JP4202305B2 - 3D laser processing machine - Google Patents

3D laser processing machine Download PDF

Info

Publication number
JP4202305B2
JP4202305B2 JP2004222203A JP2004222203A JP4202305B2 JP 4202305 B2 JP4202305 B2 JP 4202305B2 JP 2004222203 A JP2004222203 A JP 2004222203A JP 2004222203 A JP2004222203 A JP 2004222203A JP 4202305 B2 JP4202305 B2 JP 4202305B2
Authority
JP
Japan
Prior art keywords
axis
nozzle
workpiece
posture
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004222203A
Other languages
Japanese (ja)
Other versions
JP2006035290A (en
Inventor
敬一郎 宮嶋
浩二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2004222203A priority Critical patent/JP4202305B2/en
Publication of JP2006035290A publication Critical patent/JP2006035290A/en
Application granted granted Critical
Publication of JP4202305B2 publication Critical patent/JP4202305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、主として3次元形状の薄板の切断加工等に使用される3次元レーザ加工機に関する。   The present invention relates to a three-dimensional laser processing machine used mainly for cutting a three-dimensional thin plate.

3次元レーザ加工機は、主として3次元形状を有する薄板の切断加工等に広く使用されている。一般に、3次元レーザ加工機は、レーザ光を被加工物に対して照射するノズルの先端を該被加工物に対して位置決め(被加工物に対する相対位置と相対姿勢を決めること)するために、基本3軸(X軸、Y軸、Z軸)及び回転2軸(C軸及びA軸)を有し、これらの軸が制御装置(CNC)で制御される。なお、各軸の駆動対象物の割り当てについては、例えばX軸、Y軸、Z軸で被加工物を載置するテーブルを駆動し、残るC軸及びA軸でノズルを取付けたヘッドを駆動する方式や、X軸とY軸で被加工物を載置するテーブルを駆動し、Z軸、C軸及びA軸でノズルを取付けたヘッドを駆動する方式などがある。   The three-dimensional laser processing machine is widely used mainly for cutting a thin plate having a three-dimensional shape. In general, a three-dimensional laser processing machine positions the tip of a nozzle that irradiates a workpiece with laser light with respect to the workpiece (determines a relative position and a relative posture with respect to the workpiece). There are three basic axes (X axis, Y axis, Z axis) and two rotation axes (C axis and A axis), and these axes are controlled by a control device (CNC). As for the allocation of the driving object for each axis, for example, the table on which the workpiece is placed is driven on the X axis, the Y axis, and the Z axis, and the head on which the nozzle is attached is driven on the remaining C axis and A axis. There are a system and a system in which a table on which a workpiece is placed is driven by the X axis and the Y axis, and a head to which a nozzle is attached is driven by the Z axis, the C axis, and the A axis.

周知のように、加工実行時の制御は、通常、加工プログラムに従って行なわれる。この加工プログラムを作成する最も一般的な方法は、実際の被加工物の切断線(切断を希望する線)上のいくつかの希望位置にノズル先端点(ノズルに設定された先端点で、通常、レーザ光の集光位置に設定される)を一致させ、その時の各軸値を加工点データとして順次記憶していくもので、「教示(ティーチング)による加工プログラム作成」と呼ばれている。   As is well known, control at the time of machining is normally performed according to a machining program. The most common way to create this machining program is to set the nozzle tip point (tip point set on the nozzle, usually at several desired positions on the actual workpiece cutting line (the line you want to cut). Are set as the laser beam condensing position), and the respective axis values at that time are sequentially stored as processing point data, which is called “processing program creation by teaching”.

このようなティーチングに際して生じる1つの問題は、ノズルの姿勢を正確に教示することが簡単でないということである。レーザ加工ではノズルの方向(レーザ光の光軸方向)は加工切断面の方向を左右する。被加工切断面の方向は、被加工物表面に垂直となるように希望されることが殆どである。
従って、ティーチングにあたっては、ノズルの方向を被加工物表面に対して垂直とするような調整(垂直調整)を行ない、該垂直調整後の姿勢における各軸値を教示する必要があるが、従来は、このノズル方向の垂直調整を目視で行わねばならなかった。そのため、ティーチングに時間がかかり、且つ、熟練したオペレータにとっても正確なノズルの垂直調整は容易でなかった。
One problem that arises in such teaching is that it is not easy to accurately teach the attitude of the nozzle. In laser processing, the direction of the nozzle (the optical axis direction of the laser beam) affects the direction of the cut surface. In most cases, the direction of the workpiece cut surface is desired to be perpendicular to the workpiece surface.
Therefore, in teaching, it is necessary to make adjustments (vertical adjustment) so that the direction of the nozzle is perpendicular to the surface of the workpiece, and to teach each axis value in the posture after the vertical adjustment. The vertical adjustment in the nozzle direction had to be made visually. Therefore, teaching takes time, and accurate vertical adjustment of the nozzle is not easy even for a skilled operator.

なお、レーザ加工機のノズル先端点の被加工物に対する相対位置を与えた条件(例えば固定した条件)でノズル姿勢を制御する技術は周知であり、下記特許文献1、2等で説明されている。また、本発明で使用する測定手段の1つとして言及される「被加工物からの反射光強度を検知する手段」について、下記特許文献3に開示がある。   In addition, a technique for controlling the nozzle attitude under a condition (for example, a fixed condition) that gives a relative position of the nozzle tip point of the laser processing machine to the workpiece is well known, and is described in Patent Documents 1 and 2 below. . Further, “Means for detecting intensity of reflected light from a workpiece” referred to as one of measuring means used in the present invention is disclosed in Patent Document 3 below.

特開平1−224194号公報JP-A-1-224194 特開平4−37496号公報JP-A-4-37496 特許第3222430号公報Japanese Patent No. 3222430

本発明の1つの目的は、加工物表面に対するノズルの相対姿勢を自動的に垂直方向に調整する機能を具備した3次元レーザ加工機を提供することにある。また、本発明のもう1つの目的は、レーザ光を照射するノズルの正確な垂直調整を容易に行えるようにして、レーザ加工の加工プログラム作成におけるティーチング作業を容易で効率的なものとすることにある。   One object of the present invention is to provide a three-dimensional laser processing machine having a function of automatically adjusting the relative posture of a nozzle to a workpiece surface in a vertical direction. Another object of the present invention is to facilitate easy and efficient teaching work in creating a machining program for laser machining by facilitating accurate vertical adjustment of a nozzle that emits laser light. is there.

本発明は、レーザ光を被加工物に対して照射するノズルの先端を該被加工物に対して位置決めするために、基本3軸(X軸、Y軸、Z軸)、前記Z軸方向回りで前記ノズルを回転させる第1の回転軸(C軸)及び前記第1の回転軸(C軸)に対して垂直な軸回りで前記ノズルを回転させる第2の回転軸(A軸)と、前記基本3軸、前記第1の回転軸及び前記第2の回転軸を制御する制御手段を有し、前記制御手段が、前記ノズルに設定された先端点の被加工物に対する相対位置を一定に保ちながら前記ノズルに姿勢変化を与える姿勢変化手段を含んでいる、3次元レーザ加工機に適用される。   In the present invention, in order to position the tip of the nozzle that irradiates the workpiece with laser light with respect to the workpiece, three basic axes (X axis, Y axis, Z axis) and the Z axis direction are rotated. A first rotation axis (C axis) for rotating the nozzle and a second rotation axis (A axis) for rotating the nozzle about an axis perpendicular to the first rotation axis (C axis); Control means for controlling the basic three axes, the first rotation axis, and the second rotation axis, and the control means makes the relative position of the tip point set on the nozzle relative to the workpiece constant. The present invention is applied to a three-dimensional laser processing machine including posture changing means for changing the posture of the nozzle while maintaining it.

そして、請求項1に係る3次元レーザ加工機の特徴は、前記姿勢変化手段により前記ノズルに姿勢変化が与えられた時の被加工物からの反射光の強度推移を測定する測定手段と、前記測定手段による前記強度推移の測定結果に基づいて、前記ノズルが前記被加工物の表面に対し垂直となる姿勢を求める姿勢決定手段を具備し、前記姿勢変化手段は、前記第1の回転軸及び前記第2の回転軸にそれぞれ所定角度の傾斜量を与えた所定の傾斜状態から、前記ノズルの先端点の前記被加工物に対する相対位置を一定に保ちながら前記ノズルを前記Z軸方向回りで360度回転させる第1の姿勢変化手段と、前記第1の姿勢変化の間に前記測定手段で得られる測定値が最大となる前記C軸の第1の角度を保った条件で、前記ノズルの先端点の前記被加工物に対する相対位置を一定に保ちながら前記A軸を所定範囲で変化させる第2の姿勢変化手段とを含み、前記姿勢決定手段は、前記測定手段による前記強度推移の測定結果に基づいて、前記第2の姿勢変化の間に前記測定手段で得られる測定値が最大となる前記A軸の第1の角度を求める手段と、前記C軸の第1の角度及び前記A軸の第1の角度で定まる第1のノズル姿勢が、前記ノズルが前記被加工物の表面に対し垂直となる姿勢であるかについて、予め定めた許容基準に照らして“肯定”あるいは“否定”のいずれかの判定結果を提供する判定手段とを含んでいることである。 The feature of the three-dimensional laser beam machine according to claim 1 is that the measuring means for measuring the intensity transition of the reflected light from the workpiece when the posture change is given to the nozzle by the posture changing means, Based on the measurement result of the intensity transition by the measuring unit, the nozzle includes a posture determining unit that obtains a posture in which the nozzle is perpendicular to the surface of the workpiece, and the posture changing unit includes the first rotating shaft and From a predetermined inclination state in which an inclination amount of a predetermined angle is given to each of the second rotation shafts, the nozzle is rotated 360 around the Z-axis direction while keeping the relative position of the tip point of the nozzle with respect to the workpiece. The first tip changing means for rotating the nozzle and the tip of the nozzle under the condition that the first angle of the C-axis at which the measurement value obtained by the measuring means is maximum during the first posture change is maintained. Said coverage of points Second posture changing means for changing the A axis within a predetermined range while keeping the relative position to the object constant, the posture determining means based on the measurement result of the intensity transition by the measuring means. Means for obtaining a first angle of the A axis that maximizes a measurement value obtained by the measuring means during two attitude changes, and a first angle of the C axis and a first angle of the A axis. Whether the first nozzle posture to be determined is a posture in which the nozzle is perpendicular to the surface of the workpiece, a determination result of “positive” or “negative” in light of a predetermined acceptance criterion. And a determination means to be provided.

ここで、前記判定手段による判定結果が“否定”である場合に、前記所定の傾斜状態における前記A軸の所定の傾斜量を切り替える手段を更に設けることもできる(請求項)。
また、請求項1及び請求項のいずれに係る3次元レーザ加工機においても、上記前記測定手段として、前記ノズルの先端部に設けられた光検出器を含んでいるものを使用することができる。
Here, wherein when the determination result by the determining means is "negative", it is also possible to means further provided for switching a predetermined inclination amount of the A-axis in the predetermined inclined state (claim 2).
Also, in the three-dimensional laser processing machine according to any one of claims 1 and 2 , the measuring means including a photodetector provided at a tip portion of the nozzle can be used. .

本発明に係る3次元レーザ加工機によれば、レーザ光を照射するノズルの正確な垂直調整が自動化され、容易に行えるようになる。そのため、レーザ加工の加工プログラム作成におけるティーチング作業が効率化され、高度の熟練を要することなく正確なティーチングが行えるようになる。   According to the three-dimensional laser beam machine according to the present invention, accurate vertical adjustment of the nozzle for irradiating laser light is automated and can be easily performed. Therefore, the teaching work in creating a machining program for laser machining is made more efficient, and accurate teaching can be performed without requiring a high degree of skill.

図1は本発明に従った1つの実施形態に係るレーザ加工機の概略構成を示す図で、C軸及びA軸の駆動機構に関してはやや詳しく描かれている。同図において、符号1はC軸駆動用サーボモータであり、符号2はA軸駆動用サーボモータである。C軸はZ軸方向周りでノズル9aを回転させる回転軸(第1の回転軸)であり、C軸駆動用サーボモータ1の回転がギア4a、4bによって支持部材5を回転させるようになっている。一方、A軸はC軸に対して垂直な軸の回りでノズル9aを回転させる回転軸(第2の回転軸)で、A軸駆動用サーボモータ2の回転がギア6a、6bによってシャフト7を回転させ、その回転が傘歯車8a、8bでシャフト9に伝えられるようになっている。   FIG. 1 is a diagram showing a schematic configuration of a laser beam machine according to an embodiment of the present invention, and the C-axis and A-axis drive mechanisms are depicted in some detail. In the figure, reference numeral 1 denotes a C-axis drive servomotor, and reference numeral 2 denotes an A-axis drive servomotor. The C-axis is a rotating shaft (first rotating shaft) that rotates the nozzle 9a around the Z-axis direction, and the rotation of the servo motor 1 for driving the C-axis rotates the support member 5 by the gears 4a and 4b. Yes. On the other hand, the A-axis is a rotating shaft (second rotating shaft) that rotates the nozzle 9a around an axis perpendicular to the C-axis, and the rotation of the A-axis driving servo motor 2 causes the shaft 7 to be rotated by the gears 6a and 6b. The rotation is transmitted to the shaft 9 by the bevel gears 8a and 8b.

軸受機構等の詳細は図示を省略したが、シャフト9は支持部材5上でC軸に対して垂直な軸の回りで回転自在に支持されている。そして、ノズル9aはシャフト9に装着され、固定されている。以上の機構により、C軸駆動用サーボモータ1が動作すれば、Z軸方向周りでノズル9aが回転し、A軸駆動用サーボモータ2が動作すれば、C軸に垂直な軸周りでノズル9aが回転する。両者が同時に回転すれば、それら回転が同時に起ることは言うまでもない。   Although details of the bearing mechanism and the like are not shown, the shaft 9 is supported on the support member 5 so as to be rotatable around an axis perpendicular to the C axis. The nozzle 9a is attached to the shaft 9 and fixed. With the above mechanism, when the C-axis drive servomotor 1 operates, the nozzle 9a rotates around the Z-axis direction, and when the A-axis drive servomotor 2 operates, the nozzle 9a rotates around the axis perpendicular to the C-axis. Rotates. Needless to say, if both rotate at the same time, these rotations occur simultaneously.

レーザビームは、いずれも図示を省略したレーザ発振器から供給され、反射ミラー、光ファイバ等を用いた伝送路を経由して、ノズル9aの先端からワーク(被加工物)Wに向けて照射される。符号30はノズル9aの先端にはめ込まれる態様で取付けられた円環状の光検出器で、後述するように、ワークWに照射されたレーザビームの反射光の強度を検出するものである。光検出器30の開口部は円形で、レーザビームの光軸に関して軸合わせされている。   The laser beam is supplied from a laser oscillator (not shown), and is irradiated toward the workpiece (workpiece) W from the tip of the nozzle 9a through a transmission path using a reflection mirror, an optical fiber, or the like. . Reference numeral 30 denotes an annular photodetector mounted in a manner fitted to the tip of the nozzle 9a, and detects the intensity of the reflected light of the laser beam applied to the workpiece W, as will be described later. The opening of the photodetector 30 is circular and is aligned with the optical axis of the laser beam.

ワークWはワークテーブル20上に位置決めされている。ワークテーブル20は、ここでは基本3軸(X軸、Y軸、Z軸)で駆動されるものであるが、ワークテーブル20を例えばXYテーブルとし、上記したC軸、A軸の駆動機構及びノズル9aを含めた部分全体をZ軸で駆動するようにしても良い。X軸、Y軸、Z軸の駆動機構については詳細の図示を省略した。   The workpiece W is positioned on the workpiece table 20. Here, the work table 20 is driven by three basic axes (X axis, Y axis, Z axis). However, the work table 20 is, for example, an XY table, and the above-described C axis and A axis drive mechanisms and nozzles are used. The entire portion including 9a may be driven by the Z axis. Details of the X-axis, Y-axis, and Z-axis drive mechanisms are omitted.

各軸の制御は、符号10で示した制御装置によって行なわれる。制御装置10はCPU、メモリ、外部装置とのインターフェイス等で構成され、光検出器30の出力の取り込み及び後述する処理のためのソフトウェア等を除けば周知のものである。制御装置10には、例えばキーボード等の手動操作部11とLCD等のディスプレイ12が付設され、オペレータがレーザ加工機の動作、加工プログラム作成、編集等に必要な諸指令、パラメータ等の入力、修正等を行えるようになっている。
ここで、「ノズル先端点固定制御」について簡単に説明しておく。周知のように、ノズル9a内には集光レンズが設けられ、レーザビームの集光位置はノズル9aの先端から小距離前方に離れた位置にある。通常、この集光位置に対応する点Pが「ノズル先端点」として設定されている。従って、加工プログラム作成のための教示にあたっては、このノズル先端点Pを希望する加工点に一致させ、その時の各軸値を記憶すれば良いことになる。但し、前述した理由で、教示時にはノズル姿勢の垂直調整(被加工物の表面に対してノズルを垂直に向ける調整)が必要になる。
Control of each axis is performed by a control device indicated by reference numeral 10. The control device 10 is constituted by a CPU, a memory, an interface with an external device, and the like, and is well known except for software for capturing the output of the photodetector 30 and processing described later. For example, a manual operation unit 11 such as a keyboard and a display 12 such as an LCD are attached to the control device 10, and an operator inputs and corrects various commands, parameters, and the like necessary for the operation of the laser processing machine, processing program creation, and editing. Etc. can be performed.
Here, the “nozzle tip point fixing control” will be briefly described. As is well known, a condensing lens is provided in the nozzle 9a, and the condensing position of the laser beam is at a position away from the tip of the nozzle 9a by a short distance forward. Usually, the point P corresponding to this condensing position is set as the “nozzle tip point”. Therefore, in teaching for creating a machining program, it is only necessary to match the nozzle tip point P with a desired machining point and store the axis values at that time. However, for the reason described above, vertical adjustment of the nozzle attitude (adjustment for directing the nozzle perpendicular to the surface of the workpiece) is necessary during teaching.

この垂直調整を、ノズル先端点Pの位置(姿勢は含まず)を固定した状態でノズル姿勢を手動調整することで行なうことは従来より知られており、このような調整に利用できる制御を、「ノズル先端点固定制御」と呼んでいる。「ノズル先端点固定制御」を利用すれば、ノズル先端点Pの位置(姿勢は含まず)を固定した状態で、C軸及びA軸に独立した任意の値あるいは値の変化をとらせることができる。なお、このようなノズル先端点固定制御自体は周知技術に属するので、制御方式自体の詳細説明は省略する。   It has been conventionally known that this vertical adjustment is performed by manually adjusting the nozzle posture while the position (posture is not included) of the nozzle tip point P is fixed. This is called “nozzle tip fixing control”. If “nozzle tip point fixing control” is used, an arbitrary value or a change in the value can be taken independently of the C axis and the A axis while the position (posture is not included) of the nozzle tip point P is fixed. it can. Since such nozzle tip point fixing control itself belongs to a well-known technique, a detailed description of the control method itself is omitted.

次に、図2を参照して、円環状の光検出器30で検出される反射光強度とノズル姿勢との関係について説明する。図2(a)には、ノズルが垂直調整された状態と傾斜角θで傾斜した状態が並置して示されている。レーザビームがワークWの表面に向けて照射されるとワーク表面で反射光が発生し、その一部が光検出器30に入射し、検出される。反射光は、通常、正反射光(鏡面を仮定した時の反射光)に乱反射光(入射点Pから立体角2πの範囲に散乱する光)が混ざったような光となると考えられる。その場合、光検出器30で検出される反射光強度qは、ノズルの傾斜角(ワークWの表面に対してレーザビーム光軸がなす角度)θの増大に対して単調減少の関係を示す。図2(b)のグラフはその一例を示している。本実施形態では、以下に説明するように、このような関係に基づき、光検出器30をノズルの垂直調整時に「傾斜検出器」として利用する。   Next, the relationship between the reflected light intensity detected by the annular photodetector 30 and the nozzle attitude will be described with reference to FIG. FIG. 2A shows a state where the nozzle is vertically adjusted and a state where the nozzle is inclined at an inclination angle θ. When the laser beam is irradiated toward the surface of the workpiece W, reflected light is generated on the workpiece surface, and a part of the reflected light enters the photodetector 30 and is detected. The reflected light is normally considered to be light in which specularly reflected light (reflected light assuming a mirror surface) is mixed with irregularly reflected light (light scattered in the range of the solid angle 2π from the incident point P). In this case, the reflected light intensity q detected by the photodetector 30 shows a monotonically decreasing relationship with an increase in the inclination angle of the nozzle (angle formed by the laser beam optical axis with respect to the surface of the workpiece W) θ. An example is shown in the graph of FIG. In the present embodiment, as will be described below, based on such a relationship, the photodetector 30 is used as an “tilt detector” when the nozzle is vertically adjusted.

各教示点についてノズルの垂直調整を行なうにあたっては、準備として、別途適当な手段によりノズルが垂直となった時の反射強度値qmax を求めておく。また、「垂直調整完了」の判断を行なうための許容範囲(qmax 〜qmax −Δq)を定めて、制御装置10内のメモリに記憶しておく。
以上の準備の下で、図3のフローチャートに記した手順で垂直調整を行なう。各教示点における垂直調整は同様なので、1教示点分の処理手順について説明する。また、説明中で、同フローチャートに関連してノズル姿勢の変化乃至状態を記した図4を適宜参照する。反射光を得る時にはレーザ発振を行い、その出力は、例えば最低出力に予め定めておく。各ステップの要点は下記の通りである。
When performing vertical adjustment of the nozzle for each teaching point, as a preparation, the reflection intensity value qmax when the nozzle is vertical is obtained by an appropriate means. Further, an allowable range (qmax to qmax−Δq) for determining “vertical adjustment completion” is determined and stored in the memory in the control device 10.
With the above preparation, vertical adjustment is performed according to the procedure described in the flowchart of FIG. Since the vertical adjustment at each teaching point is the same, the processing procedure for one teaching point will be described. Also, in the description, FIG. 4 showing the change or state of the nozzle posture is referred to as appropriate in relation to the flowchart. When the reflected light is obtained, laser oscillation is performed, and its output is set to a minimum output, for example. The main points of each step are as follows.

ステップS1;処理サイクルの繰り返し制限に関連した指標nをn=1に初期設定する。
ステップS2;ノズルに適当な初期姿勢をとらせ、5軸値を記憶する。初期姿勢は、例えばオペレータが極く粗く目視で垂直調整を行なった程度の姿勢とする。
ステップS3;光検出器30の検出値が上記準備で記憶した許容範囲内にあるか否かチェックする。許容範囲内であれば垂直調整完了と判断し、ステップS12に進み、そうでなければステップS4に進む。
ステップS4;初期状態から、先端点Pを固定した条件での先端点固定制御により、第n回目の指定された角度及び方向にノズルを傾斜させる。ここで「角度の指定」は、例えばC軸値の指定で行い、「方向の指定」は、例えばA軸値の入力で行なうことができる。ここでは計N組のC軸値、A軸値のセットを用意しておき、第n回目の指定ではn番目のセットの値をキーボード11を操作して入力するものとする。なお、この「指定された角度及び方向」は、例えば図4中のS4で示すように、初期状態と異なった姿勢とすることが好ましく、初期状態より傾斜角が大きい(垂直からはずれた)姿勢に対応するものであって構わない。
Step S1: Initially set an index n related to the repetition limitation of the processing cycle to n = 1.
Step S2: The nozzle is set to an appropriate initial posture and the 5-axis value is stored. The initial posture is, for example, a posture that is extremely rough by an operator and visually adjusted vertically.
Step S3: It is checked whether or not the detection value of the photodetector 30 is within the allowable range stored in the above preparation. If it is within the allowable range, it is determined that the vertical adjustment is completed, and the process proceeds to step S12. Otherwise, the process proceeds to step S4.
Step S4: From the initial state, the nozzle is tilted to the designated angle and direction for the nth time by the tip point fixing control under the condition that the tip point P is fixed. Here, “designation of angle” can be performed, for example, by designating a C-axis value, and “designation of direction” can be performed, for example, by inputting an A-axis value. Here, a total of N sets of C-axis values and A-axis values are prepared, and the n-th set value is input by operating the keyboard 11 in the n-th designation. The “designated angle and direction” is preferably a posture different from the initial state, for example, as indicated by S4 in FIG. 4, and has a larger inclination angle than the initial state (displaced from the vertical). It does not matter if it corresponds to.

ステップS5;ステップS4の傾斜が完了した状態から、先端点Pを固定した条件での先端点固定制御により、Z軸方向回りで360度ノズルを回転させつつ(図4中のS5参照)、光検出器30で検出される反射光の強度推移(C軸値と反射光強度の関係)を記録する。
ステップS6;ステップS5で得られた検出値の最大値が上記準備で記憶した許容範囲内にあるか否かチェックする。許容範囲内であれば垂直調整完了と判断し、ステップS12に進み、そうでなければステップS7に進む。
ステップS7;ステップS7で最大値が得られた傾斜状態とする。
ステップS8;ステップS7の傾斜が完了した状態から、先端点Pを固定した条件での先端点固定制御により、A軸値を±両方向(増減両方向)に所定角度範囲で変化させつつ(図4中のS8参照)、光検出器30で検出される反射光の強度推移(A軸値と反射光強度の関係)を記録する。ここで、所定角度範囲は、例えばステップS7完了時のA軸値を基準に、±両方向に同角度(例;30度)とすれば良い。
Step S5: From the state where the inclination of Step S4 is completed, the tip is fixed and the nozzle is rotated 360 degrees around the Z-axis direction by the tip fixing control (see S5 in FIG. 4). The intensity transition of the reflected light detected by the detector 30 (the relationship between the C-axis value and the reflected light intensity) is recorded.
Step S6: It is checked whether or not the maximum value of the detection value obtained in step S5 is within the allowable range stored in the above preparation. If it is within the allowable range, it is determined that the vertical adjustment is completed, and the process proceeds to step S12. Otherwise, the process proceeds to step S7.
Step S7: The inclination state where the maximum value is obtained in step S7 is set.
Step S8: From the state in which the inclination of Step S7 is completed, the tip A point value is changed in a predetermined angular range in both directions ± (in both directions of increase / decrease) by tip point fixing control with the tip point P fixed (in FIG. 4). In step S8, the intensity transition of the reflected light detected by the photodetector 30 (the relationship between the A-axis value and the reflected light intensity) is recorded. Here, the predetermined angle range may be, for example, the same angle (for example, 30 degrees) in both directions on the basis of the A-axis value at the time of completion of step S7.

ステップS9;ステップS8で得られた検出値の最大値が上記準備で記憶した許容範囲内にあるか否かチェックする。許容範囲内であれば垂直調整完了と判断し、ステップS12に進み、そうでなければステップS10に進む。   Step S9: It is checked whether or not the maximum detected value obtained in step S8 is within the allowable range stored in the preparation. If it is within the allowable range, it is determined that the vertical adjustment is completed, and the process proceeds to step S12. Otherwise, the process proceeds to step S10.

ステップS10;指標nが制限回数Nに到達したか否かチェックする。到達していなければステップS11へ進む。制限回数に到達していたら垂直調整は不成功と判断し、処理を終了する。この場合は、反射光強度の許容範囲、指定角度/方向(ステップS4参照)等の設定値の再検討、修理等で対処する。   Step S10: It is checked whether or not the index n has reached the limit number N. If not, the process proceeds to step S11. If the limit number has been reached, the vertical adjustment is determined to be unsuccessful and the process is terminated. In this case, this is dealt with by reviewing and repairing the set values such as the allowable range of reflected light intensity, the specified angle / direction (see step S4), and the like.

ステップS11;指標nを1アップして、ステップS4へ戻り、ステップS4以下の処理を繰り返す。
ステップS12;垂直調整が完了した状態に対応する5軸値を記憶する。なお、ステップS3からステップS12に進んだ場合は、初期状態の5軸値をそのまま採用する。ステップS6またはステップS9からステップS12に進んだ場合は、反射強度の最大値を検出した時点における5軸値を採用する。
Step S11: The index n is incremented by 1, and the process returns to Step S4 to repeat the processes after Step S4.
Step S12: The 5-axis value corresponding to the state where the vertical adjustment is completed is stored. In addition, when progressing to step S12 from step S3, the 5-axis value of an initial state is employ | adopted as it is. When the process proceeds from step S6 or step S9 to step S12, the 5-axis value at the time when the maximum value of the reflection intensity is detected is adopted.

以上の処理により、制限回数Nを超えない範囲で自動的に垂直姿勢が探索される。1つの教示点について垂直調整が完了したら、次の教示点へノズルを移動させ、位置調整(ノズル先端点Pを教示点に一致させる)を行なって、上記処理を再度実行すれば良い。このようにして、本実施形態によれば、手動と目視で垂直調整を行なっていた従来方式に比して格段に効率化された教示作業が実行できる。   Through the above processing, the vertical posture is automatically searched within a range not exceeding the limit number N. When the vertical adjustment is completed for one teaching point, the nozzle is moved to the next teaching point, the position is adjusted (the nozzle tip point P is made to coincide with the teaching point), and the above-described processing is executed again. In this way, according to the present embodiment, it is possible to execute teaching work that is significantly more efficient than the conventional method in which vertical adjustment is performed manually and visually.

なお、特殊な場合として、ワーク表面の反射特性により、ノズルの垂直調整時と最大反射光の検出時が対応しないこともあり得ると考えられる。そのようなケースでは、予め実験により、上記ステップS5、S8と同様に姿勢変化に応じた反射光強度推移を調べておき、垂直調整時に対応する特徴点をもって「最大値」に代えれば良い。この特徴点としては、例えば、「最小値」、「最大値を与える極大値と最大値に次ぐ値を与える極大値の間の中間点」などが考えられる。
また、反射光を検出する検出手段は上記の光検出器30に限らず、他の手段で代替しても良い。代替手段の一例としては、前出の特許文献3で用いられているモニタ検出器(レーザ発振器のリア鏡付近に配置)で、反射光が共振器内に戻ってくることで起るレーザ発振出力の変化をモニタする方法が考えられる。要はノズルの傾斜を反射光で検出することができれば、検出手段の種類は問わないということである。
As a special case, it is considered that the vertical adjustment of the nozzle may not correspond to the detection of the maximum reflected light due to the reflection characteristics of the workpiece surface. In such a case, the reflected light intensity transition corresponding to the posture change is examined by experiment in advance as in steps S5 and S8, and the feature point corresponding to the vertical adjustment may be replaced with “maximum value”. As this feature point, for example, “minimum value”, “intermediate point between the maximum value giving the maximum value and the maximum value giving the value next to the maximum value” can be considered.
Further, the detection means for detecting the reflected light is not limited to the photodetector 30 described above, and other means may be substituted. As an example of an alternative means, the laser detector output (disposed near the rear mirror of the laser oscillator) used in the above-mentioned Patent Document 3 causes the laser oscillation output generated when the reflected light returns into the resonator. It is conceivable to monitor the change of the above. The point is that the type of detection means is not limited as long as the inclination of the nozzle can be detected by reflected light.

本発明の1つの実施形態に係るレーザ加工機の概略構成を示した図で、C軸及びA軸の駆動機構に関してはやや詳しく描示されている。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed schematic structure of the laser beam machine which concerns on one Embodiment of this invention, About the drive mechanism of C axis | shaft and A axis | shaft, it is drawn in some detail. ノズルの姿勢と反射光強度の関係を説明する図で、(a)はノズルが垂直調整された状態と傾斜角θで傾斜した状態を並置して示し、(b)は反射光強度と傾斜角の関係をグラフで例示している。It is a figure explaining the relationship between the attitude | position of a nozzle and reflected light intensity, (a) shows the state in which the nozzle was adjusted vertically, and the state inclined by inclination-angle (theta), and (b) shows reflected light intensity and inclination-angle. This relationship is illustrated by a graph. 実施形態で実行される処理手順の概略を記したフローチャートである。It is the flowchart which described the outline of the process sequence performed by embodiment. 図2に示したフローチャートに関連して、ノズル姿勢の変化を記した図である。It is the figure which described the change of the nozzle attitude | position in relation to the flowchart shown in FIG.

符号の説明Explanation of symbols

1 C軸駆動用サーボモータ
2 A軸駆動用サーボモータ
3 レーザビーム
4a、4b、6a、6b ギア
5 支持部材
7、9 シャフト
8a、8b 傘歯車
10 制御装置
11 キーボード(手動操作部)
12 ディスプレイ
20 ワークテーブル
30 光検出器
DESCRIPTION OF SYMBOLS 1 Servo motor for C-axis drive 2 Servo motor for A-axis drive 3 Laser beam 4a, 4b, 6a, 6b Gear 5 Support member 7, 9 Shaft 8a, 8b Bevel gear 10 Controller 11 Keyboard (manual operation part)
12 Display 20 Worktable 30 Photodetector

Claims (3)

レーザ光を被加工物に対して照射するノズルの先端を該被加工物に対して位置決めするために、基本3軸(X軸、Y軸、Z軸)、前記Z軸方向回りで前記ノズルを回転させる第1の回転軸(C軸)及び前記第1の回転軸(C軸)に対して垂直な軸回りで前記ノズルを回転させる第2の回転軸(A軸)と、前記基本3軸、前記第1の回転軸及び前記第2の回転軸を制御する制御手段を有し、
前記制御手段が、前記ノズルに設定された先端点の被加工物に対する相対位置を一定に保ちながら前記ノズルに姿勢変化を与える姿勢変化手段を含んでいる、3次元レーザ加工機において、
前記姿勢変化手段により前記ノズルに姿勢変化が与えられた時の被加工物からの反射光の強度推移を測定する測定手段と、
前記測定手段による前記強度推移の測定結果に基づいて、前記ノズルが前記被加工物の表面に対し垂直となる姿勢を求める姿勢決定手段とを具備し
前記姿勢変化手段は、
前記第1の回転軸及び前記第2の回転軸にそれぞれ所定角度の傾斜量を与えた所定の傾斜状態から、前記ノズルの先端点の前記被加工物に対する相対位置を一定に保ちながら前記ノズルを前記Z軸方向回りで360度回転させる第1の姿勢変化手段と、
前記第1の姿勢変化の間に前記測定手段で得られる測定値が最大となる前記C軸の第1の角度を保った条件で、前記ノズルの先端点の前記被加工物に対する相対位置を一定に保ちながら前記A軸を所定範囲で変化させる第2の姿勢変化手段とを含み、
前記姿勢決定手段は、
前記測定手段による前記強度推移の測定結果に基づいて、前記第2の姿勢変化の間に前記測定手段で得られる測定値が最大となる前記A軸の第1の角度を求める手段と、
前記C軸の第1の角度及び前記A軸の第1の角度で定まる第1のノズル姿勢が、前記ノズルが前記被加工物の表面に対し垂直となる姿勢であるかについて、予め定めた許容基準に照らして“肯定”あるいは“否定”のいずれかの判定結果を提供する判定手段とを含んでいる、3次元レーザ加工機。
In order to position the tip of the nozzle that irradiates the workpiece with laser light with respect to the workpiece, the nozzle is moved around the basic three axes (X axis, Y axis, Z axis) and the Z axis direction. A first rotation axis (C axis) to be rotated, a second rotation axis (A axis) for rotating the nozzle around an axis perpendicular to the first rotation axis (C axis), and the three basic axes And control means for controlling the first rotating shaft and the second rotating shaft,
In the three-dimensional laser processing machine, the control means includes posture changing means for changing the posture of the nozzle while maintaining a constant relative position of the tip point set to the nozzle to the workpiece.
Measuring means for measuring the intensity transition of the reflected light from the workpiece when the posture change is given to the nozzle by the posture change means;
Posture determining means for obtaining a posture in which the nozzle is perpendicular to the surface of the workpiece based on the measurement result of the intensity transition by the measuring means ;
The posture changing means is
The nozzle is moved while maintaining the relative position of the tip of the nozzle with respect to the workpiece from a predetermined tilt state in which a tilt amount of a predetermined angle is given to each of the first rotary shaft and the second rotary shaft. First posture changing means for rotating 360 degrees around the Z-axis direction;
The relative position of the tip of the nozzle with respect to the workpiece is constant under the condition that the first angle of the C-axis that maximizes the measurement value obtained by the measuring means during the first posture change is maintained. Second posture changing means for changing the A axis within a predetermined range while maintaining
The posture determining means includes
Means for obtaining a first angle of the A axis at which a measured value obtained by the measuring means becomes maximum during the second posture change based on the measurement result of the intensity transition by the measuring means;
Predetermined tolerance as to whether the first nozzle attitude determined by the first angle of the C axis and the first angle of the A axis is an attitude in which the nozzle is perpendicular to the surface of the workpiece. A three-dimensional laser processing machine , comprising: a determination unit that provides a determination result of either “positive” or “negative” in accordance with a reference .
前記判定手段による判定結果が“否定”である場合に、前記所定の傾斜状態における前記A軸の所定の傾斜量を切り替える手段を備えている、請求項1に記載の3次元レーザ加工機。The three-dimensional laser beam machine according to claim 1, further comprising means for switching a predetermined inclination amount of the A axis in the predetermined inclination state when a determination result by the determination means is "No". 前記測定手段は、前記ノズルの先端部に設けられた光検出器を含んでいる、請求項1または請求項2に記載の3次元レーザ加工機。The three-dimensional laser processing machine according to claim 1, wherein the measurement unit includes a photodetector provided at a tip portion of the nozzle.
JP2004222203A 2004-07-29 2004-07-29 3D laser processing machine Expired - Fee Related JP4202305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222203A JP4202305B2 (en) 2004-07-29 2004-07-29 3D laser processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222203A JP4202305B2 (en) 2004-07-29 2004-07-29 3D laser processing machine

Publications (2)

Publication Number Publication Date
JP2006035290A JP2006035290A (en) 2006-02-09
JP4202305B2 true JP4202305B2 (en) 2008-12-24

Family

ID=35900832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222203A Expired - Fee Related JP4202305B2 (en) 2004-07-29 2004-07-29 3D laser processing machine

Country Status (1)

Country Link
JP (1) JP4202305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603675C2 (en) * 2010-06-01 2016-11-27 Басф Се Composition for metal electroplating coating containing levelling agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284795B (en) * 2011-08-16 2013-08-28 江苏扬力数控机床有限公司 Hybrid five-axis laser cutting machine
KR101460163B1 (en) 2013-06-14 2014-11-11 (주)피플레이저테크 Apparatus for laser beam processing
KR101980839B1 (en) * 2017-08-10 2019-08-30 한국기계연구원 Laser patterning apparatus and method
JP7239338B2 (en) * 2019-02-05 2023-03-14 ファナック株式会社 Laser processing robot and tool coordinate system setting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603675C2 (en) * 2010-06-01 2016-11-27 Басф Се Composition for metal electroplating coating containing levelling agent

Also Published As

Publication number Publication date
JP2006035290A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
CN108406091B (en) Laser processing head and laser processing system with imaging device
JP2931078B2 (en) Laser beam path adjustment device for laser beam machine
WO2019188155A1 (en) Laser cutting device and laser cutting method
CN109719386A (en) Laser-processing system
JP2003308104A (en) Three-dimensional linear machining device
CN1802240A (en) A method for calibrating and programming of a robot application
US10357848B2 (en) Laser machining systems and methods
JPH11320145A (en) Three-dimensional laser processing machine, and control method for compiling processing program in three-dimensional laser processing machine
US20130253695A1 (en) Numerical control device
JP4202305B2 (en) 3D laser processing machine
JP4639058B2 (en) Threading machine
JPH06137842A (en) Method and device for measuring rotary tool blade part form
JP2005034934A (en) Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece
CN106881525A (en) Laser Processing control system and its control method
WO2017130412A1 (en) Machining apparatus correction method and machining apparatus
JPH0535327A (en) Laser machine
JP2023120682A (en) Laser welding device and method for correcting deviation of irradiation position of laser beam
JP2743673B2 (en) 3D laser processing equipment
JP2017051961A (en) Laser processing device
JPH0724589A (en) Method and device for adjusting automatic alignment of laser beam robot
JP3511049B2 (en) Laser processing equipment
JP3578274B2 (en) Numerically controlled machine tool
JPH0760505A (en) Cutting tool setting method
JPH0952187A (en) Laser beam machine system
JPH04237585A (en) Laser cutter and laser cutting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Ref document number: 4202305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees