WO2011007635A1 - Hollow-core-body for transmission cable, manufacturing method thereof, and signal transmission cable - Google Patents

Hollow-core-body for transmission cable, manufacturing method thereof, and signal transmission cable Download PDF

Info

Publication number
WO2011007635A1
WO2011007635A1 PCT/JP2010/059898 JP2010059898W WO2011007635A1 WO 2011007635 A1 WO2011007635 A1 WO 2011007635A1 JP 2010059898 W JP2010059898 W JP 2010059898W WO 2011007635 A1 WO2011007635 A1 WO 2011007635A1
Authority
WO
WIPO (PCT)
Prior art keywords
core body
hollow core
hole
annular portion
transmission cable
Prior art date
Application number
PCT/JP2010/059898
Other languages
French (fr)
Japanese (ja)
Inventor
晴士 田中
繁宏 松野
雅也 末守
賢 原田
Original Assignee
宇部日東化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部日東化成株式会社 filed Critical 宇部日東化成株式会社
Publication of WO2011007635A1 publication Critical patent/WO2011007635A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/067Insulating coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • H01B11/1856Discontinuous insulation

Definitions

  • the present invention relates to a hollow core body used for various transmission cables such as a coaxial cable, a manufacturing method thereof, and a signal transmission cable using the core body. More specifically, the present invention relates to a technique for improving the mechanical strength of a hollow core body.
  • a hollow core body having a gap continuous in the longitudinal direction is used.
  • This hollow core body is a core body in which an insulating covering is formed of a foamable resin.
  • a transmission cable having a high hollow ratio and good high-frequency electrical characteristics can be formed by, for example, extruding a thermoplastic insulating resin having a small dielectric constant and tan ⁇ around the inner conductor (see, for example, Patent Document 4). .
  • JP 2007-42400 A JP 2007-335393 A JP 2007-250235 A JP 2008-243720 A
  • Conventional hollow core bodies include fluororesins such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) and FEP (fluorinated ethylene propylene / tetrafluoroethylene / hexafluoropropylene copolymer).
  • fluororesins such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) and FEP (fluorinated ethylene propylene / tetrafluoroethylene / hexafluoropropylene copolymer).
  • PE Polyethylene; Polyethylene
  • other olefinic resins are used to form insulation coatings, but these resins generally have low mechanical strength (compression elastic modulus). Is easy to deform.
  • the hollow ratio of the insulating coating In order to improve electrical characteristics such as high-frequency characteristics and delay time, it is preferable to increase the hollow ratio of the insulating coating, but if this is done, the thickness of each part constituting the insulating coating is reduced, and mechanical properties are reduced. The strength, particularly the lateral pressure strength, is reduced. For this reason, in the conventional hollow core body, in order to ensure mechanical strength, the hollow ratio of an insulation coating body must be suppressed, and there is a problem that sufficient electrical characteristics and small diameter cannot be obtained.
  • APO amorphous polyolefin
  • TPX polymethylpentene
  • the mechanical strength of the core body can be increased without reducing the hollowness ratio. Since the core body of a structure has few contact areas of an internal conductor and an insulation coating body, these adhesiveness is low and it is difficult to produce stably.
  • the present invention provides a hollow core body for a transmission cable that has a high electrical hollowness ratio, is excellent in mechanical strength, particularly lateral pressure strength, and can be stably produced, a manufacturing method thereof, and a signal transmission cable.
  • the main purpose is to ensure that the transmission cable has a high electrical hollowness ratio, is excellent in mechanical strength, particularly lateral pressure strength, and can be stably produced, a manufacturing method thereof, and a signal transmission cable.
  • a hollow core body for a transmission cable comprises an inner conductor, a thermoplastic resin, an inner annular portion covering the inner conductor, a plurality of rib portions extending radially from the inner annular portion, and the rib portions
  • An insulating covering body configured by an outer annular portion connecting the outer ends, and the insulating covering body includes three or more void portions surrounded by the inner annular portion, the outer annular portion, and the rib portion.
  • the thickness of the inner annular portion is 1 to 4% of the outer diameter of the insulating covering, and is thinner than the rib portion and the outer annular portion.
  • the “thickness of the inner annular portion” in the present invention is the shortest distance from the surface of the inner conductor to the gap in the cross section perpendicular to the longitudinal direction of the hollow core body, and the measured value for each gap is an average. It is the value.
  • the “thickness of the outer annular portion” is the shortest distance from the outer surface of the insulating covering to the gap in the cross section described above, and is a value obtained by averaging measured values for each gap.
  • the thickness of the rib portion is the shortest distance between the adjacent gap portions across the rib portion in the cross section described above, and is a value obtained by averaging the measured values of each rib portion.
  • the thickness of each of these parts can be measured from a micrograph obtained by photographing a cross section perpendicular to the longitudinal direction of the hollow core body by microscopic observation.
  • the thickness of the inner part that affects the electrical characteristics is thin, and the thickness of the outer part that has little effect on the electrical characteristics is thick, so the dielectric constant in the vicinity of the inner conductor is low, and Excellent mechanical strength of the core body such as compressive strength.
  • the thickness of the insulating covering may be increased in the order of the inner annular portion, the rib portion, and the outer annular portion.
  • the thickness of the outer annular portion can be, for example, 5 to 20% of the outer diameter of the insulating coating.
  • the ratio of the voids in the cross section perpendicular to the longitudinal direction is set to 20% or more
  • the equivalent dielectric constant is ⁇
  • the relative dielectric constant of the thermoplastic resin constituting the insulating coating (particularly in the description below) unless, the dielectric constant of the thermoplastic resin, when the.) indicating "dielectric constant" and epsilon 0, may be an electrical hollow ratio P e obtained by the following equation 1 in more than 45%.
  • the roundness of the outer annular portion can be, for example, 96% or more.
  • a thermoplastic resin which comprises the said insulation coating body a fluorine resin or polyolefin resin can be used, for example.
  • a center hole, an inner annular hole formed adjacent to the outer edge so as to surround the center hole, and a radial extension from the outer periphery of the inner annular hole are provided.
  • a die comprising three or more linear holes wider than the inner annular hole, and an outer annular hole connecting the outer ends of the linear holes and wider than the inner annular hole; While inserting the inner conductor, the molten resin is extruded from the inner annular hole, the straight hole and the outer annular hole, and the inner annular part and a rib part extending radially from the inner annular part are provided around the inner conductor.
  • a step of forming an insulating covering composed of an outer annular portion connecting the outer ends of the rib portion, and an inner annular portion, an outer annular portion, and a gap portion surrounded by the rib portion and continuous in the longitudinal direction.
  • air for adjusting internal pressure is formed in the gap.
  • the width of the inner annular hole for forming the inner annular portion is narrower than the linear hole forming the rib portion and the outer annular hole forming the outer annular portion, so that the periphery of the inner conductor In the insulating covering formed in (1), the thickness of the inner part that affects the electrical characteristics is thin, and the thickness of the outer part that has little influence on the electrical characteristics is thick.
  • a hollow core body having a high electrical hollow ratio and excellent mechanical strength, particularly lateral pressure strength can be obtained. Moreover, since this hollow core body is provided with the inner annular part, it can be produced stably.
  • a die whose width is increased in the order of an inner annular hole, a straight hole, and an outer annular hole may be used.
  • the signal transmission cable according to the present invention uses the hollow core body described above.
  • a hollow core body having a thin inner portion that affects electrical characteristics and a small outer portion thickness that has little influence on electrical characteristics is used, so that deformation in the cable manufacturing process is prevented. It is suppressed.
  • the signal transmission cable may be a coaxial cable. In that case, a shield layer is provided around the hollow core body.
  • the inner annular portion is thinner than the rib portion and the outer annular portion, the electrical hollow ratio is high, the mechanical strength, particularly the lateral pressure strength is excellent, and the production is stable.
  • a hollow core body can be realized.
  • (A) And (b) is sectional drawing which shows the structural example of the hollow core body which concerns on embodiment of this invention. It is sectional drawing which shows the other structural example of the hollow core body which concerns on embodiment of this invention. It is a figure which shows the structural example of the apparatus used when manufacturing the hollow core body which concerns on embodiment of this invention. It is sectional drawing which shows arrangement
  • the present inventor has conducted extensive experimental research to solve the above-mentioned problems, and has obtained the following knowledge.
  • a transmission cable such as a coaxial cable
  • an electric field is formed around the inner conductor.
  • the strength of the electric field increases as the distance from the inner conductor increases, and decreases as the distance from the inner conductor increases. Therefore, in such a transmission cable, in order to improve the electrical characteristics such as attenuation, delay time and characteristic impedance, the dielectric constant in the vicinity of the inner conductor may be reduced. What is necessary is just to make the dielectric constant of the insulation coating body provided in the small.
  • the dielectric constant of the insulating coating can be adjusted by changing the hollow ratio.
  • the physical hollow ratio and the electrical (effective) hollow There is a difference in rate values.
  • the electrical (effective) hollow ratio Pe is defined as C (pF / m) for the capacitance of the hollow core body, D (m) for the outer diameter, and d (m) for the effective outer diameter of the inner conductor.
  • it is a value calculated by the following mathematical formula 3 based on the equivalent (effective) dielectric constant ⁇ obtained from the following mathematical formula 2 and the dielectric constant ⁇ 0 of the thermoplastic resin constituting the insulating coating.
  • the inventor found that the dielectric constant (hollow ratio) of the outer part away from the inner conductor has little influence on the electrical characteristics compared to the dielectric constant (hollow ratio) of the part near the inner conductor, and is almost ignored. I also found that it was possible.
  • FIG.1 and FIG.2 is sectional drawing which shows the structural example of the hollow core body of this embodiment.
  • the hollow core bodies 10 and 11 of this embodiment are provided with three or more gap portions 2d continuous in the longitudinal direction around the inner conductors 1 and 3.
  • a body 2 is provided.
  • the internal conductors in the hollow core bodies 10 and 11 may be composed of a single conductor such as the internal conductor 1 shown in FIG. 1A, but may have a plurality of internal conductors 3 such as the internal conductor 3 shown in FIG.
  • the lead wire 3a may be used, or a twisted wire structure may be used.
  • the conductive wires constituting the inner conductors 1 and 3 for example, copper wires, copper alloy wires excellent in strength and conductivity, or plated wires whose surfaces are plated with silver or the like can be used. It is not limited, It can select from various conducting wires suitably and can be used.
  • the insulating cover 2 includes an inner annular portion 2a that covers the inner conductors 1 and 3, a plurality of rib portions 2b that extend radially from the inner annular body 2a, and an outer annular portion 2c that connects the outer ends of the rib portions 2b. It consists of and.
  • the inner annular portion 2 a and the outer annular portion 2 c are formed substantially coaxially, and the rib portions 2 b are arranged at substantially equal intervals along the circumferential direction thereof.
  • each void portion 2d is in the longitudinal direction (axial direction) of the hollow core bodies 10 and 11. It is formed continuously.
  • the thickness of the inner annular portion 2a is made thinner than that of the rib portion 2b and the outer annular portion 2c, and the hollow ratio of the portion closer to the inner conductors 1 and 3 is made higher than before.
  • the insulating cover 2 has a thin inner portion that affects the electrical characteristics and a thick outer portion that has little influence on the electrical characteristics. Thereby, the dielectric constant in the vicinity of the inner conductors 1 and 3 can be lowered without lowering the mechanical strength of the core body such as compressive strength.
  • the thickness of the insulating covering 2 when the thickness of the insulating covering 2 is increased in the order of the inner annular portion 2a, the rib portion 2b, and the outer annular portion 2c, while maintaining good mechanical strength that can withstand the load during cable manufacture, Electrical characteristics can be improved efficiently.
  • the thickness of the rib portion 2b may be configured to increase with increasing thickness.
  • the thickness of each part constituting the insulating covering 2 is not uniform, but in this case, the thickness of each part is “average thickness”. Compare with each other.
  • the thickness of the inner annular portion 2a is such that the inner conductors 1 and 3 can be exposed by processing such as machining or laser processing at the end processing, and the insulating covering 2 can be stably formed. Although it may be as much as possible, it is preferably 1 to 4% of the outer diameter of the insulating cover 2. If the thickness of the inner annular portion 2a is set to be less than 1% of the outer diameter of the insulating cover 2, it becomes difficult to stably form the hollow core, or the inner conductors 1, 3 and the insulating cover 2 The adhesiveness of the material is reduced. On the other hand, if the thickness of the inner annular portion 2a exceeds 4%, a sufficient electrical hollow ratio cannot be obtained, resulting in an increase in manufacturing cost.
  • the thickness of the outer annular portion 2c is preferably 5 to 20% of the outer diameter of the insulating cover 2. If the thickness of the outer annular portion 2c is less than 5% of the outer diameter of the insulating cover 2, sufficient lateral pressure strength may not be obtained, and if it exceeds 20%, the physical hollowness of the entire core body May be small and sufficient electrical characteristics may not be obtained.
  • the roundness of the outer annular portion 2c is desirably 96% or more.
  • the roundness rate is a value representing how close to a perfect circle, and can be obtained by the following Equation 4.
  • D max is the maximum value (longest diameter) of the outer diameter of the outer annular portion 2c
  • D min is the minimum value (shortest diameter) of the outer diameter of the outer annular portion 2c
  • the ratio of the void portion 2d in the cross section perpendicular to the longitudinal direction of the insulating coating body 2 is 20% or more, and it is desirable electrical hollow ratio P e obtained by the equation 3 is 45% or more.
  • the cross-sectional area hollowness defined here corresponds to the physical hollowness described above.
  • the present invention is limited to this.
  • the number of gaps 2d may be three or more, and can be set as appropriate according to the required hollow ratio and mechanical characteristics. However, if the number of the gaps 2d (the number of the ribs 2b) exceeds 10, the physical hollow ratio becomes small and the electrical characteristics deteriorate, so the number of the gaps 2d (the number of the ribs 2b) is It is preferably 3 to 10, more preferably 4 to 8, and particularly preferably 6.
  • Such an insulating covering 2 can be integrally formed of a thermoplastic resin.
  • the material include PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (Fluorinated-Ethylene-Propylene), and PTFE (PolyTetraFluoroEthylene).
  • Fluorine resins such as polytetrafluoroethylene; and olefin resins such as PE (Polyethylene; polyethylene) and PP (PolyPropylene; polypropylene).
  • FIG. 3 is a diagram showing a configuration example of an apparatus used in the method for manufacturing a hollow core body of the present embodiment.
  • FIG. 4 is a sectional view showing the arrangement of the holes in the die 22 used at that time.
  • FIG. 5 is a cross-sectional view showing the shape of a sheath core die constituting the die 22, and
  • FIG. 6 is an enlarged cross-sectional view of the tip portion thereof. 5 and 6 correspond to a cross-sectional view taken along line AA shown in FIG.
  • the insulating coating 2 made of a thermoplastic resin is formed around the inner conductor 1 by extrusion molding. Specifically, as shown in FIG. 3, the inner conductor 1 wound around a wire feeder (not shown) is drawn out by a take-up machine 20 and is extruded with a die 22 having the shape shown in FIG. Installed in the machine 21. And after covering the circumference
  • the die 22 used here includes a center hole 222a, an inner annular hole 222b formed adjacent to the outer edge so as to surround the center hole 222a, and an inner annular hole 222b.
  • a linear hole 222c extending radially from the outer periphery and an outer annular hole 222d for connecting the outer ends of the linear hole 222c are provided.
  • This die 22 can be configured, for example, by inserting a sheath core die 22a shown in FIG. 5 into a through hole provided in the round die 22b.
  • the sheath core die 22 a includes a disk-shaped flange 221 and a tip convex portion 222, and a pipe 223 is inserted and fitted to the shaft core.
  • the pipe 223 forms a central hole 222a through which the inner conductor 1 is inserted.
  • an inner annular hole 222b is formed around the center hole 222a adjacent to the outer surface of the pipe 223, and three or more linear shapes extending radially outward from the outer periphery of the inner annular hole 222b.
  • Holes 222c are provided at substantially equal angular intervals.
  • a gap is provided between the outer surface of the tip convex portion 222 of the sheath core die 22a and the side surface of the through hole of the round die 22b, and this gap connects the outer ends of the linear holes 222c. It becomes the outer annular hole 222d.
  • an air introduction hole 222e for introducing air for adjusting the internal pressure is provided in a portion surrounded by the inner annular portion 222b, the linear hole 222c, and the outer annular hole 222d, that is, a portion forming the gap portion 2d. It has been.
  • both the linear hole 222c and the outer annular hole 222d are formed wider than the inner annular hole 222b.
  • the insulation coating body 2 whose thickness of the inner annular part 2a is thinner than the rib part 2b and the outer annular part 2c can be formed.
  • the thickness of each part constituting the insulating cover 2 is changed to the inner annular part 2a, The thickness can be increased in the order of the rib portion 2b and the outer annular portion 2c.
  • the inner conductor 1 When a hollow core body is formed using this die 22, the inner conductor 1 is inserted into the center hole 222a while rotating, non-rotating or rotating SZ, and air for adjusting internal pressure is introduced from the air introduction hole 222e.
  • the molten resin may be extruded from the inner annular hole 222b, the straight hole 222c, and the outer annular hole 222d.
  • the inner annular portion 2a is formed around the inner conductor 1 by the resin extruded from the inner annular hole 222b, and three or more ribs extending radially from the inner annular portion 2a by the resin extruded from each linear hole 222c.
  • the portion 2b is formed, and the outer annular portion 2c that connects the outer ends of the rib portions 2b is formed by the resin extruded from the outer annular hole 222d.
  • air is introduced into the space surrounded by the inner annular portion 222b, the linear hole 222c, and the outer annular hole 222d, that is, the gap portion 2d, through the air introduction hole 222e. Therefore, a hollow core body in which the internal pressure of each gap 2d is uniform, the roundness is high, and the shape stability is excellent is obtained.
  • the air for adjusting the internal pressure may be an air flow that naturally occurs as the internal conductor 1 is taken, but it is desirable to positively introduce the air for adjusting the internal pressure pressurized to a predetermined pressure. .
  • the core body after the extrusion molding is cooled, and the resin constituting the insulating coating body 2 is completely solidified.
  • a water cooling method, an air cooling method, cooling by a heating / cooling pipe, and the like can be mentioned, and these can be used in combination.
  • a cooling tank storing cold water is provided in the cooling unit 23, and the core body after extrusion molding is immersed in the cold water in the cooling tank, thereby insulating coating body
  • the resin constituting 2 is cooled.
  • the cooling part 23 is provided with an air cooling nozzle, and the resin which comprises the insulation coating body 2 is cooled by injecting cold air from an air cooling nozzle toward the core body after extrusion molding.
  • FIG. 7 is a diagram schematically showing a method of cooling the core body by the heating / cooling tube.
  • the configuration of the heating / cooling tube 30 is not particularly limited as long as the temperature in the tube can be controlled.
  • a heater for heating is provided around the iron sleeve, and the thermoelectric tube 30 is heated. What can control the temperature in an iron sleeve by pair 31a, 31b can be used.
  • the hollow core body 10 manufactured by the process mentioned above is sent to a winding machine (not shown) via the take-up machine 24, and is wound up.
  • a winding machine not shown
  • the hollow core body 10 having the structure shown in FIG. 1A is manufactured has been described as an example, but the same applies to the hollow core body 11 having the structure shown in FIG. It can be manufactured by the method.
  • the thickness of the inner annular portion of the insulating coating that affects the electrical characteristics is reduced, and the thickness of the outer annular portion that has less influence on the electrical characteristics. Since the thickness is increased, a higher electrical hollowness can be obtained even if the physical hollowness is equivalent to the conventional one. As a result, it is possible to reduce the dielectric constant in the vicinity of the inner conductor without lowering the mechanical strength, particularly the lateral pressure strength, so that it is possible to realize a hollow core body excellent in both electrical characteristics and mechanical strength. it can.
  • the insulation coating body of the hollow core body of the present embodiment has a configuration including an inner annular body, and thus is excellent in production stability.
  • the hollow core body of the present embodiment can be suitably used for a signal transmission cable such as a coaxial cable.
  • a signal transmission cable such as a coaxial cable.
  • the shield layer provided around the hollow core body include a horizontal winding shield and a braided wire shield, and a known method such as a metal vapor deposition method or a method of winding a laminate tape is also applied. can do.
  • the hollow core body (Examples 1 to 3) in which the inner annular portion of the insulating coating is thinner than the rib portion and the outer annular portion, and the conventional hollow in which the thickness of each portion of the insulating coating is the same.
  • Core bodies (Comparative Examples 1 to 3) were prepared, and their electrical characteristics and mechanical strength (side pressure performance) were evaluated.
  • the effective outer diameter d (mm) of the inner conductor is 0.94 times the measured outer diameter (mm) in the case of seven stranded wires, and is not measured in the case of a single wire. The diameter.
  • the “side pressure performance” of each hollow core body in Examples and Comparative Examples was evaluated by the compressive strain rate measured by the method shown below.
  • the compression strain rate was measured using a portal compression tester RTM250 (compression load cell 50N) manufactured by Orientec. At this time, a 30 mm ⁇ 30 mm steel precision surface plate with a flat surface is used as the compression jig, and this compression jig is fixed to the tip of the compression load cell, and the crosshead of the portal type compression tester described above is used. Mounted downward on the bottom.
  • the hollow core body to be measured was installed horizontally on the bottom surface plate (plane surface) of the portal compression tester. Thereafter, the crosshead was moved and pressurized with a compression jig in the vertical direction so that a predetermined load was applied to the hollow core body. Then, after pressurizing for 60 seconds with a predetermined load, an image from the upper end to the lower end of the hollow core body was taken with a microscope (VH-7000, manufactured by Keyence Corporation) with the load applied. The distance from the upper end to the lower end in the body compression direction was measured in units of 1/1000 mm.
  • the compressive strain rate (%) of each hollow core body is determined by the distance D 1 (mm) from the upper end to the lower end in the compression direction in the compressed state and the outer diameter D 0 (mm) of the uncompressed portion. Based on the above, it was obtained from the following formula 5. In the present embodiment, the measurement is performed at three locations each for the case where the rib portion 2b is arranged in the compression direction and the case where the gap portion 2d is arranged in the compression direction. The “side pressure performance” was evaluated by the average value.
  • Example 1 The hollow core body of Example 1 has a structure including six gap portions 2d shown in FIG. 1B, and the inner conductor 3 is a tin-plated annealed copper twist using seven conductors 3a having a diameter of 0.127 mm. A wire (measured outer diameter: 0.390 mm, effective outer diameter d: 0.367 mm) was used. Then, the inner conductor 3 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating cover 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the wire was sent through the die at a speed of 15 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
  • PFA resin 420HPJ dielectric constant 2.1
  • the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die 22 and the water surface of the water cooling tank was set to 70 mm.
  • the hollow core body of Example 1 obtained in this way had an average outer diameter D of 0.99 mm and a roundness of 96%.
  • the average outer diameter D of the hollow core body is measured by measuring a fluctuation range of about 50 m over the entire circumference using a rocking type measuring instrument LS7000 from Keyence Corporation. Asked.
  • the thickness of the inner annular portion 2a was 0.030 mm (3.0% of the outer diameter D).
  • the thickness of the rib portion 2b was 0.070 mm, and the thickness of the outer annular portion 2c was 0.150 mm (15% of the outer diameter D).
  • the ratio of the gap 2d in the cross section perpendicular to the longitudinal direction of the insulating covering 2, that is, the cross-sectional area hollow ratio in the insulating covering 2 was found to be 26.0%.
  • Example 2 The hollow core body of Example 2 has a structure including six gaps 2d shown in FIG. 1A, and the inner conductor 1 has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0. 0). 513 mm) was used. Then, the inner conductor 1 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating covering 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the inside of the die was sent at a speed of 10 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
  • PFA resin 420HPJ dielectric constant 2.1
  • Example 2 The hollow core body of Example 2 obtained in this way had an average outer diameter D of 1.29 mm and a roundness of 97%.
  • the thickness of the inner annular part 2a was 0.030 mm (2.3% of the outer diameter D).
  • the thickness of the rib portion 2b was 0.051 mm
  • the thickness of the outer annular portion 2c was 0.090 mm (7.0% of the outer diameter D)
  • the cross-sectional area hollowness was 57.0%.
  • the electrostatic capacitance C of the hollow core body of Example 2 was measured by the same method as that of Example 1 described above, it was 77.2 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the equation 2 described above was 74.4%.
  • Example 3 The hollow core body of Example 3 has a structure including six gap portions 2d shown in FIG. 1A, and the inner conductor 1 has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0. 0). 513 mm) was used. Then, the inner conductor 1 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating covering 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the inside of the die was sent at a speed of 10 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
  • PFA resin 420HPJ dielectric constant 2.1
  • Example 3 The hollow core body of Example 3 obtained in this way had an average outer diameter D of 1.29 mm and a roundness of 97%.
  • the thickness of the inner annular portion 2a was 0.030 mm (2.3% of the outer diameter D).
  • the rib portion 2b had a thickness of 0.075 mm
  • the outer annular portion 2c had a thickness of 0.075 mm (5.8% of the outer diameter D)
  • the cross-sectional area hollowness was 57.6%.
  • the electrostatic capacitance C of the hollow core body of Example 3 was measured by the same method as in Example 1 described above, it was 77.5 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the equation 2 described above was 74.0%.
  • Comparative Example 1 a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the linear hole, and the outer annular hole.
  • the hollow core body of this comparative example 1 has a structure with six voids as in the case of the above-described embodiment 1, and the tin conductor annealed copper using seven conductors 3a having a diameter of 0.127 mm as the inner conductor.
  • a stranded wire (measured outer diameter: 0.390 mm, effective outer diameter d: 0.367 mm) was used.
  • the thickness of the inner annular part was 0.095 mm (9.6% of the outer diameter D)
  • the rib portion had a thickness of 0.095 mm
  • the outer annular portion had a thickness of 0.095 mm (9.6% of the outer diameter D)
  • the cross-sectional area hollowness was 27.0%.
  • Comparative Example 2 a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the straight hole, and the outer annular hole.
  • the hollow core body of Comparative Example 2 has a structure including six voids as in Example 2 described above, and the inner conductor has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0). .513 mm) was used.
  • this inner conductor was passed downward through the center hole of the die, and an insulating coating was formed around it.
  • the temperature of the die was set to 350 ° C., and the wire was fed through the die at a speed of 10 m / min.
  • Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
  • Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
  • the hollow core body of Comparative Example 2 thus obtained had an average outer diameter D of 1.32 mm and a roundness of 97%.
  • the thickness of the inner annular part was 0.068 mm (5.2% of the outer diameter D)
  • the rib portion had a thickness of 0.068 mm
  • the outer annular portion had a thickness of 0.068 mm (5.2% of the outer diameter D)
  • the cross-sectional area hollowness was 56.9%.
  • the electrostatic capacity C of the hollow core body of Comparative Example 2 was measured by the same method as in Example 1, and it was 79.4 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the formula 2 mentioned above is 68.1% hollow core of the Comparative Example 2, the cross-sectional area hollow ratio However, compared with the hollow core bodies of Examples 2 and 3 having the same degree, the electrical hollow ratio was low.
  • Comparative Example 3 a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the straight hole, and the outer annular hole.
  • the hollow core body of Comparative Example 3 has a structure including six voids as in Example 3 described above, and the inner conductor has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0). .513 mm) was used.
  • this inner conductor was passed downward through the center hole of the die, and an insulating coating was formed around it.
  • the temperature of the die was set to 350 ° C., and the wire was fed through the die at a speed of 10 m / min.
  • Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
  • Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
  • the hollow core body of Comparative Example 2 thus obtained had an average outer diameter D of 1.30 mm and a roundness of 97%.
  • the thickness of the inner annular part was 0.055 mm (4.2% of the outer diameter D)
  • the rib portion had a thickness of 0.055 mm
  • the outer annular portion had a thickness of 0.055 mm (4.2% of the outer diameter D)
  • the cross-sectional area hollowness was 63.7%.
  • the hollow core bodies of Examples 1 to 3 in which the inner annular portion is thinner than the rib portion and the outer annular portion and is 1 to 4% of the outer diameter of the insulating coating body Compared to the hollow core bodies of Comparative Examples 1 to 3 in which the respective outer diameters correspond to each other, the electrical hollowness was high and the mechanical strength (side pressure performance) was excellent.

Abstract

Provided is a hollow-core-body for transmission cables, a manufacturing method thereof, and a signal transmission cable, wherein the degree of electrical hollowness is high, mechanical strength (especially side-pressure strength) is excellent, and production of the cable can be conducted with stability. An insulation sheathing body (2) is composed of an inner-circular section (2a), multiple rib sections (2b) extending radially from this inner-circular section (2a), and an outer-circular section (2c) that connects the outer ends of the rib sections (2b), and is also provided with three or more gap sections (2d) surrounded by the inner-circular section (2a), the outer-circular section (2c), and each of the rib sections (2b). The hollow core body (10, 11), which has the insulation sheathing body (2) installed around the circumference of an inner conductor (1, 3), has the thickness of the inner-circular section (2a) made to be in a range of 1-4% of the outer circumference of the insulation sheathing body, and also made to be thinner than the rib sections (2b) and the outer-circular section (2c).

Description

伝送ケーブル用中空コア体及びその製造方法並びに信号伝送用ケーブルHollow core body for transmission cable, manufacturing method thereof, and signal transmission cable
 本発明は、同軸ケーブルなどの各種伝送ケーブルに使用される中空コア体及びその製造方法、並びにこのコア体を使用した信号伝送用ケーブルに関する。より詳しくは、中空コア体の機械的強度を向上させるための技術に関する。 The present invention relates to a hollow core body used for various transmission cables such as a coaxial cable, a manufacturing method thereof, and a signal transmission cable using the core body. More specifically, the present invention relates to a technique for improving the mechanical strength of a hollow core body.
 近年、デジタルデータ伝送の高速化に伴い、より細径で、伝送速度が速く、低損失な信号伝送用ケーブルが求められている。特に、使用周波数が高いケーブルにおいては、その特性に、内部導体の周囲に設けられた絶縁体部分(絶縁被覆体)の誘電損失が大きく影響する。そこで、従来、この絶縁被覆体に空隙を設けることにより、誘電損失の低減を図った同軸ケーブルが提案されている(例えば、特許文献1~3参照。)。 In recent years, with the increase in the speed of digital data transmission, a signal transmission cable having a smaller diameter, a higher transmission speed, and a low loss has been demanded. In particular, in a cable having a high operating frequency, the dielectric loss of an insulating portion (insulating covering) provided around the inner conductor greatly affects its characteristics. Thus, conventionally, coaxial cables have been proposed in which a dielectric loss is reduced by providing a gap in the insulating covering (see, for example, Patent Documents 1 to 3).
 これら特許文献1~3に記載の同軸ケーブルでは、長手方向に連続する空隙部を備える中空コア体を使用しているが、この中空コア体は、発泡性樹脂により絶縁被覆体を形成したコア体に比べて中空率が高く、高周波電気特性が良好な伝送ケーブルを実現することができる。また、このような中空コア体は、例えば、内部導体の周囲に、誘電率及びtanδが小さい熱可塑性の絶縁性樹脂を押出成形することにより形成することができる(例えば、特許文献4参照。)。 In these coaxial cables described in Patent Documents 1 to 3, a hollow core body having a gap continuous in the longitudinal direction is used. This hollow core body is a core body in which an insulating covering is formed of a foamable resin. Compared to the above, it is possible to realize a transmission cable having a high hollow ratio and good high-frequency electrical characteristics. Moreover, such a hollow core body can be formed by, for example, extruding a thermoplastic insulating resin having a small dielectric constant and tan δ around the inner conductor (see, for example, Patent Document 4). .
特開2007-42400号公報JP 2007-42400 A 特開2007-335393号公報JP 2007-335393 A 特開2007-250235号公報JP 2007-250235 A 特開2008-243720号公報JP 2008-243720 A
 しかしながら、前述した従来の技術には、以下に示す問題点がある。従来の中空コア体は、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)やFEP(Fluorinated-Ethylene-Propylene;フッ化エチレンプロピレンテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)などのフッ素系樹脂、又はPE(Polyethylene;ポリエチレン)などのオレフィン系樹脂で絶縁被覆体を形成しているが、これらの樹脂は一般に機械的強度(圧縮弾性率)が小さいため、ケーブル製造時にかかる応力によって、コア体が変形しやすい。 However, the conventional techniques described above have the following problems. Conventional hollow core bodies include fluororesins such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) and FEP (fluorinated ethylene propylene / tetrafluoroethylene / hexafluoropropylene copolymer). , Or PE (Polyethylene; Polyethylene) and other olefinic resins are used to form insulation coatings, but these resins generally have low mechanical strength (compression elastic modulus). Is easy to deform.
 このため、長手方向における電気的特性が均一な中空コア体を製造したとしても、その後のケーブル製造工程において、コア体が扁平化したり、潰れたりして、製造された伝送ケーブルでは、特性インピーダンス、減衰量及び遅延時間などの電気的特性が長手方向でばらつくことがあるという問題点がある。 For this reason, even if a hollow core body having a uniform electrical property in the longitudinal direction is manufactured, in the subsequent cable manufacturing process, the core body is flattened or crushed. There is a problem that electrical characteristics such as attenuation and delay time may vary in the longitudinal direction.
 また、高周波特性や遅延時間などの電気的特性を向上させるためには、絶縁被覆体の中空率を高めることが好ましいが、そうすると、絶縁被覆体を構成する各部の厚さが薄くなり、機械的強度、特に側圧強度が低下してしまう。このため、従来の中空コア体では、機械的強度を確保するために絶縁被覆体の中空率を抑えなければならず、充分な電気的特性や細径性が得られないという問題点もある。 In order to improve electrical characteristics such as high-frequency characteristics and delay time, it is preferable to increase the hollow ratio of the insulating coating, but if this is done, the thickness of each part constituting the insulating coating is reduced, and mechanical properties are reduced. The strength, particularly the lateral pressure strength, is reduced. For this reason, in the conventional hollow core body, in order to ensure mechanical strength, the hollow ratio of an insulation coating body must be suppressed, and there is a problem that sufficient electrical characteristics and small diameter cannot be obtained.
 これらの問題点は、例えばAPO(アモルファスポリオレフィン)樹脂やTPX(ポリメチルペンテン)樹脂などの機械的強度が高く、誘電率及びtanδが小さい樹脂を使用することにより解決することができるが、これらの樹脂はいずれも低温(脆化)特性が良好でないため、絶縁被覆体を形成するには不向きである。 These problems can be solved by using a resin having a high mechanical strength such as APO (amorphous polyolefin) resin or TPX (polymethylpentene) resin and having a low dielectric constant and tan δ. None of the resins have good low-temperature (brittleness) characteristics, and are not suitable for forming an insulating coating.
 一方、特許文献3に記載されている中空コア体のように、内環状部がない構成にすると、中空率を低下させずに、コア体の機械的強度を高めることができるが、このような構成のコア体は、内部導体と絶縁被覆体との接触面積が少ないため、これらの密着性が低く、安定して生産することが難しい。 On the other hand, when the structure without the inner annular portion is used as in the hollow core body described in Patent Document 3, the mechanical strength of the core body can be increased without reducing the hollowness ratio. Since the core body of a structure has few contact areas of an internal conductor and an insulation coating body, these adhesiveness is low and it is difficult to produce stably.
 そこで、本発明は、電気的中空率が高く、かつ機械的強度、特に側圧強度が優れ、安定して生産することができる伝送ケーブル用中空コア体及びその製造方法並びに信号伝送用ケーブルを提供することを主目的とする。 Therefore, the present invention provides a hollow core body for a transmission cable that has a high electrical hollowness ratio, is excellent in mechanical strength, particularly lateral pressure strength, and can be stably produced, a manufacturing method thereof, and a signal transmission cable. The main purpose.
 本発明に係る伝送ケーブル用中空コア体は、内部導体と、熱可塑性樹脂からなり、前記内部導体を被覆する内環状部、該内環状部から放射状に延びる複数のリブ部、及び該リブ部の外端を連結する外環状部で構成される絶縁被覆体と、を有し、前記絶縁被覆体は、内環状部、外環状部及びリブ部により囲まれた3以上の空隙部を備えており、前記内環状部の厚さが、絶縁被覆体の外径の1~4%であり、かつリブ部及び外環状部よりも薄いものである。
 ここで、本発明における「内環状部の厚さ」は、中空コア体の長手方向に垂直な断面において、内部導体の表面から空隙部までの最短距離であり、空隙部毎の測定値を平均した値である。また、「外環状部の厚さ」は、前述した断面において、絶縁被覆体の外面から空隙部までの最短距離であり、空隙部毎の測定値を平均した値である。更に、「リブ部の厚さ」は、前述した断面において、リブ部を挟んで隣り合う空隙部間の最短距離であり、各リブ部の測定値を平均した値である。なお、これら各部の厚さは、顕微鏡観察により、中空コア体の長手方向に垂直な断面を撮影し、その顕微鏡写真から測定することができる。
 本発明においては、電気的特性に影響する内側部分の厚さが薄く、電気的特性への影響が少ない外側部分の厚さが厚くなっているため、内部導体の近傍の誘電率を低く、かつ圧縮強度などコア体の機械的強度にも優れる。
A hollow core body for a transmission cable according to the present invention comprises an inner conductor, a thermoplastic resin, an inner annular portion covering the inner conductor, a plurality of rib portions extending radially from the inner annular portion, and the rib portions An insulating covering body configured by an outer annular portion connecting the outer ends, and the insulating covering body includes three or more void portions surrounded by the inner annular portion, the outer annular portion, and the rib portion. The thickness of the inner annular portion is 1 to 4% of the outer diameter of the insulating covering, and is thinner than the rib portion and the outer annular portion.
Here, the “thickness of the inner annular portion” in the present invention is the shortest distance from the surface of the inner conductor to the gap in the cross section perpendicular to the longitudinal direction of the hollow core body, and the measured value for each gap is an average. It is the value. In addition, the “thickness of the outer annular portion” is the shortest distance from the outer surface of the insulating covering to the gap in the cross section described above, and is a value obtained by averaging measured values for each gap. Furthermore, “the thickness of the rib portion” is the shortest distance between the adjacent gap portions across the rib portion in the cross section described above, and is a value obtained by averaging the measured values of each rib portion. In addition, the thickness of each of these parts can be measured from a micrograph obtained by photographing a cross section perpendicular to the longitudinal direction of the hollow core body by microscopic observation.
In the present invention, the thickness of the inner part that affects the electrical characteristics is thin, and the thickness of the outer part that has little effect on the electrical characteristics is thick, so the dielectric constant in the vicinity of the inner conductor is low, and Excellent mechanical strength of the core body such as compressive strength.
 この中空コア体では、絶縁被覆体の厚さが、内環状部、リブ部、外環状部の順に厚くなっていてもよい。
 一方、前記外環状部の厚さは、例えば絶縁被覆体の外径の5~20%とすることができる。
 また、長手方向に垂直な断面における空隙部の割合を20%以上にすると共に、等価誘電率をε、前記絶縁被覆体を構成する熱可塑性樹脂の比誘電率(以下の記載においては、特に断りがない限り、熱可塑性樹脂の誘電率は、「比誘電率」を示す。)をεとしたとき、下記数式1により求められる電気的中空率Pを45%以上にしてもよい。
In this hollow core body, the thickness of the insulating covering may be increased in the order of the inner annular portion, the rib portion, and the outer annular portion.
On the other hand, the thickness of the outer annular portion can be, for example, 5 to 20% of the outer diameter of the insulating coating.
In addition, the ratio of the voids in the cross section perpendicular to the longitudinal direction is set to 20% or more, the equivalent dielectric constant is ε, and the relative dielectric constant of the thermoplastic resin constituting the insulating coating (particularly in the description below) unless, the dielectric constant of the thermoplastic resin, when the.) indicating "dielectric constant" and epsilon 0, may be an electrical hollow ratio P e obtained by the following equation 1 in more than 45%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 更に、前記外環状部の真円度は、例えば96%以上にすることができる。
 そして、前記絶縁被覆体を構成する熱可塑性樹脂としては、例えばフッ素系樹脂又はポリオレフィン系樹脂を使用することができる。
Furthermore, the roundness of the outer annular portion can be, for example, 96% or more.
And as a thermoplastic resin which comprises the said insulation coating body, a fluorine resin or polyolefin resin can be used, for example.
 本発明に係る伝送ケーブル用中空コア体の製造方法では、中心孔と、該中心孔を囲むようにその外縁に隣接して形成された内環状孔と、該内環状孔の外周から放射状に延び前記内環状孔よりも幅広の3以上の直線状孔と、該直線状孔の外端間を連結し前記内環状孔よりも幅広の外環状孔と、を備えるダイスを使用し、前記中心孔に内部導体を挿通させながら、前記内環状孔、直線状孔及び外環状孔から溶融樹脂を押出して、前記内部導体の周囲に、内環状部と、該内環状部から放射状に延びるリブ部と、該リブ部の外端を連結する外環状部と、前記内環状部、外環状部及びリブ部によって囲まれ長手方向に連続する空隙部とで構成される絶縁被覆体を形成する工程を有し、前記絶縁被覆体を形成する際に、その空隙部内に、内圧調整用エアーを導入する。
 本発明においては、内環状部を形成するための内環状孔の幅を、リブ部を形成する直線状孔及び外環状部を形成する外環状孔よりも狭くしているため、内部導体の周囲に形成される絶縁被覆体は、電気的特性に影響する内側部分の厚さが薄く、電気的特性への影響が少ない外側部分の厚さが厚くなる。これにより、電気的中空率が高く、かつ機械的強度、特に側圧強度が優れた中空コア体が得られる。また、この中空コア体は、内環状部を設けているため、安定して生産することができる。
 この中空コア体の製造方法では、内環状孔、直線状孔、外環状孔の順に孔の幅が広くなるダイスを使用してもよい。
In the method for manufacturing a hollow core body for a transmission cable according to the present invention, a center hole, an inner annular hole formed adjacent to the outer edge so as to surround the center hole, and a radial extension from the outer periphery of the inner annular hole are provided. Using a die comprising three or more linear holes wider than the inner annular hole, and an outer annular hole connecting the outer ends of the linear holes and wider than the inner annular hole; While inserting the inner conductor, the molten resin is extruded from the inner annular hole, the straight hole and the outer annular hole, and the inner annular part and a rib part extending radially from the inner annular part are provided around the inner conductor. A step of forming an insulating covering composed of an outer annular portion connecting the outer ends of the rib portion, and an inner annular portion, an outer annular portion, and a gap portion surrounded by the rib portion and continuous in the longitudinal direction. When forming the insulating covering, air for adjusting internal pressure is formed in the gap. Introduced.
In the present invention, the width of the inner annular hole for forming the inner annular portion is narrower than the linear hole forming the rib portion and the outer annular hole forming the outer annular portion, so that the periphery of the inner conductor In the insulating covering formed in (1), the thickness of the inner part that affects the electrical characteristics is thin, and the thickness of the outer part that has little influence on the electrical characteristics is thick. Thereby, a hollow core body having a high electrical hollow ratio and excellent mechanical strength, particularly lateral pressure strength, can be obtained. Moreover, since this hollow core body is provided with the inner annular part, it can be produced stably.
In this method of manufacturing a hollow core body, a die whose width is increased in the order of an inner annular hole, a straight hole, and an outer annular hole may be used.
 本発明に係る信号伝送用ケーブルは、前述した中空コア体を使用したものである。
 本発明においては、電気的特性に影響する内側部分の厚さが薄く、電気的特性への影響が少ない外側部分の厚さが厚い中空コア体を使用しているため、ケーブル製造工程における変形が抑制される。
 また、この信号伝送用ケーブルは、同軸ケーブルであってもよく、その場合、中空コア体の周囲にシールド層が設けられる。
The signal transmission cable according to the present invention uses the hollow core body described above.
In the present invention, a hollow core body having a thin inner portion that affects electrical characteristics and a small outer portion thickness that has little influence on electrical characteristics is used, so that deformation in the cable manufacturing process is prevented. It is suppressed.
The signal transmission cable may be a coaxial cable. In that case, a shield layer is provided around the hollow core body.
 本発明によれば、内環状部の厚さをリブ部及び外環状部よりも薄くしているため、電気的中空率が高く、かつ機械的強度、特に側圧強度が優れ、安定して生産することができる中空コア体を実現することができる。 According to the present invention, since the inner annular portion is thinner than the rib portion and the outer annular portion, the electrical hollow ratio is high, the mechanical strength, particularly the lateral pressure strength is excellent, and the production is stable. A hollow core body can be realized.
(a)及び(b)は本発明の実施形態に係る中空コア体の構成例を示す断面図である。(A) And (b) is sectional drawing which shows the structural example of the hollow core body which concerns on embodiment of this invention. 本発明の実施形態に係る中空コア体の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the hollow core body which concerns on embodiment of this invention. 本発明の実施形態に係る中空コア体を製造する際に使用する装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus used when manufacturing the hollow core body which concerns on embodiment of this invention. 図3に示すダイス22における各孔の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of each hole in the dice | dies 22 shown in FIG. 鞘芯ダイスの形状を示す断面図である。It is sectional drawing which shows the shape of a sheath core die. 鞘芯ダイスの先端部の拡大断面図である。It is an expanded sectional view of the tip part of a sheath core die. 加熱冷却管によりコア体を冷却する方法を模式的に示す図である。It is a figure which shows typically the method of cooling a core body with a heating-cooling pipe.
 以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.
 本発明者は前述した問題点を解決するために、鋭意実験研究を行った結果、以下に示す知見を得た。同軸ケーブルなどの伝送ケーブルでは、内部導体に電流が流れると、その周囲に電界が形成されるが、この電界の強度は、内部導体に近いほど強く、内部導体から遠ざかるに従い弱くなる。従って、このような伝送ケーブルにおいて、その減衰量、遅延時間及び特性インピーダンスなどの電気的特性を向上させるには、内部導体近傍の誘電率を小さくすればよく、具体的には、内部導体の周囲に設けられた絶縁被覆体の誘電率を小さくすればよい。 The present inventor has conducted extensive experimental research to solve the above-mentioned problems, and has obtained the following knowledge. In a transmission cable such as a coaxial cable, when an electric current flows through an inner conductor, an electric field is formed around the inner conductor. The strength of the electric field increases as the distance from the inner conductor increases, and decreases as the distance from the inner conductor increases. Therefore, in such a transmission cable, in order to improve the electrical characteristics such as attenuation, delay time and characteristic impedance, the dielectric constant in the vicinity of the inner conductor may be reduced. What is necessary is just to make the dielectric constant of the insulation coating body provided in the small.
 一方、中空コア体の場合、絶縁被覆体の誘電率は、その中空率を変更することにより調節することができるが、このような絶縁体においては、物理的中空率と電気的(実効)中空率の値に違いがある。なお、電気的(実効)中空率Pとは、中空コア体の静電容量をC(pF/m)、外径をD(m)、内部導体の実効外径をd(m)としたとき、下記数式2から求められる等価(実効)誘電率εと、絶縁被覆体を構成する熱可塑性樹脂の誘電率εとに基づき、下記数式3により算出される値である。 On the other hand, in the case of a hollow core body, the dielectric constant of the insulating coating can be adjusted by changing the hollow ratio. In such an insulator, the physical hollow ratio and the electrical (effective) hollow There is a difference in rate values. The electrical (effective) hollow ratio Pe is defined as C (pF / m) for the capacitance of the hollow core body, D (m) for the outer diameter, and d (m) for the effective outer diameter of the inner conductor. At this time, it is a value calculated by the following mathematical formula 3 based on the equivalent (effective) dielectric constant ε obtained from the following mathematical formula 2 and the dielectric constant ε 0 of the thermoplastic resin constituting the insulating coating.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このため、中空コア体においては、コア体全体として物理的中空率が同じであっても、内部導体近傍部分の中空率が異なる場合は、その電気的中空率は異なる値を示し、電気的特性も異なることとなる。更に、本発明者は、内部導体から離れた外側部分の誘電率(中空率)は、内部導体近傍の部分の誘電率(中空率)に比べて、電気的特性への影響が少なく、ほぼ無視できる程度であることも見出した。 For this reason, in the hollow core body, even if the physical hollow ratio is the same as the whole core body, if the hollow ratio in the vicinity of the inner conductor is different, the electrical hollow ratio shows different values, and the electrical characteristics Will also be different. Further, the inventor found that the dielectric constant (hollow ratio) of the outer part away from the inner conductor has little influence on the electrical characteristics compared to the dielectric constant (hollow ratio) of the part near the inner conductor, and is almost ignored. I also found that it was possible.
 即ち、中空コア体の電気的特性に影響するのは電気的中空率Pであり、その値を高くするには、主に、絶縁被覆体における内部導体近傍部分の物理的中空率(空隙率)を高くすればよい。そこで、本発明においては、従来ほぼ同じ厚さで形成されていた絶縁被覆体の各部の厚さを見直し、内部導体に最も近い内環状部をその他の部分よりも薄くし、外環状部などのコア体の外側の部分を厚くする構成とした。 In other words, to affect the electrical properties of the hollow core member is electrically hollow ratio P e, the higher its value, primarily physical hollow ratio of the internal conductor vicinity of the insulating jacket (porosity ) Should be high. Therefore, in the present invention, the thickness of each part of the insulating covering that has been conventionally formed with substantially the same thickness is reviewed, the inner annular part closest to the inner conductor is made thinner than the other parts, and the outer annular part, etc. The outer part of the core body is thickened.
 先ず、本発明の実施形態に係る中空コア体の構成について説明する。図1及び図2は本実施形態の中空コア体の構成例を示す断面図である。図1(a)及び(b)に示すように、本実施形態の中空コア体10,11は、内部導体1,3の周囲に、長手方向に連続する3以上の空隙部2dを備える絶縁被覆体2を設けたものである。 First, the configuration of the hollow core body according to the embodiment of the present invention will be described. FIG.1 and FIG.2 is sectional drawing which shows the structural example of the hollow core body of this embodiment. As shown in FIGS. 1 (a) and 1 (b), the hollow core bodies 10 and 11 of this embodiment are provided with three or more gap portions 2d continuous in the longitudinal direction around the inner conductors 1 and 3. A body 2 is provided.
 この中空コア体10,11における内部導体は、図1(a)に示す内部導体1ように1本の導線で構成されたものでも、図1(b)に示す内部導体3のように複数の導線3aで構成されたものでもよく、撚線構造のものでもよい。更に、内部導体1,3を構成する導線には、例えば強度及び導電性に優れる銅線、銅合金線又はこれらの表面を銀などでめっきしためっき線などを使用することができるが、これらに限定されるものではなく、各種導線から適宜選択して使用することができる。 The internal conductors in the hollow core bodies 10 and 11 may be composed of a single conductor such as the internal conductor 1 shown in FIG. 1A, but may have a plurality of internal conductors 3 such as the internal conductor 3 shown in FIG. The lead wire 3a may be used, or a twisted wire structure may be used. Furthermore, for the conductive wires constituting the inner conductors 1 and 3, for example, copper wires, copper alloy wires excellent in strength and conductivity, or plated wires whose surfaces are plated with silver or the like can be used. It is not limited, It can select from various conducting wires suitably and can be used.
 一方、絶縁被覆体2は、内部導体1,3を覆う内環状部2aと、内環状体2aから放射状に延びる複数のリブ部2bと、各リブ部2bの外端を連結する外環状部2cとで構成されている。この絶縁被覆体2では、内環状部2aと外環状部2cとが略同軸状に形成され、リブ部2bはこれらの周方向に沿って略等間隔に配置されている。そして、内環状部2a、外環状部2c及び各リブ部2bによって区画される空間は、それぞれ空隙部2dとなっており、各空隙部2dは中空コア体10,11の長手方向(軸方向)に連続して形成されている。 On the other hand, the insulating cover 2 includes an inner annular portion 2a that covers the inner conductors 1 and 3, a plurality of rib portions 2b that extend radially from the inner annular body 2a, and an outer annular portion 2c that connects the outer ends of the rib portions 2b. It consists of and. In this insulating cover 2, the inner annular portion 2 a and the outer annular portion 2 c are formed substantially coaxially, and the rib portions 2 b are arranged at substantially equal intervals along the circumferential direction thereof. The spaces defined by the inner annular portion 2a, the outer annular portion 2c, and the rib portions 2b are respectively void portions 2d, and each void portion 2d is in the longitudinal direction (axial direction) of the hollow core bodies 10 and 11. It is formed continuously.
 また、この絶縁被覆体2では、内環状部2aの厚さをリブ部2b及び外環状部2cよりも薄くして、従来よりも内部導体1,3に近い部分の中空率を高くしている。即ち、絶縁被覆体2は、電気的特性に影響する内側部分の厚さが薄く、電気的特性への影響が少ない外側部分の厚さが厚くなっている。これにより、圧縮強度などコア体の機械的強度を低下させずに、内部導体1,3の近傍の誘電率を低くすることができる。 Moreover, in this insulation coating 2, the thickness of the inner annular portion 2a is made thinner than that of the rib portion 2b and the outer annular portion 2c, and the hollow ratio of the portion closer to the inner conductors 1 and 3 is made higher than before. . In other words, the insulating cover 2 has a thin inner portion that affects the electrical characteristics and a thick outer portion that has little influence on the electrical characteristics. Thereby, the dielectric constant in the vicinity of the inner conductors 1 and 3 can be lowered without lowering the mechanical strength of the core body such as compressive strength.
 特に、絶縁被覆体2の厚さを、内環状部2a、リブ部2b、外環状部2cの順に厚くなるようにすると、ケーブル製造時における負荷に耐えうる良好な機械的強度を維持しつつ、効率的に電気的特性を向上させることができる。この場合、例えば、図2に示すコア体12のように、リブ部2bの厚さを、外側になるに従い厚くなる構成としてもよい。なお、図1(b)及び図2に示すコア体のように、絶縁被覆体2を構成する各部の厚さが均一でないものもあるが、その場合、各部の厚さは「平均厚さ」により比較すればよい。 In particular, when the thickness of the insulating covering 2 is increased in the order of the inner annular portion 2a, the rib portion 2b, and the outer annular portion 2c, while maintaining good mechanical strength that can withstand the load during cable manufacture, Electrical characteristics can be improved efficiently. In this case, for example, as in the core body 12 illustrated in FIG. 2, the thickness of the rib portion 2b may be configured to increase with increasing thickness. In addition, as in the core body shown in FIGS. 1B and 2, there are cases where the thickness of each part constituting the insulating covering 2 is not uniform, but in this case, the thickness of each part is “average thickness”. Compare with each other.
 内環状部2aの厚さは、端末加工する際に機械加工やレーザ加工などの処理により内部導体1,3を露出させることが可能で、かつ、絶縁被覆体2が安定して形成することができる程度であればよいが、好ましくは絶縁被覆体2の外径の1~4%である。この内環状部2aの厚さを絶縁被覆体2の外径の1%未満に設定すると、安定して中空コア体を成形することが難しくなったり、内部導体1,3と絶縁被覆体2との密着性が低下したりする。また、内環状部2aの厚さが4%を超えると、充分な電気的中空率が得られず、製造コストの増加を招くこととなる。 The thickness of the inner annular portion 2a is such that the inner conductors 1 and 3 can be exposed by processing such as machining or laser processing at the end processing, and the insulating covering 2 can be stably formed. Although it may be as much as possible, it is preferably 1 to 4% of the outer diameter of the insulating cover 2. If the thickness of the inner annular portion 2a is set to be less than 1% of the outer diameter of the insulating cover 2, it becomes difficult to stably form the hollow core, or the inner conductors 1, 3 and the insulating cover 2 The adhesiveness of the material is reduced. On the other hand, if the thickness of the inner annular portion 2a exceeds 4%, a sufficient electrical hollow ratio cannot be obtained, resulting in an increase in manufacturing cost.
 一方、外環状部2cの厚さは、絶縁被覆体2の外径の5~20%とすることが好ましい。外環状部2cの厚さが、絶縁被覆体2の外径の5%未満だと、充分な側圧強度が得られないことがあり、また、20%を超えるとコア体全体の物理的中空率が小さくなり、充分な電気的特性が得られないことがある。 On the other hand, the thickness of the outer annular portion 2c is preferably 5 to 20% of the outer diameter of the insulating cover 2. If the thickness of the outer annular portion 2c is less than 5% of the outer diameter of the insulating cover 2, sufficient lateral pressure strength may not be obtained, and if it exceeds 20%, the physical hollowness of the entire core body May be small and sufficient electrical characteristics may not be obtained.
 また、外環状部2cの真円率は96%以上であることが望ましい。これにより、長手方向における電気的特性が均一な中空コア体を得ることができる。ここでいう真円率とは、どれだけ真円に近いかを表す値であり、下記数式4により求めることができる。なお、下記数式4において、Dmaxは外環状部2cの外径の最大値(最長径)であり、Dminは外環状部2cの外径の最小値(最短径)である。また、cは外環状部2cの外径の中心値であり、c=(Dmax+Dmin)/2で表される。 Further, the roundness of the outer annular portion 2c is desirably 96% or more. Thereby, a hollow core body having uniform electrical characteristics in the longitudinal direction can be obtained. Here, the roundness rate is a value representing how close to a perfect circle, and can be obtained by the following Equation 4. In the following mathematical formula 4, D max is the maximum value (longest diameter) of the outer diameter of the outer annular portion 2c, and D min is the minimum value (shortest diameter) of the outer diameter of the outer annular portion 2c. Further, c is the center value of the outer diameter of the outer annular portion 2c, and is represented by c = ( Dmax + Dmin ) / 2.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 本実施形態の中空コア体10,11においては、絶縁被覆体2の長手方向に垂直な断面における空隙部2dの割合、即ち、絶縁被覆体2における断面積中空率が20%以上であり、かつ、上記数式3により求められる電気的中空率Pが45%以上であることが望ましい。ここで規定する断面積中空率は、前述した物理的中空率に相当する。絶縁被覆体2の各中空率をこの範囲にすることにより、機械的強度及び電気的特性の両方に優れた中空コア体を得ることができる。 In the hollow core bodies 10 and 11 of the present embodiment, the ratio of the void portion 2d in the cross section perpendicular to the longitudinal direction of the insulating coating body 2, that is, the cross-sectional area hollow ratio in the insulating coating body 2 is 20% or more, and it is desirable electrical hollow ratio P e obtained by the equation 3 is 45% or more. The cross-sectional area hollowness defined here corresponds to the physical hollowness described above. By setting each hollow ratio of the insulating coating 2 within this range, a hollow core body excellent in both mechanical strength and electrical characteristics can be obtained.
 更に、図1(a),(b)に示す中空コア体10,11では、リブ部2bを6箇所設け、6個の空隙部2dを形成しているが、本発明はこれに限定されるものではなく、空隙部2dの数(リブ部2bの数)は3以上であればよく、必要とされる中空率及び機械的特性などに応じて、適宜設定することができる。ただし、空隙部2dの数(リブ部2bの数)が10を超えると、物理的中空率が小さくなり、電気的特性が低下するため、空隙部2dの数(リブ部2bの数)は、3~10とすることが好ましく、より好ましくは4~8であり、特に好ましくは6である。 Furthermore, in the hollow core bodies 10 and 11 shown in FIGS. 1 (a) and 1 (b), six rib portions 2b are provided and six gap portions 2d are formed, but the present invention is limited to this. Instead, the number of gaps 2d (the number of ribs 2b) may be three or more, and can be set as appropriate according to the required hollow ratio and mechanical characteristics. However, if the number of the gaps 2d (the number of the ribs 2b) exceeds 10, the physical hollow ratio becomes small and the electrical characteristics deteriorate, so the number of the gaps 2d (the number of the ribs 2b) is It is preferably 3 to 10, more preferably 4 to 8, and particularly preferably 6.
 このような絶縁被覆体2は、熱可塑性樹脂により一体成形することができる。その材質としては、例えば、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(Fluorinated-Ethylene-Propylene;フッ化エチレンプロピレンテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)、及びPTFE(PolyTetraFluoroEthylene;ポリ四フッ化エチレン)などのフッ素系樹脂、PE(Polyethylene;ポリエチレン)及びPP(PolyPropylene;ポリプロピレン)などのオレフィン系樹脂などが挙げられる。 Such an insulating covering 2 can be integrally formed of a thermoplastic resin. Examples of the material include PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (Fluorinated-Ethylene-Propylene), and PTFE (PolyTetraFluoroEthylene). Fluorine resins such as polytetrafluoroethylene; and olefin resins such as PE (Polyethylene; polyethylene) and PP (PolyPropylene; polypropylene).

 次に、本実施形態の中空コア体を製造する方法について、図1(a)に示す中空コア体10を製造する場合を例にして説明する。図3は本実施形態の中空コア体の製造方法において使用する装置の構成例を示す図である。図4はその際使用するダイス22における各孔の配置を示す断面図である。図5はダイス22を構成する鞘芯ダイスの形状を示す断面図であり、図6はその先端部分の拡大断面図である。なお、図5,6はいずれも図4に示すA-A線による断面図に相当する。 

Next, a method for manufacturing the hollow core body of the present embodiment will be described by taking as an example the case of manufacturing the hollow core body 10 shown in FIG. FIG. 3 is a diagram showing a configuration example of an apparatus used in the method for manufacturing a hollow core body of the present embodiment. FIG. 4 is a sectional view showing the arrangement of the holes in the die 22 used at that time. FIG. 5 is a cross-sectional view showing the shape of a sheath core die constituting the die 22, and FIG. 6 is an enlarged cross-sectional view of the tip portion thereof. 5 and 6 correspond to a cross-sectional view taken along line AA shown in FIG.

 中空コア体10を製造する場合は、先ず、押出成形により、内部導体1の周囲に、熱可塑性樹脂からなる絶縁被覆体2を形成する。具体的には、図3に示すように、送線機(図示せず)に巻回されている内部導体1を、引取機20で引き出し、図4に示す形状のダイス22を備えた押出成型機21内に導入する。そして、内部導体1の周囲を、内環状部2a、リブ部2b及び外環状部2cからなる絶縁被覆体2で被覆した後、冷却部23を通過させ、引取機24で引き取ることにより、絶縁被覆体2を備える中空コア体10を製造することができる。 

When the hollow core body 10 is manufactured, first, the insulating coating 2 made of a thermoplastic resin is formed around the inner conductor 1 by extrusion molding. Specifically, as shown in FIG. 3, the inner conductor 1 wound around a wire feeder (not shown) is drawn out by a take-up machine 20 and is extruded with a die 22 having the shape shown in FIG. Installed in the machine 21. And after covering the circumference | surroundings of the inner conductor 1 with the insulation coating body 2 which consists of the inner annular part 2a, the rib part 2b, and the outer annular part 2c, the cooling part 23 is allowed to pass through, and it takes in with the take-up machine 24, insulation insulation A hollow core body 10 including the body 2 can be manufactured.

 また、図4に示すように、ここで使用するダイス22には、中心孔222aと、中心孔222aを囲むようにその外縁に隣接して形成された内環状孔222bと、内環状孔222bの外周から放射状に延びる直線状孔222cと、直線状孔222cの外端間を連結する外環状孔222dとが設けられている。このダイス22は、例えば、丸ダイス22bに設けられた貫通孔内に、図5に示す鞘芯ダイス22aを嵌入することにより構成することができる。 

As shown in FIG. 4, the die 22 used here includes a center hole 222a, an inner annular hole 222b formed adjacent to the outer edge so as to surround the center hole 222a, and an inner annular hole 222b. A linear hole 222c extending radially from the outer periphery and an outer annular hole 222d for connecting the outer ends of the linear hole 222c are provided. This die 22 can be configured, for example, by inserting a sheath core die 22a shown in FIG. 5 into a through hole provided in the round die 22b.

 図5及び図6に示すように、この鞘芯ダイス22aは、円盤状のフランジ221と先端凸部222とからなり、その軸芯にはパイプ223が挿入嵌着されている。そして、このパイプ223により、内部導体1を挿通させるための中心孔222aが形成されている。また、中心孔222aの周囲には、パイプ223の外側面に隣接して内環状孔222bが形成されており、この内環状孔222bの外周から外方に向けて放射状に延びる3以上の直線状孔222cが、略等角度間隔に設けられている。 

As shown in FIGS. 5 and 6, the sheath core die 22 a includes a disk-shaped flange 221 and a tip convex portion 222, and a pipe 223 is inserted and fitted to the shaft core. The pipe 223 forms a central hole 222a through which the inner conductor 1 is inserted. Further, an inner annular hole 222b is formed around the center hole 222a adjacent to the outer surface of the pipe 223, and three or more linear shapes extending radially outward from the outer periphery of the inner annular hole 222b. Holes 222c are provided at substantially equal angular intervals.

 更に、鞘芯ダイス22aの先端凸部222の外面と、丸ダイス22bの貫通孔の側面との間には、隙間が設けられており、この隙間が直線状孔222cの外端間を連結する外環状孔222dとなる。更にまた、内環状部222b、直線状孔222c及び外環状孔222dで囲まれる部分、即ち、空隙部2dを形成する部分には、それぞれ内圧調整用エアーを導入するためのエアー導入孔222eが設けられている。

Further, a gap is provided between the outer surface of the tip convex portion 222 of the sheath core die 22a and the side surface of the through hole of the round die 22b, and this gap connects the outer ends of the linear holes 222c. It becomes the outer annular hole 222d. Furthermore, an air introduction hole 222e for introducing air for adjusting the internal pressure is provided in a portion surrounded by the inner annular portion 222b, the linear hole 222c, and the outer annular hole 222d, that is, a portion forming the gap portion 2d. It has been.
そして、本実施形態において使用するダイス22においては、直線状孔222c及び外環状孔222dは、いずれも内環状孔222bよりも幅広に形成されている。これにより、内環状部2aの厚さが、リブ部2b及び外環状部2cよりも薄い絶縁被覆体2を形成することができる。なお、ダイス22に設けられた各孔の幅を、内環状孔、直線状孔、外環状孔の順に広くすることで、絶縁被覆体2を構成する各部の厚さを、内環状部2a、リブ部2b及び外環状部2cの順に厚くすることができる。
And in the die | dye 22 used in this embodiment, both the linear hole 222c and the outer annular hole 222d are formed wider than the inner annular hole 222b. Thereby, the insulation coating body 2 whose thickness of the inner annular part 2a is thinner than the rib part 2b and the outer annular part 2c can be formed. In addition, by increasing the width of each hole provided in the die 22 in the order of the inner annular hole, the straight hole, and the outer annular hole, the thickness of each part constituting the insulating cover 2 is changed to the inner annular part 2a, The thickness can be increased in the order of the rib portion 2b and the outer annular portion 2c.
 このダイス22を使用して中空コア体を形成する場合は、中心孔222aに内部導体1を回転、非回転又はSZ回転させつつ挿通し、エアー導入用孔222eから内圧調整用エアーを導入しながら、内環状孔222b、直線状孔222c及び外環状孔222dから溶融樹脂を押出せばよい。これにより、内環状孔222bから押出された樹脂によって内部導体1の周囲に内環状部2aが形成され、各直線状孔222cから押出された樹脂によって内環状部2aから放射状に延びる3以上のリブ部2bが形成され、外環状孔222dから押出された樹脂によってリブ部2bの外端を連結する外環状部2cが形成される。 When a hollow core body is formed using this die 22, the inner conductor 1 is inserted into the center hole 222a while rotating, non-rotating or rotating SZ, and air for adjusting internal pressure is introduced from the air introduction hole 222e. The molten resin may be extruded from the inner annular hole 222b, the straight hole 222c, and the outer annular hole 222d. As a result, the inner annular portion 2a is formed around the inner conductor 1 by the resin extruded from the inner annular hole 222b, and three or more ribs extending radially from the inner annular portion 2a by the resin extruded from each linear hole 222c. The portion 2b is formed, and the outer annular portion 2c that connects the outer ends of the rib portions 2b is formed by the resin extruded from the outer annular hole 222d.
また、本実施形態の製造方法においては、エアー導入孔222eを介して、内環状部222b、直線状孔222c及び外環状孔222dで囲まれる空間、即ち、空隙部2d内にエアーを導入しているため、各空隙部2dの内圧が均一となり、真円度が高く、形状安定性に優れた中空コア体が得られる。なお、この内圧調整用エアーには、内部導体1の引き取りに伴って自然発生する空気流を利用してもよいが、所定圧力に加圧した内圧調整用エアーを積極的に導入することが望ましい。 In the manufacturing method of the present embodiment, air is introduced into the space surrounded by the inner annular portion 222b, the linear hole 222c, and the outer annular hole 222d, that is, the gap portion 2d, through the air introduction hole 222e. Therefore, a hollow core body in which the internal pressure of each gap 2d is uniform, the roundness is high, and the shape stability is excellent is obtained. The air for adjusting the internal pressure may be an air flow that naturally occurs as the internal conductor 1 is taken, but it is desirable to positively introduce the air for adjusting the internal pressure pressurized to a predetermined pressure. .
 その後、押出成形後のコア体を冷却し、絶縁被覆体2を構成する樹脂を完全に固化させる。この押出成形後のコア体を冷却する方法としては、水冷方式、空冷方式及び加熱冷却管による冷却などが挙げられ、これらを併用することもできる。例えば、水冷方式によりコア体を冷却する場合は、冷却部23に冷水を貯留した冷却槽を設け、押出成形後のコア体を、この冷却槽内の冷水中に浸漬することにより、絶縁被覆体2を構成する樹脂を冷却する。また、空冷方式により冷却する場合は、冷却部23に空冷ノズルを設け、押出成形後のコア体に向けて、空冷ノズルから冷風を噴射ことにより、絶縁被覆体2を構成する樹脂を冷却する。 Thereafter, the core body after the extrusion molding is cooled, and the resin constituting the insulating coating body 2 is completely solidified. As a method of cooling the core body after the extrusion molding, a water cooling method, an air cooling method, cooling by a heating / cooling pipe, and the like can be mentioned, and these can be used in combination. For example, in the case of cooling the core body by a water cooling method, a cooling tank storing cold water is provided in the cooling unit 23, and the core body after extrusion molding is immersed in the cold water in the cooling tank, thereby insulating coating body The resin constituting 2 is cooled. Moreover, when cooling by an air cooling system, the cooling part 23 is provided with an air cooling nozzle, and the resin which comprises the insulation coating body 2 is cooled by injecting cold air from an air cooling nozzle toward the core body after extrusion molding.
 一方、加熱冷却管によって冷却する場合は、冷却部23に加熱冷却管を設け、押出成形後のコア体を、絶縁被覆体2を構成する樹脂の融点よりも低く、かつ常温(25℃)よりも高い任意の温度に加熱された加熱冷却管内を通過させる。図7は加熱冷却管によりコア体を冷却する方法を模式的に示す図である。加熱冷却管30は、管内の温度を制御可能であればその構成は特に限定されるものではないが、例えば、図7に示すように、鉄スリーブの周囲に加熱用のヒーターが設けられ、熱電対31a,31bにより鉄スリーブ内の温度が制御可能となっているものを使用することができる。 On the other hand, when cooling by a heating / cooling tube, the cooling unit 23 is provided with a heating / cooling tube, and the core body after extrusion molding is lower than the melting point of the resin constituting the insulating covering 2 and from room temperature (25 ° C.). It is also passed through a heating and cooling pipe heated to an arbitrary high temperature. FIG. 7 is a diagram schematically showing a method of cooling the core body by the heating / cooling tube. The configuration of the heating / cooling tube 30 is not particularly limited as long as the temperature in the tube can be controlled. For example, as shown in FIG. 7, a heater for heating is provided around the iron sleeve, and the thermoelectric tube 30 is heated. What can control the temperature in an iron sleeve by pair 31a, 31b can be used.
 そして、前述した工程により製造された中空コア体10は、引取機24を介して、巻取機(図示せず)に送られ、巻き取られる。なお、本実施形態においては、図1(a)に示す構造の中空コア体10を製造する場合を例にして説明したが、図1(b)に示す構造の中空コア体11についても同様の方法で製造することができる。 And the hollow core body 10 manufactured by the process mentioned above is sent to a winding machine (not shown) via the take-up machine 24, and is wound up. In the present embodiment, the case where the hollow core body 10 having the structure shown in FIG. 1A is manufactured has been described as an example, but the same applies to the hollow core body 11 having the structure shown in FIG. It can be manufactured by the method.
 以上詳述したように、本実施形態の中空コア体においては、電気的特性に影響する絶縁被覆体の内環状部の厚さを薄くし、電気的特性への影響が少ない外環状部の厚さを厚くしているため、物理的中空率が従来と同等であっても、より高い電気的中空率が得られる。これにより、機械的強度、特に側圧強度を低下させずに、内部導体近傍の誘電率を低くすることができるため、電気的特性及び機械的強度の両方に優れた中空コア体を実現することができる。また、本実施形態の中空コア体の絶縁被覆体は、特許文献3に記載のコア体とは異なり、内環状体を備えた構成となっているため、生産安定性にも優れている。 As described above in detail, in the hollow core body of the present embodiment, the thickness of the inner annular portion of the insulating coating that affects the electrical characteristics is reduced, and the thickness of the outer annular portion that has less influence on the electrical characteristics. Since the thickness is increased, a higher electrical hollowness can be obtained even if the physical hollowness is equivalent to the conventional one. As a result, it is possible to reduce the dielectric constant in the vicinity of the inner conductor without lowering the mechanical strength, particularly the lateral pressure strength, so that it is possible to realize a hollow core body excellent in both electrical characteristics and mechanical strength. it can. In addition, unlike the core body described in Patent Document 3, the insulation coating body of the hollow core body of the present embodiment has a configuration including an inner annular body, and thus is excellent in production stability.
 更に、本実施形態の中空コア体は、同軸ケーブルなどの信号伝送用ケーブルに好適に使用することができる、例えば、その周囲にシールド層を設けることにより、機械的強度及び電気的特性の両方に優れた同軸ケーブルを得ることができる。この中空コア体の周囲に設けられるシールド層としては、例えば、横巻きシールド及び編組線シールドなどが挙げられ、その形成方法も、金属蒸着及びラミネートテープを巻回する方法など、公知の方法を適用することができる。 Furthermore, the hollow core body of the present embodiment can be suitably used for a signal transmission cable such as a coaxial cable. For example, by providing a shield layer around it, both the mechanical strength and the electrical characteristics can be achieved. An excellent coaxial cable can be obtained. Examples of the shield layer provided around the hollow core body include a horizontal winding shield and a braided wire shield, and a known method such as a metal vapor deposition method or a method of winding a laminate tape is also applied. can do.
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、絶縁被覆体の内環状部をリブ部及び外環状部よりも薄くした中空コア体(実施例1~3)と、絶縁被覆体の各部の厚さが同一な従来の中空コア体(比較例1~3)を作製し、その電気的特性及び機械的強度(側圧性能)を評価した。なお、以下に示す各実施例及び比較例において内部導体の実効外径d(mm)は、7本撚り線の場合は実測外径(mm)の0.94倍とし、単線の場合は実測外径としている。 Hereinafter, the effects of the present invention will be described in detail with reference to examples and comparative examples of the present invention. In this embodiment, the hollow core body (Examples 1 to 3) in which the inner annular portion of the insulating coating is thinner than the rib portion and the outer annular portion, and the conventional hollow in which the thickness of each portion of the insulating coating is the same. Core bodies (Comparative Examples 1 to 3) were prepared, and their electrical characteristics and mechanical strength (side pressure performance) were evaluated. In each of the following examples and comparative examples, the effective outer diameter d (mm) of the inner conductor is 0.94 times the measured outer diameter (mm) in the case of seven stranded wires, and is not measured in the case of a single wire. The diameter.
 また、実施例及び比較例の各中空コア体の「側圧性能」は、下記に示す方法で測定した圧縮歪み率により評価した。この圧縮歪み率の測定は、オリエンテック社製 門型圧縮試験機 RTM250(圧縮ロードセル50N)を使用して行った。その際、圧縮治具には、表面が平坦な30mm×30mmの鉄製精密定盤を使用し、この圧縮治具を圧縮ロードセルの先端に固定して、前述した門型圧縮試験機のクロスヘッドの下側に下向きに取り付けた。 In addition, the “side pressure performance” of each hollow core body in Examples and Comparative Examples was evaluated by the compressive strain rate measured by the method shown below. The compression strain rate was measured using a portal compression tester RTM250 (compression load cell 50N) manufactured by Orientec. At this time, a 30 mm × 30 mm steel precision surface plate with a flat surface is used as the compression jig, and this compression jig is fixed to the tip of the compression load cell, and the crosshead of the portal type compression tester described above is used. Mounted downward on the bottom.
 一方、測定対象の中空コア体は、門型圧縮試験機のボトム定盤(プレーン面)に水平に設置した。その後、クロスヘッドを移動させて、中空コア体に所定の荷重が印加されるように、圧縮治具によって上下方向に加圧した。そして、所定荷重で60秒間加圧した後、荷重を印加した状態で、マイクロスコープ(キーエンス社製 VH-7000)により、中空コア体の上端から下端までの画像を撮影し、この画像から中空コア体の圧縮方向における上端から下端までの距離を1/1000mm単位で測定した。 On the other hand, the hollow core body to be measured was installed horizontally on the bottom surface plate (plane surface) of the portal compression tester. Thereafter, the crosshead was moved and pressurized with a compression jig in the vertical direction so that a predetermined load was applied to the hollow core body. Then, after pressurizing for 60 seconds with a predetermined load, an image from the upper end to the lower end of the hollow core body was taken with a microscope (VH-7000, manufactured by Keyence Corporation) with the load applied. The distance from the upper end to the lower end in the body compression direction was measured in units of 1/1000 mm.
 また、各中空コア体の圧縮歪み率(%)は、圧縮された状態での圧縮方向における上端から下端までの距離D1(mm)と、圧縮されていない部分の外径D(mm)とに基づき、下記数式5から求めた。なお、本実施例においては、圧縮方向にリブ部2bが配置される場合と、圧縮方向に空隙部2dが配置される場合について、それぞれ3箇所ずつ測定を行い、計6箇所の圧縮歪み率の平均値により「側圧性能」を評価した。 Further, the compressive strain rate (%) of each hollow core body is determined by the distance D 1 (mm) from the upper end to the lower end in the compression direction in the compressed state and the outer diameter D 0 (mm) of the uncompressed portion. Based on the above, it was obtained from the following formula 5. In the present embodiment, the measurement is performed at three locations each for the case where the rib portion 2b is arranged in the compression direction and the case where the gap portion 2d is arranged in the compression direction. The “side pressure performance” was evaluated by the average value.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
(実施例1)
 実施例1の中空コア体は、図1(b)に示す6個の空隙部2dを備える構造とし、内部導体3には、直径が0.127mmの導線3aを7本使用した錫めっき軟銅撚り線(実測外径:0.390mm、実効外径d:0.367mm)を用いた。そして、この内部導体3を、図4~6に示すクロスヘッドダイス22の中心孔222a内を下向きに通過させ、その周囲に絶縁被覆体2を形成した。その際、ダイス22の温度は350℃とし、ダイス中を15m/分の速度で送線した。また、絶縁被覆体2を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。
Example 1
The hollow core body of Example 1 has a structure including six gap portions 2d shown in FIG. 1B, and the inner conductor 3 is a tin-plated annealed copper twist using seven conductors 3a having a diameter of 0.127 mm. A wire (measured outer diameter: 0.390 mm, effective outer diameter d: 0.367 mm) was used. Then, the inner conductor 3 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating cover 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the wire was sent through the die at a speed of 15 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
 引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイス22と水冷却槽の水面との距離は70mmに設定した。これにより得られた実施例1の中空コア体は、平均外径Dが0.99mm、真円率が96%であった。なお、中空コア体の平均外径Dは、キーエンス社の外径測定器 LS7000を使用し、揺動式の測定器により、全周方向に亘って、約50m間の変動幅を測定することにより求めた。 Subsequently, the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die 22 and the water surface of the water cooling tank was set to 70 mm. The hollow core body of Example 1 obtained in this way had an average outer diameter D of 0.99 mm and a roundness of 96%. The average outer diameter D of the hollow core body is measured by measuring a fluctuation range of about 50 m over the entire circumference using a rocking type measuring instrument LS7000 from Keyence Corporation. Asked.
 また、実施例1の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部2aの厚さが0.030mm(外径Dの3.0%)、リブ部2bの厚さが0.070mm、外環状部2cの厚さが0.150mm(外径Dの15%)であった。そして、これらの値から、絶縁被覆体2の長手方向に垂直な断面における空隙部2dの割合、即ち、絶縁被覆体2における断面積中空率を求めたところ、26.0%であった。 Moreover, when the hollow core body of Example 1 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular portion 2a was 0.030 mm (3.0% of the outer diameter D). The thickness of the rib portion 2b was 0.070 mm, and the thickness of the outer annular portion 2c was 0.150 mm (15% of the outer diameter D). And from these values, the ratio of the gap 2d in the cross section perpendicular to the longitudinal direction of the insulating covering 2, that is, the cross-sectional area hollow ratio in the insulating covering 2, was found to be 26.0%.
 更に、タキカワエンジニアリング製 キャパシタンスモニター CP-09により、実施例1の中空コア体の静電容量Cを測定したところ、86.5pF/mであった。そして、この実施例1の中空コア体の静電容量C(pF/m)及び外径D(mm)、並びに内部導体3の実効外径d(mm)から、前述した数式2を用いて求めた等価(実効)誘電率εと、絶縁被覆体を構成するPFA樹脂の誘電率εとに基づき、前述した数式3から算出した電気的(実効)中空率Pは、50.3%であった。 Furthermore, when the capacitance C of the hollow core body of Example 1 was measured by a capacitance monitor CP-09 manufactured by Takikawa Engineering Co., Ltd., it was 86.5 pF / m. And it calculates | requires using Formula 2 mentioned above from the electrostatic capacitance C (pF / m) of the hollow core body of this Example 1, outer diameter D (mm), and the effective outer diameter d (mm) of the internal conductor 3. FIG. equivalent (effective) dielectric constant epsilon was, based on the dielectric constant epsilon 0 of PFA resin constituting the insulating coating material, electrical (effective) hollow ratio P e calculated from equation 3 described above, in 50.3% there were.
 一方、前述した側圧性能試験方法に基づいて、この実施例1の中空コア体に、9.81Nの圧縮荷重をかけ、その圧縮歪み率を測定したところ、6.5%と良好な結果が得られた。 On the other hand, when the compressive strain rate was measured by applying a compressive load of 9.81 N to the hollow core body of Example 1 based on the above-described side pressure performance test method, a good result of 6.5% was obtained. It was.
(実施例2)
 実施例2の中空コア体は、図1(a)に示す6個の空隙部2dを備える構造とし、内部導体1には、直径が0.513mmの銀めっき軟銅線(実測外径:0.513mm)を用いた。そして、この内部導体1を、図4~6に示すクロスヘッドダイス22の中心孔222a内を下向きに通過させ、その周囲に絶縁被覆体2を形成した。その際、ダイス22の温度は350℃とし、ダイス中を10m/分の速度で送線した。また、絶縁被覆体2を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。
(Example 2)
The hollow core body of Example 2 has a structure including six gaps 2d shown in FIG. 1A, and the inner conductor 1 has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0. 0). 513 mm) was used. Then, the inner conductor 1 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating covering 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the inside of the die was sent at a speed of 10 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
 引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイス22と水冷却槽の水面との距離は100mmに設定した。これにより得られた実施例2の中空コア体は、平均外径Dが1.29mmであり、真円率は97%であった。 Subsequently, the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die 22 and the water surface of the water cooling tank was set to 100 mm. The hollow core body of Example 2 obtained in this way had an average outer diameter D of 1.29 mm and a roundness of 97%.
 また、この実施例2の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部2aの厚さが0.030mm(外径Dの2.3%)、リブ部2bの厚さが0.051mm、外環状部2cの厚さが0.090mm(外径Dの7.0%)であり、断面積中空率は57.0%であった。更に、前述した実施例1と同様の方法で、実施例2の中空コア体の静電容量Cを測定したところ、77.2pF/mであった。そして、これらの値を用いて、前述した数式2,3に基づき算出した電気的(実効)中空率Pは74.4%であった。 Further, when the hollow core body of Example 2 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular part 2a was 0.030 mm (2.3% of the outer diameter D). ), The thickness of the rib portion 2b was 0.051 mm, the thickness of the outer annular portion 2c was 0.090 mm (7.0% of the outer diameter D), and the cross-sectional area hollowness was 57.0%. Furthermore, when the electrostatic capacitance C of the hollow core body of Example 2 was measured by the same method as that of Example 1 described above, it was 77.2 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the equation 2 described above was 74.4%.
 また、実施例1と同様の方法で、圧縮荷重を19.62Nとして側圧性能試験を行ったところ、圧縮歪み率は10.3%と良好な結果が得られた。 Further, when a side pressure performance test was performed in the same manner as in Example 1 with a compressive load of 19.62 N, a good result was obtained with a compressive strain rate of 10.3%.
(実施例3)
 実施例3の中空コア体は、図1(a)に示す6個の空隙部2dを備える構造とし、内部導体1には、直径が0.513mmの銀めっき軟銅線(実測外径:0.513mm)を用いた。そして、この内部導体1を、図4~6に示すクロスヘッドダイス22の中心孔222a内を下向きに通過させ、その周囲に絶縁被覆体2を形成した。その際、ダイス22の温度は350℃とし、ダイス中を10m/分の速度で送線した。また、絶縁被覆体2を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。
(Example 3)
The hollow core body of Example 3 has a structure including six gap portions 2d shown in FIG. 1A, and the inner conductor 1 has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0. 0). 513 mm) was used. Then, the inner conductor 1 was passed downward through the center hole 222a of the crosshead die 22 shown in FIGS. 4 to 6, and the insulating covering 2 was formed around the inner conductor. At that time, the temperature of the die 22 was set to 350 ° C., and the inside of the die was sent at a speed of 10 m / min. Further, PFA resin 420HPJ (dielectric constant 2.1) manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the resin for forming the insulating coating 2.
 引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイス22と水冷却槽の水面との距離は100mmに設定した。これにより得られた実施例3の中空コア体は、平均外径Dが1.29mmであり、真円率は97%であった。 Subsequently, the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die 22 and the water surface of the water cooling tank was set to 100 mm. The hollow core body of Example 3 obtained in this way had an average outer diameter D of 1.29 mm and a roundness of 97%.
 また、実施例3の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部2aの厚さが0.030mm(外径Dの2.3%)、リブ部2bの厚さが0.075mm、外環状部2cの厚さが0.075mm(外径Dの5.8%)であり、断面積中空率は57.6%であった。更に、前述した実施例1と同様の方法で、実施例3の中空コア体の静電容量Cを測定したところ、77.5pF/mであった。そして、これらの値を用いて、前述した数式2,3に基づき算出した電気的(実効)中空率Pは74.0%であった。 Moreover, when the hollow core body of Example 3 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular portion 2a was 0.030 mm (2.3% of the outer diameter D). The rib portion 2b had a thickness of 0.075 mm, the outer annular portion 2c had a thickness of 0.075 mm (5.8% of the outer diameter D), and the cross-sectional area hollowness was 57.6%. Furthermore, when the electrostatic capacitance C of the hollow core body of Example 3 was measured by the same method as in Example 1 described above, it was 77.5 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the equation 2 described above was 74.0%.
 また、実施例1と同様の方法で、圧縮荷重を19.62Nとして側圧性能試験を行ったところ、圧縮歪み率は9.4%と良好な結果が得られた。 Further, when a side pressure performance test was conducted in the same manner as in Example 1 with a compressive load of 19.62 N, a good result was obtained with a compressive strain rate of 9.4%.
(比較例1)
 次に、比較例1として、内環状孔、直線状孔及び外環状孔の幅が等しいクロスヘッドダイスを使用して、中空コア体を作製した。この比較例1の中空コア体は、前述した実施例1と同様に、6個の空隙部を備える構造とし、内部導体には、直径が0.127mmの導線3aを7本使用した錫めっき軟銅撚り線(実測外径:0.390mm、実効外径d:0.367mm)を用いた。
(Comparative Example 1)
Next, as Comparative Example 1, a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the linear hole, and the outer annular hole. The hollow core body of this comparative example 1 has a structure with six voids as in the case of the above-described embodiment 1, and the tin conductor annealed copper using seven conductors 3a having a diameter of 0.127 mm as the inner conductor. A stranded wire (measured outer diameter: 0.390 mm, effective outer diameter d: 0.367 mm) was used.
 そして、この内部導体を、ダイスの中心孔内を下向きに通過させ、その周囲に絶縁被覆体を形成した。その際、ダイスの温度は350℃とし、ダイス中を15m/分の速度で送線した。また、絶縁被覆体を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイスと水冷却槽の水面との距離は70mmに設定した。これにより得られた比較例1の中空コア体は、平均外径Dが0.99mmであり、真円率は96%であった。 Then, this inner conductor was passed downward through the center hole of the die, and an insulating coating was formed around it. At that time, the temperature of the die was set to 350 ° C., and the wire was fed through the die at a speed of 15 m / min. Moreover, Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body. Subsequently, the extruded core body was gradually cooled by air cooling in an atmosphere at about 25 ° C., and then water-cooled in a water cooling tank. At that time, the distance between the die and the water surface of the water cooling tank was set to 70 mm. The hollow core body of Comparative Example 1 thus obtained had an average outer diameter D of 0.99 mm and a roundness of 96%.
 また、比較例1の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部の厚さが0.095mm(外径Dの9.6%)、リブ部の厚さが0.095mm、外環状部の厚さが0.095mm(外径Dの9.6%)であり、断面積中空率は27.0%であった。 Further, when the hollow core body of Comparative Example 1 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular part was 0.095 mm (9.6% of the outer diameter D), The rib portion had a thickness of 0.095 mm, the outer annular portion had a thickness of 0.095 mm (9.6% of the outer diameter D), and the cross-sectional area hollowness was 27.0%.
 更に、前述した実施例1と同様の方法で、比較例1の中空コア体の静電容量Cを測定したところ、90.1pF/mであった。そして、これらの値を用いて、前述した数式2,3に基づき算出した電気的(実効)中空率Pは44.5%であり、この比較例1の中空コア体は、断面積中空率が同程度の実施例1の中空コア体に比べて、電気的中空率が低いものであった。 Furthermore, when the electrostatic capacity C of the hollow core body of Comparative Example 1 was measured by the same method as in Example 1, it was 90.1 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the formula 2 mentioned above is 44.5%, the hollow core of the Comparative Example 1, the cross-sectional area hollow ratio Compared with the hollow core body of Example 1 having the same degree, the electrical hollowness was low.
 一方、比較例1の中空コア体について、実施例1と同様の方法及び条件(圧縮荷重を9.81N)で側圧性能試験を行ったところ、圧縮歪み率は12.3%であった。このように、比較例1の中空コア体は、実施例1の中空コア体に比べて、側圧性能も大幅に劣っていた。 On the other hand, when the hollow core body of Comparative Example 1 was subjected to a side pressure performance test under the same method and conditions as in Example 1 (compressive load: 9.81 N), the compressive strain rate was 12.3%. Thus, the hollow core body of Comparative Example 1 was significantly inferior in lateral pressure performance as compared with the hollow core body of Example 1.
(比較例2)
 次に、比較例2として、内環状孔、直線状孔及び外環状孔の幅が等しいクロスヘッドダイスを使用して、中空コア体を作製した。この比較例2の中空コア体は、前述した実施例2と同様に、6個の空隙部を備える構造とし、内部導体には、直径が0.513mmの銀めっき軟銅線(実測外径:0.513mm)を用いた。
(Comparative Example 2)
Next, as Comparative Example 2, a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the straight hole, and the outer annular hole. The hollow core body of Comparative Example 2 has a structure including six voids as in Example 2 described above, and the inner conductor has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0). .513 mm) was used.
 そして、この内部導体を、ダイスの中心孔内を下向きに通過させ、その周囲に絶縁被覆体を形成した。その際、ダイスの温度は350℃とし、ダイス中を10m/分の速度で送線した。また、絶縁被覆体を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。また、絶縁被覆体を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。 Then, this inner conductor was passed downward through the center hole of the die, and an insulating coating was formed around it. At that time, the temperature of the die was set to 350 ° C., and the wire was fed through the die at a speed of 10 m / min. Moreover, Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body. Moreover, Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
 引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイスと水冷却槽の水面との距離は100mmに設定した。これにより得られた比較例2の中空コア体は、平均外径Dが1.32mmであり、真円率は97%であった。 Subsequently, the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die and the water surface of the water cooling tank was set to 100 mm. The hollow core body of Comparative Example 2 thus obtained had an average outer diameter D of 1.32 mm and a roundness of 97%.
 また、比較例2の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部の厚さが0.068mm(外径Dの5.2%)、リブ部の厚さが0.068mm、外環状部の厚さが0.068mm(外径Dの5.2%)であり、断面積中空率は56.9%であった。 Further, when the hollow core body of Comparative Example 2 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular part was 0.068 mm (5.2% of the outer diameter D), The rib portion had a thickness of 0.068 mm, the outer annular portion had a thickness of 0.068 mm (5.2% of the outer diameter D), and the cross-sectional area hollowness was 56.9%.
 更に、前述した実施例1と同様の方法で、比較例2の中空コア体の静電容量Cを測定したところ、79.4pF/mであった。そして、これらの値を用いて、前述した数式2,3に基づき算出した電気的(実効)中空率Pは68.1%であり、この比較例2の中空コア体は、断面積中空率が同程度の実施例2,3の中空コア体に比べて、電気的中空率が低いものであった。 Furthermore, the electrostatic capacity C of the hollow core body of Comparative Example 2 was measured by the same method as in Example 1, and it was 79.4 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the formula 2 mentioned above is 68.1% hollow core of the Comparative Example 2, the cross-sectional area hollow ratio However, compared with the hollow core bodies of Examples 2 and 3 having the same degree, the electrical hollow ratio was low.
 一方、比較例2の中空コア体について、実施例2,3と同様の方法及び条件(圧縮荷重を19.62N)で側圧性能試験を行ったところ、圧縮歪み率は11.3%であった。このように、比較例2の中空コア体は、実施例2,3の中空コア体に比べて側圧性能も劣っていた。 On the other hand, when the hollow core body of Comparative Example 2 was subjected to a side pressure performance test under the same method and conditions as in Examples 2 and 3 (compressive load: 19.62 N), the compressive strain rate was 11.3%. . Thus, the hollow core body of Comparative Example 2 was inferior in lateral pressure performance as compared with the hollow core bodies of Examples 2 and 3.
(比較例3)
 次に、比較例3として、内環状孔、直線状孔及び外環状孔の幅が等しいクロスヘッドダイスを使用して、中空コア体を作製した。この比較例3の中空コア体は、前述した実施例3と同様に、6個の空隙部を備える構造とし、内部導体には、直径が0.513mmの銀めっき軟銅線(実測外径:0.513mm)を用いた。
(Comparative Example 3)
Next, as Comparative Example 3, a hollow core body was manufactured using a crosshead die having the same widths of the inner annular hole, the straight hole, and the outer annular hole. The hollow core body of Comparative Example 3 has a structure including six voids as in Example 3 described above, and the inner conductor has a silver-plated annealed copper wire having a diameter of 0.513 mm (measured outer diameter: 0). .513 mm) was used.
 そして、この内部導体を、ダイスの中心孔内を下向きに通過させ、その周囲に絶縁被覆体を形成した。その際、ダイスの温度は350℃とし、ダイス中を10m/分の速度で送線した。また、絶縁被覆体を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。また、絶縁被覆体を形成する樹脂には、三井デュポンフロロケミカル社製 PFA樹脂 420HPJ(誘電率2.1)を使用した。 Then, this inner conductor was passed downward through the center hole of the die, and an insulating coating was formed around it. At that time, the temperature of the die was set to 350 ° C., and the wire was fed through the die at a speed of 10 m / min. Moreover, Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body. Moreover, Mitsui DuPont Fluoro Chemical Co., Ltd. PFA resin 420HPJ (dielectric constant 2.1) was used for resin which forms an insulation coating body.
 引き続き、押出成形後のコア体を約25℃の雰囲気中で空冷による徐冷を行い、その後、水冷却槽により水冷した。その際、ダイスと水冷却槽の水面との距離は100mmに設定した。これにより得られた比較例2の中空コア体は、平均外径Dが1.30mmであり、真円率は97%であった。 Subsequently, the core body after extrusion molding was gradually cooled by air cooling in an atmosphere of about 25 ° C., and then cooled in a water cooling tank. At that time, the distance between the die and the water surface of the water cooling tank was set to 100 mm. The hollow core body of Comparative Example 2 thus obtained had an average outer diameter D of 1.30 mm and a roundness of 97%.
 また、比較例3の中空コア体を切断し、その長手方向に垂直な断面における各部の寸法を測定したところ、内環状部の厚さが0.055mm(外径Dの4.2%)、リブ部の厚さが0.055mm、外環状部の厚さが0.055mm(外径Dの4.2%)であり、断面積中空率は63.7%であった。 Moreover, when the hollow core body of Comparative Example 3 was cut and the dimensions of each part in the cross section perpendicular to the longitudinal direction were measured, the thickness of the inner annular part was 0.055 mm (4.2% of the outer diameter D), The rib portion had a thickness of 0.055 mm, the outer annular portion had a thickness of 0.055 mm (4.2% of the outer diameter D), and the cross-sectional area hollowness was 63.7%.
 更に、前述した実施例1と同様の方法で、比較例2の中空コア体の静電容量Cを測定したところ、76.9pF/mであった。そして、これらの値を用いて、前述した数式2,3に基づき算出した電気的(実効)中空率Pは73.9%であり、この比較例3の中空コア体は、実施例2,3の中空コア体に比べて、断面積中空率が高いにもかかわらず、電気的中空率が同程度であった。 Furthermore, when the electrostatic capacitance C of the hollow core body of Comparative Example 2 was measured by the same method as in Example 1, it was 76.9 pF / m. Then, using these values, the electrical (effective) hollow ratio P e calculated based on the formula 2 mentioned above is 73.9% hollow core of the Comparative Example 3, Example 2, Compared to the hollow core body 3, the electrical hollowness was the same level despite the high cross-sectional area hollowness.
 一方、比較例3の中空コア体について、実施例2,3と同様の方法及び条件(圧縮荷重を19.62N)で側圧性能試験を行ったところ、圧縮歪み率は14.5%であった。このように、比較例2の中空コア体は、実施例2,3の中空コア体に比べて側圧性能も大幅に劣っていた。 On the other hand, when the side pressure performance test was conducted on the hollow core body of Comparative Example 3 under the same method and conditions as in Examples 2 and 3 (compressive load: 19.62 N), the compressive strain rate was 14.5%. . Thus, the hollow core body of Comparative Example 2 was significantly inferior in lateral pressure performance as compared with the hollow core bodies of Examples 2 and 3.
 以上の結果を、下記表1にまとめて示す。 The above results are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表1に示すように、内環状部の厚さがリブ部及び外環状部よりも薄く、かつ絶縁被覆体の外径の1~4%である実施例1~3の中空コア体は、それぞれの外径が等しく対応する比較例1~3の中空コア体に比べて、電気的中空率が高く、かつ機械的強度(側圧性能)に優れていた。 As shown in Table 1 above, the hollow core bodies of Examples 1 to 3 in which the inner annular portion is thinner than the rib portion and the outer annular portion and is 1 to 4% of the outer diameter of the insulating coating body, Compared to the hollow core bodies of Comparative Examples 1 to 3 in which the respective outer diameters correspond to each other, the electrical hollowness was high and the mechanical strength (side pressure performance) was excellent.
 1、3 内部導体
 2 絶縁被覆体
 2a 内環状部
 2b リブ部
 2c 外環状部
 2d 空隙部
 3a 導線
 10、11、12 中空コア体
 20、24 引取機
 21 押出成形機
 22 ダイス
 22a 鞘芯ダイス
 22b 丸ダイス
 23 冷却部
 30 加熱冷却管
 31a、31b 熱電対
 221 フランジ
 222 先端凸部
 222a 中心孔
 222b 内環状孔
 222c 直線状孔
 222d 外環状孔
 222e エアー導入孔
 223 パイプ
DESCRIPTION OF SYMBOLS 1, 3 Inner conductor 2 Insulation covering body 2a Inner annular part 2b Rib part 2c Outer annular part 2d Space | gap part 3a Conductor 10, 11, 12 Hollow core body 20, 24 Take-out machine 21 Extruder 22 Dice 22a Sheath core die 22b Round Die 23 Cooling part 30 Heating / cooling pipe 31a, 31b Thermocouple 221 Flange 222 Tip convex part 222a Center hole 222b Inner ring hole 222c Straight hole 222d Outer ring hole 222e Air introduction hole 223 Pipe

Claims (10)

  1.  内部導体と、
     熱可塑性樹脂からなり、前記内部導体を被覆する内環状部、該内環状部から放射状に延びる複数のリブ部、及び該リブ部の外端を連結する外環状部で構成される絶縁被覆体と、を有し、
     前記絶縁被覆体は、内環状部、外環状部及びリブ部により囲まれた3以上の空隙部を備えており、
     前記内環状部の厚さが、絶縁被覆体の外径の1~4%であり、かつリブ部及び外環状部よりも薄い伝送ケーブル用中空コア体。
    An inner conductor,
    An insulating covering made of a thermoplastic resin and comprising an inner annular portion covering the inner conductor, a plurality of rib portions extending radially from the inner annular portion, and an outer annular portion connecting the outer ends of the rib portions; Have
    The insulating covering includes three or more voids surrounded by an inner annular part, an outer annular part and a rib part,
    A hollow core body for a transmission cable, wherein the thickness of the inner annular portion is 1 to 4% of the outer diameter of the insulating covering and is thinner than the rib portion and the outer annular portion.
  2.  前記絶縁被覆体の厚さが、内環状部、リブ部、外環状部の順に厚くなることを特徴とする請求項1に記載の伝送ケーブル用中空コア体。 The hollow core body for a transmission cable according to claim 1, wherein the thickness of the insulating covering body increases in the order of an inner annular portion, a rib portion, and an outer annular portion.
  3.  前記外環状部の厚さが絶縁被覆体の外径の5~20%であることを特徴とする請求項1又は2に記載の伝送ケーブル用中空コア体。 The hollow core body for a transmission cable according to claim 1 or 2, wherein the thickness of the outer annular portion is 5 to 20% of the outer diameter of the insulating coating body.
  4.  長手方向に垂直な断面における前記空隙部の割合が20%以上であり、かつ等価誘電率をε、前記絶縁被覆体を構成する熱可塑性樹脂の比誘電率をεとしたとき、下記数式(A)により求められる電気的中空率Pが45%以上である請求項1乃至3のいずれか1項に記載の伝送ケーブル用中空コア体。
    Figure JPOXMLDOC01-appb-I000001
    When the ratio of the voids in the cross section perpendicular to the longitudinal direction is 20% or more, the equivalent dielectric constant is ε, and the relative dielectric constant of the thermoplastic resin constituting the insulating coating is ε 0 , the following formula ( hollow core body for the transmission cable according to any one of claims 1 to 3 electrically hollow ratio P e obtained by a) is 45% or more.
    Figure JPOXMLDOC01-appb-I000001
  5.  前記外環状部の真円度が96%以上であることを特徴とする請求項1乃至4のいずれか1項に記載の伝送ケーブル用中空コア体。 The hollow core body for a transmission cable according to any one of claims 1 to 4, wherein the roundness of the outer annular portion is 96% or more.
  6.  前記絶縁被覆体を構成する熱可塑性樹脂が、フッ素系樹脂又はポリオレフィン系樹脂であることを特徴とする請求項1乃至5のいずれか1項に記載の伝送ケーブル用中空コア体。 The hollow core body for a transmission cable according to any one of claims 1 to 5, wherein the thermoplastic resin constituting the insulating covering is a fluororesin or a polyolefin resin.
  7.  中心孔と、該中心孔を囲むようにその外縁に隣接して形成された内環状孔と、該内環状孔の外周から放射状に延び前記内環状孔よりも幅広の3以上の直線状孔と、該直線状孔の外端間を連結し前記内環状孔よりも幅広の外環状孔と、を備えるダイスを使用し、
     前記中心孔に内部導体を挿通させながら、前記内環状孔、直線状孔及び外環状孔から溶融樹脂を押出して、
     前記内部導体の周囲に、内環状部と、該内環状部から放射状に延びるリブ部と、該リブ部の外端を連結する外環状部と、前記内環状部、外環状部及びリブ部によって囲まれ長手方向に連続する空隙部とで構成される絶縁被覆体を形成する工程を有し、
     前記絶縁被覆体を形成する際に、その空隙部内に、内圧調整用エアーを導入する伝送ケーブル用中空コア体の製造方法。
    A central hole, an inner annular hole formed adjacent to the outer edge so as to surround the central hole, and three or more linear holes extending radially from the outer periphery of the inner annular hole and wider than the inner annular hole; And using a die comprising an outer annular hole connected between the outer ends of the linear holes and wider than the inner annular hole,
    While inserting the inner conductor through the center hole, extruding the molten resin from the inner annular hole, the straight hole and the outer annular hole,
    Around the inner conductor, an inner annular portion, a rib portion extending radially from the inner annular portion, an outer annular portion connecting the outer ends of the rib portion, the inner annular portion, the outer annular portion and the rib portion Having a step of forming an insulating covering that is surrounded by a continuous void in the longitudinal direction;
    A method for producing a hollow core body for a transmission cable, wherein, when forming the insulating covering, air for adjusting internal pressure is introduced into the gap.
  8.  内環状孔、直線状孔、外環状孔の順に孔の幅が広くなるダイスを使用することを特徴とする請求項7に記載の伝送ケーブル用中空コア体の製造方法。 The method for manufacturing a hollow core body for a transmission cable according to claim 7, wherein a die having a wider width in the order of an inner annular hole, a straight hole, and an outer annular hole is used.
  9.  請求項1乃至6のいずれか1項に記載の中空コア体を使用した信号伝送用ケーブル。 A signal transmission cable using the hollow core body according to any one of claims 1 to 6.
  10.  同軸ケーブルであり、前記中空コア体の周囲にシールド層が設けられていることを特徴とする請求項9に記載の信号伝送用ケーブル。 The signal transmission cable according to claim 9, wherein the signal transmission cable is a coaxial cable, and a shield layer is provided around the hollow core body.
PCT/JP2010/059898 2009-07-15 2010-06-11 Hollow-core-body for transmission cable, manufacturing method thereof, and signal transmission cable WO2011007635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-167137 2009-07-15
JP2009167137A JP5255529B2 (en) 2009-07-15 2009-07-15 Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable

Publications (1)

Publication Number Publication Date
WO2011007635A1 true WO2011007635A1 (en) 2011-01-20

Family

ID=43449245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059898 WO2011007635A1 (en) 2009-07-15 2010-06-11 Hollow-core-body for transmission cable, manufacturing method thereof, and signal transmission cable

Country Status (2)

Country Link
JP (1) JP5255529B2 (en)
WO (1) WO2011007635A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051096A1 (en) * 2011-10-04 2013-04-11 東京特殊電線株式会社 Hollow core body for signal transmission cable
WO2014062348A1 (en) * 2012-10-15 2014-04-24 Varel International Ind., L.P. Anti-balling coating on drill bits and downhole tools
CN111328423A (en) * 2017-09-21 2020-06-23 斯伦贝谢技术有限公司 Electrical conductors and methods of making and using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734155B2 (en) * 2011-10-12 2015-06-10 東京特殊電線株式会社 Hollow insulated wires for signal transmission cables
JP5964283B2 (en) * 2013-11-11 2016-08-03 東京特殊電線株式会社 Hollow core body and coaxial cable
JP6937209B2 (en) * 2017-09-28 2021-09-22 東京特殊電線株式会社 Flat cable
CN113021824B (en) * 2021-02-26 2022-09-27 重庆鸽牌电线电缆有限公司 Production method of gas-shielded flame-retardant cable
CN113035430B (en) * 2021-02-26 2022-12-27 重庆鸽牌电线电缆有限公司 Gas protection flame retarded cable apparatus for producing
CN113021825B (en) * 2021-02-26 2023-04-07 重庆鸽牌电线电缆有限公司 Self-extinguishing thermal cable production device
JP6977198B1 (en) * 2021-10-05 2021-12-08 東京特殊電線株式会社 coaxial cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249129A (en) * 2001-12-19 2003-09-05 Ube Nitto Kasei Co Ltd Small diameter coaxial cable and its manufacturing method
JP2007335393A (en) * 2005-09-27 2007-12-27 Ube Nitto Kasei Co Ltd Hollow core body for coaxial cable, manufacturing method of the core body, and coaxial cable using the core body
JP2008103179A (en) * 2006-10-19 2008-05-01 Totoku Electric Co Ltd High-speed differential transmission cable
JP2008243720A (en) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd Manufacturing method of hollow core for coaxial cable
WO2009119339A1 (en) * 2008-03-25 2009-10-01 宇部日東化成株式会社 Method for producing hollow core body of coaxial cable, hollow core body of coaxial cable, and coaxial cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249129A (en) * 2001-12-19 2003-09-05 Ube Nitto Kasei Co Ltd Small diameter coaxial cable and its manufacturing method
JP2007335393A (en) * 2005-09-27 2007-12-27 Ube Nitto Kasei Co Ltd Hollow core body for coaxial cable, manufacturing method of the core body, and coaxial cable using the core body
JP2008103179A (en) * 2006-10-19 2008-05-01 Totoku Electric Co Ltd High-speed differential transmission cable
JP2008243720A (en) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd Manufacturing method of hollow core for coaxial cable
WO2009119339A1 (en) * 2008-03-25 2009-10-01 宇部日東化成株式会社 Method for producing hollow core body of coaxial cable, hollow core body of coaxial cable, and coaxial cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051096A1 (en) * 2011-10-04 2013-04-11 東京特殊電線株式会社 Hollow core body for signal transmission cable
CN103827983A (en) * 2011-10-04 2014-05-28 东京特殊电线株式会社 Hollow core body for signal transmission cable
US20150075840A1 (en) * 2011-10-04 2015-03-19 Tadashi Yamaguchi Hollow core body for signal transmission cable
JPWO2013051096A1 (en) * 2011-10-04 2015-03-30 東京特殊電線株式会社 Hollow core body for signal transmission cables
US9318238B2 (en) 2011-10-04 2016-04-19 Totoku Electric Co., Ltd. Hollow core body for signal transmission cable
WO2014062348A1 (en) * 2012-10-15 2014-04-24 Varel International Ind., L.P. Anti-balling coating on drill bits and downhole tools
CN111328423A (en) * 2017-09-21 2020-06-23 斯伦贝谢技术有限公司 Electrical conductors and methods of making and using same
CN111328423B (en) * 2017-09-21 2022-05-03 斯伦贝谢技术有限公司 Electrical conductors and methods of making and using same

Also Published As

Publication number Publication date
JP5255529B2 (en) 2013-08-07
JP2011023205A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5255529B2 (en) Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable
JP5297726B2 (en) Coaxial cable hollow core manufacturing method, coaxial cable hollow core, and coaxial cable
US11605480B2 (en) Electrical cable with dielectric foam
JP4493595B2 (en) Foamed coaxial cable and manufacturing method thereof
US10269470B2 (en) Cable core and transmission cable
JP2007335393A (en) Hollow core body for coaxial cable, manufacturing method of the core body, and coaxial cable using the core body
JP2015100188A (en) Cooling cable product and cable cooling system
JP2007250235A (en) Hollow core object for coaxial cable, manufacturing method of core object, and coaxial cable using this core object
JP5259529B2 (en) Method for producing hollow core body for coaxial cable
JP2011071095A (en) Coaxial cable and multicore coaxial cable
JP2010192271A (en) Manufacturing method and manufacturing device of hollow core object for coaxial cable
JP5603970B2 (en) Manufacturing equipment for hollow core for coaxial cable
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
JP2006221889A (en) Manufacturing method of thermoplastic resin spiral body, and thermoplastic resin spiral body
JP2008226618A (en) Covered wire by porous ptfe resin insulating layer, and coaxial cable using it
JP2011060573A (en) Insulated wire and cable
JP5297832B2 (en) Method and apparatus for manufacturing hollow core body for differential transmission cable
JP6977198B1 (en) coaxial cable
JP2023141617A (en) coaxial cable
JP2022138873A (en) signal transmission cable
JP2021190403A (en) coaxial cable
JP2006127853A (en) Coaxial cable and manufacturing method of the same
KR20100134847A (en) Low loss coaxial cable and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799697

Country of ref document: EP

Kind code of ref document: A1