JP4111764B2 - Thin coaxial cable and manufacturing method thereof - Google Patents

Thin coaxial cable and manufacturing method thereof Download PDF

Info

Publication number
JP4111764B2
JP4111764B2 JP2002206752A JP2002206752A JP4111764B2 JP 4111764 B2 JP4111764 B2 JP 4111764B2 JP 2002206752 A JP2002206752 A JP 2002206752A JP 2002206752 A JP2002206752 A JP 2002206752A JP 4111764 B2 JP4111764 B2 JP 4111764B2
Authority
JP
Japan
Prior art keywords
coaxial cable
layer
small
outer periphery
shield conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002206752A
Other languages
Japanese (ja)
Other versions
JP2004055144A (en
Inventor
晴士 田中
和憲 渡辺
繁宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube-Nitto Kasei Co Ltd
Original Assignee
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co Ltd filed Critical Ube-Nitto Kasei Co Ltd
Priority to JP2002206752A priority Critical patent/JP4111764B2/en
Publication of JP2004055144A publication Critical patent/JP2004055144A/en
Application granted granted Critical
Publication of JP4111764B2 publication Critical patent/JP4111764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、良好な電気特性、高周波特性を有する細径同軸ケーブルおよびその製造方法に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
情報量の増大化や高速伝送化の流れを受けて、携帯情報端末のアンテナ配線や、LCDとCPUを結ぶ配線等に、最近同軸ケーブルが使われつつある。
【0003】
また、情報端末やノートパソコンの小型化、薄型化により、同軸ケーブルにも細径化が要求されている。一般に良好な高周波特性(伝送損失が小さく、遅延時間が小さい)を持つ同軸ケーブルを得るためには、中心導体と外部シールド層の間に形成される電気絶縁性の被覆層の誘電率をできるだけ小さくすることが重要である。
【0004】
そのために、絶縁被覆層には、ふっ素樹脂やポリオレフィン樹脂などの低誘電率樹脂が用いられることが多く、また見掛けの誘電率を下げるために発泡化する場合も多い。
【0005】
一方、同軸ケーブルを細径化するためには、絶縁被覆層の外周に形成される外部シールド層を編組金属線から金属メッキ層に変更にすることが有効である。
【0006】
ところが、絶縁被覆層にフッ素樹脂やポリオレフィン樹脂などの低誘電率樹脂を用いた場合には、無電解メッキなどでの金属メッキ層の形成が難しくなるという問題点を有していた。
【0007】
また、メッキ処理をするためには、中心導体の周囲に、メッキ層の支持部が必要であり、この支持部は、中心導体の周囲を継ぎ目無く円環状などに囲む部分が必要である。
【0008】
このような支持部は、所定の厚みが必要となり、支持部を形成すると、外径がアップする要因の一つになる。一方、見掛けの誘電率を下げるために、絶縁被覆層を発泡化させた場合には、メッキ処理液が発泡部分の空隙に入り込み見掛けの誘電率を上げてしまったり、空隙に入り込んだメッキ処理液が、外部導体を腐食させて同軸ケーブルの電気特性を阻害するという問題があった。当然のことながら、このようなメッキ処理の場合には、表面処理薬剤、メッキ薬剤、廃液の処理の問題が付随している。
【0009】
また、発泡押出加工技術は、押出安定性の確保が難しく、特に、細径品を押し出す場合、微妙に絶縁被覆層の外径が変動してしまうので、これも電気特性阻害要因の一つとなっていた。
【0010】
さらに、独立気泡発泡層を形成する場合には、気泡が独立しているため、ハンダ付け時などの熱の影響で、気泡が膨張することがある。他方、連続気泡発泡では、圧縮強度が弱いと言った問題を有していた。
【0011】
本発明は、このような従来の問題点に鑑みてなされたものであって、良好でかつ安定した高周波特性を有する細径同軸ケーブルを得ることを目的とする。
【0012】
また、本発明は、メッキではなく、金属導体にてシールド層を形成した場合でも、充分に細径化できる同軸ケーブルおよびその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は、中心導体と、前記中心導体の外周を覆う電気絶縁性の被覆層と、前記被覆層の外周に設けられた外部シールド導体層とを備えた細径同軸ケーブルにおいて、前記被覆層は、中心から外方に延びる1ヶ以上の柱状部を有し、前記外部シールド導体層を前記柱状部の外周に接するようにして設け、前記外部シールド導体層の内部に、長手方向に連続した1つ以上の空隙部を設けた。
【0014】
このように構成した細径同軸ケーブルによれば、外部シールド導体層の内部に、長手方向に連続した1つ以上の空隙部を設けているので、中心導体と外部シールド導体層の間の誘電率を小さくすることができる。
【0015】
前記柱状部は、横断面内において等角度間隔で放射状に伸びる複数から構成され、前記細径同軸ケーブルの長手軸方向に沿って、前記間隔を維持しながら延設することができる。
【0016】
前記柱状部は、長手方向に沿って螺旋状に形成することができる。
前記空隙部は、その横断面において、前記中心導体と外部シールド導体層を除いた部分の面積に対し、面積比で10%以上を占めるようにすることができる。
【0017】
前記空隙部は、前記中心導体を中心として、複数が周方向に均等配置することができる。
【0018】
前記外部シールド導体層は、中空状の圧縮撚り線により形成することができる。
【0019】
前記外部シールド導体層は、銅などの電気伝導性に優れた金属テープないしは金属箔、或いはこれらの金属テープないしは金属箔をプラスチックフィルムとラミネートした金属ラミネートフィルムを、前記柱状部の外周に巻き付けて形成することができる。
【0020】
前記外部シールド導体層は、銅などの電気伝導性に優れた金属パイプで構成し、前記中心導体の外周に、前記柱状部を備えた被覆層を形成した半製品を、前記金属パイプ内に挿入しながらダイスにて、前記金属パイプを引き抜き延伸して形成することができる。
【0021】
前記被覆層は、FEP、PFA等のふっ素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を押し出し成形して形成することができる。
【0022】
本発明の細径同軸ケーブルは、最外径が1mm以下とすることができる。
【0023】
前記外部シールド導体層の外周に電気絶縁性の保護被覆層を設けることができる。
【0024】
また、本発明は、細径同軸ケーブルの製造方法において、中心導体の外周に、前記中心導体を覆う環状部と、この環状部の外方に突出する柱状部とを備えた被覆部を押し出し成形し、これを連続的に供給して、前記柱状部の外周に中空状の圧縮撚り線被覆、金属箔,ラミネートフィルムなどを巻付け、或いは、銅パイプの延伸被覆の何れかの方法により外部シールド導体層を形成し、しかる後、前記外部シールド導体層の外周に外部被覆層を必要に応じて形成するようにした。
【0025】
【発明の実施の形態】
以下に、本発明の好適な実施形態について、実施例に基づいて詳細に説明する。
図1および図2は、本発明に係る細径同軸ケーブル第1実施例を示している。同図に示した細径同軸ケーブル10は、中心導体12と、被覆層14と、外部シールド導体層16とを備えている。
【0026】
中心導体12は、例えば、円形断面の銅線から構成されている。被覆層14は、電気絶縁性のものであって、本実施例の場合には、中心導体12の外周を覆う環状部18と、環状部18の外周に突設された柱状部20とを有している。
【0027】
被覆層14は、例えば、FEP、PFA等の弗素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、中心導体12の外周に押し出し成形して、環状部18と柱状部20とを一体に形成することができる。
【0028】
本実施例の場合、被覆層12は、中心から外方に延びる4ヶの柱状部20を有していて、その横断面形状が、略十字状になっている。各柱状部20は、横断面内において等角度間隔(90°)で放射状に伸びており、細径同軸ケーブル10の長手軸方向に沿って、この間隔を維持しながら、直線状に延設されている。
【0029】
外部シールド導体層16は、被覆層14の柱状部20の外周に接するようにして設けられていて、外部シールド導体層16の内部には、柱状部20で区画され、細径同軸ケーブル10の長手方向に連続した4個の空隙部22が設けられてる。
【0030】
この場合、空隙部22は、中心導体12を中心として、4個が周方向に均等配置されており、横断面において、中心導体12と外部シールド導体層16を除いた部分の面積に対し、面積比で10%以上を占めるようにすることが望ましい。
【0031】
外部シールド導体層16は、本実施例の場合、中空状の圧縮撚り線により形成されている。このような圧縮撚り線は、複数本の素線24を同一円周上に配置し、各素線24を一方向に撚り掛けながら圧縮ダイスを通過させることにより、中空状に形成されて、その形状が崩れることなく維持される。なお、本実施例の細径同軸ケーブル10は、最外径が1mm以下とすることができる。
【0032】
以上のように構成した細径同軸ケーブル10によれば、外部シールド導体層16の内部に、長手方向に連続した4個の空隙部22を設けているので、中心導体12と外部シールド導体層16の間の誘電率を小さくすることができる。
【0033】
図3は、本発明に係る細径同軸ケーブルの第2実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
【0034】
同図に示した実施例は、第1実施例の変形例であって、第1実施例の中空撚り線で構成した外部シールド導体層16の外周に、電気絶縁性の保護被覆層26を設けている。
【0035】
この保護被覆層26は、被覆層14と同様に、例えば、FEP、PFA等の弗素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、外部シールド導体層16の外周に押し出し成形して、形成することができる。
【0036】
このように構成した細径同軸ケーブル10aでも第1実施例と同等の作用効果が得られる。
【0037】
図4は、本発明に係る細径同軸ケーブルの第3実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
【0038】
同図に示した実施例では、上記第1実施例と同じ構成の中心導体12および被覆層14を備えているが、外部シールド導体層16bに特徴がある。
【0039】
すなわち、本実施例の場合には、外部シールド導体層16bは、銅などの電気伝導性に優れた金属テープないしは金属箔、或いはこれらの金属テープないしは金属箔をプラスチックフィルムとラミネートした金属ラミネートフィルムから構成されていて、これらから選択された部材を、柱状部14bの外周に巻き付けて形成している。
【0040】
この場合、テープなどは、ケーブル10bの長手軸方向で隙間が生じないように巻き付けられる。このように構成した細径同軸ケーブル10bでも第1実施例と同等の作用効果が得られる。
【0041】
図5は、本発明に係る細径同軸ケーブルの第4実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
【0042】
同図に示した実施例では、上記第1実施例と同じ構成の中心導体12および被覆層14を備えているが、外部シールド導体層16cに特徴がある。
【0043】
すなわち、本実施例の場合には、外部シールド導体層16cは、銅などの電気伝導性に優れた金属パイプで構成し、中心導体12の外周に、柱状部14bを備えた被覆層14を形成した半製品を、金属パイプ内に挿入しながらダイスにて、金属パイプを引き抜き延伸して形成している。このように構成した細径同軸ケーブル10cでも第1実施例と同等の作用効果が得られる。
【0044】
なお、図4,5に示した第3および第4実施例の場合には、各シールド導体層16b,16cの外周に、第2実施例で示した保護被覆層26を形成することができる。
【0045】
図6は、本発明に係る細径同軸ケーブルの第5実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
【0046】
同図に示した実施例は、中心導体12の外周に被覆層14dを形成した半製品の外観図であり、被覆層14dは、環状部18dと柱状部20dとを有している。
【0047】
環状部18dは、上記第1実施例と同様に中心導体12の外周をリング状に覆っているが、柱状部20dは、中心から外方に延設された実質的に1本の構造体であって、この柱状部20dが、環状部18dの外周において、所定ピッチで螺旋状に周回するように形成されている。このような柱状部20dは、合成樹脂を押出しながらダイスを一方向に回転させることで形成することができる。
【0048】
この実施例の場合には、柱状部20dの外周には、上記実施例で示した外部シールド導体層16,16b,16cのいずれかが形成されると、その内部に螺旋状の空隙部22dが形成されるので、上記実施例と同等の作用効果が得られる。
【0049】
次に、本発明に係る細径同軸ケーブルの製造方法について説明する。以下に説明する製造方法では、図3に示した断面形状の細径同軸ケーブル10aを製造する際の具体例であり、この製造方法では、まず、図7に示す断面形状の半製品が作製される。
【0050】
この半製品は、0.1mmの中心導体12をクロスヘッドダイに導き、図8に示す形状のノズルに通過させ、引き取り速度11m/minの速度で引き取りながら350℃の押出温度にてFEP樹脂(NP−100:商品名,ダイキン工業製、比誘電率2.1)の押出絶縁層被覆を行って、半製品を得た。
【0051】
この場合、被覆後の冷却は、特に行わなかった。被覆後の断面形状は、中心導体12の外周に環状部18と、リブ(柱状部20に相当する)とを設けた図7に示す十字形状であり、リブ厚みが0.06mm、リブ先端を頂点とした最大幅が0.28mm、又リブ頂点を結ぶ仮想円内に占める中空部の比率は50%となった。
【0052】
次に、得られた半製品に0.03mmの銀メッキ銅線37本を、リブの頂点を結ぶ仮想円周上に配置し、更に、径0.34mmのダイスに引き取り速度20m/minで引き取りながら、外部シールド導体層16となる銅線の圧縮成型(圧縮撚り線を得る成型方法)を行った。
【0053】
その結果、図1に示す様な外部シールド導体層16の径が0.34mmの中心導体12、被覆層14、外部シールド導体層16の三層構造を持つ同軸ケーブルを得た。
【0054】
次に、得られたケーブルをクロスヘッドダイに導き、引き取り速度11m/minの速度で引き取りながら径3φの丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を樹脂厚み0.04mmで保護被覆26を成形し、図3に示す最終外径0.42mmの細径同軸ケーブル10aを得た。
【0055】
得られた細径同軸ケーブル10aの特性インピーダンスを測定した結果、50Ωであることが分かり、また、被覆層14の等価誘電率は、1.55であった。また、単位重量は0.468g/mとなった。
本実施例の製造方法の効果を確認するために、以下に説明する手順(比較例)で同軸ケーブルを製造した。
【0056】
比較例
上記製造方法と同様に中心導体として0.1mm銀メッキ銅線を使用した場合は、特性インピーダンスを50Ωとするためには、被覆層形成後の径は、FEP樹脂(比誘電率2.1)で0.33mmとしなければいけない。
【0057】
そこで、このような仕様を満足させるために、0.1mmの中心導体をクロスヘッド台に導き、引き取り速度11m/minの速度で、径3φの丸ダイスを通過させ350℃の押出温度にてFEP樹脂(NP−100:商品名,ダイキン工業製、比誘電率2.1)の押出絶縁層被覆を0.33mmとなるように調整して行った。
【0058】
次に、得られた外径0.33mmの絶縁被覆導体をシールド横巻き機に導き引き取り速度20m/minの速度で0.03mm銀メッキ銅線38本による外部導体の被覆を行った結果、0.39mmの中心導体、被覆層、外部シールド導体層の三層構造を持つケーブルを得た。
【0059】
次に、得られたケーブルをクロスヘッドダイに導き、引き取り速度11m/minの速度で引き取りながら、径3φの丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製、比誘電率2.1)を樹脂厚み0.04mmで保護被覆を成形した結果、最終外径0.47mmの同軸ケーブルを得た。この同軸ケーブルの特性インピーダンスを測定した結果50Ωであった。又、絶縁層の等価誘電率は2.1となっていた。
【0060】
また、単位重量は0.586g/mで実施例より高重量となる。
この比較例から判るように、被覆層に中空構造を有さない場合、同じ特性インピーダンス50Ωを実現させるには、被覆層として同じ樹脂を使用した場合であっても、必然的に同軸ケーブル外径が大きく、かつ高重量となることが確認できた。
【0061】
【発明の効果】
以上詳細に説明したように、本発明にかかる細径同軸ケーブルおよびその製造方法によれば、良好でかつ安定した高周波特性を有しているとともに、メッキではなく、金属導体にてシールド層を形成した場合でも、充分に細径化することができる。
【図面の簡単な説明】
【図1】本発明にかかる細径同軸ケーブルの第1実施例を示す横断面図である。
【図2】図1に示した細径同軸ケーブルの外観説明図である。
【図3】本発明にかかる細径同軸ケーブルの第2実施例を示す横断面図である。
【図4】本発明にかかる細径同軸ケーブルの第3実施例を示す横断面図である。
【図5】本発明にかかる細径同軸ケーブルの第4実施例を示す横断面図である。
【図6】本発明にかかる細径同軸ケーブルの第5実施例を示す外観説明図である。
【図7】本発明にかかる細径同軸ケーブルの製造方法で中間的に得られる半製品の横断面図である。
【図8】本発明にかかる細径同軸ケーブルの製造方法で用いるダイスの説明図である。
【符号の説明】
10,10a,10b,10c 細径同軸ケーブル
12 中心導体
14 被覆層
16 外部シールド導体層
18 環状部
20 柱状部
22 空隙部
26 保護被覆層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin coaxial cable having good electrical characteristics and high frequency characteristics and a method for manufacturing the same.
[0002]
[Background Art and Problems to be Solved by the Invention]
Recently, coaxial cables are being used for antenna wiring of personal digital assistants, wiring for connecting an LCD and a CPU, etc. in response to an increase in information amount and high-speed transmission.
[0003]
In addition, due to the downsizing and thinning of information terminals and notebook computers, coaxial cables are also required to have a small diameter. In general, in order to obtain a coaxial cable with good high-frequency characteristics (low transmission loss and low delay time), the dielectric constant of the electrically insulating coating layer formed between the center conductor and the outer shield layer should be as small as possible. It is important to.
[0004]
Therefore, a low dielectric constant resin such as a fluorine resin or a polyolefin resin is often used for the insulating coating layer, and the insulating coating layer is often foamed to reduce the apparent dielectric constant.
[0005]
On the other hand, in order to reduce the diameter of the coaxial cable, it is effective to change the outer shield layer formed on the outer periphery of the insulating coating layer from a braided metal wire to a metal plating layer.
[0006]
However, when a low dielectric constant resin such as a fluorine resin or a polyolefin resin is used for the insulating coating layer, there is a problem that it is difficult to form a metal plating layer by electroless plating or the like.
[0007]
In addition, in order to perform the plating process, a support portion for the plating layer is required around the center conductor, and this support portion requires a portion that seamlessly surrounds the periphery of the center conductor in an annular shape or the like.
[0008]
Such a support portion requires a predetermined thickness, and when the support portion is formed, it becomes one of the factors that increase the outer diameter. On the other hand, when the insulating coating layer is foamed to reduce the apparent dielectric constant, the plating treatment liquid enters the voids in the foamed portion to increase the apparent dielectric constant, or the plating treatment liquid that has entered the voids. However, there has been a problem that the outer conductor is corroded to hinder the electrical characteristics of the coaxial cable. As a matter of course, in the case of such a plating process, there are problems associated with the treatment of the surface treatment chemical, the plating chemical, and the waste liquid.
[0009]
In addition, foam extrusion technology is difficult to ensure extrusion stability, especially when extruding small-diameter products, because the outer diameter of the insulating coating layer fluctuates slightly. It was.
[0010]
Furthermore, when the closed cell foam layer is formed, since the bubbles are independent, the bubbles may expand under the influence of heat during soldering. On the other hand, open-cell foaming has a problem that the compressive strength is weak.
[0011]
The present invention has been made in view of such conventional problems, and an object of the present invention is to obtain a thin coaxial cable having good and stable high-frequency characteristics.
[0012]
Another object of the present invention is to provide a coaxial cable that can be sufficiently reduced in diameter even when a shield layer is formed by a metal conductor instead of plating, and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a small diameter including a center conductor, an electrically insulating coating layer covering the outer periphery of the center conductor, and an outer shield conductor layer provided on the outer periphery of the coating layer. In the coaxial cable, the covering layer has one or more columnar portions extending outward from the center, and the outer shield conductor layer is provided so as to be in contact with the outer periphery of the columnar portion, In addition, one or more voids continuous in the longitudinal direction were provided.
[0014]
According to the thin coaxial cable configured as described above, since one or more gaps continuous in the longitudinal direction are provided inside the outer shield conductor layer, the dielectric constant between the center conductor and the outer shield conductor layer is provided. Can be reduced.
[0015]
The columnar portion is composed of a plurality of portions extending radially at equal angular intervals in a transverse section, and can be extended along the longitudinal axis direction of the small-diameter coaxial cable while maintaining the interval.
[0016]
The columnar portion can be formed in a spiral shape along the longitudinal direction.
The gap may occupy 10% or more of the area of the portion excluding the central conductor and the outer shield conductor layer in the cross section.
[0017]
A plurality of the gaps may be arranged uniformly in the circumferential direction with the center conductor as the center.
[0018]
The outer shield conductor layer can be formed of a hollow compression stranded wire.
[0019]
The outer shield conductor layer is formed by winding a metal tape or metal foil excellent in electrical conductivity, such as copper, or a metal laminate film obtained by laminating these metal tape or metal foil with a plastic film around the outer periphery of the columnar portion. can do.
[0020]
The outer shield conductor layer is composed of a metal pipe having excellent electrical conductivity such as copper, and a semi-finished product in which a covering layer having the columnar portion is formed on the outer periphery of the center conductor is inserted into the metal pipe. However, the metal pipe can be drawn and stretched with a die.
