JPS6115126B2 - - Google Patents

Info

Publication number
JPS6115126B2
JPS6115126B2 JP5822378A JP5822378A JPS6115126B2 JP S6115126 B2 JPS6115126 B2 JP S6115126B2 JP 5822378 A JP5822378 A JP 5822378A JP 5822378 A JP5822378 A JP 5822378A JP S6115126 B2 JPS6115126 B2 JP S6115126B2
Authority
JP
Japan
Prior art keywords
hot metal
converter slag
phase
slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5822378A
Other languages
Japanese (ja)
Other versions
JPS54150389A (en
Inventor
Susumu Aida
Hitoshi Ono
Akira Inagaki
Tamenori Masui
Shoji Nosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5822378A priority Critical patent/JPS54150389A/en
Publication of JPS54150389A publication Critical patent/JPS54150389A/en
Publication of JPS6115126B2 publication Critical patent/JPS6115126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は転炉スラグ中のFe、Mnを回収する方
法に関するものである。 周知の通り純酸素上吹転炉における精錬作業に
おいては大量の転炉スラグが発生するが、この転
炉スラグは燐(P)を始めとする不純元素の含有
量が多いため、Fe、Mn等の有価元素を多量に含
有するにもかかわらず、通常埋立に用いられてき
た。ところで近時前述のように転炉スラグは種々
の元素が含まれているため、それらの有効利用を
計る方法が提案され始めたが、直接転炉スラグ中
のFe、Mnなど有用元素を回収する方法は提案さ
れていない。 本発明者等は転炉スラグが第1表に示すように
多量のFe、Mnを含有していることから、これら
を経済的に回収する技術を研究した結果、本発明
の方法を開発したもので、溶銑中に粒状転炉スラ
グを溶銑屯当り100Kg以下添加撹拌することによ
り、溶銑中のSiで転炉スラグ中の酸化鉄、酸化マ
ンガンを還元せしめ、溶銑中のSiが0.02%以上で
処理を完了させることを特徴とする転炉スラグ中
のFe、Mn回収方法をその要旨とするものであ
る。
The present invention relates to a method for recovering Fe and Mn in converter slag. As is well known, a large amount of converter slag is generated during refining work in a pure oxygen top-blown converter, and this converter slag contains a large amount of impurity elements such as phosphorus (P), so it contains Fe, Mn, etc. Despite containing large amounts of valuable elements, it has usually been used in landfills. By the way, as mentioned above, converter slag contains various elements, and methods have begun to be proposed to effectively utilize them. No method has been proposed. As converter slag contains large amounts of Fe and Mn as shown in Table 1, the present inventors researched techniques for economically recovering these materials, and as a result, developed the method of the present invention. By adding 100kg or less of granular converter slag per tonne of hot metal to the hot metal and stirring, the Si in the hot metal reduces the iron oxide and manganese oxide in the converter slag, making the process so that the Si content in the hot metal is 0.02% or more. The gist of this paper is a method for recovering Fe and Mn from converter slag, which is characterized by completing the following steps.

