JP4195919B2 - Copper converter operation method - Google Patents

Copper converter operation method Download PDF

Info

Publication number
JP4195919B2
JP4195919B2 JP2000237531A JP2000237531A JP4195919B2 JP 4195919 B2 JP4195919 B2 JP 4195919B2 JP 2000237531 A JP2000237531 A JP 2000237531A JP 2000237531 A JP2000237531 A JP 2000237531A JP 4195919 B2 JP4195919 B2 JP 4195919B2
Authority
JP
Japan
Prior art keywords
copper
overblowing
converter
amount
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000237531A
Other languages
Japanese (ja)
Other versions
JP2002053915A (en
Inventor
耕司 山田
博美 玉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2000237531A priority Critical patent/JP4195919B2/en
Publication of JP2002053915A publication Critical patent/JP2002053915A/en
Application granted granted Critical
Publication of JP4195919B2 publication Critical patent/JP4195919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,白カワ中に随伴するPb,AsおよびSb等の不純物を効率よく分離回収する銅の転炉操業法に関する。
【0002】
【従来の技術】
硫化物主体の銅の転炉操業法では,カワ中のFeSの酸化と造カンを主とする造カン期と,この造カン期で生成した白カワ(主としてCu2S)から金属銅に酸化脱硫する造銅期とからなるが,いずれも酸素含有ガスを羽口から吹き込む吹錬によって行われる。
【0003】
転炉に入る不純物は,多くのものは吹精中に揮発あるいは酸化されるが,一部は粗銅中に残る。このような不純物の分離除去並びに回収を効率よく行うことも転炉操業の重要な課題であり,従来より種々の対策が採られている。
【0004】
例えば特開2000−63963号公報には,スラグ組成を調整することによって,具体的にはCaO/(SiO2+CaO):0.3〜0.5,Fe/(FeO+SiO2+CaO):0.2〜0.5のスラグが得られるようにSiO2源およびCaO源を加えて造カン期および造銅期の吹錬を行い,Pb,As,Sb等をスラグ側に移行させる方法が提案されている。
【0005】
また,特開2000−87153号公報には,造銅期末期の仕上げ期に,CaOを構成要素とする粉体を羽口を介して吹き込むことによって高融点の造銅期カラミを生成させる方法が記載されている。この方法によると高融点のカラミは粗銅排出後の転炉内で凝固しやすいので,次回カワ装入時のカワとの反応が抑制され,その結果,Pb,Zn,Cd,As等を含むヒュームの発生を低減できるとされている。
【0006】
【発明が解決しようとする課題】
造カン期ではカワ中のFeSの酸化と造カンを主とする吹錬を実施し,造銅期では白カワから金属銅に酸化脱硫する吹錬を実施するのが銅転炉の本来の使命である。この吹錬中に,特開2000−63963号公報に提案されたような不純物の除去対策も併せて実現することが望ましいが,このために前記の本来の使命まで犠牲にすることは余り得策ではない。したがって,溶銅中にPb,AsおよびSbがある程度共存する状態で造銅期を終え,この溶銅中からこれら不純物を除去回収する方が有利なときもある。
【0007】
本発明の課題は,造銅期を終えた転炉内の溶銅中からこれら不純物を効率良く回収する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば,造銅期が終了した後,さらに羽口より酸素含有ガスを吹き込んで溶銅の一部を酸化するオーバーブローイングを行う銅の転炉操業において,造銅期末期に転炉装入口よりSiO2を主成分とするフラックスを投入してから造銅期を終了し,引き続き該オーバーブローイングを行うことを特徴とする銅の転炉操業法を提供するものである。
【0009】
そのさい,転炉装入口より装入されたSiO2を主成分とするフラックスを造銅期終了前(オーバーブローイング前)に融解させておくのが好ましい。また,造カン期終了時の白カワ中のPb,AsおよびSbの含有量を検出しておき,これらの検出値と転炉に装入されたカワ量とからオーバーブローイング時の吹き込み酸素量を決定することにより,過不足なくオーバーブローイングを実施できる。
【0010】
本発明に従うオーバーブローイングは,Pbリッチのスラグを形成する一次オーバーブローイングと,As・Sbリッチのスラグを形成する二次オーバーブローイングとからなる。一次オーバーブローイングではSiO2リッチのスラグの共存下で実施し,二次オーバーブローイングにおいては,好ましくは一次オーバーブローイングで生成したスラグを排滓してから,羽口から吹き込む酸素含有ガスにカルシウム化合物の粉体を同伴させる粉体インジェクションブローを実施する。
【0011】
【発明の実施の形態】
本明細書において,造銅期を終了した転炉内溶銅を対象として羽口から酸素含有ガスを吹き込む吹錬を「オーバーブローイング」と呼ぶ。酸素含有ガスとして酸素富化空気や熱風等も使用可能であるが,常温の空気が最も簡便である。このオーバーブローイングでは銅の酸化損が発生することになるが,溶銅中の不純物も併せて酸化除去することが可能である。オーバーブローイングにおける銅の酸化損と不純物酸化の利害得失を考える場合,不純物の除去効率,スラグの有効活用,オーバーブローイングの終点制御,フラックス添加量制御等がその成否を分けることになる。
【0012】
本発明者らは,このような観点に立って,オーバーブローイングの最も効率のよい操業を完成すべく努力してきたが,オーバーブローイングを主としてPbを除去するブローと,主としてAsおよびSbを除去するブローに分割し,前者を終えたあとに,後者を実施し,そして,各々のブローは異なる条件を採用することが有利であることを知った。
【0013】
先ず,造銅期終了後にPb除去を主とする一次オーバーブローイングを実施する。ここでPbを酸化してスラグに移行させるには,SiO2系のスラグを共存させるのが有利である。しかし,このためにSiO2系のフラックスを装入すると,その溶融のための熱源が銅の酸化熱で賄われることになるので得策ではない。そこで造銅期末期にSiO2を主成分とするフラックスを転炉装入口から装入し,造銅期末期に存在している白カワの反応熱をこのフラックスの融解に利用する。すなわち造銅期の仕上げ吹錬時のこのフラックスを融解し,造銅期終了時には,このSiO2系フラックスがほぼ完全に融解しているように,フラックス量とその装入時期を選定する。
【0014】
このフラックスの装入時期については,実際には転炉排ガス中のSO2濃度が4%以下になったところとし,その装入量については白カワ中に存在したPb量に応じた量に選定する(該Pb量に係数を乗じてフラックス量を計算する)。白カワ中のPb量は,転炉へのカワ装入量と,造カン期終了時の白カワ中のPb量のオンライン分析値から決定できる。
【0015】
SiO2系フラックスが融解した状態で一次オーバーブローイングを行うのであるが,この吹錬時間は,前記のPb含有量を基にして算出する。すなわちPbの全量を酸化するに十分な酸素が供給される環境設定から,該Pb含有量に係数を乗じることによって求めることができる。
【0016】
SiO2含有スラグ共存下での一次オーバーブローイングによって,Cu2O−マグネタイト−SiO2系スラグ中にPbOが含まれたPbリッチのスラグが生成する。このスラグを二次オーバーブローイングの前に排滓するのが好ましい。このスラグは次回以降の転炉操業の造カン期に戻してスラグ中の銅を回収するのが望ましい。そのさいPbOの大部分はカラミ中に止まるので,カラミとして炉外に排出される。一次オーバーブローイングによって溶銅中のAsおよびSbの一部もこのスラグに入るが,一次オーバーブローイングはPbの除去を主目的としており,Pbの除去がほぼ完了した時点で一次オーバーブローイングを一応終了させ,AsおよびSbの低域までの除去は次の二次オーバーブローイングで実施する。
【0017】
二次オーバーブローイングは,羽口からのCaO源の粉体吹込みによって実施する。すなわち,羽口から吹込む酸素含有ガス(空気)にCaO源粉体を同伴させ,溶銅中にCaO源をインジェクションする。CaO源としては石灰,石灰岩粉,炭カル等が使用できるが,炭カルの使用が好都合である。消石灰も用いて見たが,炭酸カルシウムの方が除去効果が高いことがわかった。
【0018】
羽口から空気と共にCaO源を溶銅中にインジェクションすると,溶銅中のAs,SbおよびPbはいずれもCaOと反応して反応生成物としてのスラグを形成し,溶銅中の含有量は極低域まで減少する。このCaO源のインジェクション量並びにブロー時間についても,白カワ中のPb,AsおよびSb量についてのオンライン検出値と,転炉へのカワ装入量を基に算出し,この算出値に基づいて制御する。
【0019】
このようにして本発明によると,カワに同伴するPb,AsおよびSbの実質的な除去を2段階に分けたオーバーブローイングによって実施するので,造カン期および造銅期における本来の銅製錬の操業に負荷を与えることなく,低域まで不純物が除去された溶銅を操業性良く製造できるようになり,高品位の銅電解精製用粗銅を効率良く得ることができる。
【0020】
【実施例】
〔実施例1〕
