JP2005116380A - Thin coaxial cable and its manufacturing method - Google Patents

Thin coaxial cable and its manufacturing method Download PDF

Info

Publication number
JP2005116380A
JP2005116380A JP2003350376A JP2003350376A JP2005116380A JP 2005116380 A JP2005116380 A JP 2005116380A JP 2003350376 A JP2003350376 A JP 2003350376A JP 2003350376 A JP2003350376 A JP 2003350376A JP 2005116380 A JP2005116380 A JP 2005116380A
Authority
JP
Japan
Prior art keywords
conductor
coaxial cable
coating layer
insulating coating
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003350376A
Other languages
Japanese (ja)
Inventor
Seishi Tanaka
晴士 田中
Kazunori Watanabe
和憲 渡辺
Shigehiro Matsuno
繁宏 松野
Toshibumi Inagaki
俊文 稲垣
Mamoru Negita
守 祢宜田
Yoshiya Suzuki
與士弥 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Sanshu Densen KK
Original Assignee
Ube Nitto Kasei Co Ltd
Sanshu Densen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd, Sanshu Densen KK filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2003350376A priority Critical patent/JP2005116380A/en
Publication of JP2005116380A publication Critical patent/JP2005116380A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin coaxial cable which has an excellent and stable high frequency property. <P>SOLUTION: The coaxial cable 10 comprises a center conductor 12, an insulating coating layer 14, a shield conductor 16, and a protection coating layer 18. The center conductor 12 is constructed of a stranded wire (copper wire) of circular cross section. The coating layer 14 is formed so as to cover the outer circumference of the conductor 12 and has an annular portion 20 to cover the outer circumference of the conductor 12 and three column-shape portions 22 extending radially from the annular portion 20a to the outside diameter direction. The shield conductor 16 is formed of a hollow shape compression stranded wire. The compression stranded wire is formed in hollow-shape by arranging a plurality of element wires 26 of circular cross-section on the identical circumference and by stranding each element wire 26 in one direction and passing a crimping die. At this time, the element wires 26 are, at each part of the outer periphery mutually contacting, plastic deformed and stranded, thereby, become a stable structure (arch structure) which is tightly contacted in stone wall shape, and its shape is maintained without collapsing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、良好かつ安定した電気特性、高周波特性を有する細径同軸ケーブルおよびその製造方法に関するものである。   The present invention relates to a thin coaxial cable having good and stable electrical characteristics and high frequency characteristics, and a method for manufacturing the same.

情報量の増大化や高速伝送化の流れを受けて、携帯情報端末のアンテナ配線や、LCDとCPUを結ぶ配線等に、最近同軸ケーブルが使われつつある。また、情報端末やノートパソコンの小型化、薄型化により、同軸ケーブルにも高性能化、細径化、低コスト化が要求されている。   Recently, coaxial cables are being used for antenna wiring of personal digital assistants, wiring for connecting an LCD and a CPU, etc. in response to an increase in information amount and high-speed transmission. In addition, with the miniaturization and thinning of information terminals and notebook computers, coaxial cables are also required to have high performance, small diameter, and low cost.

一般に良好な高周波特性(伝送損失が小さく、遅延時間が小さい)を持つ同軸ケーブルを得るためには、中心導体と外部シールド層の間に形成される電気絶縁性の被覆層の誘電率をできるだけ小さくすることが重要である。   In general, in order to obtain a coaxial cable with good high-frequency characteristics (low transmission loss and low delay time), the dielectric constant of the electrically insulating coating layer formed between the center conductor and the outer shield layer should be as small as possible. It is important to.

誘電率を小さくすることにより、特性インピーダンスが、例えば、50Ω(一定値)とすると、中心導体径が同一であれば、シールド層の内径(ケーブルの外径)を小さくできることになり、シールド層の内径(ケーブルの外径)を一定にすれば、中心導体径を大きくし、電送損失を下げることが可能になる。   If the characteristic impedance is 50Ω (constant value), for example, by reducing the dielectric constant, the inner diameter of the shield layer (the outer diameter of the cable) can be reduced if the center conductor diameter is the same. If the inner diameter (the outer diameter of the cable) is made constant, the center conductor diameter can be increased and the transmission loss can be reduced.

そのために、絶縁被覆層には、弗素樹脂やポリオレフィン樹脂などの低誘電率樹脂が用いられることが多く、また見掛けの誘電率を下げるために発泡化する場合も多い。   Therefore, a low dielectric constant resin such as a fluorine resin or a polyolefin resin is often used for the insulating coating layer, and foaming is often performed in order to reduce the apparent dielectric constant.

また、同軸ケーブルにおいては、シールド特性も重要であり、外部環境への影響を小さくするだけでなく、シールド効果を向上することにより伝送損失を小さくできるが、これを、例えば、撚り線で構成して巻き付けると、曲げた時など、シールド導体の外径が均一にならず、特性インピーダンスが変動する場合がある。   Also, in coaxial cables, shielding characteristics are also important, not only reducing the impact on the external environment, but also reducing the transmission loss by improving the shielding effect. For example, this is made up of stranded wires. If it is wound, the outer diameter of the shield conductor may not be uniform when bent, and the characteristic impedance may vary.

また、絶縁被覆層の誘電率を低くするためには、多孔質度、発泡度を高める必要があるが、これらを高(50%以上)くすると、絶縁被覆層の強度が低下し、撚り線や編組線で構成したシールド導体を被覆すると、簡単に変形して、その結果、特性インピーダンスが変動する。   Moreover, in order to reduce the dielectric constant of the insulating coating layer, it is necessary to increase the porosity and the foaming degree. However, if these are increased (50% or more), the strength of the insulating coating layer is reduced, and the stranded wire is reduced. If the shield conductor made of braided wire is covered, it is easily deformed, and as a result, the characteristic impedance varies.

このような不具合を解消する方法としては、例えば、特許文献1には、絶縁被覆層を、絶縁層とスキン層との2層構造として、絶縁層だけを発泡形の樹脂で構成した同軸ケーブルが提案されている。   As a method for solving such a problem, for example, Patent Document 1 discloses a coaxial cable in which an insulating coating layer has a two-layer structure of an insulating layer and a skin layer, and only the insulating layer is made of foamed resin. Proposed.

しかしながら、この特許文献1に開示されている同軸ケーブルには、以下に説明する技術的な課題があった。
特開2000−48653号公報
However, the coaxial cable disclosed in Patent Document 1 has a technical problem described below.
JP 2000-48653 A

すなわち、特許文献1に開示されている同軸ケーブルでは、絶縁被覆層が二層構造となるため製造装置が複雑化して、コストアップを招く。また、一般に、同軸ケーブルにおけるシールド効果は、撚り線構造のシールド導体よりも編組構造のシールド導体の方が高いが、この構造のシールド導体は、編組加工速度が遅くコストアップになるという問題があった。   That is, in the coaxial cable disclosed in Patent Document 1, since the insulating coating layer has a two-layer structure, the manufacturing apparatus becomes complicated and the cost increases. In general, the shield effect of a coaxial cable is higher for a shield conductor of a braided structure than for a shield conductor of a stranded wire structure, but the shield conductor of this structure has a problem that the braiding speed is low and the cost is increased. It was.

本発明は、このような従来の問題点に鑑みてなされたものであって、良好でかつ安定した高周波特性を有する細径同軸ケーブルおよびその製造方法を、コストアップを来たすことなく得ることを目的とする。   The present invention has been made in view of such conventional problems, and an object of the present invention is to obtain a thin coaxial cable having a good and stable high-frequency characteristic and a method for producing the same without increasing the cost. And

上記目的を達成するために、本発明は、中心導体と、前記中心導体の外周を覆う絶縁被覆層と、前記絶縁被覆層の外周を覆うシールド導体とを備えた細径同軸ケーブルにおいて、前記シールド導体は、複数の素線を前記絶縁被覆層の外周に沿って配置して、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線で構成した。   In order to achieve the above object, the present invention provides a thin coaxial cable comprising a central conductor, an insulating coating layer covering an outer periphery of the central conductor, and a shield conductor covering an outer periphery of the insulating coating layer. The conductor is composed of a compression stranded wire in which a plurality of strands are arranged along the outer periphery of the insulating coating layer, and a part of the outer periphery of the strands in contact with each other is plastically deformed to form a hollow shape. .

このように構成した細径同軸ケーブルによれば、圧縮撚り線は、相互に接触する素線の外周の一部同士を塑性変形させて中空状に形成しており、撚り線の素線同士が石垣状に密接に接触した安定した構造(アーチ構造)を取っているため、撚り線の内部が中空になっている。   According to the thin coaxial cable configured in this way, the compression stranded wires are formed in a hollow shape by plastic deformation of the outer circumferences of the strands that are in contact with each other. Since the stable structure (arch structure) in close contact with the stone wall shape is taken, the inside of the stranded wire is hollow.

このような圧縮撚り線中に、その中空の内径とほぼ同一の外寸を有する、中心導体の外周を絶縁被覆層で覆った絶縁被覆導体を設けることで細径同軸ケーブルが得られ、このような構造の同軸ケーブルは、圧縮撚り線の素線同士が密に接しているため、良好なシールド特性を有すると共に、素線同士が接合しているものの一体となっていないので良好な可撓性を有する。   A thin coaxial cable is obtained by providing an insulation-coated conductor having the outer diameter of the center conductor covered with an insulation coating layer in such a compression stranded wire and having an outer dimension substantially the same as the hollow inner diameter. The coaxial cable with a simple structure has good shielding properties because the strands of compression stranded wires are in close contact with each other, and also has good flexibility because the strands are joined together but are not integrated Have

圧縮撚り線で構成した前記シールド導体の外周には、保護被覆層を設けることができ、この保護被覆層には、電気絶縁性の熱可塑性樹脂を用いることができる。   A protective coating layer can be provided on the outer periphery of the shield conductor composed of compression stranded wires, and an electrically insulating thermoplastic resin can be used for the protective coating layer.

本発明の細径同軸ケーブルでは、圧縮撚り線のみで安定した中空部を形成できるため、内部に設ける絶縁被覆導体の形状は、必ずしも圧縮撚り線の素線にすべて接触する円形である必要はなく、中心導体を圧縮撚り線の中央部に位置させることができれば、その形状は任意に選択することができる。   In the small-diameter coaxial cable of the present invention, a stable hollow portion can be formed only with a compression stranded wire. Therefore, the shape of the insulation-coated conductor provided inside does not necessarily have to be a circle that contacts all the strands of the compression stranded wire. If the central conductor can be positioned at the center of the compression stranded wire, the shape thereof can be arbitrarily selected.

それゆえ、前記絶縁被覆層は、前記中心導体を環状に被覆する円環状部と、前記円環状部から径外方向に延びる1以上の柱状部とを備え、前記圧縮撚り線との間に、前記柱状部で区分された中空部を形成することができる。   Therefore, the insulating coating layer includes an annular portion that annularly covers the center conductor, and one or more columnar portions extending radially outward from the annular portion, and the compression stranded wire, The hollow part divided by the columnar part can be formed.

また、前記絶縁被覆層は、中心導体の外周を被覆する内環状部と、前記内環状部から外方に延設される複数の連結部と、前記連結部の外周縁を結合させる外環状部とを備え、前記連結部で前記内,外環状部で隔成された空隙部の周方向を区分するようにすることができる。   The insulating coating layer includes an inner annular portion that covers an outer periphery of a central conductor, a plurality of connecting portions that extend outward from the inner annular portion, and an outer annular portion that connects the outer peripheral edges of the connecting portions. And the circumferential direction of the gap portion defined by the inner and outer annular portions can be divided by the connecting portion.

また、これ以外に、中心導体の周囲に中空パイプを撚り合わせる構造、絶縁性(多孔質)テープを巻く構造、絶縁性繊維を編み込む構造でも良い。   In addition, a structure in which a hollow pipe is twisted around the center conductor, a structure in which an insulating (porous) tape is wound, or a structure in which insulating fibers are knitted may be used.

中空圧縮撚り線の素線の断面形状は、円形、矩形、台形などのものを用いることができる。円形の場合にはコスト的に有利であるが、本数が増えると中空構造を維持することが困難な場合があるが、このような場合には、矩形、台形のものを使用することが望ましい。   The cross-sectional shape of the strand of the hollow compression stranded wire may be circular, rectangular, trapezoidal or the like. In the case of a circular shape, it is advantageous in terms of cost, but as the number increases, it may be difficult to maintain a hollow structure. In such a case, it is desirable to use a rectangular or trapezoidal shape.

前記絶縁被覆層は、誘電率、耐熱性に優れた弗素樹脂、ポリオレフィン樹脂、PEN(ポリエチレンナフタレート)樹脂、APO(環状ポリオレフィン)樹脂等の低誘電率樹脂を用いることができる。   For the insulating coating layer, a low dielectric constant resin such as a fluorine resin, a polyolefin resin, a PEN (polyethylene naphthalate) resin, or an APO (cyclic polyolefin) resin excellent in dielectric constant and heat resistance can be used.

前記絶縁被覆層は、特に、損失特性を低減するためには、中空部を安定して設けることが好ましく、この場合には、前述した柱状部を設ける構造が好適となる。柱状部を設ける際には、その数が2〜4本で、中空率が50%以上であることが望ましい。   In particular, in order to reduce loss characteristics, the insulating coating layer preferably has a hollow portion stably provided. In this case, the structure having the columnar portion described above is suitable. When providing the columnar part, it is desirable that the number is 2 to 4 and the hollowness is 50% or more.

中空率が50%以下だと、中空の効果が低くなる。また、柱状部の数は、1本では偏芯する場合があり、5本以上としても、偏芯防止効果は変わらず、逆に中空率が低下する。   When the hollow ratio is 50% or less, the hollow effect is lowered. Further, the number of columnar portions may be eccentric with one, and even when the number is five or more, the eccentricity prevention effect does not change, and conversely, the hollowness decreases.

また、本発明は、中心導体と、絶縁被覆層と、シールド導体とで構成する細径同軸ケーブルの製造方法において、前記中心導体の外周に、合成樹脂を押出し成形して絶縁被覆層を被覆形成した絶縁被覆導体を得る工程と、前記絶縁被覆導体を、前方に設けられた整列ガイド板を介して、シングルツイスト機などの集合撚り線機の中央部に配置導入するとともに、複数本の素線を、前記整列ガイト板を介して、前記絶縁被覆導体の前記絶縁被覆層の外周に沿って同一円周上に均等配置した後に、前記集合撚り線機の集線口に取り付けた圧縮ダイスを通過させながら、前記圧縮ダイスを回転することにより、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線を、前記絶縁被覆導体の外側に連続的に形成して前記シールド導体を形成する工程と、を備えている。   Further, the present invention provides a method for manufacturing a small-diameter coaxial cable including a center conductor, an insulating coating layer, and a shield conductor, and an insulating coating layer is formed by extruding a synthetic resin on the outer periphery of the center conductor. A step of obtaining the insulated coated conductor, and arranging and introducing the insulated coated conductor into a central portion of a collective stranding machine such as a single twist machine via an alignment guide plate provided in front, and a plurality of strands Are arranged on the same circumference along the outer periphery of the insulating coating layer of the insulating coating conductor via the alignment guide plate, and then passed through a compression die attached to a concentrator of the collective stranding machine. However, by rotating the compression die, a part of the outer circumferences of the strands that are in contact with each other is plastically deformed to form a hollow compressed stranded wire continuously outside the insulating coated conductor. do it And a, and forming a serial shield conductor.

この製造方法では、前記シールド導体の形成工程の後に、前記圧縮撚り線の外周に、電気絶縁性の合成樹脂にて保護被覆層を形成することができる。   In this manufacturing method, a protective coating layer can be formed of an electrically insulating synthetic resin on the outer periphery of the compression stranded wire after the shield conductor forming step.

一般に、撚り線は、シングルツイスト機、ダブルツイスト機にて製造される。本発明の細径同軸ケーブルに用いる圧縮撚り線も同様で、撚り工程中に圧縮ダイスを入れ、中空状の圧縮撚り線を製造する。   Generally, a stranded wire is manufactured with a single twist machine and a double twist machine. The same applies to the compression stranded wire used in the thin coaxial cable of the present invention, and a compression die is inserted during the twisting process to produce a hollow compression stranded wire.

そこで、まず、ダブルツイスト機を使用し、絶縁被覆導体及び圧縮撚り線用の素線を導入して同軸ケーブルを製造してみたが、絶縁被覆導体は、圧縮撚り線と共に撚られ、絶縁被覆導体には、圧縮撚り線と同様の撚りが加ることが判明した。   So, first, using a double twist machine, we tried to manufacture a coaxial cable by introducing an insulation coated conductor and a strand for compression stranded wire, but the insulation coated conductor was twisted together with the compression stranded wire, It has been found that a twist similar to that of a compression stranded wire is applied.

この場合、絶縁被覆導体の中心導体に撚りが加わると、中心導体が単線の場合には、うねりが発生し偏芯する現象が発生した。中心導体が撚り線の場合には、偏芯、素線のうねりと共に、素線にバラケが発生した。これらの現象は、同軸ケーブルの電気特性、高周波特性の安定性に影響する。   In this case, when a twist is applied to the central conductor of the insulation-coated conductor, when the central conductor is a single wire, undulation occurs and the phenomenon of eccentricity occurs. In the case where the central conductor is a stranded wire, the strands were broken together with the eccentricity and the undulations of the strands. These phenomena affect the stability of the electrical characteristics and high-frequency characteristics of the coaxial cable.

ダブルツイスト機を用いる場合には、二段で撚りが加わるが、圧縮ダイスは一段目の撚り工程に入れる必要がある。これを二段目に入れると、圧縮撚り線の素線の長さのバラツキを吸収できない為である。   When a double twist machine is used, twisting is applied in two stages, but the compression die needs to be put in the first stage twisting process. This is because if this is put in the second stage, the variation in the length of the strands of the compression stranded wire cannot be absorbed.

一段目の撚り工程で、絶縁被覆導体は、圧縮撚り線に把持され、更に二段目の撚りが加わることになり、二段目の撚りで圧縮撚り線の長手方向長さが縮まるが、絶縁被覆導体は、径が小さいため差程縮まず、長さの差が生じる。この圧縮長さの相違に基づいて、絶縁被覆導体にうねりが発生し、圧縮撚り線の素線に、バラケが生じると共に、切断時に絶縁被覆導体の飛び出しが生じることになる。従って実質的にはダブルツイスト機を用いる製造方法では、ロングランの製造が困難である。   In the first-stage twisting process, the insulation-coated conductor is gripped by the compression twisted wire, and the second-stage twist is added, and the length of the compression-twisted wire in the longitudinal direction is shortened by the second-stage twisting. Since the coated conductor has a small diameter, it does not shrink as much, and a difference in length occurs. Based on this difference in compression length, undulation is generated in the insulation-coated conductor, and the strands of the compressed stranded wire are scattered, and the insulation-coated conductor is popped out at the time of cutting. Therefore, it is practically difficult to produce a long run by a production method using a double twist machine.

また、絶縁被覆層が、中心導体を環状に被覆する円環状部と、円環状部から径外方向に延びる1以上の柱状部とを備え、圧縮撚り線との間に、柱状部で区分された中空部を形成する構造の場合には、柱状部の撚りピッチと、圧縮撚り線のピッチが一致するため、圧縮撚り線の素線の一部が、柱状部間に落ち込むという不具合が発生した。   The insulating coating layer includes an annular portion that covers the center conductor in an annular shape, and one or more columnar portions that extend radially outward from the annular portion, and is partitioned by a columnar portion between the compression strands. In the case of a structure that forms a hollow portion, since the twist pitch of the columnar portion and the pitch of the compression strand match, a part of the strands of the compression twisted wire falls between the columnar portions. .

ところが、上記のように構成した本発明に係る細径同軸ケーブルの製造方法によれば、シングルツイスト機を使用して、一段で撚るため、絶縁被覆導体と圧縮撚り線の長さの差が生じない。このため中心導体は、バラケルことがなく、絶縁被覆導体の飛び出しもなくなる。   However, according to the manufacturing method of the thin coaxial cable according to the present invention configured as described above, since a single twist machine is used to twist in one step, there is a difference in length between the insulation-coated conductor and the compression stranded wire. Does not occur. For this reason, the central conductor does not have a backlash, and the insulation covered conductor does not protrude.

前記絶縁被覆導体は、前記圧縮ダイスの中央部に、当該集合撚り線機の回転方向と同方向に回転させつつ供給することができる。   The said insulation coating conductor can be supplied to the center part of the said compression die | dye, rotating in the same direction as the rotation direction of the said assembly stranding machine.

この構成によれば、集合撚り線機の回転方向と同方向に回転させつつ供給するので、絶縁被覆導体に撚りが入らないようにすることができるし、あるいは、入っても影響しない程度まで押さえることにより、中心導体が安定して同軸ケーブルの中央に位置するようにし、特性の安定化と向上を図ることができる。   According to this configuration, since the supply is performed while being rotated in the same direction as the rotating direction of the collective stranding machine, it is possible to prevent the insulation-coated conductor from being twisted, or to suppress it to such an extent that it does not affect even if it enters. Thus, the center conductor can be stably positioned at the center of the coaxial cable, and the characteristics can be stabilized and improved.

また、圧縮撚り線のピッチと絶縁被覆導体の撚りピッチが異なるので、柱状部を設ける絶縁被覆層の場合に、圧縮撚り線の素線が柱状部間に落ち込むことがなくなる。   Further, since the pitch of the compression stranded wire is different from the twist pitch of the insulating coated conductor, in the case of the insulating coating layer provided with the columnar portion, the strand of the compressed stranded wire does not fall between the columnar portions.

前記絶縁被覆導体の供給は、前記集合撚り線機の回転と完全同期させることができる。   The supply of the insulating coated conductor can be completely synchronized with the rotation of the collective stranding machine.

この構成によれば、絶縁被覆導体に撚りが全く入らないようにすることができる。絶縁被覆導体の中心導体が単線の場合には、特に、うねりが生じやすいので完全同期回転させる必要がある。   According to this configuration, it is possible to prevent any twist from entering the insulating coated conductor. When the central conductor of the insulation-coated conductor is a single wire, waviness is particularly likely to occur, and it is necessary to rotate it completely synchronously.

本発明にかかる同軸ケーブルおよびその製造方法によれば、良好でかつ安定した高周波特性を有する同軸ケーブルを得ることができる。   According to the coaxial cable and the method for manufacturing the same according to the present invention, a coaxial cable having good and stable high-frequency characteristics can be obtained.

以下に、本発明の好適な実施形態について、実施例に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples.

図1は、本発明に係る細径同軸ケーブル10の第1実施例を示している。同図に示した同軸ケーブル10は、中心導体12と、絶縁被覆層14と、シールド導体16と、保護被覆層18とを備えている。   FIG. 1 shows a first embodiment of a thin coaxial cable 10 according to the present invention. The coaxial cable 10 shown in the figure includes a central conductor 12, an insulating coating layer 14, a shield conductor 16, and a protective coating layer 18.

中心導体12は、例えば、円形断面の撚り線(銅線)から構成されている。なお、この撚り線は、単銅線であっても良い。絶縁被覆層14は、中心導体12の外周を覆うように形成された電気絶縁性のものであって、本実施例の場合には、中心導体12の外周を覆う環状部20と、環状部20から径外方向に、放射状に延びる3個の柱状部22とを有している。   The center conductor 12 is comprised from the strand wire (copper wire) of a circular cross section, for example. The stranded wire may be a single copper wire. The insulating coating layer 14 is an electrically insulating layer formed so as to cover the outer periphery of the center conductor 12, and in the case of this embodiment, an annular portion 20 that covers the outer periphery of the center conductor 12, and the annular portion 20. And three columnar portions 22 extending radially in the radially outward direction.

この絶縁被覆層14は、例えば、PTFE、FEP、PFA等の弗素系樹脂、或いはAPO(アモルファスポリオレフィン)樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、中心導体12の外周に押し出し成形して、環状部20と柱状部22とを同時に一体形成することができる。   The insulating coating layer 14 is formed by extruding, for example, a fluorine-based resin such as PTFE, FEP, or PFA, or a synthetic resin such as APO (amorphous polyolefin) resin or PEN (polyethylene naphthalate) on the outer periphery of the center conductor 12. The annular portion 20 and the columnar portion 22 can be integrally formed at the same time.

本実施例の場合、絶縁被覆層14は、中心から外方に延びる3個の柱状部22を有していて、各柱状部22は、その横断面形状は、先端側が先細状になった略三角形状に形成されている。   In the case of the present embodiment, the insulating coating layer 14 has three columnar portions 22 extending outward from the center, and each columnar portion 22 has a substantially cross-sectional shape that is tapered at the tip side. It is formed in a triangular shape.

各柱状部22は、横断面内において等角度間隔(120°)で放射状に伸びており、同軸ケーブル10の長手軸方向に沿って、この間隔を維持しながら、直線状に延設されている。   Each columnar portion 22 extends radially at equiangular intervals (120 °) in the cross section, and extends linearly along the longitudinal axis direction of the coaxial cable 10 while maintaining this interval. .

シールド導体16は、絶縁被覆層14の柱状部22の外周に接するようにして設けられていて、シールド導体16の内部には、柱状部22で周方向に区画され、細径同軸ケーブル10の長手方向に連続した3個の空隙部24が設けられている。   The shield conductor 16 is provided so as to be in contact with the outer periphery of the columnar portion 22 of the insulating coating layer 14. The shield conductor 16 is partitioned in the circumferential direction by the columnar portion 22 inside the shield conductor 16, and the longitudinal direction of the small-diameter coaxial cable 10. Three gaps 24 that are continuous in the direction are provided.

この場合、空隙部24は、中心導体12を中心として、3個が周方向に均等配置されており、横断面において、中心導体12とシールド導体16を除いた部分の面積に対し、面積比で50%以上を占めるようにすることが望ましい。
シールド導体16は、本実施例の場合、中空状の圧縮撚り線により形成されている。このような圧縮撚り線は、複数本の円形断面の素線26を同一円周上に配置し、各素線26を一方向に撚り掛けながら圧縮ダイスを通過させることにより中空形状に形成される。
In this case, three air gaps 24 are equally arranged in the circumferential direction with the center conductor 12 at the center, and in the cross section, the area ratio is relative to the area of the portion excluding the center conductor 12 and the shield conductor 16. It is desirable to occupy 50% or more.
In the present embodiment, the shield conductor 16 is formed of a hollow compression stranded wire. Such a compression stranded wire is formed in a hollow shape by arranging a plurality of strands 26 having a circular cross section on the same circumference and passing the compression dies while twisting each strand 26 in one direction. .

この際に、素線26は、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられるので、石垣状に密接触して安定した構造(アーチ構造)になり、その形状が崩れることなく維持される。   At this time, the strands 26 are plastically deformed and part of the outer circumferences in contact with each other are twisted, so that they form a stable structure (arch structure) in close contact with the stone wall, The shape is maintained without breaking.

保護被覆層18は、シールド導体16の外周を覆うようにして設けられているが、この保護被覆層18は、必ずしも設ける必要はないが、これを設ける場合には、絶縁被覆層16と同様に、例えば、FEP、PFA等の弗素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、シールド導体16の外周に押し出し成形して、形成することができる。なお、本実施例の同軸ケーブル10は、最外径を1mm以下とすることができる。   The protective coating layer 18 is provided so as to cover the outer periphery of the shield conductor 16, but the protective coating layer 18 is not necessarily provided, but when it is provided, it is the same as the insulating coating layer 16. For example, a fluorine-based resin such as FEP or PFA, or a synthetic resin such as amorphous polyolefin resin or PEN (polyethylene naphthalate) can be formed by extrusion molding on the outer periphery of the shield conductor 16. Note that the outermost diameter of the coaxial cable 10 of the present embodiment can be 1 mm or less.

以上のように構成した同軸ケーブル10によれば、シールド導体16の内部に、長手方向に連続した3個の空隙部24を設けているので、中心導体12とシールド導体16の間の誘電率(等価誘電率)を小さくすることができる。   According to the coaxial cable 10 configured as described above, the three gap portions 24 that are continuous in the longitudinal direction are provided inside the shield conductor 16, so that the dielectric constant (between the center conductor 12 and the shield conductor 16 ( Equivalent dielectric constant) can be reduced.

また、本実施例の同軸ケーブル10は、シールド導体16は、圧縮撚り線で構成しており、この撚り線は、素線26同士が密接に接しているため、良好なシールド特性を有すると共に、素線26同士は接合しているが一体となっていないので良好な可撓性を有している。   Further, in the coaxial cable 10 of the present embodiment, the shield conductor 16 is composed of a compression stranded wire, and the stranded wire has good shielding characteristics because the strands 26 are in close contact with each other. Although the strands 26 are joined to each other, they are not integrated with each other, and therefore have good flexibility.

図2は、本発明にかかる細径同軸ケーブルの実施例2を示しており、上記実施例と同一若しくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。   FIG. 2 shows a second embodiment of a thin coaxial cable according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the point will be described.

同図に示した細径同軸ケーブル10aは、実施例1と同様に、中心導体12aと、絶縁被覆層14aと、シールド導体16aとを備えている。本実施例の場合、中心導体12a、シールド導体16aは、実施例1と実質的に同一であって、特に、シールド導体16aは、実施例1と同様に、複数の素線26aからなる圧縮撚り線で構成され、各素線26aは、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられて、石垣状に密接触して安定した構造(アーチ構造)になっている。   Similar to the first embodiment, the small-diameter coaxial cable 10a shown in the figure includes a center conductor 12a, an insulating coating layer 14a, and a shield conductor 16a. In the case of the present embodiment, the central conductor 12a and the shield conductor 16a are substantially the same as in the first embodiment, and in particular, the shield conductor 16a is a compression twist composed of a plurality of strands 26a as in the first embodiment. Each of the strands 26a is composed of a wire, and a part of the outer periphery that is in contact with each other is plastically deformed, twisted, and in close contact with a stone wall shape to form a stable structure (arch structure) It has become.

絶縁被覆層14aは、中心導体12aの外周を覆うように形成された電気絶縁性のものであって、例えば、PTFE、FEP、PFA等の弗素系樹脂、或いはAPO(アモルファスポリオレフィン)樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、中心導体12aの外周に、円環状に押し出し成形している。   The insulating coating layer 14a is an electrically insulating layer formed so as to cover the outer periphery of the center conductor 12a. For example, the insulating coating layer 14a is a fluorine-based resin such as PTFE, FEP, or PFA, or APO (amorphous polyolefin) resin, PEN ( A synthetic resin such as polyethylene naphthalate is extruded on the outer periphery of the center conductor 12a in an annular shape.

このように構成した同軸ケーブル10aでも、シールド導体16aは、圧縮撚り線で構成しており、この撚り線は、素線26a同士が密接に接しているため、良好なシールド特性を有すると共に、素線26a同士は接合しているが一体となっていないので良好な可撓性を有している。   Even in the coaxial cable 10a configured as described above, the shield conductor 16a is formed of a compression stranded wire, and the strand wire 26a is in close contact with each other. Although the wires 26a are joined to each other, they are not integrated with each other, and thus have good flexibility.

図3は、本発明にかかる細径同軸ケーブルの実施例3を示しており、上記実施例と同一若しくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。   FIG. 3 shows a third embodiment of the thin coaxial cable according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the point will be described.

同図に示した細径同軸ケーブル10bは、実施例1と同様に、中心導体12bと、絶縁被覆層14bと、シールド導体16bとを備えている。本実施例の場合、中心導体12b、シールド導体16bは、実施例1と実質的に同一であって、特に、シールド導体16bは、実施例1と同様に、複数の素線26bからなる圧縮撚り線で構成され、各素線26bは、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられて、石垣状に密接触して安定した構造(アーチ構造)になっている。   Similar to the first embodiment, the small-diameter coaxial cable 10b shown in the figure includes a center conductor 12b, an insulating coating layer 14b, and a shield conductor 16b. In the case of the present embodiment, the center conductor 12b and the shield conductor 16b are substantially the same as in the first embodiment, and in particular, the shield conductor 16b is a compression twist composed of a plurality of strands 26b as in the first embodiment. Each of the strands 26b is composed of a wire, and a part of the outer periphery that is in contact with each other is plastically deformed, twisted, and in close contact with a stone wall shape to form a stable structure (arch structure) It has become.

絶縁被覆層14bは、実施例1と同様に合成樹脂の押出し成形により形成され、中心導体12bの外周を被覆する内環状部140bと、内環状部140bから外方に延設される複数の連結部141bと、連結部141bの外周縁を結合させる外環状部142bとを備え、連結部142bで内,外環状部140b,142bで隔成された空隙部24bの周方向を区分するように構成している。   The insulating coating layer 14b is formed by extrusion molding of a synthetic resin as in the first embodiment, and includes an inner annular portion 140b that covers the outer periphery of the center conductor 12b, and a plurality of couplings that extend outward from the inner annular portion 140b. Part 141b and outer annular part 142b for coupling the outer peripheral edge of connecting part 141b, and configured to divide the circumferential direction of gap 24b defined by inner and outer annular parts 140b and 142b by connecting part 142b. doing.

連結部141bは、本実施例の場合、3個から構成され、3個の連結部141bは、中心から等角度間隔で外方に向けて放射状に延設されている。このように構成された実施例3では、実施例1と同等の作用効果が得られる。   In the case of the present embodiment, the connecting portion 141b is composed of three pieces, and the three connecting portions 141b extend radially outward from the center at equal angular intervals. In the third embodiment configured as described above, the same effects as those of the first embodiment can be obtained.

図4は、本発明にかかる細径同軸ケーブルの実施例4を示しており、上記実施例と同一若しくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。   FIG. 4 shows a fourth embodiment of a thin coaxial cable according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the point will be described.

同図に示した細径同軸ケーブル10cは、実施例1と同様に、中心導体12cと、絶縁被覆層14cと、シールド導体16cとを備えている。本実施例の場合、中心導体12c、シールド導体16cは、実施例1と実質的に同一であって、特に、シールド導体16cは、実施例1と同様に、複数の素線26cからなる圧縮撚り線で構成され、各素線26cは、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられて、石垣状に密接触して安定した構造(アーチ構造)になっている。   Similar to the first embodiment, the small-diameter coaxial cable 10c shown in the figure includes a center conductor 12c, an insulating coating layer 14c, and a shield conductor 16c. In the case of the present embodiment, the center conductor 12c and the shield conductor 16c are substantially the same as in the first embodiment, and in particular, the shield conductor 16c is a compression twist composed of a plurality of strands 26c as in the first embodiment. Each of the strands 26c is composed of a wire, and a part of the outer periphery in contact with each other is plastically deformed, twisted, and in close contact with a stone wall shape to form a stable structure (arch structure) It has become.

中心導体12cの外周を覆う絶縁被覆層14cは、本実施例の場合、5本の中空パイプ140cから構成され、これらの数の中空パイプ140cを中心導体12cの外周に撚り合わせるようにして、添設している。このように構成された実施例4では、実施例1と実質的に同等の作用効果が得られる。   In this embodiment, the insulating coating layer 14c covering the outer periphery of the center conductor 12c is composed of five hollow pipes 140c, and these numbers of hollow pipes 140c are twisted around the outer periphery of the center conductor 12c. Has been established. In the fourth embodiment configured as described above, substantially the same effect as that of the first embodiment can be obtained.

次に、本発明にかかる細径同軸ケーブルの製造方法に関して、具体的な実施例に基づいて説明する。   Next, the manufacturing method of the thin coaxial cable concerning this invention is demonstrated based on a specific Example.

具体例1Example 1

図1に示した実施例1の同軸ケーブル10の製造方法   Manufacturing method of coaxial cable 10 of Example 1 shown in FIG.

以下に説明する製造方法では、図1に示した断面形状の同軸ケーブル10を製造する際の具体例であり、この製造方法では、まず、図5に示す断面形状の絶縁被覆導体30が作製される。   The manufacturing method described below is a specific example when the coaxial cable 10 having the cross-sectional shape shown in FIG. 1 is manufactured. In this manufacturing method, first, the insulating coated conductor 30 having the cross-sectional shape shown in FIG. 5 is manufactured. The

この絶縁被覆導体30は、0.068mmの銀メッキ銅線を7本撚り合わせた撚り線を中心導体12とし、これを、クロスヘッドダイに導き、所定形状のノズルに通過させ、引き取り速度11m/minの速度で引き取りながら350℃の押出温度にてFEP樹脂(NP−100:商品名,ダイキン工業製、比誘電率2.1)を押出し被覆して、絶縁被覆層14を形成したものである。   The insulation-coated conductor 30 is formed by twisting seven silver-plated copper wires each having a thickness of 0.068 mm as the central conductor 12, which is led to a crosshead die and passed through a nozzle having a predetermined shape. The insulating coating layer 14 is formed by extrusion coating of FEP resin (NP-100: trade name, manufactured by Daikin Industries, Ltd., relative dielectric constant 2.1) at an extrusion temperature of 350 ° C. while taking over at a rate of min. .

この場合、被覆後の冷却は、特に行わなかった。被覆後の断面形状は、中心導体12の外周に環状部20と、3本の柱状部22とを設けた形状であり、柱状部22の(平均)厚みが0.06mm、柱状部22の頂点を結ぶ仮想円の外径が0.47mm、中心導体12の外径の仮想円と、柱状部22の頂点を結ぶ仮想円の間に占める空隙部の比率は70%となっていた。以上のようにして作製した絶縁被覆導体30は、コアボビン32に巻き取った。   In this case, cooling after coating was not particularly performed. The cross-sectional shape after the coating is a shape in which an annular portion 20 and three columnar portions 22 are provided on the outer periphery of the central conductor 12, and the (average) thickness of the columnar portions 22 is 0.06 mm, and the apex of the columnar portions 22. The ratio of the void portion occupied between the virtual circle having the outer diameter of 0.47 mm, the outer diameter of the central conductor 12 and the virtual circle connecting the apexes of the columnar portions 22 was 70%. The insulating coated conductor 30 produced as described above was wound around the core bobbin 32.

次に、圧縮撚り線によるシールド導体16の形成加工を、シングルツイストタイプの集合撚り線機34と撚り戻し機46を使用して行った。図6は、この際の加工の状態を示した説明図である。   Next, the formation process of the shield conductor 16 by the compression strand wire was performed using the single twist type collective strand wire machine 34 and the twist back machine 46. FIG. 6 is an explanatory view showing the state of processing at this time.

集合撚り線機34は、先端の集線口に圧縮ダイス36が設けられた旋回部38と、巻取りボビン40と、巻取りボビン40のトラバース機構部42とを備え、圧縮ダイス36の前方には、整列ガイド板44が設けられている。   The collective stranding machine 34 is provided with a swivel portion 38 provided with a compression die 36 at a leading end of the concentrator, a winding bobbin 40, and a traverse mechanism 42 of the winding bobbin 40, and in front of the compression die 36. An alignment guide plate 44 is provided.

整列ガイド板44には、中心に絶縁被覆導体30の挿通孔44aが貫通形成され、その周辺に素線26の挿通孔44bが複数貫通形成されている。また、この整列ガイド板44の前方には、撚り戻し機46が設置され、この撚り戻し機46には、絶縁被覆導体30が捲回されたコアボビン32が装着されている。   In the alignment guide plate 44, an insertion hole 44a of the insulating coated conductor 30 is formed in the center, and a plurality of insertion holes 44b of the element wire 26 are formed in the periphery thereof. In addition, a twister 46 is installed in front of the alignment guide plate 44, and the core bobbin 32 around which the insulation-coated conductor 30 is wound is attached to the twister 46.

圧縮撚り線を絶縁被覆導体30の外周に形成する際には、図6に示すように、コアボビン32から巻き戻した絶縁被覆導体30を、整列ガイド板44を介して、圧縮ダイス36の中心に挿通させて、先端を巻取りボビン40に固定する。   When forming the compression stranded wire on the outer periphery of the insulation coated conductor 30, as shown in FIG. 6, the insulation coated conductor 30 unwound from the core bobbin 32 is placed at the center of the compression die 36 via the alignment guide plate 44. The tip is fixed to the take-up bobbin 40 by being inserted.

これとともに、複数の素線26を、整列ガイド板44を介して、圧縮ダイス36の外周に挿入する。そして、この状態で、集合撚り線機34を駆動させて、旋回部38を所定の方向に旋回させる。   At the same time, the plurality of strands 26 are inserted into the outer periphery of the compression die 36 via the alignment guide plate 44. In this state, the collective stranding machine 34 is driven to turn the turning unit 38 in a predetermined direction.

この際に、絶縁被覆導体30は、700rpmの回転数で、旋回部38の旋回方向(撚り方向)と同一方向に、撚り戻し機46で回転させながら、整列ガイド板44の中央部に供給する。   At this time, the insulating coated conductor 30 is supplied to the central portion of the alignment guide plate 44 while being rotated by the untwisting machine 46 in the same direction as the turning direction (twisting direction) of the turning portion 38 at a rotation speed of 700 rpm. .

素線26は、外径0.117mm銀メッキ銅線を16本使用し、これを整列ガイド板44の外周部に円環状に配列する。そして、これらを、φ0.69mmの圧縮ダイス36を通過させて圧縮させつつ、Pt6.2mm(700rpm)で撚りながら、外径0.70mm、内径0.47mmの圧縮撚り線でシールド導体16を形成した。巻取りボビン40の巻取り速度は、毎分4.4mとした。   As the strand 26, 16 silver-plated copper wires having an outer diameter of 0.117 mm are used and arranged in an annular shape on the outer periphery of the alignment guide plate 44. The shield conductor 16 is formed by a compression twisted wire having an outer diameter of 0.70 mm and an inner diameter of 0.47 mm while being compressed by passing through a compression die 36 having a diameter of 0.69 mm and twisted at Pt 6.2 mm (700 rpm). did. The winding speed of the winding bobbin 40 was 4.4 m / min.

圧縮ダイス36は、入り口から奥側にテーパーが設けられていて、その内部に挿入された素線26は、奥側に移動するに従って、周方向に配列された素線26同士が、密接して、徐々に塑性変形して、相互に密着するとともに、この状態で旋回部38を旋回させることで、撚りが加えられ、このような形態が連続して形成される。   The compression die 36 is provided with a taper from the entrance to the back side, and the strands 26 inserted into the compression die 36 move closer to each other as they move to the back side. By gradually plastically deforming and closely adhering to each other, by turning the swivel portion 38 in this state, twist is added, and such a form is continuously formed.

次に、得られた中間体をクロスヘッドダイに導き、引き取り速度15m/minの速度で引き取りながら丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を厚み0.05mmで被覆して保護被覆層18を形成し、図1に示す最終外径0.80mmの同軸ケーブル10を得た。   Next, the obtained intermediate is guided to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is coated with a thickness of 0.05 mm with a round die while taking it at a take-up speed of 15 m / min. Thus, the protective coating layer 18 was formed, and the coaxial cable 10 having a final outer diameter of 0.80 mm shown in FIG. 1 was obtained.

得られた同軸ケーブル10を分解して、絶縁被覆層14の撚りピッチを測定したところ、全く撚りが入っていないことが判った。更に、中心導体12のバラケ具合を長手方向に調べた結果、中心導体12の7本がバラケている箇所はなかった。   When the obtained coaxial cable 10 was disassembled and the twist pitch of the insulating coating layer 14 was measured, it was found that there was no twist at all. Furthermore, as a result of investigating the degree of variation of the center conductor 12 in the longitudinal direction, there was no place where seven of the center conductors 12 were scattered.

また、200mm程度に短く切断しても絶縁被覆導体30が突き出すような不具合は発生しなかった。得られた同軸ケーブル10をネットワークアナライザに接続し、高周波特性を評価した。周波数3GHzでの伝送損失値が3.2dB/m、VSWRが1.1と良好な特性を示した。   Moreover, even if it cut | disconnects as short as about 200 mm, the malfunction that the insulation coating conductor 30 protrudes did not generate | occur | produce. The obtained coaxial cable 10 was connected to a network analyzer, and high frequency characteristics were evaluated. The transmission loss value at a frequency of 3 GHz was 3.2 dB / m, and the VSWR was 1.1, showing good characteristics.

本具体例の製造方法の効果を確認するために、以下に説明する手順(比較例)で同軸ケーブルを製造した。   In order to confirm the effect of the manufacturing method of this specific example, a coaxial cable was manufactured by the following procedure (comparative example).

比較例1Comparative Example 1

絶縁被覆導体30を具体例1と同様に作成し使用した。圧縮撚り線によるシールド加工を、ダブルツイストタイプの集合撚り線機を使用して行った。絶縁被覆導体30は、クリールスタンドよりそのまま(撚り戻し機46無しで)整列ガイド板44の中央部に供給した。外径0.117mm銀メッキ銅線を16本繰り出し、圧縮ダイスの外周部に円環状に配列する。φ0.69mmの圧縮ダイスを通過させて圧縮すると共に、Pt3.5mm(700rpm)で撚りながら、外径0.70mm、内径0.47mmの圧縮撚り線でシールド導体16を形成した。速度は毎分4.9mとした。   An insulation coated conductor 30 was prepared and used in the same manner as in Example 1. Shielding with compression stranded wire was performed using a double twist type collective stranded wire machine. The insulation-coated conductor 30 was supplied from the creel stand as it is (without the untwisting machine 46) to the central portion of the alignment guide plate 44. Sixteen silver-plated copper wires having an outer diameter of 0.117 mm are fed out and arranged in an annular shape on the outer periphery of the compression die. The shield conductor 16 was formed with a compression strand having an outer diameter of 0.70 mm and an inner diameter of 0.47 mm while being compressed by passing through a compression die having a diameter of 0.69 mm and twisting at a Pt of 3.5 mm (700 rpm). The speed was 4.9 m / min.

なお、具体例1と同様の撚りピッチ(6.2mm)の設定(速度8.7m/分)では、一段目の撚り時点で圧縮ダイスを通過させるが、この時点の撚りピッチが12.4mmと長いため、圧縮撚り線の形成ができなかった。   In addition, when the twist pitch (6.2 mm) is set similarly to the specific example 1 (speed 8.7 m / min), the compression die is allowed to pass at the time of the first stage twist, and the twist pitch at this time is 12.4 mm. Due to the long length, compression stranded wires could not be formed.

次に、得られた中間体をクロスヘッドダイに導き、引き取り速度15m/minの速度で引き取りながら丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を厚み0.05mmで被覆し、最終外径0.80mmの同軸ケーブルを得た。   Next, the obtained intermediate is guided to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is coated with a thickness of 0.05 mm with a round die while taking it at a take-up speed of 15 m / min. Thus, a coaxial cable having a final outer diameter of 0.80 mm was obtained.

得られた同軸ケーブルを分解して、絶縁被覆導体30の撚りピッチを測定したところ、約3.5mmピッチの撚りが入っていることが判った。また、中心導体12のバラケ具合を長手方向に調べた結果、中心導体12の7本がバラケている箇所が連続していた。   When the obtained coaxial cable was disassembled and the twist pitch of the insulating coated conductor 30 was measured, it was found that a twist of about 3.5 mm pitch was included. Further, as a result of examining the degree of variation of the central conductor 12 in the longitudinal direction, the locations where the seven central conductors 12 were scattered were continuous.

このケーブルを200mm程度に切断した時、絶縁被覆導体30と、圧縮撚り線の長さが異なり、絶縁被覆導体30の突き出しが見られる場合があった。得られたケーブルをネットワークアナライザに接続し高周波特性を評価した結果、周波数3GHzでの伝送損失が4.3dB/m、VSWRは1.3と実施例1に比較して劣る結果となった。   When this cable was cut to about 200 mm, the insulation coated conductor 30 and the length of the compression stranded wire were different, and the insulation coated conductor 30 sometimes protruded. As a result of connecting the obtained cable to a network analyzer and evaluating the high frequency characteristics, the transmission loss at a frequency of 3 GHz was 4.3 dB / m, and the VSWR was 1.3, which was inferior to that of Example 1.

比較例2Comparative Example 2

絶縁被覆導体30を具体例1と同様に作成し使用した。圧縮撚り線によるシールド加工を、ダブルツイストタイプの集合撚り線機と回転供給装置を使用し、行った。   An insulation coated conductor 30 was prepared and used in the same manner as in Example 1. Shielding with compression stranded wires was performed using a double twist type collective stranded wire machine and a rotation feeder.

絶縁被覆導体30を圧縮撚り線の撚り方向と同一方向に700rpmで回転させながら整列ガイド板の中央部に供給した。外径0.117mm錫メッキ銅線を16本繰り出し、整列ガイド板の外周部に円環状に配列する。φ0.69mmの圧縮ダイスを通過させて圧縮すると共に、Pt3.5mm(700rpm)で撚りながら、外径0.70mm、内径0.47mmの圧縮撚り線でシールド導体16を形成した。速度は毎分4.9mとした。   The insulating coated conductor 30 was supplied to the central portion of the alignment guide plate while rotating at 700 rpm in the same direction as the twisted direction of the compression stranded wire. Sixteen tin-plated copper wires having an outer diameter of 0.117 mm are fed out and arranged in an annular shape on the outer periphery of the alignment guide plate. The shield conductor 16 was formed with a compression strand having an outer diameter of 0.70 mm and an inner diameter of 0.47 mm while being compressed by passing through a compression die having a diameter of 0.69 mm and twisting at a Pt of 3.5 mm (700 rpm). The speed was 4.9 m / min.

次に、得られた中間体をクロスヘッドダイに導き、引き取り速度15m/minの速度で引き取りながら丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を厚み0.05mmで被覆し、図1に示すような最終外径0.80mmの同軸ケーブルを得た。   Next, the obtained intermediate is guided to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is coated with a thickness of 0.05 mm with a round die while taking it at a take-up speed of 15 m / min. As a result, a coaxial cable having a final outer diameter of 0.80 mm as shown in FIG. 1 was obtained.

得られた同軸ケーブルを分解し絶縁被覆層14の撚りピッチを測定したところ、撚りが入っている部分があり、ピッチは安定しなかった。更に中心導体12のバラケ具合を長手方向に調べた結果、中心導体12の7本がバラけている箇所が連続していた。また、200mm程度に短く切断すると、絶縁被覆導体30が突き出し、突き出し量は、比較例1より増加した。   The obtained coaxial cable was disassembled and the twist pitch of the insulating coating layer 14 was measured. As a result, there was a twisted portion, and the pitch was not stable. Furthermore, as a result of investigating the degree of variation of the center conductor 12 in the longitudinal direction, the locations where seven of the center conductors 12 were scattered were continuous. Moreover, when it cut | disconnects about 200 mm short, the insulation coating conductor 30 protruded, and the protrusion amount increased from the comparative example 1. FIG.

得られたケーブルをネットワークアナライザに接続し、高周波特性を評価した。周波数3GHzでの伝送損失値が4.6dB/m、VSWRが1.35と具体例1に比較して劣る結果となった。   The obtained cable was connected to a network analyzer to evaluate high frequency characteristics. The transmission loss value at a frequency of 3 GHz was 4.6 dB / m, and the VSWR was 1.35, which was inferior to that of the first specific example.

具体例2Example 2

図2に示した実施例2の同軸ケーブル10aの製造方法   Manufacturing method of coaxial cable 10a of Example 2 shown in FIG.

0.055mmの銀メッキ銅線を7本撚り合わせた撚り線を中心導体12aとした。これをクロスヘッドダイに導き、丸形状のノズルを通過させ、引き取り速度11m/minの速度で引き取りながら350℃の押出温度にてFEP樹脂(NP−100:商品名,ダイキン工業製、比誘電率2.1)を押出して、中心導体12の外周に絶縁層被覆層14aを形成して、外径0.47mmの円形状の絶縁被覆導体30aを得た。   A stranded wire formed by twisting seven 0.055-mm silver-plated copper wires was used as the central conductor 12a. FEP resin (NP-100: trade name, manufactured by Daikin Industries, relative dielectric constant) at an extrusion temperature of 350 ° C. while guiding this to a crosshead die, passing through a round nozzle and taking it up at a take-up speed of 11 m / min. 2.1) was extruded to form an insulating layer coating layer 14a on the outer periphery of the central conductor 12, and a circular insulating coating conductor 30a having an outer diameter of 0.47 mm was obtained.

次に、圧縮撚り線によるシールド加工を、図6に示した、シングルツイストタイプの集合撚り線機34を使用し、撚り戻し機46を使用なかった以外は、具体例1と同様に行った。   Next, shield processing by compression stranded wire was performed in the same manner as in Example 1 except that the single twist type collective stranded wire machine 34 shown in FIG. 6 was used and the untwisting machine 46 was not used.

この場合、絶縁被覆導体30aを回転させないで整列ガイド板44の中央部に供給した。外径0.117mm銀メッキ銅線(素線26a)を16本繰り出し、整列ガイド板44の外周部に円環状に配列する。φ0.69mmの圧縮ダイス36を通過させて圧縮すると共に、Pt6.2mm(700rpm)で撚りながら、外径0.70mm、内径0.47mmの圧縮撚り線でシールド導体16aを形成した。速度は毎分4.4mとした。   In this case, the insulating coated conductor 30a was supplied to the central portion of the alignment guide plate 44 without rotating. Sixteen silver-plated copper wires (element wire 26 a) having an outer diameter of 0.117 mm are fed out and arranged in an annular shape on the outer periphery of the alignment guide plate 44. The shield conductor 16a was formed with a compression stranded wire having an outer diameter of 0.70 mm and an inner diameter of 0.47 mm while being compressed by passing through a compression die 36 having a diameter of 0.69 mm and being twisted at Pt 6.2 mm (700 rpm). The speed was 4.4 m / min.

次に、得られたケーブルをクロスヘッドダイに導き、引き取り速度15m/minの速度で引き取りながら丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を厚み0.05mmで被覆し、図2に示した断面構造で、最外周に保護被覆層を設けた最終外径0.80mmの同軸ケーブル10aを得た。   Next, the obtained cable is guided to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is coated with a thickness of 0.05 mm with a round die while being drawn at a take-up speed of 15 m / min. A coaxial cable 10a having a final outer diameter of 0.80 mm having a cross-sectional structure shown in FIG.

得られた同軸ケーブル10aを分解し、中心導体12aのバラケ具合を長手方向に調べた結果、中心導体12aの7本がバラケている箇所はなかった。また、200mm程度に短く切断しても絶縁被覆導体30aが突き出すようなことはなかった。得られたケーブルをネットワークアナライザに接続し、高周波特性を評価した。周波数3GHzでの伝送損失値が4.3dB/m、VSWRが1.1と良好な特性を示した。   As a result of disassembling the obtained coaxial cable 10a and examining the degree of variation of the central conductor 12a in the longitudinal direction, there was no place where seven of the central conductors 12a were scattered. Further, the insulating coated conductor 30a did not protrude even when cut to about 200 mm. The obtained cable was connected to a network analyzer to evaluate high frequency characteristics. The transmission loss value at a frequency of 3 GHz was 4.3 dB / m, and the VSWR was 1.1.

次に以下の方法でケーブルの可撓性を評価した。10mm間隔の枠に長さ30mmに切断したケーブルを設置し、Φ2.9mmの治具を引っ掛け、下に10mm/minの速度で引張り、その最大荷重を測定した。測定法の概略を図7に示す。その結果、最大荷重は約90gであった。一般的な銅線の横巻きシールドとした、後述の比較例3と大差なく、充分な可撓性を示していることが分かった。   Next, the flexibility of the cable was evaluated by the following method. A cable cut to a length of 30 mm was placed on a frame with a spacing of 10 mm, a jig with a diameter of 2.9 mm was hooked and pulled downward at a speed of 10 mm / min, and the maximum load was measured. An outline of the measurement method is shown in FIG. As a result, the maximum load was about 90 g. It turned out that it showed sufficient flexibility without making a great difference from Comparative Example 3 to be described later, which is a horizontal winding shield of a general copper wire.

比較例3Comparative Example 3

絶縁被覆導体30aを具体例2と同様に作成し使用した。次にシングルツイストタイプの集合撚り線機を使用し、上記絶縁被覆導体30aの外周上に0.071mm銀メッキ銅線24本を配置、ピッチ6.0mm、圧縮ダイスを用いず、速度4.4m/minの速度でシールド加工を行った。   An insulation coated conductor 30a was prepared and used in the same manner as in Example 2. Next, using a single twist type collective stranding wire machine, 24 0.071 mm silver-plated copper wires are arranged on the outer periphery of the insulating coated conductor 30a, the pitch is 6.0 mm, a compression die is not used, and the speed is 4.4 m. Shielding was performed at a speed of / min.

次に、得られたケーブルをクロスヘッドダイに導き、引き取り速度15m/minの速度で引き取りながら丸ダイスにてFEP樹脂(NP−100:商品名,ダイキン工業製)を厚み0.05mmで被覆し、最終外径0.712mmの同軸ケーブルを得た。   Next, the obtained cable is guided to a crosshead die, and FEP resin (NP-100: trade name, manufactured by Daikin Industries) is coated with a thickness of 0.05 mm with a round die while being drawn at a take-up speed of 15 m / min. A coaxial cable having a final outer diameter of 0.712 mm was obtained.

得られたケーブルをネットワークアナライザに接続し、高周波特性を評価した。周波数3GHzでの伝送損失値が4.7dB/m、VSWRが1.1と具体例2と比較し伝送損失が10%ほど悪化した。これはシールドを圧縮撚り線としなかったため、クロストーク特性が悪化し、伝送損失を悪化させたともの思われる。   The obtained cable was connected to a network analyzer to evaluate high frequency characteristics. The transmission loss value at a frequency of 3 GHz was 4.7 dB / m and the VSWR was 1.1, which was about 10% worse than the specific example 2. This seems to be because the crosstalk characteristic was deteriorated and the transmission loss was deteriorated because the shield was not a compression strand.

また、具体例2と同様にケーブルの可撓性を評価した。最大荷重は約80gであった。   Further, the flexibility of the cable was evaluated in the same manner as in Example 2. The maximum load was about 80 g.

本発明にかかる細径同軸ケーブルおよびその製造方法は、良好でかつ安定した高周波特性を有する細径同軸ケーブルがコストアップを来たすことなく得られ、携帯用端末の配線などに有効に活用することができる。   The thin coaxial cable according to the present invention and the manufacturing method thereof can be obtained without increasing the cost of a thin coaxial cable having good and stable high frequency characteristics, and can be effectively used for wiring of a portable terminal. it can.

本発明にかかる細径同軸ケーブルの実施例1を示す断面図である。It is sectional drawing which shows Example 1 of the small diameter coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの実施例2を示す断面図である。It is sectional drawing which shows Example 2 of the thin coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの実施例3を示す断面図である。It is sectional drawing which shows Example 3 of the small diameter coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの実施例4を示す断面図である。It is sectional drawing which shows Example 4 of the thin coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの製造方法で用いる絶縁被覆導体の一例を示す断面図である。It is sectional drawing which shows an example of the insulation coating conductor used with the manufacturing method of the thin coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの製造方法で用いるシングルツイストタイプの集合撚り線機の説明図である。It is explanatory drawing of the single twist type collective stranding machine used with the manufacturing method of the thin coaxial cable concerning this invention. 本発明にかかる細径同軸ケーブルの可撓性測定法の説明図である。It is explanatory drawing of the flexibility measuring method of the small diameter coaxial cable concerning this invention.

符号の説明Explanation of symbols

10,10a,10b,10c 細径同軸ケーブル
12,12a,12b,12c 中心導体
14,14a,14b,14c 絶縁被覆層
16,16a,16b,16c シールド導体
18 保護被覆層
10, 10a, 10b, 10c Thin coaxial cable 12, 12a, 12b, 12c Center conductor 14, 14a, 14b, 14c Insulation coating layer 16, 16a, 16b, 16c Shield conductor 18 Protective coating layer

Claims (10)

中心導体と、前記中心導体の外周を覆う絶縁被覆層と、前記絶縁被覆層の外周を覆うシールド導体とを備えた細径同軸ケーブルにおいて、
前記シールド導体は、複数の素線を前記絶縁被覆層の外周に沿って配置して、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線で構成したことを特徴とする細径同軸ケーブル。
In a thin coaxial cable comprising a center conductor, an insulating coating layer covering the outer periphery of the central conductor, and a shield conductor covering the outer periphery of the insulating coating layer,
The shield conductor is a compression stranded wire in which a plurality of strands are arranged along the outer periphery of the insulating coating layer, and a part of the outer periphery of the strands in contact with each other is plastically deformed to form a hollow shape. A small-diameter coaxial cable characterized by comprising.
前記シールド導体の外周に保護被覆層を設けたことを特徴とする請求項1記載の細径同軸ケーブル。   The thin coaxial cable according to claim 1, wherein a protective coating layer is provided on an outer periphery of the shield conductor. 前記絶縁被覆層は、前記中心導体を環状に被覆する円環状部と、前記円環状部から径外方向に延びる1以上の柱状部とを備え、
前記圧縮撚り線との間に、前記柱状部で区分された中空部が形成されることを特徴とする請求項1または2記載の細径同軸ケーブル。
The insulating coating layer includes an annular portion that annularly covers the center conductor, and one or more columnar portions that extend radially outward from the annular portion,
The small-diameter coaxial cable according to claim 1 or 2, wherein a hollow portion divided by the columnar portion is formed between the compression stranded wires.
前記絶縁被覆層は、中心導体の外周を被覆する内環状部と、前記内環状部から外方に延設される複数の連結部と、前記連結部の外周縁を結合させる外環状部とを備え、
前記連結部で前記内,外環状部で隔成された空隙部の周方向を区分することを特徴とする請求項1または2記載の細径同軸ケーブル。
The insulating coating layer includes an inner annular portion that covers an outer periphery of a central conductor, a plurality of connecting portions that extend outward from the inner annular portion, and an outer annular portion that joins the outer peripheral edges of the connecting portions. Prepared,
3. The small-diameter coaxial cable according to claim 1, wherein a circumferential direction of a gap portion defined by the inner and outer annular portions is divided by the connecting portion.
前記絶縁被覆層は、弗素樹脂、ポリオレフィン樹脂、PEN(ポリエチレンナフタレート)樹脂、APO(環状ポリオレフィン)樹脂等の低誘電率樹脂を用いることを特徴とする請求項1〜4のいずれか1項記載の細径同軸ケーブル。   5. The insulating coating layer according to claim 1, wherein a low dielectric constant resin such as fluorine resin, polyolefin resin, PEN (polyethylene naphthalate) resin, or APO (cyclic polyolefin) resin is used. Thin coaxial cable. 前記絶縁被覆層は、前記柱状部の数が2〜4本で、中空率が50%以上であることを特徴とする請求項3記載の細径同軸ケーブル。   4. The thin coaxial cable according to claim 3, wherein the insulating coating layer has 2 to 4 columnar portions and a hollowness of 50% or more. 中心導体と、絶縁被覆層と、シールド導体とで構成する細径同軸ケーブルの製造方法において、
前記中心導体の外周に、合成樹脂を押出し成形して絶縁被覆層を被覆形成した絶縁被覆導体を得る工程と、
前記絶縁被覆導体を、前方に設けられた整列ガイド板を介して、シングルツイスト機などの集合撚り線機の中央部に配置導入するとともに、
複数本の素線を、前記整列ガイト板を介して、前記絶縁被覆導体の前記絶縁被覆層の外周に沿って同一円周上に均等配置した後に、
前記集合撚り線機の集線口に取り付けた圧縮ダイスを通過させながら、前記圧縮ダイスを回転することにより、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線を、前記絶縁被覆導体の外側に連続的に形成して前記シールド導体を形成する工程と、
を備えたことを特徴とする細径同軸ケーブルの製造方法。
In the manufacturing method of the small-diameter coaxial cable constituted by the center conductor, the insulating coating layer, and the shield conductor,
A step of obtaining an insulating coated conductor formed by extruding a synthetic resin and forming an insulating coating layer on the outer periphery of the central conductor;
The insulating coated conductor is arranged and introduced into the central portion of a collective stranding machine such as a single twist machine through an alignment guide plate provided in the front,
After arranging a plurality of strands equally on the same circumference along the outer periphery of the insulating coating layer of the insulating coating conductor via the alignment guide plate,
By rotating the compression die while passing the compression die attached to the concentrator of the assembly stranding machine, a part of the outer circumferences of the strands in contact with each other was plastically deformed to form a hollow shape. Forming the shield conductor by continuously forming a compression stranded wire on the outside of the insulation-coated conductor; and
A method for producing a thin coaxial cable, comprising:
前記シールド導体の形成工程の後に、前記圧縮撚り線の外周に、電気絶縁性の合成樹脂にて保護被覆層を形成することを特徴とする請求項7記載の細径同軸ケーブルの製造方法。   8. The method of manufacturing a thin coaxial cable according to claim 7, wherein a protective coating layer is formed of an electrically insulating synthetic resin on the outer periphery of the compression stranded wire after the step of forming the shield conductor. 前記絶縁被覆導体は、前記圧縮ダイスの中央部に、当該集合撚り線機の回転方向と同方向に回転させつつ供給することを特徴とする請求項7または8記載の細径同軸ケーブルの製造方法。   9. The method of manufacturing a small-diameter coaxial cable according to claim 7, wherein the insulation-coated conductor is supplied to the central portion of the compression die while being rotated in the same direction as the rotation direction of the collective stranding machine. . 前記絶縁被覆導体の供給は、前記集合撚り線機の回転と完全同期させることを特徴とする請求項9記載の細径同軸ケーブルの製造方法。   The method for manufacturing a thin coaxial cable according to claim 9, wherein the supply of the insulation-coated conductor is completely synchronized with the rotation of the collective stranding machine.
JP2003350376A 2003-10-09 2003-10-09 Thin coaxial cable and its manufacturing method Pending JP2005116380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350376A JP2005116380A (en) 2003-10-09 2003-10-09 Thin coaxial cable and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350376A JP2005116380A (en) 2003-10-09 2003-10-09 Thin coaxial cable and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005116380A true JP2005116380A (en) 2005-04-28

Family

ID=34541950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350376A Pending JP2005116380A (en) 2003-10-09 2003-10-09 Thin coaxial cable and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005116380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981196B1 (en) * 2011-03-25 2012-07-18 富士高分子工業株式会社 Wire array rubber connector and manufacturing method thereof
WO2012132092A1 (en) * 2011-03-25 2012-10-04 富士高分子工業株式会社 Wire array rubber connector and manufacturing method therefor
CN109300607A (en) * 2018-10-15 2019-02-01 航天瑞奇电缆有限公司 A kind of abnormity single line circle process copper conductor and special-shaped single line circle process copper conductor cable
JP2020024868A (en) * 2018-08-08 2020-02-13 株式会社フジクラ coaxial cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981196B1 (en) * 2011-03-25 2012-07-18 富士高分子工業株式会社 Wire array rubber connector and manufacturing method thereof
WO2012132092A1 (en) * 2011-03-25 2012-10-04 富士高分子工業株式会社 Wire array rubber connector and manufacturing method therefor
US9160094B2 (en) 2011-03-25 2015-10-13 Fuji Polymer Industries Co., Ltd. Wire array rubber connector and method for producing the same
JP2020024868A (en) * 2018-08-08 2020-02-13 株式会社フジクラ coaxial cable
CN109300607A (en) * 2018-10-15 2019-02-01 航天瑞奇电缆有限公司 A kind of abnormity single line circle process copper conductor and special-shaped single line circle process copper conductor cable

Similar Documents

Publication Publication Date Title
JP4757159B2 (en) Method for producing hollow core body for coaxial cable
US8455761B2 (en) Coaxial cable and multicoaxial cable
KR100626245B1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
JP4493595B2 (en) Foamed coaxial cable and manufacturing method thereof
JP2003036740A (en) Double laterally wound two-core parallel extra-fine coaxial cable
WO2009119339A1 (en) Method for producing hollow core body of coaxial cable, hollow core body of coaxial cable, and coaxial cable
TW200405363A (en) Thin-diameter coaxial cable and method of producing the same
JP2014007005A (en) Multi-core cable and method for manufacturing the same
JP6164844B2 (en) Insulated wire, coaxial cable and multi-core cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP2007250235A (en) Hollow core object for coaxial cable, manufacturing method of core object, and coaxial cable using this core object
EP2246863B1 (en) Improved profiled insulation
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP2005116380A (en) Thin coaxial cable and its manufacturing method
JP2011071095A (en) Coaxial cable and multicore coaxial cable
JP2005276785A (en) Coaxial cable and manufacturing method of the same
JP2008016400A (en) Center interposition with rib and wire, and rounded multi-pair cable using it
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
JP2011228298A (en) Multicore cable
JP2006221889A (en) Manufacturing method of thermoplastic resin spiral body, and thermoplastic resin spiral body
JP2006049067A (en) Coaxial cable and its manufacturing method
JP3749875B2 (en) Manufacturing method of high precision foamed coaxial cable
JP2011198644A (en) Coaxial cable and multi-core cable using the same
JP7111915B2 (en) Communication cable and its manufacturing method