【表】 さて、本発明を以下さらに詳細に説明する。 溶銑中に粒状転炉滓を添加撹拌すると転炉スラ
グ中のFeO、MnOは溶銑中のSiによつて次の
(1)、(2)式のように還元される。 2FeO+Si→SiO2+2Fe ……(1) 2MnO+Si→SiO2+2Mn ……(2) 従つて転炉スラグ中のFe、Mnは溶銑中に溶解
され回収されることとなる。 而して粒状転炉スラグを溶銑屯当り100Kg以下
に限定する理由の1つは、それ以上添加すると溶
銑中のMnが次の(3)式の反応によつてスラグ化し
好ましくないためである。 Mn+FeO→MnO+Fe ……(3) つまり転炉スラグ中のMnが溶銑中に回収され
ないばかりか、かえつて溶銑中のMnがスラグ化
してしまうからです。 本発明者等の知見では前記(1)式で反応したのち
の溶銑中のSi量を0.20%以上とすることが溶銑中
にMnを回収するために必要である。また溶銑中
に100Kg以上転炉スラグを投入すると溶銑温度が
低下しすぎて溶銑の精錬作業に支障を生ずる。 次に転炉スラグを粒状とする理由について説明
する。 本発明において転炉スラグを溶融状態で添加す
ることは好ましくない。その理由はそのような高
温では第6図で示すように、SiとMnの酸化反応
が接近しすぎており、溶銑と転炉スラグの反応が
早いため溶銑中のMnはSiと同時にスラグ化して
しまい、本発明の目的が達成できないからであ
る。すなわち、本発明の特徴の1つは固化状態の
転炉スラグを用いることと前記固化転炉スラグで
大塊のものは径が30mm以下になるように粗粒、細
粒状に破砕し添加を容易にすることにあり、その
手段で溶銑との反応を比較的ゆつくり行なわせ前
記(1)、(2)式に示す反応によつて転炉スラグ中の
Fe、Mnを溶銑中に確実に回収せしめる点に特徴
を有するものである。 而して前述の固化転炉スラグを用いる理由につ
いてさらに詳述する。 本発明の他の特徴の1つは、固化転炉スラグの
鉱物相すなわちPを含んだ2CaO・SiO2相と他の
相との融点の差を利用して2CaO・SiO2相をなる
べく溶解させずにPの含まれていない他の相を溶
融せしめ前述のような(1)、(2)式の反応によつて
FeOとMnOを還元し、FeとMnを回収せしめる点
にある。 すなわち、本発明者等は数多くの転炉スラグの
凝固組織を観察した結果、第1図の顕微鏡写真に
示すように転炉スラグの凝固組織は主として灰色
の板状または粒状に見える比較的融点の高いカル
シウムシリケートを主成分とする相(以下説明の
便宜のためCS相と云う)と白色に見える鉄酸化
物の含有量の多い相(以下CF相と云う)とに分
離する。なお第1図における黒色部分も気孔もし
くはその他の相(以下EP相と云う)である。 第2図は前記第1図の組織のものをEPMA
(Electron Probe Micro Analyzer)によつて線
分析した結果を示すもので、これから前記CS相
はP2O5を固溶したカルシウムシリケートを主成
分とするものでCF相はP2O5が少なく酸化鉄分
と、酸化マンガン(MnO)を多く含んだ融点の
低い相であることが判る。 このように通常転炉スラグは、前記CS相とCF
相が混然と配列しているけれども両相は明瞭に分
離していることから本発明の着想を得たものであ
る。 転炉スラグは前述の第1表に示すような組成範
囲をもつている。前記組成のうちCaO、SiO2
酸化鉄(本発明ではFeO、Fe2O3を含めて酸化鉄
と云う)、MnOで全体の組成の80%以上を占める
ので、転炉スラグの挙動はこれらの組成によつて
決まると考えてよい。 これら5組成のうち、CaO、SiO2、FeO(ま
たはFe2O3)が主組成であるため転炉スラグは一
般に転炉スラグの挙動を示す状態図として用いら
れているCaO−SiO2−FeO系またはCaO−SiO2
−Fe2O3三元系状態図にしたがうものと考えてよ
い。 ただし、CaO−SiO2−FeOまたはCaO−SiO2
−Fe2O3純三元系でないため、ここでは以下の換
算を行ない擬三元系状態図として第3図イ,ロに
示すCaO′−SiO2′−FeO′系状態図で転炉スラグの
挙動を説明する。 CaO′(%)=CaO%/CaO%+SiO%+FeO%+Fe%+MnO%×100 ………(1) SiO2′(%)=SiO%/CaO%+SiO%+FeO%+Fe%+MnO%×100………(2) FeO′(%)=FeO%+Fe%+MnO%/CaO%+SiO%+FeO%+Fe%+
MnO%×100………(3) ここでFeO′にMnOを加えたのは、第2図に示
すようにMnOは、鉄酸化物と同じ相に富化され
ているためである。 また、第3図イにおいてCaO−SiO2−Fe2O3
を、第3図ロにおいてCaO−SiO2−FeO系を基
準(ベース)としたのは、転炉スラグ中の組成分
としての酸化鉄のうち、Fe2O3が多い場合は第3
図のイを、またFeOが多い場合は第3図のロの基
準とすることにより、本発明にかかる転炉スラグ
が明示できるからである。而して第3図イ,ロの
状態図で示すそれぞれの転炉スラグの基本的な挙
動については大きな差は認められない。 さて、第3図イのB組成の転炉スラグを再溶解
すると、1195℃で酸化鉄、MnOに富むCF相が溶
解を開始し、組成Bと2CaO・SiO2とを結んだ線
の延長線C点で示される約1400℃でCF相は溶解
を完了し、この温度でP2O5を固溶したCS相が溶
解を開始し、B点で示す約1750℃でCS相すなわ
ちスラグは完全に溶解することになる。 第3図ロに示すCaO′−SiO2′−FeO′系の転炉ス
ラグにおいても第3図イと同様に、再溶解する場
合には酸化鉄、MnOに富んだCF相が先に溶解を
開始し、これが溶解を完了した後CS相が溶解を
開始する。 また、第3図イ,ロにおいて斜線で示した領域
D、D′の転炉スラグは、第1図の写真において
示したCF相とCS相以外にCaO固溶体や、
3CaO・SiO2が存在するだけで再溶解時のCF相と
CS相の溶解の挙動は上述のものと同様である。
すなわち、第3図イ,ロに示すように、転炉スラ
グは酸化鉄MnOに富むCF相は、P2O5を固溶した
CS相より融点が低い。 本発明は前述の通りこのCF相とCS相の融点の
差を利用したもので、溶銑中の転炉スラグを投入
して、CF相を溶銑と反応させ、できるだけCS層
は反応させないことを特徴とするものである。 通常高炉から出銑され、転炉へ装入される間の
溶銑の温度は約1550〜1250℃の範囲である。この
温度範囲は比較的低温側(1450〜1250℃)におい
ては転炉スラグ中のCS相の溶解する量は僅かで
あり、中にはCF相が完全に溶解しない転炉スラ
グもある。したがつてこの低温側温度域での溶銑
中に転炉スラグを投入すると融点の低いCF相が
溶解して溶銑中のSiと反応し、FeO、MnOが還
元されて溶銑中に移行し、Siが溶銑から除去され
ることになり、転炉スラグ中の有価成分が溶銑中
に回収される。スラグ中のFeO、MnOなどが還
元を受けて系外に出るとCS相の溶解はさらに困
難になる。したがつて融点の高いCS相は溶解量
は僅かで溶銑中に移行するPは少ない。しかも溶
銑中のSiが低下しているので転炉での装入CaO量
が少なくてもスラグの塩基度が上げられこの時に
溶銑中に移行するPを除去するための転炉での作
業が困難になつたり費用が嵩むような心配は少な
い。 以上の考え方に基づいた実施例を以下に示す。 実施例 第2表に示す転炉スラグを5mm以下に粉砕し、
溶銑中に投入して窒素ガスで15分間撹拌した結
果、第2表、第3表に示すように転炉スラグ中の
Fe、Mnが回収され、溶銑中のSiが除去されてい
る。
[Table] Now, the present invention will be explained in more detail below. When granular converter slag is added to hot metal and stirred, FeO and MnO in the converter slag are converted to the following by Si in the hot metal.
It is reduced as shown in equations (1) and (2). 2FeO+Si→SiO 2 +2Fe ...(1) 2MnO+Si→SiO 2 +2Mn ...(2) Therefore, Fe and Mn in the converter slag will be dissolved in the hot metal and recovered. One of the reasons why the amount of granular converter slag is limited to 100 kg or less per tonne of hot metal is that if more is added, Mn in the hot metal will turn into slag due to the reaction of the following equation (3), which is undesirable. Mn + FeO → MnO + Fe ... (3) In other words, not only is the Mn in the converter slag not recovered into the hot metal, but the Mn in the hot metal turns into slag. According to the knowledge of the present inventors, it is necessary to make the amount of Si in the hot metal 0.20% or more after the reaction according to the above formula (1) in order to recover Mn in the hot metal. Furthermore, if more than 100 kg of converter slag is thrown into the hot metal, the temperature of the hot metal will drop too much, causing problems in the refining of the hot metal. Next, the reason why the converter slag is made into granules will be explained. In the present invention, it is not preferable to add converter slag in a molten state. The reason for this is that at such high temperatures, as shown in Figure 6, the oxidation reactions of Si and Mn are too close, and the reaction between hot metal and converter slag is fast, so Mn in the hot metal turns into slag at the same time as Si. This is because the object of the present invention cannot be achieved. That is, one of the features of the present invention is that solidified converter slag is used, and large lumps of the solidified converter slag are crushed into coarse or fine particles with a diameter of 30 mm or less for easy addition. By this means, the reaction with the hot metal is carried out relatively slowly, and the reaction shown in equations (1) and (2) above causes the conversion of the converter slag.
The feature is that Fe and Mn are reliably recovered in hot metal. The reason for using the above-mentioned solidified converter slag will be explained in further detail. Another feature of the present invention is to utilize the difference in melting point between the mineral phase of the solidified converter slag, that is, the 2CaO/SiO 2 phase containing P, and other phases to dissolve the 2CaO/SiO 2 phase as much as possible. By melting other phases that do not contain P without using P, and by the reaction of equations (1) and (2) as described above,