[0021]
The coating layer can be formed by extruding a fluorine-based resin such as FEP or PFA, or a synthetic resin such as amorphous polyolefin resin or PEN (polyethylene naphthalate).
[0022]
The thin coaxial cable of the present invention can have an outermost diameter of 1 mm or less.
[0023]
An electrically insulating protective coating layer can be provided on the outer periphery of the outer shield conductor layer.
[0024]
Further, the present invention provides a method for producing a small-diameter coaxial cable by extruding a covering portion including an annular portion covering the center conductor and a columnar portion protruding outward from the annular portion on the outer periphery of the center conductor. Then, this is continuously supplied, and the outer periphery of the columnar part is wrapped with a hollow compression stranded wire coating, a metal foil, a laminate film, etc. A conductor layer was formed, and then an outer coating layer was formed on the outer periphery of the outer shield conductor layer as needed.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples.
1 and 2 show a first embodiment of a thin coaxial cable according to the present invention. The small-diameter coaxial cable 10 shown in the figure includes a center conductor 12, a covering layer 14, and an outer shield conductor layer 16.
[0026]
The center conductor 12 is made of, for example, a copper wire having a circular cross section. The covering layer 14 is electrically insulating, and in the case of this embodiment, the covering layer 14 has an annular portion 18 that covers the outer periphery of the center conductor 12 and a columnar portion 20 that protrudes from the outer periphery of the annular portion 18. is doing.
[0027]
The covering layer 14 is formed by, for example, extruding a fluorine-based resin such as FEP or PFA, or a synthetic resin such as amorphous polyolefin resin or PEN (polyethylene naphthalate) on the outer periphery of the center conductor 12 to form an annular portion 18 and a columnar portion. 20 can be integrally formed.
[0028]
In the case of the present embodiment, the covering layer 12 has four columnar portions 20 extending outward from the center, and the cross-sectional shape thereof is substantially cross-shaped. Each columnar portion 20 extends radially at equal angular intervals (90 °) in the cross section, and extends linearly along the longitudinal axis direction of the thin coaxial cable 10 while maintaining this interval. ing.
[0029]
The outer shield conductor layer 16 is provided so as to be in contact with the outer periphery of the columnar portion 20 of the covering layer 14. The outer shield conductor layer 16 is partitioned by the columnar portion 20 inside the outer shield conductor layer 16, and Four voids 22 that are continuous in the direction are provided.
[0030]
In this case, four air gaps 22 are equally arranged in the circumferential direction with the center conductor 12 as the center, and in the cross section, the area is larger than the area of the portion excluding the center conductor 12 and the outer shield conductor layer 16. It is desirable that the ratio occupies 10% or more.
[0031]
In the case of the present embodiment, the outer shield conductor layer 16 is formed of a hollow compression stranded wire. Such a compression stranded wire is formed in a hollow shape by arranging a plurality of strands 24 on the same circumference and passing the compression dies while twisting each strand 24 in one direction. The shape is maintained without breaking. The outer diameter of the thin coaxial cable 10 of the present embodiment can be 1 mm or less.
[0032]
According to the small-diameter coaxial cable 10 configured as described above, four gap portions 22 that are continuous in the longitudinal direction are provided inside the outer shield conductor layer 16, so that the center conductor 12 and the outer shield conductor layer 16 are provided. The dielectric constant between can be reduced.
[0033]
FIG. 3 shows a second embodiment of the small-diameter coaxial cable according to the present invention. The same or corresponding parts as those in the above-mentioned embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described.
[0034]
The embodiment shown in the figure is a modification of the first embodiment, and an electrically insulating protective coating layer 26 is provided on the outer periphery of the outer shield conductor layer 16 constituted by the hollow stranded wire of the first embodiment. ing.
[0035]
As with the coating layer 14, the protective coating layer 26 is made of, for example, fluorine resin such as FEP or PFA, or synthetic resin such as amorphous polyolefin resin or PEN (polyethylene naphthalate) on the outer periphery of the outer shield conductor layer 16. It can be formed by extrusion.
[0036]
Even with the thin coaxial cable 10a configured as described above, the same effects as the first embodiment can be obtained.
[0037]
FIG. 4 shows a third embodiment of the small-diameter coaxial cable according to the present invention. The same or corresponding parts as those in the above-mentioned embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described.
[0038]
The embodiment shown in the figure includes the central conductor 12 and the covering layer 14 having the same configuration as the first embodiment, but is characterized by the outer shield conductor layer 16b.
[0039]
That is, in the case of the present embodiment, the outer shield conductor layer 16b is made of a metal tape or metal foil excellent in electrical conductivity such as copper, or a metal laminate film obtained by laminating these metal tape or metal foil with a plastic film. It is comprised, and the member selected from these is wound around the outer periphery of the columnar part 14b and formed.
[0040]
In this case, the tape or the like is wound so that there is no gap in the longitudinal axis direction of the cable 10b. The thin coaxial cable 10b configured as described above can obtain the same effects as those of the first embodiment.
[0041]
FIG. 5 shows a fourth embodiment of the small-diameter coaxial cable according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described.
[0042]
The embodiment shown in the figure includes the central conductor 12 and the covering layer 14 having the same configuration as the first embodiment, but is characterized by the outer shield conductor layer 16c.
[0043]
That is, in the case of the present embodiment, the outer shield conductor layer 16c is made of a metal pipe having excellent electrical conductivity such as copper, and the covering layer 14 having the columnar portion 14b is formed on the outer periphery of the center conductor 12. The semi-finished product is formed by drawing and stretching the metal pipe with a die while being inserted into the metal pipe. Even with the thin coaxial cable 10c configured as described above, the same effects as those of the first embodiment can be obtained.
[0044]
In the case of the third and fourth embodiments shown in FIGS. 4 and 5, the protective coating layer 26 shown in the second embodiment can be formed on the outer periphery of each shield conductor layer 16b, 16c.
[0045]
FIG. 6 shows a fifth embodiment of a small-diameter coaxial cable according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described.
[0046]
The embodiment shown in the figure is an external view of a semi-finished product in which a coating layer 14d is formed on the outer periphery of the central conductor 12, and the coating layer 14d has an annular portion 18d and a columnar portion 20d.
[0047]
The annular portion 18d covers the outer periphery of the center conductor 12 in a ring shape as in the first embodiment, but the columnar portion 20d is a substantially single structure extending outward from the center. Thus, the columnar portion 20d is formed so as to circulate spirally at a predetermined pitch on the outer periphery of the annular portion 18d. Such a columnar portion 20d can be formed by rotating a die in one direction while extruding a synthetic resin.
[0048]
In the case of this embodiment, when any one of the outer shield conductor layers 16, 16b, 16c shown in the above embodiment is formed on the outer periphery of the columnar portion 20d, a spiral gap portion 22d is formed therein. Since it is formed, the same effect as the above embodiment can be obtained.
[0049]
Next, the manufacturing method of the thin coaxial cable which concerns on this invention is demonstrated. The manufacturing method described below is a specific example of manufacturing the thin coaxial cable 10a having the cross-sectional shape shown in FIG. 3, and in this manufacturing method, a semi-finished product having the cross-sectional shape shown in FIG. 7 is first manufactured. The
[0050]
In this semi-finished product, a 0.1 mm center conductor 12 is led to a crosshead die, passed through a nozzle having the shape shown in FIG. NP-100: A product name, manufactured by Daikin Industries, Ltd., having a dielectric constant of 2.1) was coated to obtain a semi-finished product.
[0051]
In this case, cooling after coating was not particularly performed. The cross-sectional shape after coating is a cross shape shown in FIG. 7 in which an annular portion 18 and a rib (corresponding to the columnar portion 20) are provided on the outer periphery of the center conductor 12, the rib thickness is 0.06 mm, and the rib tip is The maximum width as the apex was 0.28 mm, and the ratio of the hollow portion in the virtual circle connecting the rib apexes was 50%.
[0052]
Next, 37 pieces of 0.03 mm silver-plated copper wire are placed on the virtual circumference connecting the vertices of the ribs to the obtained semi-finished product, and then taken up into a 0.34 mm diameter die at a take-up speed of 20 m / min. However, the compression molding of the copper wire used as the external shield conductor layer 16 (molding method for obtaining a compression stranded wire) was performed.
[0053]
As a result, a coaxial cable having a three-layer structure of the center conductor 12, the covering layer 14, and the outer shield conductor layer 16 having a diameter of the outer shield conductor layer 16 as shown in FIG.
[0054]
Next, the obtained cable is led to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is used with a round die having a diameter of 3φ while taking it at a take-up speed of 11 m / min. The protective coating 26 was formed at 04 mm to obtain a thin coaxial cable 10a having a final outer diameter of 0.42 mm shown in FIG.
[0055]
As a result of measuring the characteristic impedance of the obtained thin coaxial cable 10a, it was found to be 50Ω, and the equivalent dielectric constant of the coating layer 14 was 1.55. The unit weight was 0.468 g / m.
In order to confirm the effect of the manufacturing method of the present embodiment, a coaxial cable was manufactured by the following procedure (comparative example).
[0056]
Comparative Example When a 0.1 mm silver-plated copper wire is used as the central conductor as in the above manufacturing method, the diameter after forming the coating layer is FEP resin (relative dielectric constant 2. In 1), it must be 0.33 mm.
[0057]
Therefore, in order to satisfy such specifications, a 0.1 mm center conductor is guided to the crosshead base, passed through a round die with a diameter of 3φ at a take-off speed of 11 m / min, and FEP at an extrusion temperature of 350 ° C. The extrusion insulating layer coating of resin (NP-100: trade name, manufactured by Daikin Industries, relative dielectric constant 2.1) was adjusted to 0.33 mm.
[0058]
Next, the obtained insulation coated conductor having an outer diameter of 0.33 mm was guided to a shield horizontal winding machine, and the outer conductor was coated with 38 0.03 mm silver-plated copper wires at a take-off speed of 20 m / min. A cable having a three-layer structure of a central conductor of 39 mm, a covering layer, and an outer shield conductor layer was obtained.
[0059]
Next, the cable obtained was guided to a crosshead die and pulled at a take-up speed of 11 m / min, and the FEP resin (NP-100: trade name, manufactured by Daikin Industries, relative dielectric constant 2) was used with a round die with a diameter of 3φ. .1) formed a protective coating with a resin thickness of 0.04 mm, resulting in a coaxial cable with a final outer diameter of 0.47 mm. The characteristic impedance of this coaxial cable was measured and found to be 50Ω. The equivalent dielectric constant of the insulating layer was 2.1.
[0060]
Further, the unit weight is 0.586 g / m, which is higher than that of the example.
As can be seen from this comparative example, when the coating layer does not have a hollow structure, in order to achieve the same characteristic impedance of 50Ω, the outer diameter of the coaxial cable is inevitably even when the same resin is used as the coating layer. Was confirmed to be large and heavy.
[0061]
【The invention's effect】
As described above in detail, according to the thin coaxial cable and the manufacturing method thereof according to the present invention, the shield layer is formed by a metal conductor instead of plating, while having good and stable high frequency characteristics. Even in this case, the diameter can be sufficiently reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a thin coaxial cable according to the present invention.
FIG. 2 is an external explanatory view of the thin coaxial cable shown in FIG.
FIG. 3 is a cross-sectional view showing a second embodiment of the thin coaxial cable according to the present invention.
FIG. 4 is a cross-sectional view showing a third embodiment of the thin coaxial cable according to the present invention.
FIG. 5 is a cross-sectional view showing a fourth embodiment of the thin coaxial cable according to the present invention.
FIG. 6 is an external explanatory view showing a fifth embodiment of the thin coaxial cable according to the present invention.
FIG. 7 is a cross-sectional view of a semi-finished product obtained intermediately by the method for producing a thin coaxial cable according to the present invention.
FIG. 8 is an explanatory diagram of a die used in the method for manufacturing a thin coaxial cable according to the present invention.
[Explanation of symbols]
10, 10a, 10b, 10c Thin coaxial cable 12 Central conductor 14 Cover layer 16 Outer shield conductor layer 18 Annular portion 20 Columnar portion 22 Gaps 26 Protective cover layer

Claims (12)

中心導体と、前記中心導体の外周を覆う電気絶縁性の被覆層と、前記被覆層の外周に設けられた外部シールド導体層とを備えた細径同軸ケーブルにおいて、
前記被覆層は、中心から外方に延びる1ヶ以上の柱状部を有し、
前記外部シールド導体層を前記柱状部の外周に接するようにして設け、前記外部シールド導体層の内部に、長手方向に連続した1つ以上の空隙部を設けたことを特徴とする細径同軸ケーブル。
In a thin coaxial cable comprising a center conductor, an electrically insulating coating layer covering the outer periphery of the center conductor, and an outer shield conductor layer provided on the outer periphery of the coating layer,
The coating layer has one or more columnar portions extending outward from the center,
A thin coaxial cable characterized in that the outer shield conductor layer is provided so as to be in contact with the outer periphery of the columnar portion, and one or more void portions continuous in the longitudinal direction are provided inside the outer shield conductor layer. .
前記柱状部は、横断面内において等角度間隔で放射状に伸びる複数から構成され、前記細径同軸ケーブルの長手軸方向に沿って、前記間隔を維持しながら延設されることを特徴とする請求項1記載の細径同軸ケーブル。The columnar portion is composed of a plurality of portions extending radially at equal angular intervals in a transverse section, and extends along the longitudinal axis direction of the small-diameter coaxial cable while maintaining the intervals. Item 2. The thin coaxial cable according to Item 1. 前記柱状部は、長手方向に沿って螺旋状に形成されることを特徴とする請求項1記載の細径同軸ケーブル。The small-diameter coaxial cable according to claim 1, wherein the columnar portion is formed in a spiral shape along a longitudinal direction. 前記空隙部は、その横断面において、前記中心導体と外部シールド導体層を除いた部分の面積に対し、面積比で10%以上を占めることを特徴とする請求項1から3のいずれか1項記載の細径同軸ケーブル。4. The method according to claim 1, wherein the gap portion occupies an area ratio of 10% or more with respect to the area of the portion excluding the central conductor and the outer shield conductor layer in the cross section thereof. Small-diameter coaxial cable as described. 前記空隙部は、前記中心導体を中心として、複数が周方向に均等配置されていることを特徴とする請求項1ないしは4に記載の細径同軸ケーブル。5. The small-diameter coaxial cable according to claim 1, wherein a plurality of the gaps are evenly arranged in the circumferential direction with the center conductor as a center. 前記外部シールド導体層は、中空状の圧縮撚り線により形成することを特徴とする請求項1ないしは5記載の細径同軸ケーブル。6. The small-diameter coaxial cable according to claim 1, wherein the outer shield conductor layer is formed of a hollow compression stranded wire. 前記外部シールド導体層は、銅などの電気伝導性に優れた金属テープないしは金属箔、或いはこれらの金属テープないしは金属箔をプラスチックフィルムとラミネートした金属ラミネートフィルムを、前記柱状部の外周に巻き付けて形成することを特徴とする請求項1ないしは5記載の細径同軸ケーブル。The outer shield conductor layer is formed by winding a metal tape or metal foil excellent in electrical conductivity, such as copper, or a metal laminate film obtained by laminating these metal tape or metal foil with a plastic film around the outer periphery of the columnar portion. 6. The small-diameter coaxial cable according to claim 1, wherein the coaxial cable is a small-diameter coaxial cable. 前記外部シールド導体層は、銅などの電気伝導性に優れた金属パイプで構成し、前記中心導体の外周に、前記柱状部を備えた被覆層を形成した半製品を、前記金属パイプ内に挿入しながらダイスにて、前記金属パイプを引き抜き延伸して形成されることを特徴とする請求項1ないしは5記載の細径同軸ケーブル。The outer shield conductor layer is composed of a metal pipe having excellent electrical conductivity such as copper, and a semi-finished product in which a covering layer having the columnar portion is formed on the outer periphery of the center conductor is inserted into the metal pipe. 6. The small-diameter coaxial cable according to claim 1, wherein the metal pipe is formed by drawing and stretching with a die. 前記被覆層は、FEP、PFA等のふっ素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を押し出し成形して形成することを特徴とする請求項1ないしは8記載の細径同軸ケーブル。9. The small diameter according to claim 1, wherein the coating layer is formed by extruding a fluorine-based resin such as FEP or PFA, or a synthetic resin such as amorphous polyolefin resin or PEN (polyethylene naphthalate). coaxial cable. 請求項1ないしは9記載の細径同軸ケーブルは、最外径が1mm以下であることを特徴とする細径同軸ケーブル。The thin coaxial cable according to any one of claims 1 to 9, wherein an outermost diameter is 1 mm or less. 前記外部シールド導体層の外周に電気絶縁性の保護被覆層を設けたことを特徴とする請求項1ないしは10記載の細径同軸ケーブル。11. A small-diameter coaxial cable according to claim 1, wherein an electrically insulating protective coating layer is provided on an outer periphery of the outer shield conductor layer. 中心導体の外周に、前記中心導体を覆う環状部と、この環状部の外方に突出する柱状部とを備えた被覆部を押し出し成形し、これを連続的に供給して、前記柱状部の外周に中空状の圧縮撚り線被覆、金属箔,ラミネートフィルムなどを巻付け、或いは、銅パイプの延伸被覆の何れかの方法により外部シールド導体層を形成し、しかる後、前記外部シールド導体層の外周に外部被覆層を必要に応じて形成することを特徴とする細径同軸ケーブルの製造方法。On the outer periphery of the central conductor, a covering portion having an annular portion covering the central conductor and a columnar portion protruding outward from the annular portion is extruded and continuously supplied. An outer shield conductor layer is formed by any method of winding a hollow compression stranded wire coating, a metal foil, a laminate film, or the like on the outer periphery, or extending a copper pipe, and then the outer shield conductor layer A method for producing a thin coaxial cable, wherein an outer covering layer is formed on the outer periphery as needed.
JP2002206752A 2002-07-16 2002-07-16 Thin coaxial cable and manufacturing method thereof Expired - Lifetime JP4111764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206752A JP4111764B2 (en) 2002-07-16 2002-07-16 Thin coaxial cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206752A JP4111764B2 (en) 2002-07-16 2002-07-16 Thin coaxial cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004055144A JP2004055144A (en) 2004-02-19
JP4111764B2 true JP4111764B2 (en) 2008-07-02

Family

ID=31931395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206752A Expired - Lifetime JP4111764B2 (en) 2002-07-16 2002-07-16 Thin coaxial cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4111764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684493B (en) 2018-01-15 2020-02-11 南亞塑膠工業股份有限公司 Metallic brushed finish forming device and method for manufacturing film with metallic brushed finish

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032073A (en) * 2004-07-15 2006-02-02 Hitachi Cable Ltd Thin diameter coaxial cable
JP2006108030A (en) * 2004-10-08 2006-04-20 Mitsubishi Cable Ind Ltd Coaxial cable
JP4920234B2 (en) * 2004-10-18 2012-04-18 宇部日東化成株式会社 Manufacturing method of insulating core body for coaxial cable, insulating core body for coaxial cable, and coaxial cable using the insulating core body
JP2006221889A (en) * 2005-02-09 2006-08-24 Ube Nitto Kasei Co Ltd Manufacturing method of thermoplastic resin spiral body, and thermoplastic resin spiral body
JP6640289B1 (en) * 2018-08-08 2020-02-05 株式会社フジクラ coaxial cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684493B (en) 2018-01-15 2020-02-11 南亞塑膠工業股份有限公司 Metallic brushed finish forming device and method for manufacturing film with metallic brushed finish

Also Published As

Publication number Publication date
JP2004055144A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
EP1626417B1 (en) Foam coaxial cable and method of manufacturing the same
US20050230145A1 (en) Thin-diameter coaxial cable and method of producing the same
JP4757159B2 (en) Method for producing hollow core body for coaxial cable
KR100842985B1 (en) Micro Coaxial cable
WO2010035762A1 (en) Coaxial cable and multicore coaxial cable
US20030024728A1 (en) Double-laterally-wound two-core parallel extrafine coaxial cable
WO2011007635A1 (en) Hollow-core-body for transmission cable, manufacturing method thereof, and signal transmission cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
CN105788748A (en) Insulated wire, coaxial cable, and multicore cable
JP2003249129A (en) Small diameter coaxial cable and its manufacturing method
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
JP5464080B2 (en) Coaxial cable and multi-core coaxial cable
JP5137346B2 (en) Central interposition with ribs with signal line assembly and round multi-pair cable using the interposition
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP6750325B2 (en) Foam coaxial cable, manufacturing method thereof, and multicore cable
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
JP2010192271A (en) Manufacturing method and manufacturing device of hollow core object for coaxial cable
JP2006221889A (en) Manufacturing method of thermoplastic resin spiral body, and thermoplastic resin spiral body
JP2005276785A (en) Coaxial cable and manufacturing method of the same
JP2004087189A (en) Transmission cable and manufacturing method of the same
JPH03219505A (en) Coaxial cable
JP2011060573A (en) Insulated wire and cable
JP2005116380A (en) Thin coaxial cable and its manufacturing method
JP2006049067A (en) Coaxial cable and its manufacturing method
JP2023141617A (en) coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Ref document number: 4111764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250