内径3.5mで長さ8.2mの100tps転炉に,自溶炉で製造されたカワ120tを受け入れて吹錬した後,造カン期を終了した。この時得られた白カワのPb,AsおよびSb品位はオンライン計測でPb=3.0 %, As=0.4 %, Sb=0.9 %であり,白カワの推定量は 104tであった。これらのデータから,造銅期末期に装入するSiO2を主成分とするフラックス (珪石を使用) の必要装入量は 759Kgと算出され,二次オーバーブローイングでインジェクションするカルシウム化合物 (炭酸カルシウムを使用) の必要インジェクション量は 1443 Kgと算出された。また,一次オーバーブローイング時間は 360 Nm3×21カウント (時間単位) であると算出された。
【0021】
前記の算出結果に基づいて, 造銅期末期 (排ガス中のSO2濃度が4%になった時) に,珪石 759Kgを転炉装入口から装入し,ほぼ同時に羽口から 360 Nm3×21カウントの送風を行って一次オーバーブローイングを実施し,排滓した。次いで,羽口から炭酸カルシウムを 1443 Kgインジェクションするオーバーブローイングを行ない,吹錬を終了した。得られた粗銅の品位は,Pb=0.30%, As=0.12%, Sb=0.14%であった。この操業結果を表1に示した。
【0022】
〔実施例2〕
自溶炉で製造されたカワ115tを受け入れて実施例1と同様に吹錬した後,造カン期を終了した。その時点での白カワのPb,AsおよびSb品位はPb=4.0 %, As=0.3 %, Sb=0.6 %であり, 白カワの推定量は106tであった。これらのデータから,造銅期末期に装入する珪石の必要装入量は 815Kgと算出され,二次オーバーブローイングでの炭酸カルシウムの必要インジェクション量は 1026 Kgと算出された。また,一次オーバーブローイング時間は 360 Nm3×23カウント (時間単位) であると算出された。
【0023】
前記の算出結果に基づいて, 造銅期末期 (排ガス中のSO2濃度が4%になった時) に,珪石 815Kgを転炉装入口から装入し,ほぼ同時に羽口から 360 Nm3×23カウントの送風を行って一次オーバーブローイングを実施し,排滓した。次いで,羽口から送風を行いつつ炭酸カルシウムを 1026 Kgインジェクションする二次オーバーブローイングを行ない,吹錬を終了した。得られた粗銅の品位は,Pb=0.11%, As=0.09%, Sb=0.10%であった。この操業結果も表1に併記した。
【0024】
〔実施例3〕
自溶炉で製造されたカワ140tを受け入れて実施例1と同様に吹錬した後,造カン期を終了した。その時点での白カワのPb,AsおよびSb品位はPb=2.0 %, As=0.2 %, Sb=0.4 %であり, 白カワの推定量は117tであった。これらのデータから,造銅期末期に装入する珪石の必要装入量は 504Kgと算出され,二次オーバーブローイングでの炭酸カルシウムの必要インジェクション量は 666Kgと算出された。また,一次オーバーブローイング時間は 360 Nm3×15カウント (時間単位) であると算出された。
【0025】
前記の算出結果に基づいて, 造銅期末期 (排ガス中のSO2濃度が4%になった時) に,珪石 504Kgを転炉装入口から装入し,ほぼ同時に羽口から 360 Nm3×15カウントの送風を行って一次オーバーブローイングを実施し,排滓した。次いで,羽口から送風を行いつつ炭酸カルシウムを 666Kgインジェクションする二次オーバーブローイングを行ない,吹錬を終了した。得られた粗銅の品位は,Pb=0.29%, As=0.12%, Sb=0.14%であった。この操業結果も表1に併記した。
【0026】
〔比較例〕
自溶炉で製造されたカワ117 tを受け入れて実施例1と同様に吹錬した後,造カン期を終了した。その時点での白カワのPb,AsおよびSb品位はPb=2.5 %, As=0.35%, Sb=0.65%であった。造銅期末期に珪石を装入することなく造銅期を終了し,引き続き, 360 Nm3 ×40カウントのオーバーブローイングを行ない, 炭酸カルシウムのインジェクションも行うことなく,吹錬を終了した。得られた粗銅の品位は,Pb=0.25%, As=0.13%, Sb=0.15%であった。
【0027】
【表1】

Figure 0004195919
【0028】
表1の結果に見られように,比較例では,実施例1〜3のほぼ2〜3倍の負荷をかけてオーバーブローイングを実施したにも拘わらず(それだけ,スラグに移行する酸化銅の量が多くなっている),それほど不純物が除去されていない。これに対し各実施例では,不純物の含有量に応じて過不足なくオーバーブローイングが実施された結果,粗銅管理値を十分に満足する高品位の粗銅を効率よく製造することができたことがわかる。
【0029】
【発明の効果】
以上説明したように,本発明によると,銅の電解精製に悪影響を与えるPb,AsおよびSbを,転炉操業時に効率よく除去できるようになり,硫化鉱を原料とする銅製錬の合理化に大きく貢献できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper converter operating method for efficiently separating and recovering impurities such as Pb, As and Sb accompanying white river.
[0002]
[Prior art]
In the sulfide-based copper converter operation method, oxidation of FeS in the river and the formation period mainly consisting of cans, and the white river (mainly Cu 2 S) produced during the formation period are oxidized to copper metal It consists of the copper making stage to desulfurize, but all are performed by blowing oxygen-containing gas from the tuyere.
[0003]
Most of the impurities entering the converter are volatilized or oxidized during blowing, but some remain in the crude copper. Efficiently separating and recovering such impurities is an important issue in converter operation, and various measures have been taken conventionally.
[0004]
For example, in Japanese Patent Laid-Open No. 2000-63963, by adjusting the slag composition, specifically, CaO / (SiO 2 + CaO): 0.3 to 0.5, Fe / (FeO + SiO 2 + CaO): 0.2 the SiO 2 source and CaO source added as slag to 0.5 is obtained performs blowing of forming cans phase and Zodo-life, Pb, as, Sb, etc. has been proposed a method to shift to the slag side Yes.
[0005]
Japanese Patent Application Laid-Open No. 2000-87153 discloses a method for producing a high melting point copper-making calami by blowing a powder containing CaO through a tuyere at the finishing stage of the copper-making final stage. Are listed. According to this method, the high melting point calami is easily solidified in the converter after discharging the crude copper, so that the reaction with the river at the next charging of the river is suppressed. As a result, fume containing Pb, Zn, Cd, As, etc. It is said that the occurrence of this can be reduced.
[0006]
[Problems to be solved by the invention]
The original mission of a copper converter is to perform oxidation and desulfurization from white river to metal copper during the copper making stage, while performing oxidation and smelting mainly of FeS in the river during the copper making stage. It is. During this blowing, it is desirable to implement measures for removing impurities as proposed in Japanese Patent Application Laid-Open No. 2000-63963, but for this purpose, it is not a good idea to sacrifice the original mission. Absent. Therefore, it may be advantageous to finish the copper making process in a state where Pb, As and Sb coexist to some extent in the molten copper, and to remove and recover these impurities from the molten copper.
[0007]
An object of the present invention is to provide a method for efficiently recovering these impurities from molten copper in a converter after the copper making period.
[0008]
[Means for Solving the Problems]
According to the present invention, after the completion of the copper making period, in the copper converter operation in which oxygen-containing gas is further blown from the tuyere to oxidize part of the molten copper, The present invention provides a copper converter operating method characterized in that a flux containing SiO 2 as a main component is introduced from an inlet, the copper making period is terminated, and the overblowing is subsequently performed.
[0009]
At that time, it is preferable to melt the flux mainly composed of SiO 2 charged from the converter charging inlet before the end of the copper making period (before overblowing). Also, the contents of Pb, As and Sb in the white river at the end of the canning period are detected, and the amount of oxygen blown during overblowing is determined from these detected values and the amount of river charged in the converter. By deciding, overblowing can be implemented without excess or deficiency.
[0010]
The overblowing according to the present invention includes a primary overblowing that forms a Pb-rich slag and a secondary overblowing that forms an As · Sb-rich slag. The primary overblowing is performed in the presence of SiO 2 rich slag, and in the secondary overblowing, the slag generated by the primary overblowing is preferably discharged, and then the oxygen-containing gas blown from the tuyere is filled with calcium compounds. Implement powder injection blow with powder.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, blowing that oxygen-containing gas is blown from the tuyere for the molten copper in the converter after the copper making period is called “overblowing”. Although oxygen-enriched air or hot air can be used as the oxygen-containing gas, room temperature air is the simplest. This overblowing causes oxidation loss of copper, but impurities in the molten copper can also be removed by oxidation. When considering the advantages and disadvantages of copper oxidation loss and impurity oxidation in overblowing, the efficiency of impurity removal, effective utilization of slag, end point control of overblowing, control of the amount of flux added, and the like are divided.
[0012]
From the above viewpoint, the present inventors have made efforts to complete the most efficient operation of overblowing. However, overblowing mainly removes Pb and blow mainly removes As and Sb. After finishing the former, the latter was implemented, and we learned that it was advantageous for each blow to adopt different conditions.
[0013]
First, after the copper making period is completed, primary overblowing mainly for Pb removal is performed. Here, in order to oxidize Pb and transfer it to slag, it is advantageous to coexist SiO 2 slag. However, if SiO 2 flux is introduced for this purpose, the heat source for melting is covered by the oxidation heat of copper, which is not a good idea. Therefore, a flux containing SiO 2 as the main component is charged from the converter inlet at the end of copper making, and the reaction heat of white river existing at the end of copper making is used for melting this flux. In other words, the flux amount and the charging time are selected so that the flux at the finish blowing in the copper making stage is melted, and at the end of the copper making stage, the SiO 2 flux is almost completely melted.
[0014]
Regarding the charging time of this flux, the SO 2 concentration in the converter exhaust gas was actually 4% or less, and the charging amount was selected according to the amount of Pb present in the white river. (The amount of flux is calculated by multiplying the amount of Pb by a coefficient). The amount of Pb in white river can be determined from the amount of river charged into the converter and the on-line analysis value of the amount of Pb in white river at the end of the canning period.
[0015]
The primary overblowing is performed with the SiO 2 flux melted, and the blowing time is calculated based on the Pb content. That is, it can be determined by multiplying the Pb content by a factor from the environmental setting in which sufficient oxygen is supplied to oxidize the entire amount of Pb.
[0016]
By the primary over-blowing in SiO 2 containing slag presence, PbO is Pb-rich slag that contains generated on Cu 2 O-magnetite -SiO 2 system in the slag. This slag is preferably rejected prior to secondary overblowing. It is desirable to return this slag to the canning stage of the subsequent converter operation and recover the copper in the slag. At that time, most of the PbO stays in the calami and is discharged out of the furnace as calami. Although part of As and Sb in molten copper also enters this slag by primary overblowing, primary overblowing is mainly aimed at removing Pb, and once primary Pb removal is almost complete, the primary overblowing is temporarily stopped. , As and Sb are removed to the low frequency by the following secondary overblowing.
[0017]
Secondary overblowing is performed by blowing powder of CaO source from the tuyere. That is, the CaO source powder is entrained in an oxygen-containing gas (air) blown from the tuyere and the CaO source is injected into the molten copper. As the CaO source, lime, limestone powder, charcoal cal or the like can be used, but use of charcoal calf is convenient. Although it was seen using slaked lime, it was found that calcium carbonate had a higher removal effect.
[0018]
When CaO source is injected into the molten copper together with air from the tuyere, As, Sb and Pb in the molten copper all react with CaO to form slag as a reaction product, and the content in the molten copper is extremely high. Decrease to low range. The CaO source injection amount and blow time are also calculated based on the on-line detection values for the Pb, As and Sb amounts in the white river and the amount of river charge in the converter, and controlled based on the calculated values. To do.
[0019]
Thus, according to the present invention, the substantial removal of Pb, As and Sb accompanying the river is carried out by overblowing divided into two stages, so that the original copper smelting operation in the canning and coppermaking stages In this way, it is possible to manufacture molten copper from which impurities have been removed to a low range with good operability without burdening the steel, and high-quality crude copper for electrolytic electrolytic refining can be obtained efficiently.
[0020]
【Example】
[Example 1]
The can-making period was completed after receiving 120 t of river produced in a flash furnace and blowing it into a 100 tps converter with an inner diameter of 3.5 m and a length of 8.2 m. The Pb, As and Sb grades of the white river obtained at this time were Pb = 3.0%, As = 0.4%, Sb = 0.9% as measured online, and the estimated amount of white river was 104t. These data necessary charging amount of flux (using silica) mainly composed of SiO 2 that is charged to the granulation of copper-life end was calculated to 759Kg, calcium compound is injected at a secondary over-blowing (the calcium carbonate The required injection amount was 1443 Kg. The primary overblowing time was calculated to be 360 Nm 3 × 21 counts (time unit).
[0021]
Based on the above calculation results, at the end of copper making (when the SO 2 concentration in the exhaust gas reached 4%), 759 Kg of silica was charged from the converter inlet, and almost simultaneously from the tuyere, 360 Nm 3 × 21 counts of air was blown, primary overblowing was performed, and the waste was discharged. Next, overblowing was performed by injecting 1443 kg of calcium carbonate from the tuyere, and the blowing was completed. The quality of the obtained crude copper was Pb = 0.30%, As = 0.12%, Sb = 0.14%. The operation results are shown in Table 1.
[0022]
[Example 2]
After accepting the river 115t produced in the flash furnace and blowing it in the same manner as in Example 1, the canning period was finished. The Pb, As and Sb grades of white river at that time were Pb = 4.0%, As = 0.3%, Sb = 0.6%, and the estimated amount of white river was 106t. From these data, the required amount of silica stone charged at the end of copper making was calculated as 815 kg, and the required amount of calcium carbonate injection during secondary overblowing was calculated as 1026 kg. The primary overblowing time was calculated to be 360 Nm 3 × 23 counts (time unit).
[0023]
Based on the above calculation results, at the end of copper making (when the SO 2 concentration in the exhaust gas reached 4%), 815 kg of silica was charged from the converter inlet and almost simultaneously from the tuyere 360 Nm 3 × 23 counts of air was blown, primary overblowing was performed, and the waste was discharged. Next, secondary blowing was performed with 1026 kg of calcium carbonate while blowing from the tuyere, and blowing was completed. The quality of the obtained crude copper was Pb = 0.11%, As = 0.09%, Sb = 0.10%. The results of this operation are also shown in Table 1.
[0024]
Example 3
After receiving 140t of the river produced in the flash furnace and blowing it in the same manner as in Example 1, the canning period was finished. The Pb, As, and Sb grades of white river at that time were Pb = 2.0%, As = 0.2%, Sb = 0.4%, and the estimated amount of white river was 117t. From these data, the required amount of silica stone to be charged at the end of copper making was calculated to be 504 kg, and the required injection amount of calcium carbonate in secondary overblowing was calculated to be 666 kg. The primary overblowing time was calculated to be 360 Nm 3 × 15 counts (time unit).
[0025]
Based on the above calculation results, at the end of copper making (when the SO 2 concentration in the exhaust gas reached 4%), 504 kg of silica was charged from the converter inlet and almost simultaneously from the tuyere 360 Nm 3 × The primary overblowing was performed with 15 counts of air blown, and the waste was discharged. Next, secondary blowing was performed with 666 kg of calcium carbonate while blowing from the tuyere, and blowing was completed. The quality of the obtained crude copper was Pb = 0.29%, As = 0.12%, Sb = 0.14%. The results of this operation are also shown in Table 1.
[0026]
[Comparative Example]
After receiving 11 7 t of the river produced in the flash furnace and blowing it in the same manner as in Example 1, the canning period was finished. The Pb, As and Sb grades of white river at that time were Pb = 2.5%, As = 0.35%, Sb = 0.65%. At the end of the copper making process, the copper making process was completed without charging the silica, and over blowing at 360 Nm 3 × 40 count was continued, and the blowing was completed without the injection of calcium carbonate. The quality of the obtained crude copper was Pb = 0.25%, As = 0.13%, Sb = 0.15%.
[0027]
[Table 1]
Figure 0004195919
[0028]
As can be seen from the results in Table 1, in the comparative example, the amount of copper oxide transferred to the slag was increased despite the fact that overblowing was performed with a load approximately 2-3 times that of Examples 1-3. The impurities are not removed so much. On the other hand, in each example, as a result of carrying out overblowing according to the content of impurities without excess or deficiency, it was found that high-grade crude copper sufficiently satisfying the crude copper control value could be efficiently produced. .
[0029]
【The invention's effect】
As described above, according to the present invention, Pb, As, and Sb, which adversely affect the electrolytic refining of copper, can be efficiently removed during the converter operation, which greatly contributes to the rationalization of copper smelting using sulfide ore as a raw material. Can contribute.

Claims (7)

造銅期が終了した後,さらに羽口より酸素含有ガスを吹き込んで溶銅の一部を酸化するオーバーブローイングを行う銅の転炉操業において,造銅期末期に転炉装入口よりSiO2を主成分とするフラックスを投入してから造銅期を終了し,引き続き該オーバーブローイングを行うことを特徴とする銅の転炉操業法。After the copper making period is over, in the copper converter operation where oxygen-containing gas is further blown from the tuyere to oxidize part of the molten copper, SiO 2 is introduced from the converter inlet at the end of the copper making period. A copper converter operating method characterized in that after the flux as a main component is introduced, the copper making period is ended and the overblowing is continued. 転炉装入口より装入されたSiO2主成分のフラックスをオーバーブローイングの前に融解させる請求項1に記載の銅の転炉操業法。 2. The copper converter operation method according to claim 1, wherein the SiO2 main component flux charged from the converter charging inlet is melted before overblowing. 造カン期終了時の白カワ中のPb,AsおよびSbの含有量を検出し,これらの検出値と転炉に装入されたカワ量とからオーバーブローイングの吹き込み酸素量を決定する請求項1または2に記載の銅の転炉操業法。The content of Pb, As, and Sb in the white river at the end of the canning period is detected, and the amount of oxygen blown in overblowing is determined from these detected values and the amount of river charged in the converter. Or the copper converter operating method described in 2; オーバーブローイングは,Pbリッチのスラグを形成する一次オーバーブローイングと,As・Sbリッチのスラグを形成する二次オーバーブローイングとからなる請求項1,2または3に記載の銅の転炉操業法。4. The copper converter operating method according to claim 1, wherein the overblowing includes a primary overblowing for forming a Pb-rich slag and a secondary overblowing for forming an As / Sb-rich slag. 二次オーバーブローイングは,羽口から吹き込む酸素含有ガスにカルシウム化合物の粉体を同伴させる粉体インジェクションブローイングである請求項4に記載の銅の転炉操業法。5. The copper converter operation method according to claim 4, wherein the secondary overblowing is a powder injection blowing in which a calcium compound powder is accompanied by an oxygen-containing gas blown from a tuyere. 二次オーバーブローイングは,一次オーバーブローイングで生成したスラグを排滓したあとで実施する請求項4または5に記載の銅の転炉操業法。The copper converter operation method according to claim 4 or 5, wherein the secondary overblowing is performed after the slag generated by the primary overblowing is discharged. 造カン期終了時の白カワ中のPb,AsおよびSbの含有量を検出し,これらの検出値と転炉に装入されたカワ量とから,転炉装入口より投入するSiO2を主成分とするフラックス量と,二次オーバーブローイングでインジェクションするカルシウム化合物粉体量を決定する請求項5または6に記載の銅の転炉操業法。The contents of Pb, As, and Sb in the white river at the end of the can-making period are detected, and from these detected values and the amount of river charged in the converter, the SiO 2 charged from the converter charging inlet is mainly used. The copper converter operation method according to claim 5 or 6, wherein a flux amount as a component and a calcium compound powder amount to be injected by secondary overblowing are determined.
JP2000237531A 2000-08-04 2000-08-04 Copper converter operation method Expired - Lifetime JP4195919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237531A JP4195919B2 (en) 2000-08-04 2000-08-04 Copper converter operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237531A JP4195919B2 (en) 2000-08-04 2000-08-04 Copper converter operation method

Publications (2)

Publication Number Publication Date
JP2002053915A JP2002053915A (en) 2002-02-19
JP4195919B2 true JP4195919B2 (en) 2008-12-17

Family

ID=18729375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237531A Expired - Lifetime JP4195919B2 (en) 2000-08-04 2000-08-04 Copper converter operation method

Country Status (1)

Country Link
JP (1) JP4195919B2 (en)

Also Published As

Publication number Publication date
JP2002053915A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
TWI410501B (en) Method for recovering iron and phosphorus from steel slag
US6438154B2 (en) Method and apparatus for recovering metal values from liquid slag an baghouse dust of an electric arc furnace
CN100357470C (en) Method for preparing ferro-titantium, steel and ferrovanadium from vanadium-titantium iron headings
CN101906498B (en) Method for comprehensively smelting sefstromite
CN101215619A (en) Method for extracting vanadium and removing phosphorus from vanadium-containing molten iron and steel-smelting technique using the same method
JP4195919B2 (en) Copper converter operation method
EA036823B1 (en) Recovery of metals from calcium-rich materials
TWI637062B (en) Method for manufacturing molten steel
JP2001073021A (en) Flux for refining metal and production thereof
JPH0437136B2 (en)
JP3158912B2 (en) Stainless steel refining method
US5411572A (en) Method for utilizing smelter waste containing zinc and other valuable metals
JP3776778B2 (en) Method of removing vanadium from molten iron
JPH0524962B2 (en)
JP3771634B2 (en) Effective utilization of chromium oxide-containing dust
JP4854933B2 (en) Refining method with high reaction efficiency
RU2791998C1 (en) Method for direct production of cast iron from phosphorus-containing iron ore or concentrate with simultaneous removal of phosphorus into slag
JP4218172B2 (en) Method for refining molten iron alloy
CA1067001A (en) Converter treatment
JPH0397814A (en) Nitrogen-air blast in ni-cu converter
JP2004107735A (en) Method for efficiently dephosphorizing molten iron
RU2261285C1 (en) Method of production of blister copper and zinc
JPS5855504A (en) Manufacture for pig and steel
JPS5819422A (en) Manufacture of steel with converter
JPS6115126B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4195919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term