The point is to reduce FeO and MnO and recover Fe and Mn. In other words, as a result of observing the solidified structures of many converter slags, the present inventors found that the solidified structures of converter slags mainly appear gray plate-like or granular, and have a relatively low melting point, as shown in the micrograph in Figure 1. It separates into a phase mainly composed of high calcium silicate (hereinafter referred to as the CS phase for convenience of explanation) and a phase that appears white and has a high content of iron oxides (hereinafter referred to as the CF phase). Note that the black portion in FIG. 1 is also pores or other phases (hereinafter referred to as EP phase). Figure 2 shows the EPMA structure shown in Figure 1 above.
This shows the results of line analysis using an Electron Probe Micro Analyzer (Electron Probe Micro Analyzer). It can be seen that the CS phase is mainly composed of calcium silicate containing P 2 O 5 as a solid solution, and the CF phase has less P 2 O 5 and is oxidized. It can be seen that it is a phase with a low melting point that contains a lot of iron and manganese oxide (MnO). In this way, the converter slag usually has the CS phase and the CF phase.
The idea of the present invention was obtained from the fact that although the phases are arranged in a mixed manner, the two phases are clearly separated. Converter slag has a composition range as shown in Table 1 above. Among the above compositions, CaO, SiO 2 ,
Iron oxide (in this invention, it is referred to as iron oxide including FeO and Fe 2 O 3 ) and MnO account for more than 80% of the total composition, so it is considered that the behavior of converter slag is determined by these compositions. good. Among these five compositions, CaO, SiO 2 , and FeO (or Fe 2 O 3 ) are the main compositions, so converter slag is generally CaO−SiO 2 −FeO, which is used as a phase diagram showing the behavior of converter slag. system or CaO− SiO2
−Fe 2 O 3 It can be thought of as following the ternary system phase diagram. However, CaO−SiO 2 −FeO or CaO−SiO 2
-Fe 2 O 3 Since it is not a pure ternary system, we will perform the following conversion and use the CaO′-SiO 2 ′-FeO′ system phase diagram shown in Figure 3 A and B as a pseudo-ternary system phase diagram. Explain the behavior of CaO' (%)=CaO%/CaO%+ SiO2 %+FeO%+ Fe2O3 % +MnO%×100......(1) SiO2 ' (%)= SiO2 %/CaO%+ SiO2 %+FeO%+Fe 2 O 3 % + MnO % × 100 (2) FeO' (%) = FeO % + Fe 2 O 3 % + MnO % / CaO % + SiO 2 % + FeO % + Fe 2 O 3 % +
MnO%×100 (3) Here, MnO was added to FeO′ because MnO is enriched in the same phase as iron oxide, as shown in FIG. Also, the reason why the CaO-SiO 2 -Fe 2 O 3 system was used as the standard in Figure 3 A and the CaO-SiO 2 -FeO system in Figure 3 B was based on the composition of the converter slag. Among iron oxides, if Fe 2 O 3 is large, the third
This is because the converter slag according to the present invention can be clearly identified by using A in the figure as the standard, or B in FIG. 3 when FeO is large. Therefore, there is no significant difference in the basic behavior of the converter slag shown in the phase diagrams in Figure 3 A and B. Now, when the converter slag with composition B in Figure 3A is remelted, the CF phase rich in iron oxide and MnO starts to melt at 1195℃, and the line connecting composition B and 2CaO/SiO 2 starts to melt. The CF phase completes dissolution at approximately 1400°C, indicated by point C, and the CS phase containing P 2 O 5 as a solid solution begins to dissolve at this temperature, and the CS phase, that is, the slag, is completely dissolved at approximately 1750°C, indicated by point B. It will be dissolved in When the CaO'-SiO 2 '-FeO'-based converter slag shown in Figure 3B is remelted, the CF phase rich in iron oxide and MnO dissolves first, as in Figure 3A. The CS phase begins to dissolve after this has completed dissolution. In addition, the converter slag in the shaded areas D and D' in Fig. 3 A and B contains CaO solid solution, in addition to the CF phase and CS phase shown in the photograph in Fig.
The mere presence of 3CaO・SiO 2 separates the CF phase from the redissolution.
The dissolution behavior of the CS phase is similar to that described above.
In other words, as shown in Figure 3 A and B, the CF phase of the converter slag, which is rich in iron oxide MnO, contains P 2 O 5 as a solid solution.
Melting point is lower than CS phase. As mentioned above, the present invention takes advantage of the difference in melting point between the CF phase and the CS phase, and is characterized by introducing converter slag in the hot metal to cause the CF phase to react with the hot metal, while preventing the CS layer from reacting as much as possible. That is. Typically, the temperature of hot metal during tapping from the blast furnace and charging into the converter ranges from about 1550 to 1250°C. In this temperature range, on the relatively low temperature side (1450 to 1250°C), the amount of CS phase in converter slag that dissolves is small, and in some converter slags, the CF phase does not completely dissolve. Therefore, when converter slag is poured into hot metal in this low temperature range, the CF phase with a low melting point melts and reacts with Si in the hot metal, reducing FeO and MnO and transferring them into the hot metal. is removed from the hot metal, and the valuable components in the converter slag are recovered into the hot metal. When FeO, MnO, etc. in the slag undergo reduction and exit from the system, dissolution of the CS phase becomes even more difficult. Therefore, the amount of CS phase with a high melting point dissolved is small, and the amount of P transferred into the hot metal is small. Moreover, since the Si content in the hot metal is decreasing, the basicity of the slag increases even if the amount of CaO charged in the converter is small, making it difficult to work in the converter to remove the P that migrates into the hot metal at this time. There is no need to worry about getting tired or increasing costs. Examples based on the above concept will be shown below. Example The converter slag shown in Table 2 was crushed to 5 mm or less,
As a result of pouring into hot metal and stirring with nitrogen gas for 15 minutes, as shown in Tables 2 and 3, the
Fe and Mn are recovered, and Si in the hot metal is removed.

【表】【table】

【表】 以上の実施例に示すように、本発明法によつて
転炉スラグ中の有価成分を回収できることが明ら
かである。 本実施例では、転炉スラグを5mm以下に粉砕
し、投入原単位は25Kg/t・pig溶銑温度は1350℃、
1400℃としたが、本発明は前述のように100Kg/t・
pigを限界とする。 さて、投入する転炉スラグの粒度は反応効率を
考えれば小さい方がよいが、投入法によつては粉
塵となつて飛散することもあるので、30mm以下の
粒度が望ましく、投入原単位は供試スラグの組
成、溶銑温度によつて溶銑へのPの移行量や溶銑
の温度低下量によつて定められるべきで、通常は
50Kg/t・pig以下が望ましく、溶銑温度は溶銑への
Pの移行量、スラグ投入による温度低下を考慮し
て行なわれるべきで1300〜1450℃程度が良い。 転炉スラグの投入撹拌方法は第4図イに示すよ
うにトーピードカー1や第4図ロの溶銑鍋2中の
溶銑3,3′へホツパー4,4′から粉砕した転炉
スラグ5,5′を投入し、窒素吹込用ランス6ま
たは昇降自在なインペラー7によつて撹拌する。
また微細に粉砕された転炉スラグの場合には窒素
ガスなどともに吹き込んでもよい。これら撹拌手
段は任意に選択せられるべきである。 次に本発明の方法によりFe、Mn回収後の溶銑
を用いた場合の転炉精錬の実績を次の第4表、第
5表に示す。
[Table] As shown in the above examples, it is clear that valuable components in converter slag can be recovered by the method of the present invention. In this example, the converter slag was crushed to 5 mm or less, the input unit was 25 kg/t, the pig hot metal temperature was 1350°C,
Although the temperature was set at 1400℃, the present invention has a temperature of 100Kg/t・
The limit is pig. Now, considering the reaction efficiency, the particle size of the converter slag to be charged is better to be small, but depending on the feeding method, it may become scattered as dust, so a particle size of 30 mm or less is desirable, and the feeding unit consumption is It should be determined by the composition of the test slag and the temperature of the hot metal, the amount of P transferred to the hot metal, and the amount of temperature reduction of the hot metal.
A temperature of 50 Kg/t·pig or less is desirable, and the temperature of the hot metal should be set in consideration of the amount of P transferred to the hot metal and the temperature drop due to the addition of slag, and is preferably about 1300 to 1450°C. The method of charging and stirring the converter slag is as shown in Fig. 4 (a).The converter slag 5, 5' is crushed from the hopper 4, 4' to the hot metal 3, 3' in the torpedo car 1 or the hot metal ladle 2 in Fig. 4 b. and stirred by the nitrogen blowing lance 6 or the movable impeller 7.
Further, in the case of finely pulverized converter slag, nitrogen gas or the like may be blown into the slag. These stirring means should be selected arbitrarily. Next, the following Tables 4 and 5 show the results of converter refining using hot metal after recovering Fe and Mn by the method of the present invention.

【表】【table】

【表】 第5表から明らかなように溶銑中のSiが減じ、
Pが上昇しても転炉での精錬には何ら影響はな
い。 本発明の方法によつて溶銑中のMnが上昇する
ことにより吹止めMnが若干向上し後工程でのFe
−Mn投入量が節約できると云う良い結果が得ら
れている。 また、前述の第4図ロに示すように溶銑鍋2で
の転炉スラグの添加撹拌が終了したのちは、第5
図に示すように溶銑鍋2を傾動してスラグかき出
し装置8によつてスラグ9をかき出すなど周知の
スラグ除去手段を採用してスラグの除去を行な
う。 以上詳細に述べたように本発明の方法は転炉ス
ラグからFe、Mn等の有用元素の回収を行なう経
済的な方法を提供するものである。
[Table] As is clear from Table 5, Si in hot metal decreases,
Even if P increases, there is no effect on refining in the converter. By the method of the present invention, the Mn in the hot metal increases, which improves the blowstop Mn slightly and reduces Fe in the subsequent process.
-Good results have been obtained in that the amount of Mn input can be saved. In addition, as shown in Figure 4 B above, after the addition and stirring of converter slag in the hot metal ladle 2 is completed, the
As shown in the figure, the slag is removed by employing known slag removal means, such as tilting the hot metal ladle 2 and scraping out the slag 9 with a slag scraping device 8. As described in detail above, the method of the present invention provides an economical method for recovering useful elements such as Fe and Mn from converter slag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉滓の凝固組織を示す顕微鏡写真図
(200倍)、第2図はEPMAによる線分析の結果を
示すグラフ、第3図イ,ロはCaO−SiO2−FeO
およびCaO−SiO2−Fe2O3に係る擬三元系状態
図、第4図イ,ロは転炉スラグの添加撹拌要領概
略説明図、第5図はスラグかき出し要領説明図、
第6図は酸化鉄およびP2O5の標準生成自由エネ
ルギを示すグラフである。 1:トーピードカー、2:溶銑鍋、3,3′:
溶銑、4,4′:ホツパー、5,5′:転炉スラ
グ、6:ランス、7:インペラー。
Figure 1 is a micrograph (200x magnification) showing the solidification structure of converter slag, Figure 2 is a graph showing the results of line analysis by EPMA, Figure 3 A and B are CaO-SiO 2 -FeO
and a pseudo-ternary system phase diagram related to CaO-SiO 2 -Fe 2 O 3 , Fig. 4 A and B are schematic explanatory diagrams of the addition and stirring procedure for converter slag, and Fig. 5 is an explanatory diagram of the procedure for scraping out the slag.
FIG. 6 is a graph showing the standard free energy of formation of iron oxide and P 2 O 5 . 1: Torpedo car, 2: Hot metal pot, 3,3':
Hot metal, 4, 4': hopper, 5, 5': converter slag, 6: lance, 7: impeller.

Claims (1)

【特許請求の範囲】[Claims] 1 溶銑中に粒状転炉スラグを溶銑屯当り100Kg
以下添加撹拌することにより、溶銑中のSiで転炉
スラグ中の酸化鉄及び酸化マンガンを還元せし
め、溶銑中のSiが0.20%以上で処理を完了させる
ことを特徴とする転炉スラグ中のFe、Mn回収方
法。
1 Add granular converter slag to hot metal at 100kg per tonne of hot metal.
Fe in the converter slag is characterized by reducing iron oxide and manganese oxide in the converter slag with Si in the hot metal by adding and stirring the following, and completing the treatment when Si in the hot metal is 0.20% or more. , Mn recovery method.
JP5822378A 1978-05-18 1978-05-18 Recovering method for fe and mn in converter slag Granted JPS54150389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5822378A JPS54150389A (en) 1978-05-18 1978-05-18 Recovering method for fe and mn in converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5822378A JPS54150389A (en) 1978-05-18 1978-05-18 Recovering method for fe and mn in converter slag

Publications (2)

Publication Number Publication Date
JPS54150389A JPS54150389A (en) 1979-11-26
JPS6115126B2 true JPS6115126B2 (en) 1986-04-22

Family

ID=13078069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5822378A Granted JPS54150389A (en) 1978-05-18 1978-05-18 Recovering method for fe and mn in converter slag

Country Status (1)

Country Link
JP (1) JPS54150389A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654501C1 (en) * 1996-12-18 1998-08-20 Mannesmann Ag Processes for hot metal desulfurization
AT412283B (en) * 2003-05-16 2004-12-27 Voest Alpine Ind Anlagen METHOD FOR RECYCLING SLAG
KR101311956B1 (en) * 2011-08-25 2013-09-26 주식회사 포스코 Recycling method of byproduct

Also Published As

Publication number Publication date
JPS54150389A (en) 1979-11-26

Similar Documents

Publication Publication Date Title
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
US4260414A (en) Process for recovering and utilizing useful substances from molten metal produced during reduction treatment of steel slag
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
CN101838718A (en) Medium frequency furnace internal dephosphorization and desulfurization smelting process
AU712106B2 (en) Process for separating titanium and/or vanadium from pig iron
US3897244A (en) Method for refining iron-base metal
JPS6115126B2 (en)
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
US4010023A (en) Manufacture of alumina for use in the basic oxygen furnace
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP2001192720A (en) Converter steel making process
JPH0141681B2 (en)
JPH0222154A (en) Treatment of smelting slag
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
US2855289A (en) Fluidizing slags of open hearth and electric furnace steel making processes using eutectic mixture
JPH09143529A (en) Method for dephosphorizing molten iron
JPH06115984A (en) Method for hot modification of steel-manufacturing slag
JP3218629B2 (en) Hot metal dephosphorization method
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
JP2555727B2 (en) Dephosphorization method of high manganese molten iron
JPH0639609B2 (en) Hot metal casting floor desulfurization method
SU1381187A1 (en) Method of concentrating vanadium slurry
JP3735178B2 (en) Reduction method of Mn ore in converter
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it