7カ津1200郡11 肉厚12酢、長さ6mの銅
管、鉄筋コンクリート杭9の杭径が125o1nmの場
合の′#lI#変動により発生する曲げモーメント分布
を第1 [1ジ1に示す。なお地盤条件は竿8図山)と
同一構造である。図においてc・)は外部鋼管7の曲げ
モーメント分布、←)は内部鋼管6と鉄筋コンクリート
杭9の曲げモーメント分布を示す。また点(ホ)は内部
鋼管6と鉄筋コンクリート杭9の境界部を示す。図から
明らかなように、外部鋼管7の杭頭曲げ斗−メントは約
40 t−mであり、菓8図(a)の(0)に示した波
頭・拡底場所打ち鉄筋コンクリート杭とほぼ同一機能を
もつにもかかわらず、卸ε盤変位によって発生する曲げ
モーメントは非常に小さく tcっでいる。すなわち第
10図で対象とした杭の場合、地震時の地盤変位により
杭頭部に発生する曲げモーメントは内部鋼管で約12 
t”−m’、外部fA管で約4[1t、、、であり、i
 811 (a) ノ(t−1テ対象とした波頭・拡底
場所打ち鉄筋コンクリート杭の約430 t、、の値を
考えると、杭自体の経済設計及び表:餠梁の経済yy計
がrA汎2)ことは13+1白でtする。
When the internal steel f6 has a diameter of 60 (1 steel pipe with a wall thickness of 191 m, the external pipe has a wall thickness of 7 1200 m, the copper pipe has a length of 6 m, and the reinforced concrete pile 9 has a diameter of 125 o1 nm). The bending moment distribution caused by II# fluctuation is shown in Figure 1.The ground conditions are the same as those in Figure 8). In the figure, c.) shows the bending moment distribution of the external steel pipe 7, and ←) shows the bending moment distribution of the internal steel pipe 6 and the reinforced concrete pile 9. Further, a point (E) indicates the boundary between the internal steel pipe 6 and the reinforced concrete pile 9. As is clear from the figure, the pile head bending shaft of the external steel pipe 7 is approximately 40 tm, and has almost the same function as the wave crest/expanded bottom cast-in-place reinforced concrete pile shown in (0) of Figure 8 (a). Despite this, the bending moment generated by the displacement of the plate is extremely small. In other words, in the case of the pile targeted in Figure 10, the bending moment generated at the pile head due to ground displacement during an earthquake is approximately 12
t''-m', about 4 [1t, , , in the external fA tube, i
811 (a) ノ(t-1T) Considering the value of approximately 430 t for the cast-in-place reinforced concrete pile with expanded bottom and wave crest, the economic design of the pile itself and the economic yy total of the girder are rA ) is t with 13+1 white.

なお、?9図において、内々1管伊合件駅8を用いt「
いで、内部鋼IP6と外部銅管7をりり合→十ず、フー
チングに卯め込む■合も同杭の糸Y済W・言1ができ、
また向合1(のfivをり・jf2コンク11−トどす
る詞・合も同杼である。
In addition,? In Figure 9, t'
Then, join the internal steel IP6 and the external copper pipe 7 and insert them into the footing.
Also, the words ``fiv ri'', ``jf2 conc 11'', and ``go'' are also the same.

また、即11図に本発明の仙の丈旋夕1.′を示す。Also, Fig. 11 shows the 1. ′ is shown.

図において、枦9Vと同−省号は同一本1“成を示す。In the figure, 9V and the same ministry name indicate the same book 1" composition.

12は向合1く鉢1管6の下部に1e合された付値ぎめ
釦1板で、鉄筋コンクリート杭9の鉄筋5((持合され
、杭頭部の相え込ろが容易となる。
Reference numeral 12 designates a bidding button plate 1e fitted to the lower part of the facing pot 1 pipe 6, which is attached to the reinforcing bar 5 of the reinforced concrete pile 9, making it easier to put together the pile head.

ハl土の説明から明らかなようK、不発1明に、1ゎば
、杭頭部を#殆鉄筋コンクリート杭はど岡111(ぜず
、地盤変位により発生するf1頭曲げモーメントを小さ
く抑えることができ、さら如拡穴l、た↓lI合も波底
により太きくtcった水平力を処f[1才ろことができ
、耐振設営]上経済性のある炉所打ぢ鉄筋コンクリート
杭を実現でき、実施、にょるぞ1」が犬である。
As is clear from the explanation of the soil, if the pile head is almost reinforced concrete pile, it is possible to suppress the f1 head bending moment caused by ground displacement to a small value. Even if the hole is enlarged, the wave bottom will be able to handle the horizontal force that is thicker. ``I can do it, I can do it, I'm going to do it, I'm going to do it.'' is a dog.

4、図面の簡単な貌、 #J ?、 1 [!1(alは従来の耐震設計法による場所
打ち杭の模?図、■)はその曲げモーメント分・右図、
銅2ジ1は地υi発牛時の杭の歪を観測したときの地盤
条件図、νj 3 IPl (alは軸震発生時の杭の
歪を1測したときの杭構造図1、(1))はそのときの
丘部の曲げ歪分布図、(C)は斜杭の曲げ歪分布図、第
4図は模型振動実験のモデル図、第5図(a) 、 (
b)は模型振動実験における杭の曲げ歪分布図、第6 
[”21(a)は場所打ち杭の枠式図、(l])は地盤
変位図、(C)は地盤変位によろ曲げモーメント分布図
、(d)は杭頭水平力による曲げモーメント分布図、(
e)は両者を合成し7た曲げモーメント分布図、第7図
は波頭した場所打ち欽定iコンクリート杭の構成図、第
8図(a)は地盤変位による曲げモーメント分布図、(
1))はその地盤棺造しl、第、9図は本発明実施例の
構造シ1、第10図は地慇亥位による曲げモーメント分
布図、第11図は不発明細の実施例の構造図である。
4. Simple appearance of the drawing, #J? , 1 [! 1 (al is a model of a cast-in-place pile based on the conventional seismic design method, ■) is the bending moment, the figure on the right,
Copper 2ji 1 is the ground condition diagram when the strain of the pile was observed when the ground earthquake occurred, νj 3 IPl (al is the pile structure diagram 1 when the strain of the pile was measured when the shaft earthquake occurred) )) is the bending strain distribution diagram of the hill section at that time, (C) is the bending strain distribution diagram of the inclined pile, Figure 4 is the model diagram of the model vibration experiment, Figure 5 (a), (
b) is the bending strain distribution diagram of the pile in the model vibration experiment, No. 6
[21 (a) is a frame diagram of a cast-in-place pile, (l]) is a ground displacement diagram, (C) is a bending moment distribution diagram due to ground displacement, and (d) is a bending moment distribution diagram due to horizontal force on the pile head. ,(
e) is a bending moment distribution diagram that combines the two, Figure 7 is a configuration diagram of a cast-in-place concrete pile with a wave crest, Figure 8 (a) is a bending moment distribution diagram due to ground displacement, (
1)) shows the construction of the ground coffin, Fig. 9 shows the structure of the embodiment of the present invention, Fig. 10 shows the bending moment distribution diagram based on the ground position, and Fig. 11 shows the structure of the embodiment of the invention. It is a diagram.

1:杭、2:コンクリート、3=拡底部、4:拡頭部、
5:鉄筋、6:内部鋼管、7:外部鏑管、8:内外管接
合伸1管、9:場所打ち鉄筋コンクリ代理人 弁理士 
大 村 三 朗 第 1 区 (a) (b) 第21 弗3図 第4 図 メ)6 図 (b) (a) (c) (d) (e)第5図 (0) 第5図 (b) 一暢咋”L (/−t) 凶 − 0寸 の へ 9 0 4 υにへ(E)□ 益や/(E) 第9図 78 第 11 図 8
1: Pile, 2: Concrete, 3 = Expanded bottom part, 4: Expanded head part,
5: Reinforcing bars, 6: Internal steel pipes, 7: External steel pipes, 8: Jointed inner and outer pipes, 9: Cast-in-place reinforced concrete agent, patent attorney
Sanro Omura 1st Ward (a) (b) 21 弗3 Figure 4 Figure 6 Figure (b) (a) (c) (d) (e) Figure 5 (0) Figure 5 ( b) Ichinkyokui”L (/-t) Go - 0 sun to 9 0 4 υ to (E) □ Masiya/(E) Figure 9 78 Figure 11 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 杭頭部が鉛直抵抗用部材として下部の鉄筋コンクリート
杭に狗え込む内部の鋼管または鋼管コンクIJ −) 
(g)、下向部鋼管等と略称する)と、水平折抗用部材
として前記内部#I管等より管長が短かい外部鋼i管と
からt「す、外部鋼管が頭部以外では内部鋼管及び下部
の鉄筋コンクリート杭に接触しない、トウに設置したこ
とを特徴とする二重管杭頭場所打ち鉄筋コンクリート杭
Internal steel pipe or steel pipe conc IJ-) where the pile head is embedded into the lower reinforced concrete pile as a vertical resistance member
(g) (abbreviated as downward section steel pipe, etc.) and an external steel pipe whose pipe length is shorter than the internal #I pipe etc. as a horizontal folding member. A cast-in-place reinforced concrete pile with a double pipe pile cap, which is characterized by being installed in a toe that does not come into contact with the steel pipe or the lower reinforced concrete pile.
JP22326583A 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile Granted JPS60115717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22326583A JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22326583A JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Publications (2)

Publication Number Publication Date
JPS60115717A true JPS60115717A (en) 1985-06-22
JPH0119487B2 JPH0119487B2 (en) 1989-04-12

Family

ID=16795398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22326583A Granted JPS60115717A (en) 1983-11-29 1983-11-29 Cast-in-place reinforced concrete pile head with double-tubular pile

Country Status (1)

Country Link
JP (1) JPS60115717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063878A (en) * 2013-09-26 2015-04-09 大東建託株式会社 Method of constructing steel pipe pile and steel pipe pile
JP2017223018A (en) * 2016-06-14 2017-12-21 三谷セキサン株式会社 Installation method of foundation pile, foundation pile structure, and double precast pile
JP2020007904A (en) * 2018-06-29 2020-01-16 ジャパンパイル株式会社 Concrete pile with double steel pipe, method for manufacturing the same, manufacturing device, pile head joint structure and jointed pile structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138948A (en) * 1993-11-18 1995-05-30 Elf:Kk Cast-in-place pile driving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063878A (en) * 2013-09-26 2015-04-09 大東建託株式会社 Method of constructing steel pipe pile and steel pipe pile
JP2017223018A (en) * 2016-06-14 2017-12-21 三谷セキサン株式会社 Installation method of foundation pile, foundation pile structure, and double precast pile
JP2020007904A (en) * 2018-06-29 2020-01-16 ジャパンパイル株式会社 Concrete pile with double steel pipe, method for manufacturing the same, manufacturing device, pile head joint structure and jointed pile structure

Also Published As

Publication number Publication date
JPH0119487B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
JP3165450B2 (en) Arrangement method of reinforcement and foundation body in foundation formation of ground reinforcement type
CN208717720U (en) A kind of bridge substructure using ultra-tough fiber concrete
JP3756385B2 (en) Composite pile and its construction method
JPS60115717A (en) Cast-in-place reinforced concrete pile head with double-tubular pile
JP3385876B2 (en) Cast-in-place pile construction method just below the existing foundation
JP3098719B2 (en) Building structures using piles as pillars
JP3910496B2 (en) Foundation pile
CN209324377U (en) Ledge method tunneling subway station arch springing ruggedized construction
RU2256033C2 (en) Foundation structure for building and building structure
JPH05132923A (en) Improving method for soft ground
JP2791361B2 (en) Knotted pile and its construction method
Kishishita et al. Dynamic-response characteristics of structures with micropile foundation system
JPH11303062A (en) Soil-cement wall
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
JP2002138574A (en) Building construction method and building
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP2001020558A (en) Base isolation structure of building
JP3784340B2 (en) Pile foundation
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP2006214201A (en) Composite foundation of piles and continuous underground wall
KR200222512Y1 (en) A jointing structure of a wall for Rahmen bridge's wall
KR101919843B1 (en) Efficient Basement Structure by changing connection betwwon piles and footing
JPS60115724A (en) Pile foundation
JP3614041B2 (en) Rake head structure
JP4111261B2 (en) Ready-made pile, pile foundation structure, construction method of pile foundation