JP4204855B2 - サージ吸収装置およびサージ吸収回路 - Google Patents
サージ吸収装置およびサージ吸収回路 Download PDFInfo
- Publication number
- JP4204855B2 JP4204855B2 JP2002351376A JP2002351376A JP4204855B2 JP 4204855 B2 JP4204855 B2 JP 4204855B2 JP 2002351376 A JP2002351376 A JP 2002351376A JP 2002351376 A JP2002351376 A JP 2002351376A JP 4204855 B2 JP4204855 B2 JP 4204855B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- voltage
- discharge gap
- discharge
- surge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【発明の属する技術分野】
この発明は、サージ吸収装置、特に各種の電気機器や電子機器を、雷サージや、回路中に設置された機器によって生じる開閉サージ等から保護することに好適なサージ吸収装置およびサージ吸収回路に関する。
【0002】
【従来の技術】
近年、産業用および民生用の各種機器の制御機能部分等が半導体化されて来ている。そして、家庭用電気機器たとえば空調装置や調理関連機器等についても急速に半導体技術が導入され、さらにはそれらをネットワークに組み入れてその利便性を高めるために、いわゆる情報家電システムの実用化が進められている。
【0003】
半導体素子については、集積度の向上とそれによる内部パターンの微細化に伴って、その駆動電圧の低下および消費電力の低減等の取組が進められており、サージ等に対する耐性が一層低くなる傾向にある。
【0004】
一般に、雷サージや開閉サージ等のサージから電気機器や電子機器を防護するために、電圧依存性非線形素子(バリスタ)や放電ギャップ素子(以下これらをアレスタ素子と総称する)を、単独であるいはそれらを組み合わせて、電力供給系や情報伝送系のラインとアースとの間やライン間に接続することが広く行われている。上述したように、機器のサージ耐性の低下に伴って、これら素子にはこれまでよりも低い電圧レベルで動作することが求められる一方で、機器としての絶縁性能を少なくともこれまでと同等レベルに維持しなければならない。そのためには、電気機器や電子機器の絶縁性能を試験する際、アレスタ素子が試験電圧で導通しないような方策が必要となる。
【0005】
ところで、機器の絶縁性能を試験するための代表的な方法として、電源ラインとアースとの間からアレスタ素子をいったん切り離してそれに電圧が印加されないようにして試験電圧を印加するという方法がある。この方法によれば、試験電圧よりも低い放電開始電圧のアレスタ素子を使用しても、絶縁性能試験を行うことができるという利点がある。ところが、この方法によれば、試験の際に上述のようなアース接続の切り離しという煩雑な作業が必要になり、また、試験後にはそれを接続し直さなければならないという煩わしさがあり、接続忘れのおそれもある。
【0006】
その試験手順の煩雑さを解消するために、アレスタ素子に対して常閉接点を備えたリレー装置を直列に接続しておき、絶縁性能試験の際には、試験に先立ってこのリレー装置をオフにして、アレスタ素子を一時的に電源ラインとアースとの間から切り離すという構成の装置が提案されている(例えば、特許文献1参照)。あるいは、絶縁性能試験が電源ライン同士を短絡した状態で行われることに着目して、常開型のリレー装置を使用し、その励磁コイルを電源ライン間に接続するとともに、接点機構部をアレスタ素子に直列に接続しておき、機器の絶縁性能試験時には接点機構部がオフ状態、通常の使用状態ではオン状態となるよう構成した装置も提案されている(例えば、特許文献2参照)。
【0007】
さらに他の方法として、アレスタ素子をバリスタと放電ギャップ素子とを直列に接続して構成し、放電ギャップ素子の放電開始電圧を絶縁性能試験に耐えることができる電圧とする方法がある。この方法には、絶縁性能試験時にアレスタ素子を切り離す必要はないという利点があるものの、サージ電圧印加レベルが放電ギャップ素子の放電開始電圧によって決まることから,非常に高くなってしまい、半導体素子を搭載した電気機器や電子機器に適用するには実際的ではない。さらに、電源ラインとアースとの間のサージに対する絶縁を高めなければならず、また、絶縁トランスを使用するときには、その一次巻線と二次巻線との間の容量結合によるサージ減衰量を低くする絶縁設計が必要となり、適用機器のコストアップを招く。
【0008】
したがって、サージ抑制レベルを低く保持しながら、絶縁性能に優れた機器を実現するためには、前者の方法が後者の方法に比べてより実際的である。
【0009】
【特許文献1】
特開2001−286057号公報 第3−4ページ 図1−4
【特許文献2】
特開平8−205393号公報 第2−3ページ 図1、図4、図5
【0010】
【発明が解決しようとする課題】
前者の方法を具体化した装置によれば、試験時にリレーを動作させることによってアレスタ素子を電源・アース間から切り離し、試験終了後にそれを復帰させることから、絶縁性能試験の作業がきわめて容易となる。ところが、試験時にのみ使用するための装置を新たに付加しなければならず、そのために機器の構成が複雑となり、使用機器が大型化する。また、接点機構を備えていることから、信頼性の高いリレー装置を使用しなければならず、そのために使用機器がコスト高となってしまう。
【0011】
このようなことから、各種機器に使用される半導体素子の駆動電圧のより一層の低下、さらには情報家電システムに適した新たな機器の実用化を促進するためには、これまでよりも低い電圧レベルのサージから機器を保護することができ、さらには電源ライン・アース間からアレスタ素子を切り離さずに絶縁性能試験を行うことができる装置や回路の実現が、強く望まれ、さらに上述の動向はサージ電流の大きさに影響されることなくサージ電圧を所定の電圧以下に抑制することが必要とされ、特にこれは電源ライン間についてより強く望まれている。
【0012】
この発明は、このような課題を解決することができたもので、絶縁性能が高く、サージに対してはそれを低い電圧に抑制することができ、かつ機器のアース接続を切り離すことなく絶縁性能試験を行うことができるサージ吸収装置ならびにサージ吸収回路を提供する。
【0013】
【課題を解決するための手段】
この発明のサージ吸収装置は、第1の放電ギャップを構成する第1,第2の電極と、第2の電極との間で、第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する、第1,第2の電極間に接続された第1のインピーダンス素子、ならびに、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する、第2,第3の電極間に接続された第2のインピーダンス素子を備え、第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とする。
【0014】
この発明のサージ吸収装置は、第1の放電ギャップを構成する第1,第2の電極と、第2の電極との間で、第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、一方の端子が第1の電極に接続された電圧依存性非線形素子、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する、放電ギャップ素子の第1の電極と電圧依存性非線形素子の他方の端子との間に接続された第1のインピーダンス素子、ならびに、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する、第2,第3の電極間に接続された第2のインピーダンス素子を備え、第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とする。
【0015】
この発明のサージ吸収回路は、第1の放電ギャップを構成する第1,第2の電極と、第2の電極との間で、第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、第1の電極と第1のラインとの間に接続された電圧依存性非線形素子、第2の電極と第1のラインとの間に接続された、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する第1のインピーダンス素子、ならびに、第3の電極と第2の電極との間に接続された、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する第2のインピーダンス素子を備え、第3の電極がアースに接続され、第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とする。
【0016】
この発明のサージ吸収回路は、第1の放電ギャップを構成する第1,第2の電極と、第2の電極との間で、第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、第1の電極と複数のラインとの間にそれぞれ接続された複数個の電圧依存性非線形素子、第2の電極と複数のラインとの間にそれぞれ接続された、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する複数個の第1のインピーダンス素子、ならびに、第2の電極と前記第3の電極との間に接続された、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する第2のインピーダンス素子を備え、さらに第3の電極がアースに接続され、第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とする。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を用いて説明する。
【0018】
(実施の形態1)
【0019】
図1は実施の形態1としてのサージ吸収装置を説明するための図で、図の(A)は装置の構造の概念図、(B)はその等価回路図である。
【0020】
このサージ吸収装置は、図(A)に示すように、放電ギャップ素子1と、第1のインピーダンス要素としてのキャパシタ2と、第2のインピーダンス要素としてのインダクタ3とで構成されている。キャパシタ2は、インピーダンスが高周波数領域では低く、低周波数領域では高いという周波数−インピーダンス特性を持つ。またインダクダンス3は、それとは反対の周波数−インピーダンス特性を示し、インピーダンスが高周波数領域では高く、低周波数領域で低い。
【0021】
放電ギャップ素子1は、長さの異なる2個の絶縁性筒状体4,5と、これらを気密な状態で連結する環状の電極6と、筒状体4,5の開口端をそれぞれ封止する電極7,8とで構成され、さらにその内部には不活性ガスたとえばアルゴン、ヘリウム、またはその混合ガス等、もしくはSF6等が所定の圧力で封入されている。
【0022】
筒状体4,5はセラミックスたとえばアルミナ磁器またはガラスで構成され、その形状は円筒状、四角形筒状または多角形の筒状をしている。電極6,7,8は融点の高い金属たとえばタングステン、タンタル、モリブデン、ニオブ、およびバナジウム等や、それよりも比較的融点の低いクロムやチタン、鉄、コバルト、ニッケル、マンガン、銅、アルミニウム等、さらにはそれらの合金で構成される。そして、電極6は円環状をなし、その内径が筒状体の4,5の内径よりも小さく、外径が筒状体4,5の外径と等しいかそれよりも大きい。電極7,8は、その形状がディスク状で、互いに対向する面側に突起部を有する。なお、それらはキャップ状であってもよく、外観形状が放電開始電圧に影響を与えないものであれば、特にその形状が制約されるものでない。
【0023】
電極6,7によって第1の放電ギャップ9が形成され、また電極6,8によって第2の放電ギャップ10が形成される。それぞれのギャップ長すなわち電極間距離は放電開始電圧に応じて設定されている。この例では、筒状体4の寸法を筒状体5よりも長くすることで電極7,6間距離を電極6,8間距離よりも大として、放電ギャップ9の放電開始電圧が放電ギャップ10のそれよりも高くなるよう構成している。これによって、電極7,6間の放電開始電圧を所定の絶縁性能試験に耐え得る電圧とし、電極6,8間のそれをサージ抑制レベルの電圧としている。
【0024】
キャパシタ2およびインダクタ3のそれぞれの一方の電極は、放電ギャップ素子1の電極6に接続されている。そして、キャパシタ2の他方の電極は放電ギャップ素子1の電極7と端子11とに接続され、また、インダクタ3の他方の電極は放電ギャップ素子1の電極8と端子12とに接続されている。すなわち、この実施の形態のサージ吸収装置においては、キャパシタ2およびインダクタ3が放電ギャップ9および放電ギャップ10とそれぞれ並列に接続されている。
【0025】
この装置の端子11と端子12との間に試験電圧を印加すると、キャパシタ2とインダクタ3のそれぞれにはインピーダンス比に応じて分圧された電圧が印加される。
【0026】
試験電圧の周波数をfとし、キャパシタ2の容量をC、インダクタ3のインダクタンスをLとすれば、キャパシタ2のインピーダンスXCとインダクタ3のインピーダンスXLはそれぞれ次の関係式で表される。
【0027】
XC=1/(2πfC)
【0028】
XL=2πfL
【0029】
試験電圧をVとし、キャパシタ2およびインダクタ3による分圧電圧をそれぞれVC,VLとすると、それらは次の関係式で表される。
【0030】
VC={XC/(XC 2+XL 2)1/2}・V
【0031】
VL={XL/(XC 2+XL 2)1/2}・V
【0032】
絶縁性能試験で商用電源周波数の交流電圧VINを試験電圧として端子11,12間に印加すると、その周波数が低いため、電圧VINは実質的にキャパシタ2に印加されることになり、インダクタ3にはほとんど印加されない。すなわち、電極7,6間すなわち第1の放電ギャップ9に実質的に電圧VINと等しい電圧が印加され、電極6,8間すなわち第2の放電ギャップ10には、それに比べてきわめて低い電圧が印加されることになる。これから明らかなように、機器の絶縁性能はキャパシタ2と並列に接続される放電ギャップ9の特性に依存する。したがって、この形態の装置によれば、インダクタ3と並列に接続される放電ギャップ10の放電開始電圧に比べて非常に低く設定した放電ギャップ素子1を使用して、端子11,12をアース接続から切り離すことなく適切な絶縁試験を行うことができる。
【0033】
交流電圧VINが放電ギャップ9の放電開始電圧よりも高い過電圧であるときには、その電圧が端子11,12間に印加されると、放電ギャップ素子1の放電ギャップ9において放電が発生し、それがトリガとなってただちに電極7,8間で放電が生じて、過電圧を吸収する。無論、過電圧が直流であっても、この形態の装置は同じ応答動作をし、それが機器に組み込まれているときには、それを過電圧から保護する。
【0034】
一方、サージ試験電圧、たとえば周波数100kHzのサージ電圧VSURを端子11,12間に印加すると、キャパシタ2とインダクタ3との直列接続体において、そのほとんどがインダクタ3に印加されることになり、キャパシタ2への印加電圧はきわめて低い値となる。このため、サージ電圧VSURは電極6,8間すなわち放電ギャップ10に実質的に印加されることになり、電極7,6間すなわち放電ギャップ9にはそれに比べてきわめて低い電圧が印加される。
【0035】
電圧VSURが放電ギャップ10の放電開始電圧以上であるとき、まずこのギャップ10で放電が発生し、それがトリガとなってただちに電極7,8間に放電が生じる。これによって端子11,12間に印加されるサージ電圧が素子1の電極7,8間の放電維持電圧のレベルに抑制されることから、この形態の装置はそれが組み込まれた機器を過大なサージから保護する。さらに、キャパシタ2とインダクタ3とがサージ周波数成分で共振するよう回路定数を選定することで、放電ギャップ10におけるサージ応答性を高めることができる。
【0036】
一例として、キャパシタ2に容量0.01μFのキャパシタを、またインダクタ3にインダクタンス0.8Hのインダクタンスを使用して、周波数60Hzの交流電圧1600Vを印加したとき、キャパシタ2による分圧は約1598V、インダクタ3による分圧は約2Vであった。すなわち、放電ギャップ9側に実質的に全電圧が印加され、放電ギャップ10側の印加電圧はきわめて低く、絶縁性能が放電ギャップ9の放電特性に依存していることがわかる。次に、周波数100kHzのサージ電圧1000Vを印加したときには、インダクタ3による分圧が約1000Vとなって、キャパシタ2による分圧は1Vにも達せず、放電ギャップ10側に実質的に全電圧が印加された。これから、サージ抑制電圧は放電ギャップ10の放電特性によって決まることがわかる。
【0037】
そして、少なくとも電極8をタングステンやモリブデン等の高融点材料に比べて比較的融点の低い金属たとえば銅やアルミニウム等で構成し、または電極表面を被覆したり、さらには電極表面を粗面化したり、表面に突起を設けたりすることで、電極6,8間の放電開始を低下させ、電極7,8間の放電を確実に発生させ、素子1によるサージ抑制効果を高めることができる。
【0038】
通常の使用状態においては、上述からも明らかなように、その電圧はキャパシタ2側、すなわち放電開始電圧の高い放電ギャップ10に実質的に印加される。放電ギャップ10はこの通常使用時の電圧に十分に耐えることができる。
【0039】
このように、実施の形態1の装置によれば、キャパシタ2が並列に接続される側の放電ギャップ9の放電開始電圧を、それが組み込まれる機器に対する絶縁性能試験に適合した電圧とする、すなわち絶縁性能試験に耐え得る電圧とすることで、これまでのように電源ラインとアースラインとを切り離すことなく、その試験を行うことができる。また、インダクタ3が並列に接続される側の放電ギャップ10については、絶縁性能試験電圧を特に考慮することなく、その放電開始電圧を所望のサージの抑制電圧レベルに応じて非常に低い値に設定することが可能となり、適用機器に求められるサージ耐性をきわめて容易に実現することができる。
【0040】
したがって、半導体素子等の耐電圧特性のきわめて低い素子を使用した機器についても、絶縁性能がよく、サージに対してはそれを損傷から保護するのに十分な低いレベルに抑制することができることから、電気機器や電子機器の耐サージ信頼性を高めることができるだけでなく、今後普及すると考えられる情報家電機器に組み込むことで高い信頼性を保持させることができる。そして、情報伝送システムのような比較的ライン間インピーダンスの高いシステムでは、過電圧や過大電圧サージに応じてこの形態の装置が動作しても、ラインインピーダンスによる電圧降下によって続流の発生が抑圧され、復帰する。
【0041】
(実施の形態2)
【0042】
図2は実施の形態2としてのサージ吸収装置を説明するための図で、その(A)は装置の構造の概念図、(B)はその等価回路図である。
【0043】
この形態が、上述の実施の形態1と最も異なるところは、放電ギャップ素子1の電極7と端子11との間にバリスタ13を挿入接続し、これによって放電ギャップ素子1の放電後の続流を遮断できる構成としたことである。なお、図において、実施の形態1における構成要素と対応するものには同じ符号を付した。
【0044】
絶縁性能試験時の電圧は、放電ギャップ9とバリスタ13との直列接続体に主として印加されることから、このサージ吸収装置を使用する電気機器または電子機器の使用電圧を考慮して、それに適合した特性の放電ギャップ9をもつ放電ギャップ素子1と電圧依存性非線形素子であるバリスタ13とを使用する。バリスタ13には、たとえば酸化亜鉛バリスタを使用することができる。
【0045】
この形態の装置において、周波数の低い交流電圧または直流電圧は実質的にバリスタ13と素子1の放電ギャップ9との直列接続体に印加され、一方、それに比べて周波数の著しく高いサージ電圧は実質的に放電ギャップ10に印加される。したがって、この形態の装置においても、低い周波数の交流電圧または直流電圧はバリスタ13と放電ギャップ9との直列接続体の導通電圧レベルに抑制され、サージ電圧は放電ギャップ10の導通電圧レベルに抑制される。そして、適用機器の絶縁性能試験を、アース接続を切り離すことなく実施することができる。
【0046】
さらに、この装置によれば、バリスタ13が端子11,12間に過電圧やサージ電圧の抑制動作後における続流を即時に遮断することができるため、搭載機器の信頼性向上が可能となる。特にこの形態の装置は、線間インピーダンスの低い電源ライン等に接続して使用される機器に適用して有用なものである。
【0047】
(実施の形態3)
【0048】
図3は実施の形態3として商用周波数電源から電力の供給を受ける機器に適用したサージ吸収回路の例を示す図である。
【0049】
この実施の形態では、実施の形態2のサージ吸収装置を機器14に組み込んで、それを介して機器の本体部15に電源16から給電される構成としたものである。すなわち、端子11が一方の電源ライン17に接続され、端子12がアースされている。そして、他方の電源ライン18がアースされている。
【0050】
これによれば、実施の形態2において述べたことから明らかなように、端子12をアースから切り離すことなく機器14の絶縁性能試験を行うことができる。そして、サージに対しては、放電開始電圧の低い放電ギャップ10側で放電が発生し、ただちにそれがトリガとなって電極7,8間での放電を惹き起こし、これによってライン17,18間をバリスタ13の導通電圧と電極7,8間の放電電圧との和で決まる電圧レベルに抑制することができる。バリスタ13の導通電圧をライン17,18間の定常的な電圧に対応させて選定しておくことで、ライン17,18間を所定電圧に保持するとともに、続流を遮断する。このため、サージによる電源16や機器本体15への影響を著しく軽減することができる。
【0051】
なお、この形態を電力供給システムに代えて情報伝送システムに適用しても、同様の効果が得られることは言うまでもないことである。
【0052】
なお、この形態は電源ラインとアースとの間に設置した例であるが、電源ライン間に適用する場合にも、同様の効果が奏せられることは言うまでもないことである。この場合においては、この形態の回路の動作開始電圧を電源ライン・アース間電圧よりも低くし、放電ギャップ素子およびバリスタによるサージ抑制電圧をより一層低く設定することによって、ライン間に直接に接続される半導体素子に対する耐電圧レベルを低下させることが可能となり、半導体素子を使用する上での制約を緩和するとともに、使用機器の耐サージ信頼性を高めることができる。
【0053】
(実施の形態4)
【0054】
図4は実施の形態4としてのサージ吸収回路を示す図である。
【0055】
この形態では、実施の形態2のサージ吸収装置の構成を一部変形して使用している。
【0056】
すなわち、放電ギャップ素子1の電極7に2個のバリスタ13−1、同11−2の一方の端子が接続され、またその電極6に2個のキャパシタ2−1,2−2の一方の端子11−1,11−2が接続されている。さらに、バリスタ13−1およびキャパシタ2−1の他方の端子が一方の電源ライン19−1に、またバリスタ13−2およびキャパシタ2−2の他方の端子が他方の電源ライン19−2にそれぞれ接続されている。そして、放電ギャップ素子1の電極12がアースされている。無論、電極12をアースラインに接続してもよい。
【0057】
この装置は機器20に組み込まれて使用され、電源21から機器本体部22が受電している際に、ライン19−1,19−2のいずれか一方、たとえばライン19−1にサージが発生したとき、まず放電ギャップ素子1の放電ギャップ10側で放電し、それによってただちに電極7,8間で放電が惹き起こされ、バリスタ13−1が通電して、サージを低い電圧レベルに抑制するとともに、ライン19−1とアースとの間の電圧を保持する。そして、バリスタ13―1,13−2がライン19−1,19−2間に直列に接続されて介挿されているので、ライン19−1,19−2間の電圧もそれらの導通電圧の和に等しい電圧で保持されるため、電源21や機器20が効果的にサージから保護される。無論、ライン19−2や、さらには両ライン19−1,19−2においてサージが発生したときにも同様にそれを低い電圧レベルに抑制することができる。この場合においても、バリスタ13−1,13−2によってサージ抑制後の続流を遮断するとともに,ライン19−1,19−2間の電圧を所定の値に保持することができる。
【0058】
なお、この形態を電力供給システムに代えて情報伝送システムに適用しても、同様の効果が得られることは言うまでもないことである。
【0059】
【発明の効果】
この発明によれば、放電ギャップ素子内に放電開始電圧が互いに異なる放電ギャップを配置するとともに、放電開始電圧の高い第1の放電ギャップに並列に、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する第1のインピーダンス素子を、また放電開始電圧の低い第2の放電ギャップに並列に、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する第2のインピーダンス素子をそれぞれ配置することによって、商用電源周波数のような低い周波数の交流電圧や直流電圧が実質的に第1の放電ギャップ側に、また高周波数成分を含むサージ電圧は第2のインピーダンス素子にそれぞれ印加される。これによって、第1の放電ギャップの放電開始電圧を所定の絶縁性能試験条件を満たす値に設定し、また、第2の放電ギャップの放電開始電圧を機器に組み込まれる回路要素の耐電圧性能に対応した電圧に設定することで、サージをより低い電圧レベルに抑制することができ、かつその使用機器のアース接続を切り離すことなく絶縁性能試験を行うことができる。さらに、放電ギャップ素子に対してその第1の放電ギャップ側に電圧依存性非線形素子を直列に接続することで、過電圧またはサージに対して装置の動作後の続流を遮断することができる。
【0060】
さらに、複数の電圧依存性非線形素子の一端を対応するラインと放電ギャップ素子の第1の放電ギャップとの間に配置し、また各ラインと共通の第2のインピーダンス素子との間にそれぞれ第2のインピーダンス素子を配置しているので、サージをより低い電圧レベルに抑制することができ、かつその使用機器のアース接続を切り離すことなく絶縁性能試験を行うことができるとともに、ライン間を電圧依存性非線形素子の導通電圧で規制することができる。
【図面の簡単な説明】
【図1】(A)はこの発明における実施の形態1のサージ吸収装置の構造を示す図、(B)はその回路図である。
【図2】(A)はこの発明における実施の形態2のサージ吸収装置の構造を示す図、(B)はその回路図である。
【図3】この発明の実施の形態3のサージ吸収回路の構成を示す図である。
【図4】この発明の実施の形態4のサージ吸収回路の構成を示す図である。
【符号の説明】
1 放電ギャップ素子
2 キャパシタ
2−1,2−2 キャパシタ
3 インダクタ
4,5 絶縁性筒状体
6,7,8 電極
9,10 放電ギャップ
11,12 端子
11−1,11−2 端子
13 バリスタ
13−1,13−2 バリスタ
14 サージ吸収装置を組み込んだ機器
15 機器本体部
16 電源
17,18 電源ライン
19−1,19−2 電源ライン
20 機器
21 電源
22 機器本体部
Claims (10)
- 第1の放電ギャップを構成する第1の電極および第2の電極と、前記第2の電極との間で、前記第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、
高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する、前記第1の電極と前記第2の電極との間に接続された第1のインピーダンス素子、ならびに、
高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する、前記第2の電極と前記第3の電極との間に接続された第2のインピーダンス素子を備え、
前記第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、前記第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とするサージ吸収装置。 - 前記放電ギャップ素子の前記第1の電極と前記第2の電極との距離が前記第2の電極と前記第3の電極との距離よりも長いことを特徴とする請求項1に記載のサージ吸収装置。
- 前記第2の電極が高融点金属に比べて融点の低い金属で構成された請求項1または2に記載のサージ吸収装置。
- 前記第1のインピーダンス素子がキャパシタであり、前記第2のインピーダンス素子がインダクタである請求項1に記載のサージ吸収装置。
- 第1の放電ギャップを構成する第1の電極および第2の電極と、前記第2の電極との間で、前記第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、
一方の端子が前記第1の電極に接続された電圧依存性非線形素子、
高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する、前記放電ギャップ素子の前記第1の電極と前記電圧依存性非線形素子の他方の端子との間に接続された第1のインピーダンス素子、ならびに、
高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する、前記第2の電極と前記第3の電極との間に接続された第2のインピーダンス素子を備え、
前記第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、前記第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とするサージ吸収装置。 - 前記放電ギャップ素子の前記第1の電極と前記第2の電極との距離が前記第2の電極と前記第3の電極との距離よりも長いことを特徴とする請求項5に記載のサージ吸収装置。
- 前記第2の電極が高融点金属に比べて融点の低い金属で構成された請求項5または6に記載のサージ吸収装置。
- 前記第1のインピーダンス素子がキャパシタであり、前記第2のインピーダンス素子がインダクタである請求項5に記載のサージ吸収装置。
- 第1の放電ギャップを構成する第1の電極および第2の電極と、前記第2の電極との間で、前記第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、
前記第1の電極と第1のラインとの間に接続された電圧依存性非線形素子、
前記第2の電極と前記第1のラインとの間に接続された、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する第1のインピーダンス素子、ならびに、
前記第3の電極と第2の電極との間に接続された、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する第2のインピーダンス素子を備え、前記第3の電極がアースに接続され、
前記第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、前記第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とするサージ吸収回路。 - 第1の放電ギャップを構成する第1の電極および第2の電極と、前記第2の電極との間で、前記第1の放電ギャップよりも放電開始電圧が低い第2の放電ギャップを構成する第3の電極とを有する放電ギャップ素子、
前記第1の電極と複数のラインとの間にそれぞれ接続された複数個の電圧依存性非線形素子、
前記第2の電極と前記複数のラインとの間にそれぞれ接続された、高周波数領域で低インピーダンス特性を、また低周波数領域で高インピーダンス特性を有する複数個の第1のインピーダンス素子、ならびに、
前記第2の電極と前記第3の電極との間に接続された、高周波数領域では高インピーダンス特性を、また低周波数領域では低インピーダンス特性を有する第2のインピーダンス素子を備え、前記第3の電極がアースに接続され、
前記第1の放電ギャップの放電開始電圧が機器の絶縁性能試験に耐え得る電圧であって、かつ、前記第2の放電ギャップの放電開始電圧がサージ抑制レベルの電圧であることを特徴とするサージ吸収回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351376A JP4204855B2 (ja) | 2002-12-03 | 2002-12-03 | サージ吸収装置およびサージ吸収回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351376A JP4204855B2 (ja) | 2002-12-03 | 2002-12-03 | サージ吸収装置およびサージ吸収回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004185982A JP2004185982A (ja) | 2004-07-02 |
JP4204855B2 true JP4204855B2 (ja) | 2009-01-07 |
Family
ID=32753310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002351376A Expired - Fee Related JP4204855B2 (ja) | 2002-12-03 | 2002-12-03 | サージ吸収装置およびサージ吸収回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4204855B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4709715B2 (ja) * | 2006-08-30 | 2011-06-22 | 新日本製鐵株式会社 | 避雷装置、避雷機能を有する構造柱及び雷サージ電圧の低減方法 |
KR100817485B1 (ko) * | 2007-08-28 | 2008-03-31 | 김선호 | 방전제어전극이 구비된 방전소자 및 그 제어회로 |
JP4983677B2 (ja) * | 2008-03-25 | 2012-07-25 | 三菱電機株式会社 | サージ吸収回路 |
DE102011108858A1 (de) * | 2011-07-28 | 2013-01-31 | Epcos Ag | Elektrischer Drei-Elektroden-Überspannungsableiter |
KR101476977B1 (ko) * | 2013-11-21 | 2014-12-29 | 주식회사 한국서지연구소 | Gca 소자 및 gca 소자 구동회로 |
CN109217275B (zh) * | 2018-08-22 | 2024-08-13 | 深圳市瑞隆源电子有限公司 | 耐高压的防雷电涌抑制电路、器件及电源适配器 |
CN112332396A (zh) * | 2020-10-22 | 2021-02-05 | 马鞍山市槟城电子有限公司 | 放电电路、浪涌保护电路、点火电路及电子设备 |
CN113346364A (zh) * | 2021-04-30 | 2021-09-03 | 华能湖北新能源有限责任公司 | 电缆终端防爆系统及方法 |
-
2002
- 2002-12-03 JP JP2002351376A patent/JP4204855B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004185982A (ja) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7251114B2 (en) | Overvoltage protecting circuit in a steady state | |
JP4041068B2 (ja) | 中程度の電圧誘導結合装置を電気過渡現象から保護する方法 | |
TWI651908B (zh) | 快速開關故障電流限制器 | |
CA2697674A1 (en) | Discharge element with discharge-control electrode and the control circuit thereof | |
JP4204855B2 (ja) | サージ吸収装置およびサージ吸収回路 | |
JP4983677B2 (ja) | サージ吸収回路 | |
US6493201B1 (en) | Spark gap retrofit module for surge arrester | |
CN112332396A (zh) | 放电电路、浪涌保护电路、点火电路及电子设备 | |
CN217469453U (zh) | 一种隔离电源的浪涌保护装置 | |
WO2005093923A1 (ja) | サージ吸収装置およびサージ吸収回路 | |
JP4020210B2 (ja) | 信号線路用避雷器 | |
JP2002101505A (ja) | 配電盤 | |
JP2002354662A (ja) | 雷防護回路 | |
JP2012095446A (ja) | 電源装置およびその耐電圧試験方法 | |
JP4385104B2 (ja) | 急峻波抑制装置 | |
KR100398824B1 (ko) | 피뢰기 장치 | |
JP2020156139A (ja) | ノイズフィルタ回路を備えた電気機器 | |
JPH01268427A (ja) | 異常電圧抑制装置 | |
JPH06233453A (ja) | 電子機器の雷サージ保護回路 | |
JPS631557Y2 (ja) | ||
JPH05284732A (ja) | 耐サージ用電源回路 | |
JP3292783B2 (ja) | 直流遮断器 | |
JPH01255441A (ja) | 避雷器 | |
KR200212603Y1 (ko) | 피뢰기 장치 | |
JPH0356037A (ja) | 負荷開閉器再点弧防止装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081001 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4204855 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |