JP4626014B2 - High-frequency signal transmission product and its manufacturing method - Google Patents

High-frequency signal transmission product and its manufacturing method Download PDF

Info

Publication number
JP4626014B2
JP4626014B2 JP2000179553A JP2000179553A JP4626014B2 JP 4626014 B2 JP4626014 B2 JP 4626014B2 JP 2000179553 A JP2000179553 A JP 2000179553A JP 2000179553 A JP2000179553 A JP 2000179553A JP 4626014 B2 JP4626014 B2 JP 4626014B2
Authority
JP
Japan
Prior art keywords
melting point
insulating layer
polytetrafluoroethylene
frequency signal
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179553A
Other languages
Japanese (ja)
Other versions
JP2001357730A (en
Inventor
勝年 山本
洋之 吉本
和夫 石割
真一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000179553A priority Critical patent/JP4626014B2/en
Publication of JP2001357730A publication Critical patent/JP2001357730A/en
Application granted granted Critical
Publication of JP4626014B2 publication Critical patent/JP4626014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波の誘電損失が少なく、しかも末端加工性にも優れた高周波信号伝送用ケーブルやプリント配線基板などの高周波信号伝送用製品、およびその製法に関する。
【0002】
【従来の技術】
同軸ケーブルやLANケーブルのような高周波信号を伝送するケーブルには常に誘電損失が生ずる。同じく高周波信号を伝送する各種伝送機器に使用されるプリント配線基板についても、誘電損失が重要なファクターとなっている。
【0003】
誘電損失は誘電率(ε)と誘電正接(tan δ)との関数であり、いずれも小さい方が好ましい。誘電損失を低減するため、これらの電気的特性に優れたPTFEを絶縁被覆層材料として使用している高周波ケーブルが提案されている(特開平11−31422号公報、特開平11−283448号公報、特開2000−21250号公報)。
【0004】
PTFEは分子量や変性の有無などにより融点、電気的特性、成形加工性などが異なり、また、熱処理(焼成処理)することによって融点、誘電率、誘電正接、さらには機械的強度が変化する。たとえば融点が340±7℃と高い高分子量PTFEは高融点の低分子量PTFEよりも電気的特性に優れており、未焼成のときは誘電率(ε)は1.8、誘電正接(tan δ)は0.3×10-4(いずれも12GHzで測定した値。以下同様)と低いが、不完全に焼成(半焼成)すると融点が327±5℃と下がり誘電率(ε)は2.15、誘電正接(tan δ)は0.7×10-4と高くなる。完全に焼成すると、融点は323±5℃とさらに低くなり、誘電率(ε)は2.10、誘電正接(tan δ)は2.0×10-4と高くなる。また、機械的強度は焼成することにより向上する。
【0005】
したがって、誘電損失の点からは高分子量高融点の未焼成または半焼成PTFEを使用することが有利である。
【0006】
そこで前記公報では、誘電率や誘電正接といった電気的特性を維持しつつ、加工性を向上させるために焼成PTFE、半焼成PTFEおよび未焼成PTFEを組み合せた絶縁被覆層が提案されている。
【0007】
特開平11−31442号公報では、未焼成PTFE絶縁被覆層の焼成の仕方を外表面側の焼成度を高くする(ラジアル方向のPTFEの焼成度の傾斜化)方法を提案している。
【0008】
特開平11−283448号公報では、絶縁被覆層を基本的に未焼成または半焼成PTFEとし、加工すべき末端部分(末端から10cm程度)のみ完全焼成PTFEを使用すること(芯線の長手方向での焼成度の傾斜化)を提案している。
【0009】
さらに特開2000−21250号公報では、絶縁被覆層としてPTFEの多孔質層を用い、さらに表面部分を焼成して結晶化率を75〜92%と高くしている(ラジアル方向での焼成度の傾斜化)。
【0010】
【発明が解決しようとする課題】
しかしケーブルの末端を加工するときの末端加工性は、ラジアル方向での焼成度の傾斜化では、末端をニッパなどで剥離したり切断したとき未焼成または半焼成PTFEでは綺麗に切れず繊維化し、糸を引いた状態となる。
【0011】
したがって、前記特開平11−283448号公報のように完全焼成PTFEを使用しない限り、末端加工を綺麗に行なうことはできないと考えられていた。
【0012】
このように従来は、高周波ケーブルの絶縁被覆層用のPTFEについては、焼成度や結晶化度などの検討は種々行なわれているが、融点に関しての検討はされていない。本発明は今まで未検討であった融点にも着目し、低融点PTFEが繊維化しにくい点を考慮し、さらに焼成度を加味して、電気的特性だけではなく加工性、特に末端加工性にも優れたPTFE絶縁被覆層用の材料を開発した。
【0013】
本発明は、PTFEを絶縁被覆層として有する高周波信号伝送用製品の末端加工をスムーズに行なうことができ、しかも誘電損失が少ない高周波信号伝送用製品、およびその製法を提供することを目的とする。
【0014】
【課題を解決するための手段】
すなわち本発明は、示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が338℃以下の低融点PTFE絶縁層と示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342℃以上の高融点PTFE絶縁層との2層構造の絶縁層を有する高周波信号伝送用製品、たとえば高周波信号伝送用ケーブルやプリント配線基板に関する。
【0015】
前記低融点PTFE絶縁層が焼成層であり、また前記高融点PTFE絶縁層が半焼成または未焼成層であることが好ましい。
【0016】
さらにまた、低融点PTFEおよび高融点PTFEの両方または一方が変性PTFEであることが好ましい。
【0017】
高周波信号伝送用ケーブルとしては、金属芯線とフッ素樹脂絶縁層とを有する高周波信号伝送用ケーブルであって、フッ素樹脂絶縁層が、前記低融点PTFEの外側絶縁層と前記高融点PTFEの内側絶縁層との2層構造であるものが特に好ましい。
【0018】
かかる高周波信号伝送用ケーブルは、前記低融点PTFEと前記高融点PTFEを芯線上に低融点PTFEが外側になるように共ペースト押出し、ついで実質的に外側の低融点PTFE層のみを完全に焼成することにより製造できる。
【0019】
また、焼成を溶融塩浴中に共ペースト押出物を通すことにより行なうことにより、焼成をコントロールし易くなる、
【0020】
【発明の実施の形態】
本発明で使用する低融点PTFE粉末は、示差走査熱量計による結晶融解曲線上に現れる吸熱カーブの最大ピーク温度(以下、「最大吸熱ピーク温度」という)が338℃以下、好ましくは332〜338℃の粉末である。一方の高融点のPTFE粉末は、最大吸熱ピーク温度が342℃以上、好ましくは342〜348℃である粉末である。
【0021】
これらのPTFE粉末は、TFEの単独重合体であっても、他の単量体で変性された変性PTFEであってもよい。変性用の単量体としてはパーフルオロ(メチルビニルエーテル)やパーフルオロ(プロピルビニルエーテル)などのパーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレンなどがあげられ、溶融加工できないという性質を損わない範囲の量で変性される。なお以下、特に断らない限り、変性PTFEも含めてPTFEという。
【0022】
この低融点PTFEは、乳化重合法で重合し製造された粉末であり、前記の最大吸熱ピーク温度(結晶融点)を有し、誘電率(ε)は2.08〜2.2、誘電正接(tan δ)は1.9×10-4〜4.0×10-4である。市販品としては、たとえばダイキン工業(株)製のポリフロンファインパウダーF201、同F203、同F205、同F301、同F302;旭硝子工業(株)製のCD090、CD076;デュポン社製のTF6C、TF62、TF40などがあげられる。
【0023】
一方の高融点PTFE粉末も、、乳化重合法で重合し製造された粉末であり、前記の最大吸熱ピーク温度(結晶融点)を有し、誘電率(ε)は2.0〜2.1、誘電正接(tan δ)は1.6×10-4〜2.2×10-4と全体的に低い。市販品としては、たとえばダイキン工業(株)製のポリフロンファインパウダーF104;旭硝子工業(株)製のCD1、CD141、CD123;デュポン社製のTF6、TF65などがあげられる。
【0024】
なお、両PTFE重合粒子が2次凝集した粉末の平均粒径は通常、250〜2000μmであるのが好ましい。特に、溶媒を用いて造粒して得られる造粒粉末は予備成形の際の金型充填時の流動性が向上する点から好ましい。
【0025】
本発明の2層構造の絶縁層には、誘電特性を改善するために、いずれか一方または両方の絶縁層にさらにチッ化ボロンなどのフィラーを配合してもよい。また、低融点PTFE絶縁層にはカーボン(カーボンブラックやカーボン繊維など)を配合して、その誘電特性を変化調整してもよい。
【0026】
本発明の2層構造の絶縁層は、高周波信号伝送用製品の各種部品または絶縁被覆層などがあげられ、高周波信号伝送機器用の各種部品としては、たとえば携帯電話、各種コンピュータ、通信機器などのプリント配線基板、ケーシング、アンテナのコネクタなどが代表例としてあげられるが、これらのみに限られるものではない。プリント配線基板などの平板状の成形品は、本発明の2種類のPTFE粉末を順次圧縮成形などの従来公知の成形法によって積層して製造できる。絶縁層全体の厚さおよび低融点PTFE絶縁層と高融点PTFE絶縁層の厚さの比は、目的とする周波数、適用個所、製品や部品の種類などによって異なる。通常、平板状の場合、全体厚さは0.1〜3mm、低融点PTFE絶縁層と高融点PTFE絶縁層の厚さの比は1/10〜4/1程度である。
【0027】
高周波信号伝送機器用の絶縁層としては、同軸ケーブル、LANケーブル、フラットケーブルなどの高周波信号伝送用ケーブルの絶縁被覆層、プリント配線基板などの絶縁層などが代表例としてあげられるが、これらのみに限られるものではない。
【0028】
本発明は前記のとおり、さらに本発明の特定の2層構造の絶縁層を有する高周波信号伝送用ケーブル、特に同軸ケーブルにも関する。
【0029】
本発明の高周波信号伝送用同軸ケーブルの構造は、図1にその一実施形態の概略断面図示すように、金属の芯線1の周囲にまず高融点PTFE絶縁層2を設け、ついで低融点PTFE絶縁層3を積層し、さらにその外側に外皮として金属製の外装4が設けられた構造となっている。
【0030】
以下、同軸ケーブルの絶縁被覆層をぺースト共押出法で形成する方法について説明するが、この製法に限られるものではない。
【0031】
まず前記低融点PTFE粉末を公知のペースト押出助剤と混合して圧縮予備成形して円筒状の外側絶縁層用予備成形体とし、別途、高融点PTFE粉末を公知のペースト押出助剤と混合して圧縮予備成形して円筒状の内側絶縁層用予備成形体とする。サイズは外側絶縁層用予備成形体の内径が内側絶縁層用予備成形体の外周より若干大きくなるようにする。ついで内側絶縁層用予備成形体を外側絶縁層用予備成形体の中に入れ、この形でペースト押出機に装填し、芯線上に共押出し、加熱(150〜250℃)乾燥したのち、焼成処理を外側絶縁層の低融点PTFEのみが完全に焼成される条件で行なう。その後、外皮を常法にしたがって被覆する。
【0032】
なお、本発明において、未焼成、半焼成および(完全)焼成の状態とはそれぞれつぎの状態をいう。未焼成状態とは、吸熱カーブにおいて最大ピークが焼成前と同じ位置にあってかつ結晶転化率が20%未満の状態であり、半焼成状態とは、吸熱カーブにおいて最大ピークが焼成前と同じ位置にあってかつ結晶転化率が20%以上で90%未満の状態であり、完全焼成状態とは、吸熱カーブにおいて最大ピークが焼成前から低温側にシフトしかつ結晶転化率が90%以上の状態である。
【0033】
本発明の製法においては、このペースト共押出工程および焼成工程においても、優れた加工特性を発揮する。
【0034】
すなわち、従来は未焼成の高融点PTFE粉末を単独でペースト押出して絶縁被覆層を形成していたが、未焼成の高融点PTFE粉末は容易に繊維化してしまうため、押出圧を高くする必要があり、また被覆層の表面がウネることがあった。本発明では繊維化しない低融点PTFE粉末ペーストを外側で同時に押出しているため、押出圧を小さくすることができると共に押出成形時の繊維化が抑えられ、得られる絶縁被覆層表面を平滑にすることができる。
【0035】
また焼成処理は、高融点PTFEからなる内側絶縁層の優れた電気的特性を維持するため、内側絶縁層の高融点PTFEはできるだけ未焼成または半焼成の段階で止める必要があるが、従来の高融点PTFE単独押出法の場合、誘電率や誘電正接などの高周波信号伝送に関係する特性が焼成温度の影響を大きく受けるため焼成温度管理を慎重にしなければならなかった。ところが本発明の2層構造の絶縁層では、元々高周波信号伝送特性において劣る低融点PTFE絶縁層を外側絶縁層に設けているため、焼成温度の内側絶縁層の高融点PTFE層への影響が緩和され、多少焼成温度がブレても高周波信号伝送特性において比較的類似したものが得られるので、焼成温度の管理が容易になり、また歩留も向上する。
【0036】
本発明においては、結晶化率は内側および外側の全体で10〜90%、好ましくは20〜80%である。
【0037】
このように焼成の加熱条件は重要なファクターであり、製品の特性に影響を与えるので、できるだけ正確かつ均一に温度管理できる方法が好ましい。本発明では、限定されるものではないが、溶融塩中にペースト共押出後のケーブルを通して加熱焼成する、いわゆる溶融塩法(ソルトバス法)が好適に採用される。使用する溶融塩としては硝酸カリウムと硝酸ナトリウムの1/1混合物などが好ましい。
【0038】
本発明の高周波信号伝送用ケーブルにおける外側絶縁層の厚さは、ケーブルの規格、用途などによって異なるが、通常0.5〜5mm、好ましくは1〜3mmである。また内側絶縁層の厚さは同じくケーブルの規格、用途などによって異なるが、通常0.1〜1mm、好ましくは0.2〜0.5mmである。外側絶縁層と内側絶縁層との厚さの比は通常、外側/内側が1/9〜9/1、好ましくは3/7〜7/3である。
【0039】
かくして得られるプリント配線基板や高周波信号伝送用ケーブルなどの本発明の高周波信号伝送用製品は、低融点PTFEからなる外側絶縁層の働きにより末端加工や剥離時に基板や絶縁被覆層が繊維化を起こしにくく、現場での作業性が向上する。
【0040】
【実施例】
つぎに本発明を実施例および比較例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
【0041】
実施例1
(ペースト押出用予備成形体の製造)
乳化重合で得られた低融点PTFE粒子(最大吸熱ピーク温度337℃。ダイキン工業(株)製のポリフロンファインパウダーF201)100重量部と押出助剤(エクソン社製の石油系溶剤「アイソパーE」)21重量部とを混合して24時間熟成し、外側絶縁層用ペーストを調製した。つぎにこのペーストを円筒状金型(内径38mm、中芯の外径28mm)の空隙に充填し、プレス機で面圧1.96MPa(20kgf/cm2)にて加圧し、長さ50mmの外側絶縁層形成用予備成形体を10個作製した。
【0042】
別途、内側絶縁層形成用の予備成形体として、乳化重合で得られた高融点PTFE粒子(最大吸熱ピーク温度345℃。ダイキン工業(株)製のポリフロンファインパウダーF104)100重量部と押出助剤(アイソパーE)24重量部とを混合して24時間熟成し、内側絶縁層用ペーストを調製した。つぎにこのペーストを円筒状金型(内径27mm、中芯の外径16mm)の空隙に充填し、プレス機で面圧1.96MPa(20kgf/cm2)にて加圧し、長さ50mmの予備成形体を10個作製した。
【0043】
なお、PTFE粉末の最大吸熱ピーク温度は、結晶融解曲線を示差走査熱量計(セイコー電子(株)製のRDC220)により、昇温速度10℃/分の条件で描くことにより決定した。
【0044】
(ペースト共押出および焼成)
内側絶縁層用予備成形体を外側絶縁層用予備成形体に入れ、このものを10段重ねてつぎの電線被覆用のペースト共押出に使用した。
【0045】
二重の円筒状予備成形体をペースト押出機(ジェニングス社製。シリンダー径38mm、マンドレル径16mm、ダイオリフィス径1.32mm)に装填し、芯線(アメリカンワイヤーゲージサイズ24:直径0.127mmの銀メッキ銅線19本の撚り線、見掛け外径0.65mm)上に巻取り速度15m/分でペースト共押出して被覆し、150℃のオーブン(通過時間10秒)ついで250℃のオーブン(通過時間10秒)にて押出助剤を乾燥除去した。外側絶縁層(低融点PTFE)の厚さは0.130mmであり、内側絶縁層(高融点PTFE)の厚さは0.115mmであった。
【0046】
ついで340℃のソルトバス(硝酸カリウム/硝酸ナトリウム=1/1)中を20秒間通過させて加熱処理(焼成処理)し、外径1.15mmの絶縁被覆層を有するPTFE被覆ケーブルを作製した。
【0047】
得られた被覆ケーブルの表面は平滑でウネリは認められなかった。また、ペースト押出時のラム圧力は54MPaと低圧であった。
【0048】
この被覆ケーブル20mから芯線を抜き取り、2mごと(計11点)に前記の条件で示差走査熱量計により結晶吸熱カーブを調べたところ、低融点PTFEの337℃の最大吸熱ピークが消失し、代わりに327℃に新たな焼成後の吸熱ピークが発現した。高融点PTFEの吸熱ピーク温度に変化はなかった。
【0049】
また、原料PTFE粉末と得られた絶縁被覆層との結晶融解熱量変化から算出した結晶転化率は、0.60〜0.62の範囲に入っていた。
【0050】
これらの吸熱ピークおよび結晶転化率の変化から、外側絶縁層(低融点PTFE)のみが焼成され、内側絶縁層(高融点PTFE)は殆ど未焼成であることがわかる。
【0051】
さらに末端加工性を調べるため、ワイヤーストリッパーで被覆を剥がしたところ、繊維化せずに容易に絶縁層を切断でき、しかも綺麗な切断面であった。
【0052】
比較例1
実施例1において高融点PTFEを単独で使用して押出用予備成形体(外径38mm、内径16mm)を作製したほかは同様にしてペースト押出し、PTFE被覆ケーブルを作製した。ペースト押出時のラム圧力は72MPaであった。
【0053】
また、実施例1と同様に吸熱ピークを調べたところ原料の高融点PTFE粉末と同じ位置にピークを有していたが、結晶融解熱量が変化しており、それから算出した結晶転化率は0.20〜0.23であった。
【0054】
さらに末端加工性を調べるため、ワイヤーストリッパーで被覆を剥がしたところ、切断面で繊維化が生じた。
【0055】
【発明の効果】
本発明によれば、成形性に優れ、かつ焼成温度管理がしやすい2層構造の絶縁層を有する高周波信号伝送用製品を提供できる。この高周波信号伝送機器の絶縁層は、低い値の誘電率や誘電正接といった高周波信号伝送特性に優れており、しかも末端加工性が向上したものである。
【図面の簡単な説明】
【図1】本発明の高周波信号伝送用ケーブルの一実施形態の概略断面図である。
【符号の説明】
1 芯線
2 内側絶縁層
3 外側絶縁層
4 外装
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency signal transmission product, such as a high-frequency signal transmission cable and a printed wiring board, which have low high-frequency dielectric loss and excellent end processability, and a method for manufacturing the same.
[0002]
[Prior art]
Dielectric loss always occurs in a cable that transmits a high-frequency signal, such as a coaxial cable or a LAN cable. Similarly, dielectric loss is an important factor for printed wiring boards used in various transmission devices that transmit high-frequency signals.
[0003]
The dielectric loss is a function of dielectric constant (ε) and dielectric loss tangent (tan δ), and it is preferable that both are small. In order to reduce dielectric loss, high-frequency cables using PTFE having excellent electrical characteristics as an insulating coating layer material have been proposed (Japanese Patent Laid-Open Nos. 11-31422 and 11-283448, JP 2000-21250 A).
[0004]
PTFE has different melting points, electrical characteristics, molding processability, etc. depending on the molecular weight, presence or absence of modification, and the melting point, dielectric constant, dielectric loss tangent, and mechanical strength change by heat treatment (firing treatment). For example, a high molecular weight PTFE having a high melting point of 340 ± 7 ° C. is superior in electrical characteristics to a low melting point PTFE having a high melting point, and has a dielectric constant (ε) of 1.8 and a dielectric loss tangent (tan δ) when unfired. Is as low as 0.3 × 10 −4 (both measured at 12 GHz, the same applies hereinafter), but when incompletely fired (semi-fired), the melting point dropped to 327 ± 5 ° C. and the dielectric constant (ε) was 2.15. The dielectric loss tangent (tan δ) is as high as 0.7 × 10 −4 . When completely fired, the melting point is further lowered to 323 ± 5 ° C., the dielectric constant (ε) is increased to 2.10, and the dielectric loss tangent (tan δ) is increased to 2.0 × 10 −4 . Further, the mechanical strength is improved by firing.
[0005]
Therefore, from the viewpoint of dielectric loss, it is advantageous to use unfired or semi-fired PTFE having a high molecular weight and a high melting point.
[0006]
In view of this, the above publication proposes an insulating coating layer in which sintered PTFE, semi-fired PTFE, and unfired PTFE are combined to improve workability while maintaining electrical characteristics such as dielectric constant and dielectric loss tangent.
[0007]
Japanese Patent Application Laid-Open No. 11-31442 proposes a method of increasing the degree of firing on the outer surface side (grading the degree of firing of PTFE in the radial direction) as a method of firing the unfired PTFE insulating coating layer.
[0008]
In JP-A-11-283448, the insulating coating layer is basically unfired or semi-fired PTFE, and only the end portion to be processed (about 10 cm from the end) is made of completely fired PTFE (in the longitudinal direction of the core wire). Proposal for the grade of firing).
[0009]
Furthermore, in Japanese Patent Application Laid-Open No. 2000-21250, a porous layer of PTFE is used as an insulating coating layer, and the surface portion is further fired to increase the crystallization rate to 75 to 92% (the degree of firing in the radial direction). Slope).
[0010]
[Problems to be solved by the invention]
However, the end workability when processing the end of the cable is such that when the degree of firing in the radial direction is inclined, the end is peeled off with a nipper or the like, and when the end is peeled or cut, the unfired or semi-fired PTFE does not break cleanly and becomes a fiber. The thread is pulled.
[0011]
Therefore, it has been thought that the end processing cannot be performed neatly unless the completely calcined PTFE is used as in JP-A-11-283448.
[0012]
As described above, regarding PTFE for an insulating coating layer of a high-frequency cable, various studies have been made on the degree of firing and the degree of crystallization, but the melting point has not been studied. The present invention pays attention also to the melting point that has not been studied so far, considering that the low melting point PTFE is difficult to be fiberized, and further considering the degree of firing, not only the electrical characteristics but also the workability, particularly the end workability. Has also developed an excellent PTFE insulation coating material.
[0013]
An object of the present invention is to provide a high-frequency signal transmission product that can smoothly perform terminal processing of a high-frequency signal transmission product having PTFE as an insulating coating layer and that has a low dielectric loss, and a manufacturing method thereof.
[0014]
[Means for Solving the Problems]
That is, the present invention relates to a low melting point PTFE insulating layer having a maximum peak temperature of 338 ° C. or less on a crystal melting curve measured with a differential scanning calorimeter and a maximum endothermic curve on a crystal melting curve measured with a differential scanning calorimeter. The present invention relates to a high-frequency signal transmission product having a two-layer insulating layer with a high melting point PTFE insulating layer having a peak temperature of 342 ° C. or higher, such as a high-frequency signal transmitting cable or a printed wiring board.
[0015]
The low melting point PTFE insulating layer is preferably a fired layer, and the high melting point PTFE insulating layer is preferably a semi-fired or unfired layer.
[0016]
Furthermore, it is preferable that both or one of the low melting point PTFE and the high melting point PTFE is modified PTFE.
[0017]
The high-frequency signal transmission cable is a high-frequency signal transmission cable having a metal core and a fluororesin insulation layer, and the fluororesin insulation layer comprises an outer insulation layer of the low melting point PTFE and an inner insulation layer of the high melting point PTFE. A two-layer structure is particularly preferable.
[0018]
In such a high-frequency signal transmission cable, the low-melting point PTFE and the high-melting point PTFE are co-paste extruded onto the core wire so that the low-melting point PTFE is on the outside, and then substantially only the outer low-melting point PTFE layer is completely fired. Can be manufactured.
[0019]
Moreover, it becomes easy to control firing by performing firing by passing the co-paste extrudate through a molten salt bath.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the low melting point PTFE powder used in the present invention, the maximum peak temperature of the endothermic curve appearing on the crystal melting curve by the differential scanning calorimeter (hereinafter referred to as “maximum endothermic peak temperature”) is 338 ° C. or less , preferably 332 to 338 ° C. Of powder. One high melting point PTFE powder is a powder having a maximum endothermic peak temperature of 342 ° C. or higher, preferably 342 to 348 ° C.
[0021]
These PTFE powders may be homopolymers of TFE or modified PTFE modified with other monomers. Examples of the modifying monomer include perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether), and hexafluoropropylene. It is denatured by. Hereinafter, unless otherwise specified, modified PTFE is also referred to as PTFE.
[0022]
This low melting point PTFE is a powder produced by polymerization by an emulsion polymerization method, has the above-mentioned maximum endothermic peak temperature (crystal melting point), dielectric constant (ε) is 2.08 to 2.2, dielectric loss tangent ( tan δ) is 1.9 × 10 −4 to 4.0 × 10 −4 . Examples of commercially available products include polyflon fine powders F201, F203, F205, F301, F302 manufactured by Daikin Industries, Ltd .; CD090, CD076 manufactured by Asahi Glass Industry Co., Ltd .; TF6C, TF62 manufactured by DuPont, TF40 etc. are mention | raise | lifted.
[0023]
One high melting point PTFE powder is also a powder produced by polymerization by an emulsion polymerization method, having the above-mentioned maximum endothermic peak temperature (crystal melting point), and a dielectric constant (ε) of 2.0 to 2.1, The dielectric loss tangent (tan δ) is generally as low as 1.6 × 10 −4 to 2.2 × 10 −4 . Examples of commercially available products include Polyflon Fine Powder F104 manufactured by Daikin Industries, Ltd .; CD1, CD141, CD123 manufactured by Asahi Glass Industry Co., Ltd .; TF6, TF65 manufactured by DuPont, and the like.
[0024]
The average particle size of the powder obtained by secondary aggregation of both PTFE polymer particles is usually preferably 250 to 2000 μm. In particular, a granulated powder obtained by granulation using a solvent is preferable from the viewpoint of improving the fluidity at the time of filling a mold at the time of preforming.
[0025]
In order to improve dielectric properties, the two-layered insulating layer of the present invention may further contain a filler such as boron nitride in one or both of the insulating layers. In addition, carbon (carbon black, carbon fiber, etc.) may be blended in the low melting point PTFE insulating layer to change and adjust its dielectric characteristics.
[0026]
Examples of the two-layered insulating layer of the present invention include various parts of high-frequency signal transmission products or insulation coating layers. Examples of various parts for high-frequency signal transmission equipment include mobile phones, various computers, and communication equipment. Typical examples include printed wiring boards, casings, antenna connectors, and the like, but are not limited thereto. A flat molded product such as a printed wiring board can be produced by laminating the two types of PTFE powder of the present invention sequentially by a conventionally known molding method such as compression molding. The total thickness of the insulating layer and the ratio of the thickness of the low-melting point PTFE insulating layer to the high-melting point PTFE insulating layer vary depending on the intended frequency, application location, type of product or component, and the like. Usually, in the case of a flat plate shape, the total thickness is 0.1 to 3 mm, and the ratio of the thickness of the low melting point PTFE insulating layer to the high melting point PTFE insulating layer is about 1/10 to 4/1.
[0027]
Typical insulation layers for high-frequency signal transmission equipment include insulation coating layers for high-frequency signal transmission cables such as coaxial cables, LAN cables, and flat cables, and insulation layers such as printed wiring boards. It is not limited.
[0028]
As described above, the present invention further relates to a high-frequency signal transmission cable, particularly a coaxial cable, having the specific two-layered insulating layer of the present invention.
[0029]
The structure of the coaxial cable for high-frequency signal transmission according to the present invention is such that a high melting point PTFE insulating layer 2 is first provided around a metal core wire 1 and then a low melting point PTFE insulation as shown in FIG. The layer 3 is laminated, and a metal exterior 4 is provided as an outer skin on the outer side.
[0030]
Hereinafter, although the method of forming the insulation coating layer of a coaxial cable by the paste coextrusion method is demonstrated, it is not restricted to this manufacturing method.
[0031]
First, the low melting point PTFE powder is mixed with a known paste extrusion aid and compression preformed to form a cylindrical outer insulating layer preform. Separately, the high melting point PTFE powder is mixed with a known paste extrusion aid. Then, compression molding is performed to obtain a cylindrical preform for the inner insulating layer. The size is set so that the inner diameter of the outer insulating layer preform is slightly larger than the outer periphery of the inner insulating layer preform. Next, the preform for the inner insulating layer is put into the preform for the outer insulating layer, loaded in this form into a paste extruder, coextruded on the core wire, heated (150 to 250 ° C.), dried, and then fired. Is performed under the condition that only the low melting point PTFE of the outer insulating layer is completely fired. Thereafter, the outer skin is coated according to a conventional method.
[0032]
In the present invention, the unfired, semi-fired and (complete) fired states refer to the following states, respectively. The unfired state is a state where the maximum peak in the endothermic curve is at the same position as before firing and the crystal conversion is less than 20%, and the semi-fired state is the position where the maximum peak in the endothermic curve is the same as before firing. And the crystal conversion rate is 20% or more and less than 90%, and the complete firing state is a state in which the maximum peak in the endothermic curve is shifted to the low temperature side from before firing and the crystal conversion rate is 90% or more. It is.
[0033]
In the production method of the present invention, excellent processing characteristics are exhibited also in the paste coextrusion step and the firing step.
[0034]
That is, conventionally, an unfired high melting point PTFE powder was paste-extruded alone to form an insulating coating layer. However, since the unfired high melting point PTFE powder easily becomes a fiber, it is necessary to increase the extrusion pressure. In addition, the surface of the coating layer may sag. In the present invention, the low melting point PTFE powder paste that is not fiberized is simultaneously extruded on the outside, so that the extrusion pressure can be reduced and the fiberization at the time of extrusion molding can be suppressed, and the surface of the obtained insulating coating layer can be made smooth. Can do.
[0035]
In order to maintain the excellent electrical characteristics of the inner insulating layer made of high-melting point PTFE, the baking process needs to stop the high-melting point PTFE of the inner insulating layer in the unfired or semi-fired stage as much as possible. In the case of the melting point PTFE single extrusion method, characteristics related to high-frequency signal transmission such as dielectric constant and dielectric loss tangent are greatly affected by the firing temperature, and thus the firing temperature must be carefully controlled. However, in the two-layered insulating layer of the present invention, the low-melting point PTFE insulating layer that is originally inferior in high-frequency signal transmission characteristics is provided in the outer insulating layer, so the influence of the firing temperature on the high-melting point PTFE layer is mitigated. Even if the firing temperature fluctuates somewhat, relatively high frequency signal transmission characteristics can be obtained, so that the firing temperature can be easily managed and the yield can be improved.
[0036]
In the present invention, the crystallization rate is 10 to 90%, preferably 20 to 80% in total on the inside and outside.
[0037]
As described above, the heating conditions for firing are an important factor and affect the characteristics of the product. Therefore, a method capable of controlling the temperature as accurately and uniformly as possible is preferable. In the present invention, although not limited, a so-called molten salt method (a salt bath method) in which the molten salt is heated and fired through a cable after paste coextrusion is suitably employed. The molten salt used is preferably a 1/1 mixture of potassium nitrate and sodium nitrate.
[0038]
The thickness of the outer insulating layer in the high-frequency signal transmission cable of the present invention is usually 0.5 to 5 mm, preferably 1 to 3 mm, although it varies depending on the standard and application of the cable. Further, the thickness of the inner insulating layer varies depending on the cable standard, application, etc., but is usually 0.1 to 1 mm, preferably 0.2 to 0.5 mm. The thickness ratio between the outer insulating layer and the inner insulating layer is usually 1/9 to 9/1, preferably 3/7 to 7/3, on the outside / inside.
[0039]
The product for high-frequency signal transmission of the present invention such as a printed wiring board and a high-frequency signal transmission cable thus obtained causes the substrate and the insulating coating layer to be fiberized at the time of terminal processing or peeling due to the action of the outer insulating layer made of low melting point PTFE. It is difficult to improve workability on site.
[0040]
【Example】
Next, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to such examples.
[0041]
Example 1
(Manufacture of preforms for paste extrusion)
Low melting point PTFE particles obtained by emulsion polymerization (maximum endothermic peak temperature of 337 ° C., polyflon fine powder F201 manufactured by Daikin Industries, Ltd.) and an extrusion aid (petroleum solvent “Isopar E” manufactured by Exxon) ) 21 parts by weight was mixed and aged for 24 hours to prepare an outer insulating layer paste. Next, this paste is filled into a hollow space of a cylindrical mold (inner diameter: 38 mm, inner core: outer diameter: 28 mm), and pressed with a press machine at a surface pressure of 1.96 MPa (20 kgf / cm 2 ), and the outer side has a length of 50 mm. Ten preforms for forming the insulating layer were produced.
[0042]
Separately, as a preform for forming the inner insulating layer, 100 parts by weight of high melting point PTFE particles obtained by emulsion polymerization (maximum endothermic peak temperature: 345 ° C., Polyflon Fine Powder F104 manufactured by Daikin Industries, Ltd.) and extrusion assistant 24 parts by weight of the agent (Isopar E) was mixed and aged for 24 hours to prepare an inner insulating layer paste. Next, this paste is filled in a hollow space of a cylindrical mold (inner diameter 27 mm, inner core outer diameter 16 mm), pressurized with a press machine at a surface pressure of 1.96 MPa (20 kgf / cm 2 ), and a 50 mm long spare. Ten compacts were produced.
[0043]
The maximum endothermic peak temperature of the PTFE powder was determined by drawing a crystal melting curve with a differential scanning calorimeter (RDC220 manufactured by Seiko Denshi Co., Ltd.) at a temperature rising rate of 10 ° C./min.
[0044]
(Paste coextrusion and firing)
The preform for the inner insulating layer was put into the preform for the outer insulating layer, and this was stacked 10 times and used for the next paste coextrusion for covering the electric wire.
[0045]
A double cylindrical preform is loaded into a paste extruder (manufactured by Jennings, cylinder diameter 38 mm, mandrel diameter 16 mm, die orifice diameter 1.32 mm), and core wire (American wire gauge size 24: silver with a diameter of 0.127 mm) Coated by extruding the paste on 19 stranded copper wires with an apparent outer diameter of 0.65 mm at a winding speed of 15 m / min, an oven at 150 ° C. (passing time 10 seconds) and an oven at 250 ° C. (passing time) 10 seconds), the extrusion aid was removed by drying. The thickness of the outer insulating layer (low melting point PTFE) was 0.130 mm, and the thickness of the inner insulating layer (high melting point PTFE) was 0.115 mm.
[0046]
Subsequently, it was passed through a salt bath (potassium nitrate / sodium nitrate = 1/1) at 340 ° C. for 20 seconds and subjected to heat treatment (firing treatment) to produce a PTFE-coated cable having an insulating coating layer having an outer diameter of 1.15 mm.
[0047]
The surface of the obtained coated cable was smooth and no undulation was observed. Moreover, the ram pressure at the time of paste extrusion was as low as 54 MPa.
[0048]
The core wire was pulled out from this covered cable 20m, and when the crystal endothermic curve was examined with a differential scanning calorimeter every 2 m (11 points in total) under the above conditions, the maximum endothermic peak at 337 ° C. of the low melting point PTFE disappeared. A new post-baking endothermic peak appeared at 327 ° C. There was no change in the endothermic peak temperature of the high melting point PTFE.
[0049]
Moreover, the crystal conversion rate calculated from the change in heat of crystal fusion between the raw material PTFE powder and the obtained insulating coating layer was in the range of 0.60 to 0.62.
[0050]
From these endothermic peaks and changes in the crystal conversion rate, it can be seen that only the outer insulating layer (low melting point PTFE) is fired, and the inner insulating layer (high melting point PTFE) is almost unfired.
[0051]
Further, in order to examine the end processability, the coating was peeled off with a wire stripper. As a result, the insulating layer could be easily cut without forming fibers, and the cut surface was clean.
[0052]
Comparative Example 1
Except that a high-melting point PTFE was used alone in Example 1 to prepare an extrusion preform (outer diameter 38 mm, inner diameter 16 mm), paste extrusion was performed in the same manner to prepare a PTFE-coated cable. The ram pressure at the time of paste extrusion was 72 MPa.
[0053]
Further, when the endothermic peak was examined in the same manner as in Example 1, it had a peak at the same position as that of the high melting point PTFE powder of the raw material, but the amount of heat of crystal fusion was changed, and the crystal conversion calculated from that was 0. It was 20 to 0.23.
[0054]
Further, in order to examine the end processability, when the coating was peeled off with a wire stripper, fiberization occurred on the cut surface.
[0055]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the product for high frequency signal transmission which has the insulating layer of the 2 layer structure which is excellent in a moldability and is easy to carry out baking temperature control can be provided. The insulating layer of this high-frequency signal transmission device is excellent in high-frequency signal transmission characteristics such as a low dielectric constant and dielectric loss tangent, and has improved end processability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an embodiment of a high-frequency signal transmission cable of the present invention.
[Explanation of symbols]
1 Core wire 2 Inner insulating layer 3 Outer insulating layer 4 Exterior

Claims (10)

示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が338℃以下の低融点ポリテトラフルオロエチレン絶縁層と示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342℃以上の高融点ポリテトラフルオロエチレン絶縁層との2層構造の絶縁層を有する高周波信号伝送用製品。  Maximum peak temperature of the endothermic curve on the crystal melting curve measured with a low melting point polytetrafluoroethylene insulating layer with a differential melting calorimeter and a low melting point polytetrafluoroethylene insulating layer measured with a differential scanning calorimeter A high-frequency signal transmission product having an insulating layer having a two-layer structure with a high melting point polytetrafluoroethylene insulating layer having a temperature of 342 ° C. or higher. 前記低融点ポリテトラフルオロエチレンの示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が332〜338℃であり、前記高融点ポリテトラフルオロエチレンの示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342〜348℃である請求項1記載の高周波信号伝送用製品。  The maximum peak temperature of the endothermic curve on the crystal melting curve measured with the differential scanning calorimeter of the low melting point polytetrafluoroethylene is 332 to 338 ° C., and the crystal measured with the differential scanning calorimeter of the high melting point polytetrafluoroethylene The product for high-frequency signal transmission according to claim 1, wherein the maximum peak temperature of the endothermic curve on the melting curve is 342 to 348 ° C. 前記低融点ポリテトラフルオロエチレン絶縁層が焼成層であり、前記高融点ポリテトラフルオロエチレン絶縁層が半焼成または未焼成層である請求項1または2記載の高周波信号伝送用製品。  The product for high-frequency signal transmission according to claim 1 or 2, wherein the low melting point polytetrafluoroethylene insulating layer is a fired layer, and the high melting point polytetrafluoroethylene insulating layer is a semi-fired or unfired layer. 前記低融点ポリテトラフルオロエチレンおよび高融点ポリテトラフルオロエチレンの両方または一方が変性ポリテトラフルオロエチレンである請求項1〜3のいずれかに記載の高周波信号伝送用製品。  The product for high-frequency signal transmission according to any one of claims 1 to 3, wherein one or both of the low melting point polytetrafluoroethylene and the high melting point polytetrafluoroethylene are modified polytetrafluoroethylene. 金属芯線とフッ素樹脂絶縁層とを有する高周波信号伝送用ケーブルであって、フッ素樹脂絶縁層が、示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が338℃以下の低融点ポリテトラフルオロエチレンの外側絶縁層と示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342℃以上の高融点ポリテトラフルオロエチレンの内側絶縁層との2層構造であることを特徴とする高周波信号伝送用ケーブル。  A high-frequency signal transmission cable having a metal core wire and a fluororesin insulating layer, wherein the fluororesin insulating layer has a low melting point with a maximum peak temperature of an endothermic curve on a crystal melting curve measured by a differential scanning calorimeter of 338 ° C. or lower. It has a two-layer structure consisting of a polytetrafluoroethylene outer insulating layer and a high melting point polytetrafluoroethylene inner insulating layer having a maximum peak temperature of the endothermic curve on the crystal melting curve measured with a differential scanning calorimeter of 342 ° C or higher. High-frequency signal transmission cable characterized by 前記外側絶縁層を形成する低融点ポリテトラフルオロエチレンの示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が332〜338℃であり、前記内側絶縁層を形成する高融点ポリテトラフルオロエチレンの示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342〜348℃である請求項5記載の高周波信号伝送用ケーブル。  The maximum peak temperature of the endothermic curve on the crystal melting curve measured with a differential scanning calorimeter of the low melting point polytetrafluoroethylene forming the outer insulating layer is 332 to 338 ° C., and the high melting point poly for forming the inner insulating layer The high-frequency signal transmission cable according to claim 5, wherein the maximum peak temperature of the endothermic curve on the crystal melting curve measured with a differential scanning calorimeter of tetrafluoroethylene is 342 to 348 ° C. 前記低融点ポリテトラフルオロエチレン外側絶縁層が焼成層であり、前記高融点ポリテトラフルオロエチレン内側絶縁層が半焼成または未焼成層である請求項5または6記載の高周波信号伝送用ケーブル。  The high-frequency signal transmission cable according to claim 5 or 6, wherein the low-melting polytetrafluoroethylene outer insulating layer is a fired layer, and the high-melting polytetrafluoroethylene inner insulating layer is a semi-fired or unfired layer. 前記低融点ポリテトラフルオロエチレンおよび高融点ポリテトラフルオロエチレンの両方または一方が変性ポリテトラフルオロエチレンである請求項5〜7のいずれかに記載の高周波信号伝送用ケーブル。  The cable for high-frequency signal transmission according to any one of claims 5 to 7, wherein one or both of the low melting point polytetrafluoroethylene and the high melting point polytetrafluoroethylene are modified polytetrafluoroethylene. 示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が338℃以下の低融点ポリテトラフルオロエチレンと示差走査熱量計で測定した結晶融解曲線上の吸熱カーブの最大ピーク温度が342℃以上の高融点ポリテトラフルオロエチレンとを、高融点ポリテトラフルオロエチレンが芯線上に、低融点ポリテトラフルオロエチレンが、該高融点ポリテトラフルオロエチレンの外側になるように共ペースト押出し、ついで実質的に外側の低融点ポリテトラフルオロエチレン層のみを完全に焼成する請求項5〜8のいずれかに記載の高周波信号伝送用ケーブルの製法。The maximum peak temperature of the endothermic curve on the crystal melting curve measured with the differential scanning calorimeter is 342 ° C. or lower, and the maximum peak temperature of the endothermic curve on the crystal melting curve measured with the differential scanning calorimeter is 342. Co-paste extrusion of high melting point polytetrafluoroethylene at ℃ or higher so that the high melting point polytetrafluoroethylene is on the core wire and the low melting point polytetrafluoroethylene is outside the high melting point polytetrafluoroethylene. The method for producing a high-frequency signal transmission cable according to any one of claims 5 to 8, wherein only the outer low melting point polytetrafluoroethylene layer is completely fired. 前記焼成を溶融塩浴中に共ペースト押出物を通すことにより行なう請求項9記載の製法。  The process according to claim 9, wherein the calcination is carried out by passing a co-paste extrudate through a molten salt bath.
JP2000179553A 2000-06-15 2000-06-15 High-frequency signal transmission product and its manufacturing method Expired - Fee Related JP4626014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179553A JP4626014B2 (en) 2000-06-15 2000-06-15 High-frequency signal transmission product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179553A JP4626014B2 (en) 2000-06-15 2000-06-15 High-frequency signal transmission product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001357730A JP2001357730A (en) 2001-12-26
JP4626014B2 true JP4626014B2 (en) 2011-02-02

Family

ID=18680811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179553A Expired - Fee Related JP4626014B2 (en) 2000-06-15 2000-06-15 High-frequency signal transmission product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4626014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385964A (en) * 2011-08-10 2012-03-21 东莞市蓝姆材料科技有限公司 PTFE (Polytetrafluoroethylene) thin tape for cable and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002140936A (en) * 2000-11-01 2002-05-17 Daikin Ind Ltd Insulated wire having fluorine resin fiber insulation layer
JP4055125B2 (en) * 2002-12-24 2008-03-05 日本光電工業株式会社 Coaxial cable and transmission transformer using the same
US7732531B2 (en) 2003-08-25 2010-06-08 Daikin Industries, Ltd. Molded object process for producing the same product for high-frequency signal transmission and high-frequency transmission cable
JP2013101776A (en) * 2011-11-07 2013-05-23 Nitto Denko Corp Insulating layer covered conductor
CN115136409A (en) 2020-02-20 2022-09-30 大金工业株式会社 Dielectric waveguide circuit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855312U (en) * 1981-10-08 1983-04-14 株式会社 潤工社 porous coated insulated wire
JPS63271808A (en) * 1986-07-25 1988-11-09 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド High cut-through resistant insulated conductor
JPH0324219U (en) * 1989-07-20 1991-03-13
JPH0368316U (en) * 1989-11-02 1991-07-04
JPH04501337A (en) * 1988-08-12 1992-03-05 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Large gauge insulated conductors and coaxial cables and methods of manufacturing the same
JPH0587749U (en) * 1992-04-27 1993-11-26 日立電線株式会社 High frequency coaxial cable
JPH06309937A (en) * 1993-04-22 1994-11-04 Fujikura Ltd Fluorinated resin insulated electric wire
JPH09320362A (en) * 1996-05-27 1997-12-12 Hitachi Cable Ltd Low loss coaxial cable
JPH10180787A (en) * 1996-05-22 1998-07-07 E I Du Pont De Nemours & Co Foamed fluoropolymer composite
JPH11172065A (en) * 1997-12-11 1999-06-29 Hitachi Cable Ltd Molded fluororesin article having high cut-through resistance, insulated wire, and hose
JPH11185533A (en) * 1997-12-24 1999-07-09 Hitachi Cable Ltd Fluororesin covered wire and cable
JP2000011764A (en) * 1998-06-22 2000-01-14 Totoku Electric Co Ltd Small-diameter coaxial cable and its manufacture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855312U (en) * 1981-10-08 1983-04-14 株式会社 潤工社 porous coated insulated wire
JPS63271808A (en) * 1986-07-25 1988-11-09 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド High cut-through resistant insulated conductor
JPH04501337A (en) * 1988-08-12 1992-03-05 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Large gauge insulated conductors and coaxial cables and methods of manufacturing the same
JPH0324219U (en) * 1989-07-20 1991-03-13
JPH0368316U (en) * 1989-11-02 1991-07-04
JPH0587749U (en) * 1992-04-27 1993-11-26 日立電線株式会社 High frequency coaxial cable
JPH06309937A (en) * 1993-04-22 1994-11-04 Fujikura Ltd Fluorinated resin insulated electric wire
JPH10180787A (en) * 1996-05-22 1998-07-07 E I Du Pont De Nemours & Co Foamed fluoropolymer composite
JPH09320362A (en) * 1996-05-27 1997-12-12 Hitachi Cable Ltd Low loss coaxial cable
JPH11172065A (en) * 1997-12-11 1999-06-29 Hitachi Cable Ltd Molded fluororesin article having high cut-through resistance, insulated wire, and hose
JPH11185533A (en) * 1997-12-24 1999-07-09 Hitachi Cable Ltd Fluororesin covered wire and cable
JP2000011764A (en) * 1998-06-22 2000-01-14 Totoku Electric Co Ltd Small-diameter coaxial cable and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385964A (en) * 2011-08-10 2012-03-21 东莞市蓝姆材料科技有限公司 PTFE (Polytetrafluoroethylene) thin tape for cable and preparation method thereof
CN102385964B (en) * 2011-08-10 2013-09-11 东莞市蓝姆材料科技有限公司 PTFE (Polytetrafluoroethylene) thin tape for cable and preparation method thereof

Also Published As

Publication number Publication date
JP2001357730A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP4617538B2 (en) Polytetrafluoroethylene mixed powder for insulation of high-frequency signal transmission products and high-frequency signal transmission products using the same
CN107408751B (en) Dielectric waveguide circuit
KR100686678B1 (en) Foam coaxial cable and method of manufacturing the same
US20120067616A1 (en) Paste extruded insulator with air channels
US20060121288A1 (en) Fluoropolymer-coated conductor, a coaxial cable using it, and methods of producing them
JP5255529B2 (en) Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable
JP4774675B2 (en) Modified polytetrafluoroethylene powder and method for producing tetrafluoroethylene polymer
CN112071517B (en) Preparation method and application of low-density polytetrafluoroethylene insulation and product
CN103337281B (en) A kind of Fluoroplastic coaxial cable with high transmission rate
CN107924738A (en) Cable core and transmission cable
JP4626014B2 (en) High-frequency signal transmission product and its manufacturing method
KR101318942B1 (en) Cables comprising porous fluoroplastics and preparation method of the same
EP0515387B1 (en) A process for manufacture of low density polytetrofluoroethylene insulated cable
JP5167910B2 (en) Polytetrafluoroethylene molded body, mixed powder and method for producing molded body
JP2008226618A (en) Covered wire by porous ptfe resin insulating layer, and coaxial cable using it
JP2010013520A (en) Molded item of polytetrafluoroethylene, mixed powder, and manufacturing method of molded item
WO1984000717A1 (en) Manufacture of low density sintered polytetrafluoroethylene insulated cable
CN207947084U (en) Foam PTFE insulated cable
CA1277474C (en) Manufacture of low density, sintered polytetrafluoroethylene articles
JP5131202B2 (en) Fluororesin composition, fluororesin molded article and method for producing the same
JP2004172040A (en) Insulated electric wire and coaxial cable using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees