JP4198002B2 - coaxial cable - Google Patents

coaxial cable Download PDF

Info

Publication number
JP4198002B2
JP4198002B2 JP2003188217A JP2003188217A JP4198002B2 JP 4198002 B2 JP4198002 B2 JP 4198002B2 JP 2003188217 A JP2003188217 A JP 2003188217A JP 2003188217 A JP2003188217 A JP 2003188217A JP 4198002 B2 JP4198002 B2 JP 4198002B2
Authority
JP
Japan
Prior art keywords
layer
coaxial cable
dielectric
resin
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003188217A
Other languages
Japanese (ja)
Other versions
JP2005025999A (en
Inventor
健治 鶴田
秀樹 大塚
英樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2003188217A priority Critical patent/JP4198002B2/en
Publication of JP2005025999A publication Critical patent/JP2005025999A/en
Application granted granted Critical
Publication of JP4198002B2 publication Critical patent/JP4198002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Communication Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波機器や移動通信装置等に使用される高周波信号伝送用同軸ケーブルに関するものである。
【0002】
【従来の技術】
従来より、同軸ケーブルにおける誘電体層にはフッ素樹脂が使用され、なかでも誘電率の低いポリテトラフルオロエチレン(以下、“PTFE”という)が汎用されてきた。しかし、それでも要求される挿入損失や反射損失を満たす事ができないため、内部導体を囲撓する誘電体層に発泡による空隙を設け、誘電率を下げる工夫がなされてきた。これら誘電体層の例としては、PTFE樹脂に空隙を形成する剤(例えば発泡剤等)を添加したもの、あるいは予め延伸により多孔質としたPTFE延伸テープが挙げられる。
しかし、PTFE樹脂に発泡剤を添加する方策は、余計な物を採用することになるので、コスト的に無駄であるし、また空隙の大きさや間隔等のコントロールが困難で、空隙率を正確に制御できないという欠点がある。さらに、発泡樹脂表面付近の空隙は図3に示すように、場所によっては表面に凹みを形成してしまう。これは外径のバラツキにつながり、したがって反射損失が大きくなってしまうという致命的欠点がある。
一方、PTFE延伸テープは、導体もしくは絶縁体表面に螺旋状に一定間隔で重ねながら巻かれていくため、外表面には不可避的に凹凸が発生する。これは外径のバラツキにもつながり、やはり反射損失を大きくしてしまう。また、曲げ伸ばしを繰り返し行うと、テープの間隔がずれてしまい、ケーブルの長手方向で誘電率のバラツキが発生する、などの欠点がある。
さらに、該PTFE延伸テープの外周に、テトラフルオロエチレン/ヘキサフルオロプロピレン(以下、“FEP”という)のソリッド層を別工程で付加的に被覆して、強度を確保する提案もなされている(例えば、特許文献1参照。)。しかし、このものでは、該PTFE延伸テープの表面凹凸の影響でFEPのソリッド層との界面が平滑にならないため、依然として反射損失の抑制効果は期待できない。
【0003】
特開2002−358841号公報
【0004】
【発明が解決しようとする課題】
本発明の課題は、高周波帯域での低挿入損失を実現しつつ、必要とされる機械的強度や低反射損失を有し、トータルバランスに優れた同軸ケーブルを提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、誘電体層を、その外層がソリッド状スキン層、内層が非発泡性の多孔質からなるコア層の一体押出し二層構造にすることで従来の問題を容易に解消するに至った。
【0006】
かくして、本発明によれば、内部導体、該内部導体を囲撓する誘電体層、および外部導体を含む同軸ケーブルにおいて、該誘電体層は低誘電性樹脂よりなるスキン−コア型の一体押し出し二層構造体であり、その際、該コア層は非発泡性の多孔質で、該スキン層よりも誘電率および機械的強度の低い誘電体層として機能し他方、該スキン層は該コア層の強度保護層として機能することを特徴とする同軸ケーブルが提供される。
【0007】
【発明の実施の形態】
以下、本発明を、添付図面を参照しながら説明する。
図1は、本発明の二層同軸ケーブルの一例を示す縦断面図である。
図2は、図1の横断面図である。
図3は、従来の、発泡による空隙を有する誘電体層の側面図である。
図4は、従来の、延伸テープを使用した誘電体層の側面図である。
図1〜2において、(1)は内部導体、(2)は誘電体層で、該内部導体(1)を囲撓する非発泡性の多孔質コア層(2a)と該コア層(2a)を囲撓するソリッド状スキン層(2b)とからなる。(3)は該誘電体層(2)を囲撓する外部導体層、そして(4)は該外部導体層(3)を被覆する保護ジャケット層である。
【0008】
本発明で特徴的なことは、図1〜2からも明らかなように、誘電体層(2)が二層になっており、その際、外層がソリッド状スキン層(2b)、内層が非発泡性の多孔質コア層(2a)を形成していることである。
これにより、以下のような利点が生じる。
a.スキン層が比較的高い強度を有するので、曲げた場合の形状保持が可能になる。
b.スキン層表面が平滑であるので、反射損失が小さくなる。
c.コア層が非発泡性の多孔質のため、均一な発泡率が得られる。
d.スキン層とコア層は一体押出しにより形成されているので、予めコア層を形成した後にスキン層を被覆する場合と比べ、該コア層の表面凹凸や外径のバラツキの影響を受ける事が無く、よって両者の接着界面は極めて安定した平滑面に形成されることにより、安定した低反射損失が実現される。
【0009】
本発明の同軸ケーブルは押出し成形にて容易に製造でき、以下にその一態様について述べる。
本発明では、フッ素樹脂のような低誘電性樹脂、特にPTFEのファインパウダーに予め押出し助剤を加えて予備成型を行い、プレフォームを作る。その際、押出し時の流れ性の異なる少なくとも2種の樹脂を用い、流れ性の低い方(流れ性の比較的よくないグレード)の樹脂を内層に、流れ性の高い方(流れ性のよいグレード)の樹脂を外層にした二層構造(竹輪状)とする。次に、該二層構造のプレフォームを内部導体(1)の外周面にペースト押し出しにて被覆(囲撓)する。このとき、該二層構造のプレフォームの外側は流れ性がよいので、押し出し過程で樹脂のフィブリルが密集して空隙が生じないため、コア層に比較して硬い(ソリッド状)スキン層(2b)を形成する。それに対して、内側の樹脂は流れ性がよくないので、樹脂のフィブリルが切れ、結果として非発泡性の多孔質コア層(2a)が形成される。
このようにして、ソリッド状スキン層(2b)と非発泡性の多孔質コア層(2a)は内部導体(1)の外周面に一体に連続成形された後、乾燥炉及び焼成炉を通過し、巻き取られる。このとき、非発泡性の多孔質コア層(2a)の空隙率は5〜70%の範囲にあればよいが、特に20〜50%が好ましい範囲である。この上限値は必要強度(硬度)の確保、下限値は誘電率上昇を抑えるために設定される。また、コア層(2a)の厚さは0.1〜5.0mmの範囲に、他方、該スキン層(2b)の厚さは0.01〜1.5mmの範囲にあればよいが、特に0.1〜1mmが好ましい範囲である。この下限値は必要強度の確保、上限値は誘電率上昇を抑えるために設定される。
続いて、該誘電体層(2)の外周に金属編組のようなシールドを施し、外部導体層(3)を得る。この時、溶融金属メッキ層に投入して該金属編組シールドの編組の各隙間を金属メッキで埋めてもよい。
最後に、この外部導体層(3)の外周に保護ジャケット(4)を被覆して、本発明の同軸ケーブルが完成する。
以上のような態様において、フッ素樹脂に添加する押出し助剤は一般にナフサが用いられ、その典型的な例は、「アイソパー」(商品名、エクソン化学株式会社製)である。この助剤は、樹脂に対して、5.0〜20.0重量%の範囲で適宜添加すればよい。
さらに、内部導体(1)としては、素線径が0.2〜1.8mmの銀メッキ軟銅線、銀メッキ硬銅線、あるいは銀メッキ銅被鋼線等が採用される。外部導体(3)としては編組が好ましく、その際、素線径が0.03〜0.2mmの銀メッキ軟銅線、銀メッキ硬銅線、あるいは銀メッキ銅被鋼線、錫メッキ軟銅線等の素線を打数8、12、16、24あるいは32で編組した編組が特に好ましく採用される。他方、保護ジャケット層(4)については、フッ素、オレフィン或いはビニル系樹脂の押出し被覆等、周知の構造を適用すればよい。
【0010】
【実施例】
以下は、図1〜図2に示した同軸ケーブルの実施例である。
先ず、流れ性の比較的良くないフッ素樹脂として、PTFE樹脂ファインパウダー(商品名:「6−J」、三井・デュポン・フロロケミカル株式会社製)を用い、これの100部に押出し助剤(商品名:「アイソパー」、エクソン化学株式会社製)を18部添加して、非発泡性の多孔質コア層(2a)を形成する樹脂を準備した。併せて、流れ性のよいフッ素樹脂として、PTFE樹脂ファインパウダー(商品名:「6C−J」、三井・デュポン・フロロケミカル株式会社製)を用い、これの100部に押出し助剤(商品名:「アイソパー」、エクソン化学株式会社製)を18部添加してソリッド状スキン層(2b)を形成する樹脂を準備した。そして、各々を約8時間熟成させた後、予備成型を行い、外層部の厚さが4mmで内層部の厚さが30mmの二層構造プレフォーム(竹輪状)を作った。次に、該二層プレフォームを押出し機に入れ、内部導体としての銀メッキ銅被鋼線(1)の外周面にペースト押し出しを線速10m/分で行った後、約200℃に設定した乾燥炉に通過させながら約3分間乾燥処理を行い、さらに、約400℃に設定された加熱炉に通過させながら約5分間加熱処理を行った後、自然冷却して巻き取った。このとき、誘電体層(2)を形成する非発泡性の多孔質コア層(2a)の厚さは1.5mm、空隙率は35%であり、スキン層(2b)は厚さが0.2mmのソリッド構造を呈した。続いて、誘電体層(2)の外周に、素線径φ0.1の錫メッキ軟銅線で24打の金属編組シールドを施して、外部導体(3)を得た。最後に、外部導体層(3)の外周にFEP樹脂を押出し被覆して保護ジャケット層(4)を形成して、本発明の同軸ケーブルを得た。
【発明の効果】
本発明によれば、相対的に流れ性の異なる二種類の樹脂が同時押し出される間の流れ特性を巧みに利用した結果、外層がソリッド状スキン層、内層が非発泡性の多孔質で、しかも両者の界面が一体的に接合した安定な誘電体層が得られる。したがって、本発明の同軸ケーブルにおいては、機械的強度、低挿入損失及び低反射損失の要求特性が三位一体となって実現される。
【図面の簡単な説明】
【図1】 本発明の同軸ケーブルの一例を示す縦断面図である。
【図2】図1の横断面図である。
【図3】従来の、発泡による空隙を有する誘電体層の側面図である。
【図4】従来の、延伸テープを使用した誘電体層の側面図である。
【符号の説明】
1 内部導体
2 誘電体層
2a 非発泡性の多孔質コア層
2b ソリッド状スキン層
3 外部導体
4 保護ジャケット層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coaxial cable for high-frequency signal transmission used for high-frequency equipment and mobile communication devices.
[0002]
[Prior art]
Conventionally, a fluororesin has been used for a dielectric layer in a coaxial cable, and among them, polytetrafluoroethylene (hereinafter referred to as “PTFE”) having a low dielectric constant has been widely used. However, since the required insertion loss and reflection loss cannot still be satisfied, there has been a device for lowering the dielectric constant by providing a void by foaming in the dielectric layer surrounding the inner conductor. Examples of these dielectric layers include those obtained by adding an agent (for example, a foaming agent) that forms voids to PTFE resin, or PTFE stretched tape that has been previously made porous by stretching.
However, the measure to add a foaming agent to PTFE resin is to use an extra thing, so it is wasteful in terms of cost, and it is difficult to control the size and interval of the gap, and the void ratio is accurately set. There is a disadvantage that it cannot be controlled. Furthermore, as shown in FIG. 3, the gap near the surface of the foamed resin forms a dent on the surface depending on the location. This leads to a variation in outer diameter, and therefore has a fatal defect that reflection loss increases.
On the other hand, since the PTFE stretched tape is wound while being spirally stacked on the conductor or insulator surface at a constant interval, irregularities are inevitably generated on the outer surface. This also leads to variations in the outer diameter, which also increases the reflection loss. Further, when bending and stretching are repeated, there are disadvantages such as the gap between the tapes is shifted and the dielectric constant varies in the longitudinal direction of the cable.
Further, a proposal has been made to secure strength by additionally coating a solid layer of tetrafluoroethylene / hexafluoropropylene (hereinafter referred to as “FEP”) on the outer periphery of the PTFE stretched tape in a separate process (for example, , See Patent Document 1). However, in this case, the interface with the FEP solid layer does not become smooth due to the surface unevenness of the PTFE stretched tape, so that the effect of suppressing reflection loss cannot be expected.
[0003]
Japanese Patent Laid-Open No. 2002-358841
[Problems to be solved by the invention]
An object of the present invention is to provide a coaxial cable that has a required mechanical strength and low reflection loss while realizing low insertion loss in a high frequency band and is excellent in total balance.
[0005]
[Means for Solving the Problems]
The inventors of the present invention can easily solve the conventional problems by forming the dielectric layer into a two-layer structure in which the outer layer is a solid skin layer and the inner layer is a non-foaming porous core layer. It came.
[0006]
Thus, according to the present invention, in the coaxial cable including the inner conductor, the dielectric layer surrounding and bending the inner conductor, and the outer conductor, the dielectric layer is formed of a skin-core type integrally extruded two made of a low dielectric resin. A layer structure in which the core layer is non-foaming porous and functions as a dielectric layer having a lower dielectric constant and mechanical strength than the skin layer, while the skin layer is a layer of the core layer. A coaxial cable is provided that functions as a strength protective layer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of the two-layer coaxial cable of the present invention.
FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a side view of a conventional dielectric layer having voids due to foaming.
FIG. 4 is a side view of a conventional dielectric layer using a stretched tape.
1-2, (1) is an inner conductor, (2) is a dielectric layer, a non-foaming porous core layer (2a) surrounding the inner conductor (1) and the core layer (2a). And a solid skin layer (2b). (3) is an outer conductor layer surrounding the dielectric layer (2), and (4) is a protective jacket layer covering the outer conductor layer (3).
[0008]
As is apparent from FIGS. 1 and 2, the dielectric layer (2) has two layers. In this case, the outer layer is a solid skin layer (2b) and the inner layer is non-layered. The foaming porous core layer (2a) is formed.
This produces the following advantages.
a. Since the skin layer has a relatively high strength, the shape can be maintained when bent.
b. Since the skin layer surface is smooth, reflection loss is reduced.
c. Since the core layer is non-foaming porous, a uniform foaming rate can be obtained.
d. Since the skin layer and the core layer are formed by integral extrusion, compared to the case of covering the skin layer after forming the core layer in advance, there is no influence of the surface irregularities and the outer diameter variation of the core layer, Therefore, the adhesive interface between the two is formed on a very stable smooth surface, thereby realizing a stable low reflection loss.
[0009]
The coaxial cable of the present invention can be easily manufactured by extrusion molding, and one embodiment thereof will be described below.
In the present invention, a preform is formed by adding an extrusion aid in advance to a low dielectric resin such as a fluororesin, particularly PTFE fine powder, to make a preform. At that time, use at least two types of resins with different flow properties during extrusion, and use the resin with the lower flowability (grade with relatively poor flowability) as the inner layer and the higher flowability (grade with good flowability). ) Resin as an outer layer (bamboo ring shape). Next, the preform having the two-layer structure is coated (enclosed) on the outer peripheral surface of the inner conductor (1) by paste extrusion. At this time, since the outer side of the preform having the two-layer structure has good flowability, the fibrils of the resin are densely packed in the extrusion process and no voids are formed. Therefore, the hard (solid) skin layer (2b ). On the other hand, since the resin on the inner side does not have good flowability, the fibrils of the resin are cut, and as a result, a non-foaming porous core layer (2a) is formed.
In this manner, the solid skin layer (2b) and the non-foaming porous core layer (2a) are integrally formed continuously on the outer peripheral surface of the inner conductor (1), and then passed through a drying furnace and a firing furnace. Rolled up. At this time, the porosity of the non-foaming porous core layer (2a) may be in the range of 5 to 70%, but 20 to 50% is particularly preferable. This upper limit value is set to ensure the required strength (hardness), and the lower limit value is set to suppress an increase in dielectric constant. Further, the thickness of the core layer (2a) may be in the range of 0.1 to 5.0 mm, while the thickness of the skin layer (2b) may be in the range of 0.01 to 1.5 mm. 0.1-1 mm is a preferable range. This lower limit value is set to ensure the necessary strength, and the upper limit value is set to suppress an increase in dielectric constant.
Subsequently, a shield such as a metal braid is applied to the outer periphery of the dielectric layer (2) to obtain the outer conductor layer (3). At this time, the gaps in the braid of the metal braid shield may be filled with the metal plating by putting it in the molten metal plating layer.
Finally, the outer circumference of the outer conductor layer (3) is covered with a protective jacket (4) to complete the coaxial cable of the present invention.
In the above-described embodiment, naphtha is generally used as the extrusion aid added to the fluororesin, and a typical example thereof is “Isopar” (trade name, manufactured by Exxon Chemical Co., Ltd.). What is necessary is just to add this adjuvant suitably in the range of 5.0-20.0 weight% with respect to resin.
Furthermore, as the inner conductor (1), a silver-plated annealed copper wire, a silver-plated hard copper wire, a silver-plated copper-coated steel wire or the like having a strand diameter of 0.2 to 1.8 mm is employed. The outer conductor (3) is preferably braided. In this case, a silver-plated annealed copper wire, a silver-plated hard copper wire, a silver-plated copper-coated steel wire, a tin-plated annealed copper wire, etc. Of these, a braid obtained by braiding the wire with 8, 12, 16, 24, or 32 is particularly preferred. On the other hand, for the protective jacket layer (4), a known structure such as extrusion coating of fluorine, olefin or vinyl resin may be applied.
[0010]
【Example】
The following is an example of the coaxial cable shown in FIGS.
First, PTFE resin fine powder (trade name: “6-J”, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) is used as a fluororesin having relatively poor flowability, and an extrusion aid (product) is added to 100 parts thereof. Name: “Isopar”, Exxon Chemical Co., Ltd. (18 parts) was added to prepare a resin that forms a non-foaming porous core layer (2a). At the same time, PTFE resin fine powder (trade name: “6C-J”, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) is used as a flowable fluororesin, and 100 parts of this is used as an extrusion aid (trade name: 18 parts of “Isopar” (manufactured by Exxon Chemical Co., Ltd.) was added to prepare a resin for forming a solid skin layer (2b). Then, after aging each for about 8 hours, preforming was performed to make a two-layered preform (bamboo ring shape) having an outer layer portion thickness of 4 mm and an inner layer portion thickness of 30 mm. Next, the two-layer preform was put into an extruder, paste was extruded onto the outer peripheral surface of a silver-plated copper-coated steel wire (1) as an internal conductor at a linear speed of 10 m / min, and then set to about 200 ° C. A drying treatment was performed for about 3 minutes while passing through a drying furnace, and further, a heating treatment was performed for about 5 minutes while passing through a heating furnace set at about 400 ° C., followed by natural cooling and winding. At this time, the non-foaming porous core layer (2a) forming the dielectric layer (2) has a thickness of 1.5 mm and a porosity of 35%, and the skin layer (2b) has a thickness of 0.00. A solid structure of 2 mm was exhibited. Subsequently, the outer perimeter of the dielectric layer (2) was subjected to a metal braid shield of 24 strokes with a tin-plated annealed copper wire having a strand diameter of 0.1 to obtain an external conductor (3). Finally, FEP resin was extruded and coated on the outer periphery of the outer conductor layer (3) to form a protective jacket layer (4), thereby obtaining the coaxial cable of the present invention.
【The invention's effect】
According to the present invention, as a result of skillfully utilizing the flow characteristics during simultaneous extrusion of two types of resins having relatively different flow properties, the outer layer is a solid skin layer, the inner layer is a non-foaming porous material, and A stable dielectric layer in which the interfaces between the two are integrally joined can be obtained. Therefore, in the coaxial cable of the present invention, the required characteristics of mechanical strength, low insertion loss, and low reflection loss are realized in a trinity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a coaxial cable of the present invention.
FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a side view of a conventional dielectric layer having voids due to foaming.
FIG. 4 is a side view of a conventional dielectric layer using a stretched tape.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner conductor 2 Dielectric layer 2a Non-foaming porous core layer 2b Solid skin layer 3 Outer conductor 4 Protective jacket layer

Claims (5)

内部導体、該内部導体を囲撓する誘電体層、および外部導体を含む同軸ケーブルにおいて、該誘電体層は低誘電性樹脂よりなるスキン−コア型の一体押し出し二層構造体であり、その際、該コア層は非発泡性の多孔質で、該スキン層よりも誘電率および機械的強度の低い誘電体層として機能し他方、該スキン層は該コア層の強度保護層として機能することを特徴とする同軸ケーブル。In a coaxial cable including an inner conductor, a dielectric layer surrounding the inner conductor, and an outer conductor, the dielectric layer is a skin-core type integrally extruded two-layer structure made of a low dielectric resin. The core layer is non-foaming porous and functions as a dielectric layer having a lower dielectric constant and mechanical strength than the skin layer, while the skin layer functions as a strength protective layer for the core layer. A featured coaxial cable. 該誘電体層が、ポリテトラフルオロエチレン樹脂からなる請求項1に記載の同軸ケーブル。The coaxial cable according to claim 1, wherein the dielectric layer is made of polytetrafluoroethylene resin. 該コア層の空隙率が5〜70%の範囲にある請求項1、2に記載の同軸ケーブル。The coaxial cable according to claim 1, wherein the core layer has a porosity of 5 to 70%. 該コア層の厚さが0.1〜5.0mmの範囲にある請求項1〜3のいずれかに記載の同軸ケーブル。The coaxial cable according to any one of claims 1 to 3, wherein a thickness of the core layer is in a range of 0.1 to 5.0 mm. 該スキン層の厚さが0.01〜1.5mmの範囲にある請求項1〜4のいずれかに記載の同軸ケーブル。The coaxial cable according to any one of claims 1 to 4, wherein the skin layer has a thickness of 0.01 to 1.5 mm.
JP2003188217A 2003-06-30 2003-06-30 coaxial cable Expired - Fee Related JP4198002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188217A JP4198002B2 (en) 2003-06-30 2003-06-30 coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188217A JP4198002B2 (en) 2003-06-30 2003-06-30 coaxial cable

Publications (2)

Publication Number Publication Date
JP2005025999A JP2005025999A (en) 2005-01-27
JP4198002B2 true JP4198002B2 (en) 2008-12-17

Family

ID=34186828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188217A Expired - Fee Related JP4198002B2 (en) 2003-06-30 2003-06-30 coaxial cable

Country Status (1)

Country Link
JP (1) JP4198002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394721B2 (en) 2017-03-03 2018-09-26 日立金属株式会社 coaxial cable

Also Published As

Publication number Publication date
JP2005025999A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US7355123B2 (en) Foam coaxial cable and method of manufacturing the same
US9099220B2 (en) Flat type cable for high frequency applications
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP6610819B1 (en) Coaxial cable for moving parts
JP4198002B2 (en) coaxial cable
JP2011071095A (en) Coaxial cable and multicore coaxial cable
US10825583B2 (en) Coaxial cable
JP3957522B2 (en) High precision foamed coaxial cable
WO2022059406A1 (en) Coaxial cable
JP7340384B2 (en) Small diameter coaxial cable with excellent flexibility
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
JP2003051219A (en) Ultra superfine coaxial cable
JP2005339818A (en) High-precision foamed coaxial cable
JPH10283853A (en) Semi-rigid coaxial cable and its manufacture
JP7474590B2 (en) Multi-core communication cable
JP2008226618A (en) Covered wire by porous ptfe resin insulating layer, and coaxial cable using it
JP7412162B2 (en) multicore communication cable
CN216487361U (en) Insulated cable
JP2003051220A (en) Coaxial cable and manufacturing method therefor
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
KR101120365B1 (en) Micro coaxial cable comprising coated metallic shield and method for manufacturing the same
JP2000509897A (en) Electric signal transmission line manufactured by lamination process
JP2537934Y2 (en) coaxial cable
JP2003031045A (en) Double-core parallel extra-fine coaxial cable with longitudinally attached deposited tape
JP2021190403A (en) coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees