JP2008226618A - Covered wire by porous ptfe resin insulating layer, and coaxial cable using it - Google Patents

Covered wire by porous ptfe resin insulating layer, and coaxial cable using it Download PDF

Info

Publication number
JP2008226618A
JP2008226618A JP2007062464A JP2007062464A JP2008226618A JP 2008226618 A JP2008226618 A JP 2008226618A JP 2007062464 A JP2007062464 A JP 2007062464A JP 2007062464 A JP2007062464 A JP 2007062464A JP 2008226618 A JP2008226618 A JP 2008226618A
Authority
JP
Japan
Prior art keywords
insulating layer
ptfe resin
porous
ptfe
center conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062464A
Other languages
Japanese (ja)
Inventor
Takeshi Higuchi
猛 樋口
Nobuhiro Umeo
信博 梅尾
Katsutoshi Yamamoto
勝年 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kasei Co Ltd
Original Assignee
Toho Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kasei Co Ltd filed Critical Toho Kasei Co Ltd
Priority to JP2007062464A priority Critical patent/JP2008226618A/en
Publication of JP2008226618A publication Critical patent/JP2008226618A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a covered wire by a porous polytetrafluoroethylene (hereinafter referred to as "PTFE") insulating layer of which PTFE insulating layer is made porous, which has a pulling force between the center conductor and an insulating layer even if the dielectric loss is reduced, and which has an excellent attenuation even in a high frequency region, and provide a coaxial cable using the covered wire by the porous PTFE insulating layer, and its manufacturing method. <P>SOLUTION: In the paste extrusion molding using a tubing extrusion method in which the PTFE resin-made insulating layer 12 is formed at the outer periphery of the center conductor 11 by covering when the PTFE resin is extruded to cover the center conductor 11, after the PTFE resin is covered, in a state of being not tightly adhered to the insulating layer 12, on the center conductor 11, and stretched and made porous in a continuous furnace such that a gap q exists between the insulating layer 12 and the center conductor 11 in an unbaked state the insulating layer is shrinked in baking, to manufacture a porous fluororesin insulating electric wire 10 which is imparted with the pulling force between the center conductor and the insulating layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高周波領域で減衰量特性の優れた多孔質PTFE樹脂絶縁層被覆電線及びそれを用いた同軸ケーブルに関する。なお、本発明においてはポリテトラフルオロエチレンをPTFEと略記する。   The present invention relates to a porous PTFE resin insulating layer coated electric wire excellent in attenuation characteristics in a high frequency region and a coaxial cable using the same. In the present invention, polytetrafluoroethylene is abbreviated as PTFE.

携帯電話等の通信機器の基地局設備あるいは放送設備及びその基地局設備において高周波信号伝送に同軸ケーブルが用いられている。高周波伝送においては、同一の絶縁材料であれば周波数がより高くなるほどに誘電損失が大きくなるため、比誘電率及び誘電正接が小さい値の絶縁材料を選定使用し、誘電損失を小さくすることが好ましい。そのため、従来から誘電損失の小さいフッ素樹脂であるPTFEを絶縁材料として用い、その外周に銅管を被覆したセミリジッド同軸ケーブルが使用されている。しかし、セミリジッド同軸ケーブルの絶縁層はPTFE充実体であるため、近年の信号伝送サービスにおけるギガヘルツ領域までの高周波化によってその減衰量特性は十分なものとは言えなくなってきている。   Coaxial cables are used for high-frequency signal transmission in base station equipment or broadcasting equipment of communication equipment such as mobile phones and the base station equipment. In high-frequency transmission, the dielectric loss increases as the frequency increases for the same insulating material. Therefore, it is preferable to select and use an insulating material having a small relative dielectric constant and dielectric loss tangent to reduce the dielectric loss. . Therefore, a semi-rigid coaxial cable is conventionally used in which PTFE, which is a fluororesin having a low dielectric loss, is used as an insulating material, and the outer periphery thereof is covered with a copper tube. However, since the insulating layer of the semi-rigid coaxial cable is PTFE-rich, its attenuation characteristic has not been sufficient due to the high frequency up to the gigahertz region in recent signal transmission services.

ギガヘルツ領域での誘電特性についての市場からの改善要求に対し、多孔質絶縁体を実現する方法として、完全焼成された充実PTFEシートをパンチング加工により穴を開けたシート、あるいは延伸によって予め多孔質化された焼成または未焼成PTFEシートを中心導体に横巻き積層することによって絶縁層を形成した多孔質PTFE絶縁電線を作成する方法などが採られてきた。しかしながら、中心導体の外周にPTFEシートを巻きつけ積層する工程は、作業が煩雑かつ機械装置が多数必要であるため加工費が高くなる傾向にあり、さらに外径の細い中心導体に積層する場合の作業はより難しいものとなる。   In response to market demand for improvement in dielectric properties in the gigahertz range, as a method of realizing a porous insulator, a fully fired PTFE sheet is made porous by punching or pre-porous by stretching. A method of producing a porous PTFE insulated wire in which an insulating layer is formed by horizontally winding and laminating a fired or unfired PTFE sheet on a central conductor has been adopted. However, the process of winding and laminating the PTFE sheet around the outer periphery of the center conductor tends to increase the processing cost because it is complicated and requires a large number of mechanical devices. The work becomes more difficult.

そのため、シート巻きつけをせずに多孔質PTFE絶縁層を得る方法として、中心導体の外周にPTFEを加圧押出方式で押出成形し、延伸、加熱焼成する方法があるが、中心導体と絶縁層が密着しないという問題点がある。これを改善する手法として、下記特許文献1及び2などにおいて、造孔剤として機能する物質を含有させたPTFEの内層と通常のPTFEのみの外層を持つ2層構造の予備成形体を用いて、加圧押出方式で押出成形し加熱焼成することによって、多孔質化と中心導体に対する密着力とが同時に得られるという提案がなされている。
特公平6−18087号公報 特開2001−67944号公報
Therefore, as a method of obtaining a porous PTFE insulating layer without winding a sheet, there is a method of extruding PTFE on the outer periphery of the center conductor by a pressure extrusion method, stretching, and heating and firing. There is a problem that does not adhere. As a technique for improving this, in Patent Documents 1 and 2 below, using a two-layered preform having an inner layer of PTFE containing a substance that functions as a pore-forming agent and an outer layer of only normal PTFE, There has been a proposal that a porous structure and adhesion to the central conductor can be obtained at the same time by extrusion molding by pressure extrusion and heating and firing.
Japanese Patent Publication No. 6-18087 JP 2001-67944 A

しかしながら、造孔剤として機能する物質を含有させることは、その結果として得られた絶縁層の誘電特性に悪影響を及ぼす要因となり、誘電特性を向上させるためにPTFEを使用することと相反する結果となり、高価なPTFEの良さが発揮できないという欠点がある。   However, the inclusion of a substance that functions as a pore-forming agent is a factor that adversely affects the dielectric properties of the insulating layer obtained as a result, and is a result that conflicts with the use of PTFE to improve the dielectric properties. There is a drawback that the goodness of expensive PTFE cannot be exhibited.

加圧押出方式は中心導体と絶縁層との間の密着力とPTFE樹脂の多孔質化とを両立させる成形条件を得ることは可能であるが、未焼成のPTFE多孔質体はスポンジのように変形しやすいため、焼成前にPTFE多孔質体がプーリーなどを通過することによってターンしたときに絶縁体外周が変形して真円を保つことができず、その変形した形状のまま焼成固化されてしまう問題がある。また、加圧押出方式で被覆した場合は、中心導体に密着した状態でPTFE樹脂が押し出されてくるため、PTFE樹脂がダイス先端から押出されると同時に延伸され多孔質化されるので、押出直後の室温での延伸は長手方向に多孔度が不均一な多孔質状態となる問題がある。いずれの問題もPTFE樹脂絶縁層の比誘電率に斑が生じ、減衰量特性が劣化する要因となる。   The pressure extrusion method can achieve molding conditions that achieve both the adhesion between the center conductor and the insulating layer and the porous PTFE resin, but the unfired PTFE porous body is like a sponge. Because it is easy to deform, when the PTFE porous body is turned by passing through a pulley or the like before firing, the outer periphery of the insulator cannot be deformed to maintain a perfect circle, and the deformed shape is fired and solidified. There is a problem. In addition, when coated by the pressure extrusion method, the PTFE resin is extruded in a state of being in close contact with the center conductor, so that the PTFE resin is extruded from the tip of the die and simultaneously stretched to become porous. The stretching at room temperature has a problem that it becomes a porous state with non-uniform porosity in the longitudinal direction. Both problems cause unevenness in the relative dielectric constant of the PTFE resin insulating layer, which causes deterioration of attenuation characteristics.

本発明は、誘電特性に悪影響を及ぼす要因となる造孔剤を含有させることなしに、より容易に均一な高多孔度と中心導体との高密着力を同時に得ることができ、減衰量特性が優れた多孔質PTFE樹脂絶縁層被覆電線及びそれを用いた同軸ケーブルを提供することを目的とする。   The present invention can easily obtain a uniform high porosity and a high adhesion force with the central conductor at the same time without including a pore-forming agent that causes adverse effects on dielectric properties, and has excellent attenuation characteristics. Another object of the present invention is to provide a porous PTFE resin insulating layer-coated electric wire and a coaxial cable using the same.

本発明の多孔質PTFE樹脂絶縁層被覆電線は、中心導体の外周にPTFE樹脂製の絶縁層を被覆形成するチュービング押出方式を用いたペースト押出成形において、PTFE樹脂の未焼成状態では絶縁層と中心導体との間に間隙が存するように成形し、ペースト押出成形のためにPTFE樹脂に含有させた押出助剤を乾燥除去した後に、前記絶縁層を延伸により多孔質化し、この多孔質化した絶縁層を半焼成状態または完全焼成状態に焼成して該絶縁層を半径方向に収縮せしめることにより該絶縁層を中心導体に密着させて絶縁層に対する中心導体引抜き力を付与したことを特徴とするものである。すなわち、本発明の多孔質PTFE樹脂絶縁層被覆電線は、PTFE樹脂を中心導体に押出被覆する際にPTFE樹脂を中心導体に密着させない状態で被覆し、PTFE樹脂を連続炉内で延伸し多孔質化した後、焼成時にPTFE樹脂を半径方向に収縮せしめてPTFE樹脂と中心導体とを密着させることによって中心導体と絶縁層間の引抜き力を付与したので、高周波領域で減衰量特性の優れた電線及びそれを用いた同軸ケーブルが得られる。   The porous PTFE resin insulation layer-covered electric wire of the present invention is a paste extrusion molding using a tubing extrusion method in which a PTFE resin insulation layer is formed on the outer periphery of a central conductor. After forming the gap so as to leave a gap between the conductor and drying and removing the extrusion aid contained in the PTFE resin for paste extrusion molding, the insulating layer is made porous by stretching, and this porous insulation is formed. The layer is fired into a semi-fired state or a completely fired state, and the insulating layer is contracted in the radial direction so that the insulating layer is brought into close contact with the central conductor, and a central conductor pulling force is applied to the insulating layer. It is. That is, the porous PTFE resin insulation layer-coated electric wire of the present invention is coated with PTFE resin in a state in which the PTFE resin is not adhered to the center conductor when the PTFE resin is extrusion coated on the center conductor, and the PTFE resin is stretched in a continuous furnace to be porous. Since the PTFE resin is shrunk in the radial direction during firing and the PTFE resin and the center conductor are brought into close contact with each other to provide a pulling force between the center conductor and the insulating layer. A coaxial cable using the same can be obtained.

本発明においては、PTFE樹脂を押出被覆する際に中心導体に密着させない状態で被覆するために、加圧押出方式ではなくチュービング押出方式によってPTFE樹脂を押出成形する。   In the present invention, when the PTFE resin is extrusion-coated, the PTFE resin is extruded not by the pressure extrusion method but by the tube extrusion method in order to cover the PTFE resin without being in close contact with the center conductor.

焼成時に密着させるために中心導体外径とPTFE樹脂層内径との間隙は中心導体との接触によって延伸による多孔質化に不均一が生じない範囲において可能な限り狭い方が好ましい。押出成形されたPTFE樹脂は、その内径側が金型であるマンドレルで規制される。一方、その外径側は金型であるダイスで規制される。ダイスの内周面はPTFE樹脂成形物の外径を徐々に細く絞っていくための先端に向かって先細のテーパー部と、そのテーパー部に連続し、PTFE樹脂の流動状態を安定させるための同形断面直筒状のランド部とを有している。また、マンドレルは、その中心孔に中心導体が通されており、その外周面が、先端に向かって先細のテーパー部と、そのテーパー部に連続する同形断面直筒状の先端部とを有している。本発明のPTFE樹脂の押出成形方法はマンドレル先端部はダイスのランド部に位置するチュービング押出方式であるため、PTFE樹脂はチューブ状に押出成形され、そのチューブ内にマンドレル先端部の肉厚分だけの間隙を存して中心導体が内在することとなる。中心導体とPTFE樹脂層との間隙は、中心導体がマンドレルの中心孔を通って供給されるため、マンドレルの肉厚によって決定される。そのため、中心導体にPTFE樹脂層を密着させることを勘案するとマンドレルの肉厚は0.18mm以下であることが望ましい。   In order to achieve close contact during firing, the gap between the outer diameter of the central conductor and the inner diameter of the PTFE resin layer is preferably as narrow as possible within a range in which non-uniformity is not caused in the porous formation by contact with the central conductor. The extruded PTFE resin is regulated by a mandrel whose inner diameter is a mold. On the other hand, the outer diameter side is regulated by a die which is a mold. The inner peripheral surface of the die is tapered toward the tip for gradually narrowing the outer diameter of the PTFE resin molding, and the same shape to stabilize the flow state of the PTFE resin, continuing to the taper. And a land portion having a straight cylindrical section. Further, the mandrel has a central conductor passing through the central hole, and the outer peripheral surface has a tapered portion tapered toward the tip, and a tip portion having a straight cylindrical shape that is continuous with the tapered portion. Yes. Since the PTFE resin extrusion molding method of the present invention is a tubing extrusion method in which the mandrel tip is located at the land portion of the die, the PTFE resin is extruded into a tube shape, and only the thickness of the mandrel tip is inserted into the tube. The center conductor is inherent with a gap of. The gap between the center conductor and the PTFE resin layer is determined by the thickness of the mandrel because the center conductor is supplied through the center hole of the mandrel. Therefore, it is desirable that the thickness of the mandrel is 0.18 mm or less considering that the PTFE resin layer is brought into close contact with the central conductor.

本発明の多孔質PTFE樹脂絶縁層被覆電線の製造は、通常の充実PTFE樹脂を押出被覆する際に使用される装置で実施することができる。重要なことは、前記したようにダイスのテーパー部の最小位置から伸びる空洞であるランド部にマンドレルの先端部が進入するように設計されていることである。押出助剤を含有したPTFE樹脂粉末を予備成形し、その予備成形体を押出シリンダに挿入し、押出ピストンによって心太式に押出す方法によってPTFE樹脂よりなるチューブ状の絶縁層と中心導体との間に間隙が存するように製造できる。多孔質化は製造される電線の引取速度すなわち中心導体の引取速度によって行なわれ、多孔度はその引取速度によって制御される。中心導体上に適度の間隙を存して被覆されたPTFE樹脂は、非溶融状態においては延伸不可であり、溶融状態においては延伸可能となるので、溶融温度前後の温度に達したときにはPTFE樹脂は延伸しながら中心導体の引取速度に追随して引き取られていき、この延伸により多孔質化される。PTFE樹脂は延伸された後、半焼成から完全焼成の状態に加熱焼成されることによって半径方向に収縮し中心導体上に密着する。電線の引取速度が上がれば延伸倍率が大きくなるので、多孔度が高くなる。しかし、密着力は多孔度が高くなるにつれて低下してしまう。密着力の指標として多孔質PTFE絶縁層からの中心導体の引抜き力を使用した。電線として使用するためにはこの引抜き力が10N/100mm以上、好ましくは20N/100mm以上であることが望ましい。本発明においては、ギガヘルツ領域までの高周波化に対応可能な優れた減衰量特性を有する多孔質PTFE樹脂絶縁層被覆電線の提供が目的であるから、多孔度が30%以上つまり実効比誘電率が1.75以下、好ましくは多孔度が45%から75%つまり実効比誘電率が1.24から1.55の多孔質PTFE絶縁層であることが望ましい。したがって、本発明の目的を達成するための条件として、多孔質PTFE絶縁層の実効比誘電率が1.75以下であって、引抜き力が10N/100mm以上とした。さらに好ましくは、実効比誘電率が1.24から1.55の範囲とした。   The production of the porous PTFE resin insulation layer-coated electric wire of the present invention can be carried out by an apparatus used when extrusion coating a normal solid PTFE resin. What is important is that the tip portion of the mandrel is designed to enter the land portion which is a cavity extending from the minimum position of the taper portion of the die as described above. A PTFE resin powder containing an extrusion aid is preformed, the preform is inserted into an extrusion cylinder, and extruded between the tube-shaped insulating layer made of PTFE resin and the central conductor by a method of extruding in a heart-thick manner by an extrusion piston. Can be manufactured so that there is a gap. The porosification is performed by the take-up speed of the manufactured electric wire, that is, the take-up speed of the central conductor, and the porosity is controlled by the take-up speed. PTFE resin coated with a moderate gap on the central conductor cannot be stretched in the non-molten state and can be stretched in the molten state. Therefore, when the temperature reaches around the melting temperature, the PTFE resin The film is drawn while following the drawing speed of the central conductor while drawing, and is made porous by this drawing. After being stretched, the PTFE resin is heated and fired from a half-fired state to a fully-fired state, thereby shrinking in the radial direction and closely contacting the central conductor. If the wire take-up speed is increased, the draw ratio is increased, so that the porosity is increased. However, the adhesion strength decreases as the porosity increases. The pulling force of the central conductor from the porous PTFE insulating layer was used as an index of adhesion. In order to use it as an electric wire, it is desirable that the pulling force is 10 N / 100 mm or more, preferably 20 N / 100 mm or more. In the present invention, since the object is to provide a porous PTFE resin insulation layer-coated electric wire having excellent attenuation characteristics that can handle high frequencies up to the gigahertz range, the porosity is 30% or more, that is, the effective relative dielectric constant is A porous PTFE insulating layer having a porosity of 1.75 or less, preferably 45 to 75%, that is, an effective relative dielectric constant of 1.24 to 1.55 is desirable. Therefore, as conditions for achieving the object of the present invention, the effective relative dielectric constant of the porous PTFE insulating layer is 1.75 or less, and the pulling force is 10 N / 100 mm or more. More preferably, the effective relative dielectric constant is in the range of 1.24 to 1.55.

本発明によって、通常、充実PTFE絶縁電線を作成するペースト押出機を利用し、PTFE樹脂粉末に発泡剤や造孔剤などを混合や絶縁層を2層構造化したりすることなく、高多孔度と中心導体との高密着力とを同時かつ容易に得ることができる多孔質PTFE樹脂絶縁層被覆電線及びそれを用いた同軸ケーブルが提供される。   According to the present invention, normally, a high-porosity is obtained without using a paste extruder for producing a solid PTFE insulated wire, mixing a foaming agent, a pore-forming agent, etc. with PTFE resin powder or forming a two-layer structure of an insulating layer. Provided are a porous PTFE resin insulating layer-coated electric wire and a coaxial cable using the same, which can simultaneously and easily obtain a high adhesive force with a central conductor.

図1の(a)に示すように、本発明の多孔質PTFE樹脂絶縁層被覆電線10は、中心導体11とその外周に被覆される多孔質PTFE絶縁層12とで構成されている。中心導体11は、銀メッキ銅覆鋼線、銀メッキ軟銅線などのフッ素ガスに腐食されない良導電性線材、またはこれらの良導電性線材を用いた撚り線などからなる導体であればよく、特に限定されるものではない。多孔質PTFE樹脂絶縁層被覆電線10の中心導体11の外径及び絶縁外径についても特に限定されるものではない。   As shown in FIG. 1 (a), the porous PTFE resin insulation layer-covered electric wire 10 of the present invention is composed of a central conductor 11 and a porous PTFE insulation layer 12 coated on the outer periphery thereof. The center conductor 11 may be a conductor made of a highly conductive wire that is not corroded by fluorine gas, such as a silver-plated copper-clad steel wire or a silver-plated annealed copper wire, or a conductor made of a stranded wire using these highly conductive wires. It is not limited. The outer diameter and the insulating outer diameter of the center conductor 11 of the porous PTFE resin insulating layer-covered electric wire 10 are not particularly limited.

多孔質PTFE樹脂絶縁層被覆電線10の製造方法は、通常の充実PTFE樹脂を押出被覆する際に使用される装置で実施することができる。PTFE粉末としては乳化重合法で得られたPTFEファインパウダーを使用する。PTFEファインパウダーは共重合による変性の度合いや平均粒径など特に限定されるものではない。PTFEファインパウダー100重量部に対し押出助剤を15〜25重量部添加し、押出助剤をPTFEファインパウダーに十分に吸着させた後、圧縮し、予備成形体12’に成形する。   The manufacturing method of the porous PTFE resin insulation layer-coated electric wire 10 can be carried out by an apparatus used when extrusion coating a normal solid PTFE resin. As the PTFE powder, PTFE fine powder obtained by an emulsion polymerization method is used. The PTFE fine powder is not particularly limited in terms of the degree of modification by copolymerization and the average particle size. 15 to 25 parts by weight of an extrusion aid is added to 100 parts by weight of PTFE fine powder, and the extrusion aid is sufficiently adsorbed on the PTFE fine powder, and then compressed to form a preform 12 '.

作製された予備成形体12’を押出シリンダに挿入して押出加工を行なう。ペースト押出機の先端部Aはチュービング押出方式の場合には、図2に示すように開口されており、予備成形体12’はダイスaのテーパー部a’とマンドレルbのテーパー部b’で徐々に圧縮変形を受けながらダイスaとマンドレルbの間隙pから押出されてチューブ状の絶縁層12となる。図中のダイスaのa’’はランド部を示し、b’’はマンドレルbの先端部を示す。押出された絶縁層12はマンドレルbの先端部b’’の肉厚分の間隙qをあけて間接的に中心導体11に被覆される。このとき、中心導体11は製造された電線の引取速度で引き取られているが、押出された絶縁層12は乾燥炉で押出助剤が乾燥され、絶縁層12が溶融温度付近まで加熱され延伸されるまでは全く延伸されないため中心導体11より遅い速度で乾燥炉を通過している。溶融した絶縁層12は延伸された後、半焼成から完全焼成の状態に加熱焼成、冷却されることによって半径方向に収縮し中心導体11上に密着する。   The prepared preform 12 'is inserted into an extrusion cylinder and subjected to extrusion processing. In the case of the tubing extrusion method, the tip portion A of the paste extruder is opened as shown in FIG. 2, and the preform 12 'is gradually formed by a taper portion a' of the die a and a taper portion b 'of the mandrel b. The tube-like insulating layer 12 is extruded from the gap p between the die a and the mandrel b while undergoing compression deformation. In the drawing, a ″ of the die a indicates a land portion, and b ″ indicates a tip portion of the mandrel b. The extruded insulating layer 12 is indirectly covered with the central conductor 11 with a gap q corresponding to the thickness of the tip end b ″ of the mandrel b. At this time, although the center conductor 11 is taken up at the take-up speed of the manufactured electric wire, the extruded insulating layer 12 is dried in the drying furnace, and the insulating layer 12 is heated and stretched to near the melting temperature. Until it passes through the drying furnace at a speed slower than that of the central conductor 11. After the melted insulating layer 12 is stretched, it is heated and fired and cooled from a semi-fired state to a fully fired state, thereby shrinking in the radial direction and closely contacting the central conductor 11.

本発明はまた、前記の製造方法によって得られた多孔質フッ素樹脂絶縁電線10の外周に外部導体を施すことにより同軸ケーブルとなる。同軸ケーブルを作製する方法は、この多孔質フッ素樹脂絶縁電線10の外周に銅パイプを被覆する方法、銅コルゲート管を被覆する方法、銀メッキ軟銅線編組する方法、この編組線上に錫コーティングする方法など公知の同軸ケーブル作製方法を採用することができる。   The present invention also provides a coaxial cable by applying an outer conductor to the outer periphery of the porous fluororesin insulated electric wire 10 obtained by the above manufacturing method. A method for producing a coaxial cable includes a method of coating a copper pipe on the outer periphery of the porous fluororesin insulated wire 10, a method of coating a copper corrugated tube, a method of braiding silver-plated annealed copper wire, and a method of coating tin on the braided wire For example, a known coaxial cable manufacturing method can be employed.

ダイキン工業株式会社製「ポリフロンPTFEファインパウダーF104」を使用した。これに押出助剤として合成イソパラフィン系炭化水素溶剤であるエクソン化学株式会社製「アイソパーE」をPTFE粉末100重量部に対し20重量部加えて35℃で12時間以上放置しPTFE粉末に押出助剤を十分に吸着させた。このPTFE粉末混合物を予備成形機中で圧縮成形し、外径37.4mm、内径16.2mm、高さ600mmの円筒状の予備成形体を作製した。予備成形体をシリンダ外径38.1mmのペースト押出機を使用し、肉厚0.18mmのマンドレルに直径1mmの銀メッキ軟動単線を中心導体として挿入し、ラム速度10mm/min、引取速度3.6〜4.6m/minの間で調整し、約4m長の乾燥区間と約2mの焼成区間を持つ加熱炉を通過させることによって、押出助剤の乾燥、PTFE樹脂溶融温度付近での延伸、その後の焼成によって半焼成から完全焼成までの状態に焼成する過程を経て、多孔度の異なる4種類の絶縁外径2.29mm(実施例1)、2.35mm(実施例2)、2.45mm(実施例3)、2.50mm(実施例4)の多孔質フッ素樹脂絶縁電線を作製した。   “Polyfluorocarbon PTFE fine powder F104” manufactured by Daikin Industries, Ltd. was used. To this, 20 parts by weight of “Isopar E” manufactured by Exxon Chemical Co., Ltd., which is a synthetic isoparaffinic hydrocarbon solvent, is added as an extrusion aid to 100 parts by weight of PTFE powder and left at 35 ° C. for 12 hours or more. Was sufficiently adsorbed. This PTFE powder mixture was compression molded in a preforming machine to produce a cylindrical preform having an outer diameter of 37.4 mm, an inner diameter of 16.2 mm, and a height of 600 mm. Using a paste extruder with a cylinder outer diameter of 38.1 mm, the preform was inserted into a mandrel with a wall thickness of 0.18 mm using a silver-plated soft single wire with a diameter of 1 mm as the central conductor, a ram speed of 10 mm / min, and a take-off speed of 3 Adjust between 6 to 4.6 m / min, and pass through a heating furnace with a drying section of about 4 m length and a baking section of about 2 m, thereby drying the extrusion aid and stretching around the PTFE resin melting temperature. Then, after the process of firing from half firing to complete firing by subsequent firing, four types of insulating outer diameters of 2.29 mm (Example 1), 2.35 mm (Example 2) having different porosities are obtained. Porous fluororesin insulated wires of 45 mm (Example 3) and 2.50 mm (Example 4) were produced.

比較例として、従来から充実PTFE絶縁体の製造方法である加圧押出方式で、多孔度の異なる3種類の絶縁外径2.64mm(比較例1)、2.77mm(比較例2)、2.76mm(比較例3)の多孔質フッ素樹脂絶縁電線を作製した。   As comparative examples, three types of insulation outer diameters of 2.64 mm (Comparative Example 1), 2.77 mm (Comparative Example 2), and 2 types with different porosities are obtained by a pressure extrusion method, which is a conventional method for producing a solid PTFE insulator. A porous fluororesin insulated wire of .76 mm (Comparative Example 3) was produced.

これらの多孔質フッ素樹脂絶縁電線について、多孔度を測定した。多孔質体の多孔化前の比重をA、多孔化後の比重をBとし、以下の式(A)によって算出した。比重はJIS−K−7112に規定された水中置換法(A法)によって測定した。   The porosity was measured for these porous fluororesin insulated wires. The specific gravity before the porous body was made porous was A, and the specific gravity after the porous body was made B was calculated by the following formula (A). Specific gravity was measured by an underwater substitution method (A method) defined in JIS-K-7112.

式(A): 多孔度(%)=(A−B)/A×100
実効比誘電率は、株式会社関東電子応用開発製空洞共振器をアジレントテクノロジー株式会社製ネットワークアナライザーに接続し、測定温度は23℃、測定周波数5.8GHzにて測定した。
Formula (A): Porosity (%) = (A−B) / A × 100
The effective relative dielectric constant was measured by connecting a cavity resonator manufactured by Kanto Electronics Application Development Co., Ltd. to a network analyzer manufactured by Agilent Technology Co., Ltd. at a measurement temperature of 23 ° C. and a measurement frequency of 5.8 GHz.

中心導体引抜き力は、PTFE樹脂絶縁層長さが100mmの試験体を引張試験機の試験体取付部に、片方に中心導体を、もう一方にPTFE樹脂絶縁層をそれぞれ取り付けて引張速度10mm/minで引張り、PTFE樹脂絶縁層から中心導体を抜き去ったときの最大荷重を測定し、その値を中心導体引抜き力と定義した。   The center conductor pull-out force is obtained by attaching a test body having a PTFE resin insulation layer length of 100 mm to a test body attachment part of a tensile tester, a center conductor on one side, and a PTFE resin insulation layer on the other, and a tensile speed of 10 mm / min. The maximum load when the central conductor was removed from the PTFE resin insulation layer was measured, and the value was defined as the central conductor pulling force.

比較例1〜3は多孔度65%以上において中心導体引抜き力を保持できず、また、比較例2及び3は乾燥区間内のプーリーでのターンによって絶縁外周が楕円形に変形したまま焼成されているのに対し、実施例1〜4は、多孔度70%においても引抜き力13N/100mmLを保持し、かつ絶縁外周も真円を保持していた。本発明のチュービング押出方式で作製された多孔質フッ素樹脂絶縁電線は、従来の加圧押出方式で作製された電線に比較して高率に多孔化された際も中心導体引抜き力を維持でき、かつ焼成直前に延伸されるため絶縁外周を真円に保つことができ、それによって、高多孔度のために実効比誘電率が低く、減衰量を小さくすることができる。

Figure 2008226618
Comparative Examples 1 to 3 cannot maintain the pulling force of the central conductor when the porosity is 65% or more, and Comparative Examples 2 and 3 are fired while the insulating outer periphery is deformed into an elliptical shape by the turn of the pulley in the drying section. On the other hand, in Examples 1 to 4, the pulling force 13 N / 100 mmL was maintained even at a porosity of 70%, and the insulating outer periphery also maintained a perfect circle. The porous fluororesin insulated electric wire produced by the tubing extrusion method of the present invention can maintain the center conductor pulling force even when made porous at a high rate compared to the electric wire produced by the conventional pressure extrusion method, In addition, since it is stretched immediately before firing, the outer periphery of the insulation can be kept in a perfect circle, and therefore, the effective relative dielectric constant is low due to the high porosity, and the attenuation can be reduced.
Figure 2008226618

実施例3の多孔質フッ素樹脂絶縁電線の外周に厚さ0.25mmの銅コルゲート管、次いで、FEPからなる厚さ0.5mmのシース層で覆うことによって同軸ケーブルを得た。減衰量特性はアジレントテクノロジー株式会社製ネットワークアナライザーを使用し、測定温度20℃、測定周波数1〜10GHzの範囲で測定した。表2に示すように非常に優れた減衰量特性を示した。

Figure 2008226618
A coaxial cable was obtained by covering the outer periphery of the porous fluororesin insulated electric wire of Example 3 with a 0.25 mm thick copper corrugated tube and then a 0.5 mm thick sheath layer made of FEP. The attenuation characteristic was measured using a network analyzer manufactured by Agilent Technologies, Inc. at a measurement temperature of 20 ° C. and a measurement frequency of 1 to 10 GHz. As shown in Table 2, very good attenuation characteristics were shown.
Figure 2008226618

実施例1〜4に示した多孔質PTFE樹脂絶縁層の断面は、図1(a)に示すように絶縁層全体に多孔質PTFE樹脂が詰まった状態であるが、中心導体を囲む管状部を持っている限りにおいて、その形状は限定されるものではない。例えば、図1(b)に示す多孔質PTFE樹脂絶縁層被覆電線20は、管状の多孔質PTFE絶縁層22に3つのリブ部22aを有した断面形状をしている。このように長手方向に連続した空隙を有することによってさらに絶縁層22としての実効比誘電率を優れたものにすることができる。   The cross section of the porous PTFE resin insulating layer shown in Examples 1 to 4 is a state in which the entire insulating layer is clogged with porous PTFE resin as shown in FIG. As long as it has, the shape is not limited. For example, the porous PTFE resin insulation layer-covered electric wire 20 shown in FIG. 1B has a cross-sectional shape in which a tubular porous PTFE insulation layer 22 has three rib portions 22a. Thus, by having a continuous void in the longitudinal direction, the effective relative dielectric constant as the insulating layer 22 can be further improved.

本発明の多孔質フッ素樹脂絶縁電線の断面図であって、(a)は管状部が断面円形の場合を示し、(b)は管状部が3つのリブを有する断面異形の場合を示す。It is sectional drawing of the porous fluororesin insulated wire of this invention, Comprising: (a) shows the case where a tubular part is circular in cross section, (b) shows the case where the tubular part is a cross-sectional variant which has three ribs. 本発明のチュービング押出方式時のダイスとマンドレルの位置関係の概略図Schematic of the positional relationship between the die and mandrel during the tubing extrusion system of the present invention 従来PTFE樹脂を電線被覆押出するための加圧押出方式時のダイスとマンドレルの位置関係の概略図Schematic of the positional relationship between a die and a mandrel in a pressure extrusion method for extruding conventional PTFE resin with a wire.

符号の説明Explanation of symbols

10・・・多孔質PTFE樹脂絶縁層被覆電線
11・・・中心導体
12・・・多孔質PTFE絶縁層
12’・・予備成形体
A・・・・ペースト押出機の先端部
a・・・・ダイス
a’・・・ダイスのテーパー部
a’’・・ダイスのランド部
b・・・・マンドレル
b’・・・マンドレルのテーパー部
b’’・・マンドレルの先端部
p・・・・ダイスとマンドレルの間隙
q・・・・マンドレルの肉厚分の間隙
20・・・多孔質PTFE樹脂絶縁層被覆電線
22・・・多孔質PTFE絶縁層
22a・・リブ部
DESCRIPTION OF SYMBOLS 10 ... Porous PTFE resin insulation layer covering electric wire 11 ... Center conductor 12 ... Porous PTFE insulation layer 12 '... Preliminary body A ... Tip part of paste extruder a ... Dies a '... Tapered part of the die a "· · Land part of the die b · · · Mandrel b' ... Tapered part of the mandrel b" · · Tip part of the mandrel p · ... With the die Mandrel gap q ··· Mandrel thickness gap 20 · · · Porous PTFE resin insulation layer coated wire 22 · · · porous PTFE insulation layer 22a · · rib

Claims (6)

中心導体の外周にPTFE樹脂製の絶縁層を被覆形成するチュービング押出方式を用いたペースト押出成形において、PTFE樹脂の未焼成状態では絶縁層と中心導体との間に間隙が存するように成形し、ペースト押出成形のためにPTFE樹脂に含有させた押出助剤を乾燥除去した後に、前記絶縁層を延伸により多孔質化し、この多孔質化した絶縁層を半焼成状態または完全焼成状態に焼成して該絶縁層を半径方向に収縮せしめることにより該絶縁層を中心導体に密着させて絶縁層に対する中心導体引抜き力を付与したことを特徴とする多孔質PTFE樹脂絶縁層被覆電線。   In paste extrusion molding using a tube extrusion method in which an insulating layer made of PTFE resin is formed on the outer periphery of the center conductor, in a non-fired state of PTFE resin, the gap is formed between the insulating layer and the center conductor. After drying and removing the extrusion aid contained in the PTFE resin for paste extrusion, the insulating layer is made porous by stretching, and the porous insulating layer is fired into a semi-fired state or a completely fired state. A porous PTFE resin insulating layer-coated electric wire characterized in that the insulating layer is contracted in a radial direction so that the insulating layer is brought into close contact with the central conductor and a central conductor pulling force is applied to the insulating layer. チュービング押出方式でのペースト押出成形に使用するマンドレルの肉厚が0.18mm以下であることを特徴とする請求項1に記載の多孔質PTFE樹脂絶縁層被覆電線。   2. The porous PTFE resin insulation layer-coated electric wire according to claim 1, wherein the thickness of a mandrel used for paste extrusion molding in a tubing extrusion method is 0.18 mm or less. 絶縁層の実効比誘電率が1.75以下であり、絶縁層に対する絶縁体長さ100mm当りの中心導体引抜き力が少なくとも10N以上であることを特徴とする請求項1又は2に記載の多孔質PTFE樹脂絶縁層被覆電線。   3. The porous PTFE according to claim 1, wherein an effective relative dielectric constant of the insulating layer is 1.75 or less, and a central conductor pulling force per 100 mm of the insulator length with respect to the insulating layer is at least 10 N or more. Resin insulation layer covered wire. 絶縁層の実効比誘電率が1.24〜1.55であることを特徴とする請求項1〜3のいずれか1項に記載の多孔質PTFE樹脂絶縁層被覆電線。   4. The porous PTFE resin insulating layer-coated electric wire according to claim 1, wherein the effective relative dielectric constant of the insulating layer is 1.24 to 1.55. 絶縁層に長手方向に伸びる連続した凹部を形成したを特徴とする請求項1〜4のいずれか1項に記載の多孔質PTFE樹脂絶縁層被覆電線。   The porous PTFE resin insulation layer-coated electric wire according to any one of claims 1 to 4, wherein a continuous recess extending in the longitudinal direction is formed in the insulation layer. 請求項1〜5のいずれかに記載の多孔質PTFE樹脂絶縁層被覆電線に外部導体を施して得られる同軸ケーブル。   A coaxial cable obtained by applying an outer conductor to the porous PTFE resin insulating layer-coated electric wire according to claim 1.
JP2007062464A 2007-03-12 2007-03-12 Covered wire by porous ptfe resin insulating layer, and coaxial cable using it Pending JP2008226618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062464A JP2008226618A (en) 2007-03-12 2007-03-12 Covered wire by porous ptfe resin insulating layer, and coaxial cable using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062464A JP2008226618A (en) 2007-03-12 2007-03-12 Covered wire by porous ptfe resin insulating layer, and coaxial cable using it

Publications (1)

Publication Number Publication Date
JP2008226618A true JP2008226618A (en) 2008-09-25

Family

ID=39844986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062464A Pending JP2008226618A (en) 2007-03-12 2007-03-12 Covered wire by porous ptfe resin insulating layer, and coaxial cable using it

Country Status (1)

Country Link
JP (1) JP2008226618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922858B1 (en) 2009-03-24 2009-10-20 장연화 Chain and method for manufacturing of it
KR101315899B1 (en) * 2012-06-19 2013-10-08 길동만 Multilayer structure body comprising porous fluoroplastics and preparation method of the same
KR101318942B1 (en) * 2012-06-19 2013-10-16 길동만 Cables comprising porous fluoroplastics and preparation method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922858B1 (en) 2009-03-24 2009-10-20 장연화 Chain and method for manufacturing of it
KR101315899B1 (en) * 2012-06-19 2013-10-08 길동만 Multilayer structure body comprising porous fluoroplastics and preparation method of the same
KR101318942B1 (en) * 2012-06-19 2013-10-16 길동만 Cables comprising porous fluoroplastics and preparation method of the same

Similar Documents

Publication Publication Date Title
US11605480B2 (en) Electrical cable with dielectric foam
US7355123B2 (en) Foam coaxial cable and method of manufacturing the same
US7740781B2 (en) Paste extruded insulator with air channels
JP5255529B2 (en) Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable
TW200405363A (en) Thin-diameter coaxial cable and method of producing the same
JP2001357729A (en) Polytetrafluoroethylene mixed powder for insulation of transmission product of high frequency signal and transmission product of high frequency signal using the same
JP2008226618A (en) Covered wire by porous ptfe resin insulating layer, and coaxial cable using it
JPWO2010137700A1 (en) Electric wire manufacturing method
JP4626014B2 (en) High-frequency signal transmission product and its manufacturing method
JP2010192271A (en) Manufacturing method and manufacturing device of hollow core object for coaxial cable
KR101318942B1 (en) Cables comprising porous fluoroplastics and preparation method of the same
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
KR20130142308A (en) Porous fluoroplastic tube and method for preparing the same
JPS61237308A (en) Low density sintered polytetra fluoroethylene product and manufacture thereof
JP2021190403A (en) coaxial cable
JP2003051220A (en) Coaxial cable and manufacturing method therefor
JP4198002B2 (en) coaxial cable
JP2004192816A (en) Insulated wire and coaxial cable using the same
JP5387512B2 (en) Electric wire manufacturing method
JP2003109440A (en) Porous polytetrafluoroethylene insulating coaxial cable
JPH0448508A (en) Foamed plastic insulated wire