JP4206740B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4206740B2
JP4206740B2 JP2002356178A JP2002356178A JP4206740B2 JP 4206740 B2 JP4206740 B2 JP 4206740B2 JP 2002356178 A JP2002356178 A JP 2002356178A JP 2002356178 A JP2002356178 A JP 2002356178A JP 4206740 B2 JP4206740 B2 JP 4206740B2
Authority
JP
Japan
Prior art keywords
conductive metal
insulating film
wiring
interlayer insulating
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002356178A
Other languages
English (en)
Other versions
JP2004193183A (ja
Inventor
政由 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002356178A priority Critical patent/JP4206740B2/ja
Publication of JP2004193183A publication Critical patent/JP2004193183A/ja
Application granted granted Critical
Publication of JP4206740B2 publication Critical patent/JP4206740B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の配線構造、特に低誘電率膜を配線層間膜としたCu配線の構造を有する半導体装置に関する。
【0002】
【従来の技術】
近年のインターネットの普及に伴い、画像処理等に必要なロジックLSIの高速化が求められている。半導体装置の動作速度は、トランジスタにおけるスイッチング遅延と配線における伝搬遅延とに大きく分けられる。ロジックLSIは、メモリに比べて配線面積の全体に占める割合が大きいため、ロジックLSIを高速化するには配線での伝搬遅延を低減する必要がある。配線での伝搬遅延は、配線抵抗と配線層間容量の積とに比例するので、配線材料に抵抗率の低い材料を、配線層間膜材料に比誘電率の低い材料を用いることで伝搬遅延を低減できる。そこで、次世代の配線材料として、従来のAl或いはAl合金よりも比抵抗の小さいCu或いはCu合金が検討されている。また、配線層間膜材料として従来のSiO2に代わり、比誘電率の低い有機系の低誘電率材料やMSQ等のSi含有無機多孔質の低誘電率材料が検討されている。
【0003】
Cu或いはCu合金を配線材料に用いたいわゆるCu配線を形成する場合、配線層間膜を堆積後に、その表面側から反応性イオンエッチング(reactive ion etching:RIE)法等により溝を形成し、その溝を埋め込むようにCu或いはCu合金膜を堆積し、その後、溝の外のCu或いはCu合金膜を化学機械研磨(chemical mechanical polishing:CMP)法等により除去して、配線層間膜に埋め込まれたCu配線を形成する、いわゆるダマシン(damascene)法が一般的である。さらに、ダマシン法のうち、工程数の低減を目的として、ビア部分と配線部分のCuを同時に行うデュアルダマシン法が用いられる。
ダマシン法で形成したCu配線、いわゆるCuダマシン配線に低誘電率層間膜を適用する場合の課題に、RIE法やCMP法による加工が困難であることが挙げられる。RIE法による溝の加工においては、加工のマスクパターンとなるフォトレジストやハードマスクと低誘電率材料の加工の選択比が充分でないということや、溝の側壁が溝の外側に膨らむボウイング(bowing)が生じるということや、加工後の溝側壁に除去困難なRIEの反応副生成物が堆積するということ等の問題が起こる。有機系材料と無機多孔質材料とを比較した場合、有機系材料は比較的加工が容易であり、これまでに多層配線形成の報告例がある(非特許文献1)。
【0004】
【非特許文献1】
(R. D. Goldblatt他, “A High Performance 0.13 μm Copper BEOL Technology with Low-kDielectric",International Interconnect Technology Conference 2000, pp.261-263)
【0005】
【発明が解決しようとする課題】
ところが、非特許文献1では、熱膨張係数がCuと比較して大きい有機系低誘電率材料をビア層間膜に用いているが、温度変化に対する長期信頼性に問題があることが著者等の検討により明らかとなっている。具体的には、プロセス中の熱を想定した高温熱サイクル試験や、信頼性評価時に行う試料の冷却、昇温を繰り返す冷熱試験を、熱膨張係数がCuと比較して大きい低誘電率材料を層間膜に用いた配線に加えた場合、ビア底のCuとバリアが剥離して上層配線と下層配線の導電不良を発生したり、ビア周辺の層間膜の一部分が収縮してビア部分の金属と層間膜が剥離する現象が発生する。この際の配線構造の一例を、図44に示す。
【0006】
この構造は、非特許文献1に示されている構造とは若干異なるものの、配線層間膜005及びビア層間膜006は、同様の有機ポリマー系の低誘電率材料を用いている。この低誘電率材料の膜特性として、熱膨張係数は約70ppm/℃、弾性率は2.7GPaである。また、ビア金属及び配線金属007はCuを用いており、熱膨張係数は約17ppm/℃、弾性率は約105GPa程度である。また、配線層間膜005とビア層間膜006の間に配線溝のエッチングストッパー層、又はビアのキャップバリア層として膜008が存在している。この膜008の熱膨張係数は約0.5ppm/℃、弾性率は約70GPa程度である。この構造に対し、実際に高温熱サイクルと冷熱試験とを行った結果を、図45(a),(b)に示す。高温サイクルは室温と400℃の熱サイクルであり、冷熱試験は約−70℃と約150℃の熱を繰り返し配線に印加している。この場合の高温サイクルを示した図45(a)では、抵抗上昇が発生していることが分かる。また、冷熱試験前後の配線部分の断面写真を観察した図45(b)では、熱サイクル後の観察像に対して膜008の周辺の層間膜009中に空洞(ボイド)010が発生していることが分かる。
【0007】
さらに、このような熱膨張係数が大きい低誘電率材料を配線及びビア層間膜に用いた場合に、熱サイクル信頼性のうち高温熱プロセスにおけるビア抵抗増大については、配線層間膜をフッ素含有シリコン酸化膜とすることにより抑制することができる報告がされている(M.-S. Yeh他、"ThermalInduced Failure of Organic Low-K/Cu Multilevel Interconnect"Advanced Metallization Conference 2002, Digest)。この方法ではフッ素含有シリコン酸化膜の誘電率が高いために、配線間容量の低減が不可能となる。
【0008】
本発明は、このような状況に鑑みてなされたものであり、信頼性の向上と生産性の向上とを図ることができる半導体装置を提供することができるようにするものである。
【0009】
【課題を解決するための手段】
本発明の半導体装置は、基板上に形成された第1の配線層間絶縁膜と、この第1の配線層間絶縁膜中に形成された第1の導電性金属配線と、これら第1の配線層間絶縁膜及び第1の導電性金属配線上に形成されたビア層間絶縁膜と、このビア層間絶縁膜中に形成された導電性金属ビアと、これらビア層間絶縁膜及び導電性金属ビア上に形成されたバッファ絶縁膜と、このバッファ絶縁膜上に形成された第2の配線層間絶縁膜と、この第2の配線層間絶縁膜中に形成された第2の導電性金属配線とを備え、前記第1の導電性金属配線と第2の導電性金属配線とが前記導電性金属ビアによって電気的に接続され、さらに、前記ビア層間絶縁膜が前記導電性金属ビアよりも熱膨張係数が大きく、前記バッファ絶縁膜が前記導電性金属ビアの熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率が前記ビア層間絶縁膜の弾性率の10倍以内の値を有していることを特徴とする。
また、前記ビア層間絶縁膜には、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とが形成され、さらに前記ダミービア孔には前記導電性金属ビアの熱膨張係数よりも小さい値を有する絶縁材が埋め込まれているようにすることもできる。
また、前記ビア層間絶縁膜には、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とが形成され、さらに前記ダミービア孔には前記導電性金属ビアと同じ金属材が埋め込まれているようにすることもできる。
本発明の半導体装置の製造方法は、基板上に第1の配線層間絶縁膜を形成する工程と、この第1の配線層間絶縁膜中に第1の導電性金属配線を形成する工程と、これら第1の配線層間絶縁膜及び第1の導電性金属配線上にビア層間絶縁膜を形成する工程と、このビア層間絶縁膜中に導電性金属ビアを形成する工程と、これらビア層間絶縁膜及び導電性金属ビア上にバッファ絶縁膜を形成する工程と、このバッファ絶縁膜上に第2の配線層間絶縁膜を形成する工程と、この第2の配線層間絶縁膜中に第2の導電性金属配線を形成する工程とを有し、前記第1の導電性金属配線と第2の導電性金属配線とが前記導電性金属ビアによって電気的に接続され、さらに、前記ビア層間絶縁膜が前記導電性金属ビアよりも熱膨張係数が大きく、前記バッファ絶縁膜が前記導電性金属ビアの熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率が前記ビア層間絶縁膜の誘電率の10倍以内の値を有していることを特徴とする。
また、前記ビア層間絶縁膜に、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とを形成し、さらに前記ダミービア孔には前記導電性金属ビアの熱膨張係数よりも小さい値を有する絶縁材を埋め込む工程を有するようにすることもできる。
また、前記ビア層間絶縁膜に、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とを形成し、さらに前記ダミービア孔には前記導電性金属ビアと同じ金属材を埋め込む工程を有するようにすることもできる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は、本発明の半導体装置の第1の実施の形態を示す図である。図1の半導体装置は、基板1001上に形成された絶縁膜1002と、絶縁膜1002上に形成された配線層間絶縁膜1003と、配線層間絶縁膜1003中に形成された導電性金属配線1004と、配線層間絶縁膜1003及び導電性金属配線1004上に形成されたビア層間絶縁膜1005と、ビア層間絶縁膜1005中に形成された導電性金属ビア1009と、ビア層間絶縁膜1005及び導電性金属ビア1009上に形成されたバッファ絶縁膜1006と、バッファ絶縁膜1006上に形成された配線層間絶縁膜1007と、配線層間絶縁膜1007中に形成された導電性金属配線1008とを備え、導電性金属配線1004と導電性金属配線1008とが導電性金属ビア1009によって電気的に接続されている。
【0011】
ここで、ビア層間絶縁膜1005は、導電性金属ビア1009よりも熱膨張係数が大きい材料である。また、ビア層間絶縁膜1005上に形成されたバッファ絶縁膜1006は、導電性金属ビア1009の熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率がビア層間絶縁膜1005の低誘電率材料の弾性率の10倍以内の値を有している。
図2は、本発明の半導体装置の第2の実施の形態を示す図である。図2の半導体装置は、基板10上に形成された絶縁膜20と、この絶縁膜20上に形成された配線層間絶縁膜30と、配線層間絶縁膜30中に形成された導電性金属配線40と、配線層間絶縁膜30及び導電性金属配線40上に形成されたビア層間絶縁膜50と、ビア層間絶縁膜50中に形成された導電性金属ビア80と、ビア層間絶縁膜50及び導電性金属ビア80上に形成された配線層間絶縁膜60と、配線層間絶縁膜60中に形成された導電性金属配線70とを備え、導電性金属配線40と導電性金属配線70とが導電性金属ビア80によって接続されている。ここで、ビア層間絶縁膜50は、導電性金属ビア80よりも熱膨張係数が小さいものである。
【0012】
(製造方法1)
次に、図1に示した半導体装置の製造方法について、図3〜図10により説明する。まず、図3に示すように、半導体基板251上に絶縁膜252を形成する。この半導体基板251は、単結晶シリコン基板としてもよい。また、絶縁膜252は、ボロフォスフォシリケート・ガラス(BPSG:borophosphosilicate glass)、フォスフォシリケート・ガラス(PSG:phosphosilicate glass)、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、酸弗化シリコン(SiOF)、炭化シリコン(SiC)、炭窒化シリコン(SiCN)等の絶縁膜及びそれらの組み合わせから構成されるようにしてもよい。
次に、図4に示すように、絶縁膜252上に配線層間絶縁膜253を形成する。この配線層間絶縁膜253は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるようにしてもよい。次に、図5に示すように、配線層間絶縁膜253に配線用溝を形成し、その配線用溝に導電性金属254を埋め込む。この導電性金属254は、銅(Cu)であるようにしてもよい。
【0013】
次に、図6に示すように、導電性金属254をCMP法により除去して導電性金属配線255を形成する。その後、図7に示すように、配線層間絶縁膜253及び導電性金属配線255上にビア層間絶縁膜256を形成する。その後、図8に示すように、ビア層間絶縁膜256中に形成されたビア孔に導電性金属を埋め込み、CMP法により除去して上下配線間を電気的に接続するための導電性金属ビア259を形成する。ここで、ビア層間絶縁膜256の熱膨張係数は導電性金属ビア259の熱膨張係数よりも大きいものとする。また、導電性金属ビア259としてCuを用いた場合、熱膨張係数が17ppm/℃、弾性率が105GPaである。また、ビア層間絶縁膜256には、熱膨張係数が70ppm/℃という大きい値を有し、弾性率が2.7GPaと小さい値を有する有機ポリマーを用いてもよい。次に、図9に示すように、ビア層間絶縁膜256及び導電性金属ビア259の上に、上の配線層のエッチングストップ膜や導電性金属ビア259の酸化防止膜となるバッファ絶縁膜257を形成する。ここでバッファ絶縁膜257の熱膨張係数は、導電性金属ビア259の熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率がビア層間絶縁膜256の低誘電率材料の弾性率の10倍以内の値を有している。
【0014】
また、バッファ絶縁膜257は、熱膨張係数が11ppm/℃、弾性率が11GPaの炭素含有シリコン酸化膜である。次に、配線層間絶縁膜258に配線用溝を形成して、その配線用溝に導電性金属を埋め込む。この導電性金属は銅(Cu)としてもよい。その後、導電性金属をCMP法により除去して導電性金属配線260を形成する。これにより、導電性金属配線255と導電性金属配線260とが導電性金属ビア259によって電気的に接続される。
ここで、配線層間絶縁膜253,258に熱膨張係数が70ppm/℃の有機ポリマーを用い、ビア層間絶縁膜256に熱膨張係数70ppm/℃の有機ポリマーを用い、導電性金属配線255,260にCuを用い、導電性金属ビア259に熱膨張係数が17ppm/℃のCuを用い、バッファ絶縁膜257に熱膨張係数が11ppm/℃の炭素含有シリコン酸化膜を用い、−65℃から150℃繰り返しの冷熱衝撃試験を行った結果を、図10に示す。図10に示すように、Cuと熱膨張係数の値の差が±50%以内の絶縁膜をバッファ絶縁膜257として用い、且つ、ビア層間絶縁膜256の弾性率の10倍以下としたことで、図45で説明したビア抵抗の上昇やビア層間絶縁膜256中のボイドは確認されなかった。
【0015】
以上のことより、ビア層間絶縁膜256を、導電性金属ビア259よりも熱膨張係数が大きい材料とし、また、ビア層間絶縁膜256上に形成されたバッファ絶縁膜257は、導電性金属ビア259の熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率がビア層間絶縁膜256の低誘電率材料の弾性率の10倍以内の値を有しているようにしたので、熱サイクル試験耐性の高い配線構造を得ることが可能となる。
なお、図9に示した構造は、導電性金属ビア259と導電性金属配線260とを別々に形成するシングルダマシンプロセスで作製したものであるが、この例に限らず、層間膜構造が同様で導電性金属ビア259と導電性金属配線260とを同時に形成するデュアルダマシンプロセスで作製した場合でも、導電性金属ビア259及び導電性金属配線260に用いた金属と熱膨張係数のずれが±50%以内で、且つ、ビア層間絶縁膜256の弾性率の10倍以下である材料をバッファ絶縁膜257に用いる構造も同様の効果が得られることは自明である。また、製造方法1では2層の配線に関して示したが、3層以上の多層配線に関しても同様の効果が得られることは自明である。
【0016】
(製造方法2)
次に、図2に示した半導体装置の製造方法について、図11〜図19により説明する。まず、図11に示すように、半導体基板201上に絶縁膜202を形成する。この半導体基板201は、単結晶シリコン基板としてもよい。また、絶縁膜202はボロフォスフォシリケート・ガラス(BPSG:borophosphosilicate glass)、フォスフォシリケート・ガラス(PSG:phosphosilicate glass)、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、酸弗化シリコン(SiOF)、炭化シリコン(SiC)、炭窒化シリコン(SiCN)等の絶縁膜及びそれらの組み合わせから構成されるものであるようにしてもよい。
次に、図12に示すように、絶縁膜202上に配線層間絶縁膜203を形成する。この配線層間絶縁膜203は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであるようにしてもよい。次に、図13に示すように、配線層間絶縁膜203に配線用溝を形成し、その配線用溝に導電性金属204を埋め込む。この導電性金属204は、銅(Cu)であってもよい。次に、図14に示すように、導電性金属204をCMP法により除去して導電性金属配線205を形成し、その後、配線層間絶縁膜203及び導電性金属配線205上にビア層間絶縁膜206を形成し、さらにビア層間絶縁膜206中に形成されたビア孔に導電性金属を埋め込み、CMP法により除去して上下配線間を電気的に接続する導電性金属ビア207を形成する。
【0017】
ここで、ビア層間絶縁膜206の熱膨張係数は、導電性金属ビア207の熱膨張係数よりも小さいものとする。また、導電性金属ビア207としてCuを用いた場合、Cuの熱膨張係数は17ppm/℃である。また、ビア層間絶縁膜206にはCuの熱膨張係数よりも小さい値を持つメチルシルセスキオキサン(MSQ):14.5ppm/℃、炭素含有シリコン酸化膜(SiCO、SiCOH):11ppm/℃を用いる。次に、図15に示すように、ビア層間絶縁膜206及び導電性金属ビア207上に配線層間絶縁膜208を形成する。この配線層間絶縁膜208は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであってもよい。次に、図16に示すように、配線層間絶縁膜208に配線用溝を形成して、その配線用溝に導電性金属209を埋め込む。この導電性金属209は、銅(Cu)である。次に、図17に示すように、導電性金属209をCMP法により除去して導電性金属配線210を形成する。これにより、導電性金属配線205と導電性金属配線210とが導電性金属ビア207により電気的に接続される。
【0018】
ここで、配線層間絶縁膜203,208にHSQを用い、導電性金属配線205,210にCuを用い、導電性金属ビア207に熱膨張係数が17ppm/℃のCuを用い、ビア層間絶縁膜206として熱膨張係数が14.5ppm/℃のMSQを用い、−65℃から150℃繰り返しの冷熱衝撃試験を行った結果を、図18に示す。また、ビア層間絶縁膜206として熱膨張係数が11ppm/℃の炭素含有シリコン酸化膜を用い、−65℃から150℃繰り返しの冷熱試験を行った結果を、図19に示す。図18及び図19より、Cuよりも熱膨張係数が小さい低誘電率材料を、ビア層間絶縁膜206として用いた場合には、図44で説明したボイドは確認されなかった。以上のことより、ビア層間絶縁膜206に導電性金属ビア207よりも熱膨張係数が小さい材料を用いることにより、熱ストレス耐性の高い配線構造を得ることが可能となる。
なお、図17に示した構造は、導電性金属ビア207と導電性金属配線210とを別々に形成するシングルダマシンプロセスであが、層間膜構造が同様で導電性金属ビア207と導電性金属配線210とを同時に形成するデュアルダマシンプロセスであっても、導電性金属ビア207及び導電性金属配線210に用いた金属よりも熱膨張係数が小さい低誘電率材料をビア層間絶縁膜に用いた構造と同じ効果が得られることは自明である。また、製造方法2では2層の配線に関して示したが、3層以上の多層配線に関しても同様の効果が得られることは自明である。
【0019】
(製造方法3)
次に、製造方法1の変形例である製造方法3を、図20に示す実験結果を元に詳細に説明する。ここで、従来の図44に示した構造では、図45(b)で示したように、ビア周辺にボイドが観察された。これは、ビア層間膜006として導電性金属ビアよりも熱膨張係数が大きい低誘電率材料を用いているためである。製造方法3では、そのビア層間膜006を有機ポリマーとし、導電性金属ビアをCuとしている。この構造に対し、図20に示すように単位面積あたりのビアの個数を増加させることにより、冷熱試験を500サイクル印加した後でもビア周辺の層間膜にボイドは確認されなかった。これは、ビアのピッチが大きいほど、ビアの周辺にボイドが発生しやすくなるが、単位面積あたりのビアの個数を増加させることにより、ボイドが発生し難くなるといえる。ここで、ビアのピッチとは、ビアの径とビアとビアとの間の距離の和である。このビアのピッチとボイドの発生との関係を示した実験結果のグラフを、図21に示す。図21から、ビアピッチが2倍以下の場合には冷熱試験後にもビア周辺にボイドが発生しないことが分かる。
つまり、製造方法3では、製造方法2で挙げたビア層間絶縁膜206に導電性金属ビア207よりも熱膨張係数が小さい低誘電率材料を用いることにより、冷熱試験に対する配線信頼性を向上させる方法を用いるのではなく、熱膨張係数が導電性金属ビア207よりも大きい低誘電率材料を用いた場合にも、ビアのピッチを低くすることにより配線信頼性を向上させることが可能となることを説明するものである。以下に、その製造方法3について述べる。
【0020】
まず、図22〜図24に示すように半導体基板211上に絶縁膜212、配線層間絶縁膜213、導電性金属214を形成する。この半導体基板211は、単結晶シリコン基板としてもよい。また、絶縁膜212は、ボロフォスフォシリケート・ガラス(BPSG:borophosphosilicate glass)、フォスフォシリケート・ガラス(PSG:phosphosilicateglass)、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、酸弗化シリコン(SiOF)、炭化シリコン(SiC)、炭窒化シリコン(SiCN)等の絶縁膜及びそれらの組み合わせから構成されるものであってもよい。また、この配線層間絶縁膜213は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであってもよい。
【0021】
次に、図25に示すように、導電性金属214をCMP法により除去して導電性金属配線215を形成し、その後、配線層間絶縁膜213及び導電性金属配線215上にビア層間絶縁膜216を形成する。その後、ビア層間絶縁膜216中に形成された上下配線間を電気的に接続するビア孔217aの周辺に2倍ピッチ以下で上下配線間とは電気的に接続しないダミービア孔218aを形成する。この際、ダミービア孔218aは上面から見ると、図26に示すように、電気的に接続するビア孔217aの周辺に2倍ピッチ以下で配置されている。このビア孔217aの形状はピッチが2倍ピッチ以下であればダミービア孔218aの形状にはよらないものである。次に、図27に示すように、ビア孔217aに導電性金属を埋め込み、CMP法により除去した後、上下配線間を電気的に接続する導電性金属ビア217と上下配線間を電気的に接続しない導電性金属ダミービア218をダミービア孔218aに形成する。ここで、ビア層間絶縁膜216の熱膨張係数は導電性金属ビア217の熱膨張係数よりも大きいものとする。
【0022】
また、導電性金属ビア217としてCuを用いた場合、Cuの熱膨張係数は17ppm/℃であり、ビア層間絶縁膜216にはCuの熱膨張係数よりも大きい値を持つ有機ポリマー:70ppm/℃を用いる。その後、図28に示すようにビア層間絶縁膜216、導電性金属ビア217、導電性金属ダミービア218上に、配線層間絶縁膜219を形成する。この配線層間絶縁膜219は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであってもよい。次に、配線層間絶縁膜219に配線用溝を形成し、その配線用溝に導電性金属220を埋め込む。この導電性金属220は、銅(Cu)である。次に、図29に示すように、導電性金属220をCMP法により除去し、1層下の導電性金属配線215と導電性金属ビア217とにより電気的に接続する導電性金属配線221を形成する。
なお、図29に示した構造は、導電性金属ビア217と導電性金属配線221とを別々に形成するシングルダマシンプロセスであるが、層間膜構造が同様で導電性金属ビア217と導電性金属配線221とを同時に形成するデュアルダマシンプロセスであっても、導電性金属ダミービア218を形成することにより、冷熱試験に対する配線信頼性を保持できることは自明である。また、製造方法3では2層の配線に関して示したが、3層以上の多層配線に関しても同様の効果が得られることは自明である。
【0023】
(製造方法4)
次に、製造方法1の変形例である製造方法4を、製造方法3で述べた実験結果を元に説明する。まず、図30〜図32に示すように、半導体基板231上に絶縁膜232、配線層間絶縁膜233、導電性金属234を形成する。この半導体基板231は、単結晶シリコン基板であってもよい。また、絶縁膜232は、ボロフォスフォシリケート・ガラス(BPSG:borophosphosilicate glass)、フォスフォシリケート・ガラス(PSG:phosphosilicate glass)、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、酸弗化シリコン(SiOF)、炭化シリコン(SiC)、炭窒化シリコン(SiCN)等の絶縁膜及びそれらの組み合わせから構成されるものであってもよい。また、配線層間絶縁膜233は、SiO2、SiOFや低誘電率材料の有機ポリマー、MSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであってもよい。
次に、図33に示すように、導電性金属234をCMP法により除去して導電性金属配線235を形成し、その後、図34に示すように、配線層間絶縁膜233及び導電性金属配線235上にビア層間絶縁膜236を形成する。その後、ビア層間絶縁膜236中に形成されたビア孔に導電性金属を埋め込み、CMP法により除去して上下配線間を電気的に接続する導電性金属ビア237を形成する。ここで、ビア層間絶縁膜236の熱膨張係数は、導電性金属ビア237の熱膨張係数よりも大きいものとする。また、導電性金属ビア237はCuであり、ビア層間絶縁膜236は有機ポリマーである。次に、図35に示すように、導電性金属ビア酸化防止膜238を形成し、続いてエッチングのマスクとなるレジスト239を形成、露光、現像する。次に、図36に示すように、エッチングによりダミービア孔240を形成する。このダミービア孔240は、下層の導電性金属配線235までは到達していないものとし、また図37に示すように、ダミービア孔240はビアの周辺から2倍ピッチ以下の部分に形成される。図37では、導電性金属ビア237の4方にダミービア孔240を形成している場合を示しているが、ピッチが2倍ピッチ以下であればダミービア孔240を4方に形成する必要はない。
【0024】
次に、図38に示すように、ダミービア孔240及び導電性金属ビア酸化防止膜238上に配線層間絶縁膜241を形成する。ここで、配線層間絶縁膜241は、導電性金属ビア237の熱膨張係数よりも小さい値を有する。これは、導電性金属ビア237よりも熱膨張係数が大きいビア層間絶縁膜236中にボイドが形成されるのを防止するためである。この配線層間絶縁膜241は、SiO2、SiOFや低誘電率材のMSQ、HSQ、炭素含有シリコン酸化膜、SiC、SiCN及びそれらの膜の組み合わせから構成されるものであってもよい。次に、図39に示すように、配線層間絶縁膜241に配線用溝を形成し、その配線用溝に導電性金属242を埋め込む。この導電性金属242は、銅(Cu)である。次に、図40に示すように、導電性金属242をCMP法により除去し、1層下の導電性金属配線235と導電性金属ビア237とにより電気的に接続される導電性金属配線243を形成する。
なお、図40に示した構造は、導電性金属ビア237と導電性金属配線243とを別々に形成するシングルダマシンプロセスであるが、層間膜構造が同様で導電性金属ビア237と導電性金属配線243とを同時に形成するデュアルダマシンプロセスであっても、ダミービア孔240を形成することにより、熱ストレス試験に対する配線信頼性を保持できることは自明である。また、製造方法4では2層の配線に関して示したが、3層以上の多層配線に関しても同様の効果が得られることは自明である。
【0025】
このように、本実施の形態では、図1に示したように、基板1001上に形成された絶縁膜1002と、絶縁膜1002上に形成された第1の配線層間絶縁膜としての配線層間絶縁膜1003と、配線層間絶縁膜1003中に形成された第1の導電性金属配線としての導電性金属配線1004と、配線層間絶縁膜1003及び導電性金属配線1004上に形成されたビア層間絶縁膜1005と、ビア層間絶縁膜1005中に形成された導電性金属ビア1009と、ビア層間絶縁膜1005及び導電性金属ビア1009上に形成されたバッファ絶縁膜1006と、バッファ絶縁膜1006上に形成された第2の配線層間絶縁膜としての配線層間絶縁膜1007と、配線層間絶縁膜1007中に形成された第2の導電性金属配線としての導電性金属配線1008とを備え、導電性金属配線1004と導電性金属配線1008とが導電性金属ビア1009によって電気的に接続されているとともに、ビア層間絶縁膜1005が導電性金属ビア1009よりも熱膨張係数が大きく、バッファ絶縁膜1006が導電性金属ビア1009の熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率がビア層間絶縁膜1005の誘電率の弾性率の10倍以内の値を有しているようにしたので、熱サイクル試験耐性の高い配線構造を得ることが可能となり、信頼性の向上と生産性の向上とが図れる。
【0026】
すなわち、このような構成の半導体装置では、たとえば図41(a),(b)に示すように、高温熱サイクルの抵抗上昇及び冷熱試験後における空洞(以下、ボイドという)の発生が見られなかった。図41(a),(b)は、導電性金属ビア1009にCu(熱膨張係数=約18ppm/K、弾性率=約105GPa)、ビア層間絶縁膜1005に有機系低誘電率材料(熱膨張係数=約70ppm/K、弾性率=約2.7GPa)、配線層間絶縁膜1007とビア層間絶縁膜1005との間に熱膨張係数=約11ppm/K、弾性率=約11GPaのバッファ絶縁膜1006を用いた構造としたときである。
ここで、バッファ絶縁膜1006の熱膨張係数と弾性率とを変化させながら、熱信頼性を評価した結果を、図42に示す。○は不良が未発生、黒△は不良が発生している結果を示している。この結果より、導電性金属ビア1009の熱膨張係数の±50%程度の値を有し、また、弾性率がビア層間絶縁膜1005の低誘電率材料の弾性率の10倍以下である場合に、構造の熱信頼性が向上している様子が確認された。一方で、熱膨張係数が先の値よりも小さい場合や、弾性率が先の値よりも大きい場合には、試験により劣化していることが分かる。以上の結果より、第1の観点としては、熱膨張係数が導電性金属ビア1009と比較して充分に大きく、弾性率が導電性金属ビア1009と比較して充分に低い低誘電率材料をビア層間絶縁膜1005に用いた場合に、ビア層間絶縁膜1005の上方の配線層の間に導電性金属ビア1009の熱膨張係数の±50%程度の差であるような値を有し、また、弾性率がビア層間絶縁膜1005の低誘電率材料の弾性率の10倍以下の値を持つような膜を挿入してあるような配線構造の場合、ボイドの発生がなくなる。
【0027】
また、本実施の形態では、図2に示したように、基板10上に形成された絶縁膜20と、この絶縁膜20上に形成された第1の配線層間絶縁膜としての配線層間絶縁膜30と、配線層間絶縁膜30中に形成された第1の導電性金属配線としての導電性金属配線40と、配線層間絶縁膜30及び導電性金属配線40上に形成されたビア層間絶縁膜50と、ビア層間絶縁膜50中に形成された導電性金属ビア80と、ビア層間絶縁膜50及び導電性金属ビア80上に形成された第2の配線層間絶縁膜としての配線層間絶縁膜60と、配線層間絶縁膜60中に形成された第2の導電性金属配線としての導電性金属配線70とを備え、導電性金属配線40と導電性金属配線70とが導電性金属ビア80によって接続され、さらにビア層間絶縁膜50は、導電性金属ビア80よりも熱膨張係数が小さいものであるようにしたので、熱ストレス耐性の高い配線構造を得ることが可能となり、信頼性の向上と生産性の向上とが図れる。
すなわち、このような構成では、たとえば図43に示すように、導電性金属ビア80よりも熱膨張係数が小さい低誘電率材料を有するビア層間絶縁膜50を用いることで、高温熱サイクル及び冷熱試験後におけるボイドの発生が見られなかった。これは、ビア層間絶縁膜50及び導電性金属ビア80に対する熱的ストレスが緩和されたためである。
【0028】
【発明の効果】
以上の如く本発明に係る半導体装置によれば、信頼性の向上と生産性の向上とを図ることができる。
【図面の簡単な説明】
【図1】本発明の半導体装置の第1の実施の形態を示す図である。
【図2】本発明の半導体装置の第2の実施の形態を示す図である。
【図3】本発明の半導体装置の製造方法1を示す図である。
【図4】本発明の半導体装置の製造方法1を示す図である。
【図5】本発明の半導体装置の製造方法1を示す図である。
【図6】本発明の半導体装置の製造方法1を示す図である。
【図7】本発明の半導体装置の製造方法1を示す図である。
【図8】本発明の半導体装置の製造方法1を示す図である。
【図9】本発明の半導体装置の製造方法1を示す図である。
【図10】本発明の半導体装置の製造方法1を示す図である。
【図11】本発明の半導体装置の製造方法2を示す図である。
【図12】本発明の半導体装置の製造方法2を示す図である。
【図13】本発明の半導体装置の製造方法2を示す図である。
【図14】本発明の半導体装置の製造方法2を示す図である。
【図15】本発明の半導体装置の製造方法2を示す図である。
【図16】本発明の半導体装置の製造方法2を示す図である。
【図17】本発明の半導体装置の製造方法2を示す図である。
【図18】本発明の半導体装置の製造方法2を示す図である。
【図19】本発明の半導体装置の製造方法2を示す図である。
【図20】本発明の半導体装置の製造方法3を示す図である。
【図21】本発明の半導体装置の製造方法3を示す図である。
【図22】本発明の半導体装置の製造方法3を示す図である。
【図23】本発明の半導体装置の製造方法3を示す図である。
【図24】本発明の半導体装置の製造方法3を示す図である。
【図25】本発明の半導体装置の製造方法3を示す図である。
【図26】本発明の半導体装置の製造方法3を示す図である。
【図27】本発明の半導体装置の製造方法3を示す図である。
【図28】本発明の半導体装置の製造方法3を示す図である。
【図29】本発明の半導体装置の製造方法3を示す図である。
【図30】本発明の半導体装置の製造方法4を示す図である。
【図31】本発明の半導体装置の製造方法4を示す図である。
【図32】本発明の半導体装置の製造方法4を示す図である。
【図33】本発明の半導体装置の製造方法4を示す図である。
【図34】本発明の半導体装置の製造方法4を示す図である。
【図35】本発明の半導体装置の製造方法4を示す図である。
【図36】本発明の半導体装置の製造方法4を示す図である。
【図37】本発明の半導体装置の製造方法4を示す図である。
【図38】本発明の半導体装置の製造方法4を示す図である。
【図39】本発明の半導体装置の製造方法4を示す図である。
【図40】本発明の半導体装置の製造方法4を示す図である。
【図41】本発明の半導体装置の作用効果を説明するための図である。
【図42】本発明の半導体装置の作用効果を説明するための図である。
【図43】本発明の半導体装置の作用効果を説明するための図である。
【図44】従来の半導体装置を説明するための図である。
【図45】従来の半導体装置を説明するための図である。
【符号の説明】
10 基板
20 絶縁膜
30 配線層間絶縁膜
40 導電性金属配線
50 ビア層間絶縁膜
60 配線層間絶縁膜
70 導電性金属配線
80 導電性金属ビア
201 半導体基板
202 絶縁膜
203 配線層間絶縁膜
204 導電性金属
205 導電性金属配線
206 ビア層間絶縁膜
207 導電性金属ビア
208 配線層間絶縁膜
209 導電性金属
210 導電性金属配線
211 半導体基板
212 絶縁膜
213 配線層間絶縁膜
214 導電性金属
215 導電性金属配線
216 ビア層間絶縁膜
217 導電性金属ビア
217a ビア孔
218 導電性金属ダミービア
218a ダミービア孔
219 配線層間絶縁膜
220 導電性金属
221 導電性金属配線
231 半導体基板
232 絶縁膜
233 配線層間絶縁膜
234 導電性金属
235 導電性金属配線
236 ビア層間絶縁膜
237 導電性金属ビア
238 導電性金属ビア酸化防止膜
240 ダミービア孔
241 配線層間絶縁膜
242 導電性金属
243 導電性金属配線
251 半導体基板
252 絶縁膜
253 配線層間絶縁膜
254 導電性金属
255 導電性金属配線
256 ビア層間絶縁膜
257 バッファ絶縁膜
258 配線層間絶縁膜
259 導電性金属ビア
260 導電性金属配線
1001 基板
1002 絶縁膜
1003 配線層間絶縁膜
1004 導電性金属配線
1005 ビア層間絶縁膜
1006 バッファ絶縁膜
1007 配線層間絶縁膜
1008 導電性金属配線
1009 導電性金属ビア

Claims (6)

  1. 基板上に形成された第1の配線層間絶縁膜と、
    この第1の配線層間絶縁膜中に形成された第1の導電性金属配線と、
    これら第1の配線層間絶縁膜及び第1の導電性金属配線上に形成されたビア層間絶縁膜と、
    このビア層間絶縁膜中に形成された導電性金属ビアと、
    これらビア層間絶縁膜及び導電性金属ビア上に形成されたバッファ絶縁膜と、
    このバッファ絶縁膜上に形成された第2の配線層間絶縁膜と、
    この第2の配線層間絶縁膜中に形成された第2の導電性金属配線とを備え、
    前記第1の導電性金属配線と第2の導電性金属配線とが前記導電性金属ビアによって電気的に接続され、さらに、前記ビア層間絶縁膜が前記導電性金属ビアよりも熱膨張係数が大きく、前記バッファ絶縁膜が前記導電性金属ビアの熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率が前記ビア層間絶縁膜の弾性率の10倍以内の値を有していることを特徴とする半導体装置。
  2. 前記ビア層間絶縁膜には、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とが形成され、さらに前記ダミービア孔には前記導電性金属ビアの熱膨張係数よりも小さい値を有する絶縁材が埋め込まれていることを特徴とする請求項1に記載の半導体装置。
  3. 前記ビア層間絶縁膜には、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とが形成され、さらに前記ダミービア孔には前記導電性金属ビアと同じ金属材が埋め込まれていることを特徴とする請求項1に記載の半導体装置。
  4. 基板上に第1の配線層間絶縁膜を形成する工程と、
    この第1の配線層間絶縁膜中に第1の導電性金属配線を形成する工程と、
    これら第1の配線層間絶縁膜及び第1の導電性金属配線上にビア層間絶縁膜を形成する工程と、
    このビア層間絶縁膜中に導電性金属ビアを形成する工程と、
    これらビア層間絶縁膜及び導電性金属ビア上にバッファ絶縁膜を形成する工程と、
    このバッファ絶縁膜上に第2の配線層間絶縁膜を形成する工程と、
    この第2の配線層間絶縁膜中に第2の導電性金属配線を形成する工程とを有し、
    前記第1の導電性金属配線と第2の導電性金属配線とが前記導電性金属ビアによって電気的に接続され、さらに、前記ビア層間絶縁膜が前記導電性金属ビアよりも熱膨張係数が大きく、前記バッファ絶縁膜が前記導電性金属ビアの熱膨張係数に対して±50%程度以内の差の値を有し、且つ、その弾性率が前記ビア層間絶縁膜の誘電率の10倍以内の値を有していることを特徴とする半導体装置の製造方法。
  5. 前記ビア層間絶縁膜に、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とを形成し、さらに前記ダミービア孔には前記導電性金属ビアの熱膨張係数よりも小さい値を有する絶縁材を埋め込む工程を有することを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記ビア層間絶縁膜に、前記導電性金属ビアが形成されるビア孔と、このビア孔の周囲に前記ビア孔とのピッチが前記ビア孔の径の2倍以下とされ、且つ前記第1の導電性金属配線には到達しないダミービア孔とを形成し、さらに前記ダミービア孔には前記導電性金属ビアと同じ金属材を埋め込む工程を有することを特徴とする請求項4に記載の半導体装置の製造方法。
JP2002356178A 2002-12-09 2002-12-09 半導体装置 Expired - Fee Related JP4206740B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356178A JP4206740B2 (ja) 2002-12-09 2002-12-09 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356178A JP4206740B2 (ja) 2002-12-09 2002-12-09 半導体装置

Publications (2)

Publication Number Publication Date
JP2004193183A JP2004193183A (ja) 2004-07-08
JP4206740B2 true JP4206740B2 (ja) 2009-01-14

Family

ID=32756579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356178A Expired - Fee Related JP4206740B2 (ja) 2002-12-09 2002-12-09 半導体装置

Country Status (1)

Country Link
JP (1) JP4206740B2 (ja)

Also Published As

Publication number Publication date
JP2004193183A (ja) 2004-07-08

Similar Documents

Publication Publication Date Title
KR100773003B1 (ko) 하이브리드 유전체를 구비한 신뢰할 수 있는 저-k인터커넥트 구조
KR100755664B1 (ko) 서로 다른 물질로 형성된 라인 및 플러그 도전체를 갖는다마신 배선 구조를 형성하는 방법
KR100555010B1 (ko) 메모리와 로직 회로가 1칩에 혼재된 반도체 장치와 그제조 방법
US7834459B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2004527909A (ja) 誘電体バリアフィルムを用いたダマシンプロセス
US9466525B2 (en) Interconnect structures comprising flexible buffer layers
US6875686B2 (en) Method for fabricating a structure of interconnections comprising an electric insulation including air or vacuum gaps
JP5400355B2 (ja) 半導体装置
JP3715626B2 (ja) 半導体装置の製造方法および半導体装置
JP2010123586A (ja) 半導体装置、半導体装置の製造方法
JP4206740B2 (ja) 半導体装置
JP5213013B2 (ja) 半導体装置
JP4219215B2 (ja) 電子デバイスの製造方法
KR100691105B1 (ko) 듀얼 다마신 공정을 이용한 구리 배선 형성 방법
KR100607363B1 (ko) 저유전율 절연막을 이용한 금속간 절연막 및 그 형성방법
JP4160489B2 (ja) 半導体装置の製造方法
KR100914976B1 (ko) 반도체 소자의 제조방법
TWI746851B (zh) 金屬內連線結構及其製作方法
TW508742B (en) Method of improving reliability of a dual damascene interconnection
JPWO2006126536A1 (ja) 半導体装置及びその製造方法
JP2004296620A (ja) 半導体装置の製造方法
KR101138063B1 (ko) 반도체 소자의 금속 배선 형성 방법
US20060180934A1 (en) Wiring structures for semiconductor devices
KR20060032460A (ko) 반도체 소자의 배선 및 그 형성방법
KR20070055910A (ko) 이중 다마신 기술을 사용하여 비아콘택 구조체를 형성하는방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees