JP4190768B2 - Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same - Google Patents

Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same Download PDF

Info

Publication number
JP4190768B2
JP4190768B2 JP2002025809A JP2002025809A JP4190768B2 JP 4190768 B2 JP4190768 B2 JP 4190768B2 JP 2002025809 A JP2002025809 A JP 2002025809A JP 2002025809 A JP2002025809 A JP 2002025809A JP 4190768 B2 JP4190768 B2 JP 4190768B2
Authority
JP
Japan
Prior art keywords
fiber
spun yarn
carbon fiber
yarn fabric
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025809A
Other languages
Japanese (ja)
Other versions
JP2003227053A (en
Inventor
賢司 島崎
慎太郎 田中
祐介 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2002025809A priority Critical patent/JP4190768B2/en
Publication of JP2003227053A publication Critical patent/JP2003227053A/en
Application granted granted Critical
Publication of JP4190768B2 publication Critical patent/JP4190768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、断熱性に優れ、厚さが薄く且つ電気伝導性の良いポリアクリロニトリル(PAN)系炭素繊維紡績糸織物、及びその製造方法に関する。このPAN系炭素繊維紡績糸織物は、高分子燃料電池用電極材等に応用される。
【0002】
【従来の技術】
PAN系炭素繊維紡績糸織物は、PAN系炭素繊維をシート状に形成したものであって、耐熱性、断熱性に優れ、通電性があるので、電極材等に応用されている。特に、低目付で厚さの薄いシート状のPAN系炭素繊維紡績糸織物は、場所をとらず軽量であり、高分子燃料電池用電極材等の炭素繊維材料として有用な素材である。
【0003】
炭素繊維紡績糸織物としては、従来よりPAN系酸化繊維紡績糸織物を炭素化したものがある。
【0004】
炭素繊維紡績糸織物の通電性を高く保ちつつ(電気抵抗値を低く保ちつつ)、厚さの薄い炭素繊維紡績糸織物を得る為には、原料の酸化繊維紡績糸織物を予め圧縮処理する等の工程が必要となる。しかし、圧縮処理条件に付する場合、圧縮処理後、酸化繊維紡績糸織物の強度が低下する、炭素化時、強度が低下する及び炭素微粉末が発生し易い、並びに、処理コストがかかるなどの問題がある。
【0005】
【発明が解決しようとする課題】
本発明者等は、解決すべき上記問題について鋭意検討した結果、繊維直径の異なるPAN系酸化繊維を炭素化処理する場合、細い繊維は太い繊維よりも大きく縮むことを知得した。また、細い繊維と太い繊維とを混合、紡績、製織した後、炭素化処理した場合、太い繊維の間に細い繊維が入り、得られる細い炭素繊維と太い炭素繊維とからなる炭素繊維紡績糸織物は緻密で厚さが薄く且つ電気伝導性の良いものになることを知得した。更に、繊維直径の異なるPAN系炭素繊維からなる上記炭素繊維紡績糸織物は、その製造工程において圧縮処理等の工程を必要とせず、そのため強度が高く保たれ、炭素微粉末が発生しにくく且つ処理コストがかからないことを知得し、本発明を完成するに至った。
【0006】
従って、本発明の目的とするところは、上記問題を解決したPAN系炭素繊維紡績糸織物、及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成する本発明は、以下に記載するものである。
【0008】
〔1〕 繊維直径DCAが10〜20μmのポリアクリロニトリル系炭素繊維100質量部と、繊維直径DCBのポリアクリロニトリル系炭素繊維5〜25質量部とからなるポリアクリロニトリル系炭素繊維紡績糸織物であって、前記炭素繊維の直径比DCB/DCAが0.4〜0.8であり、厚さが0.2〜0.5mmであり、嵩密度が0.15〜0.35g/cm3であるポリアクリロニトリル系炭素繊維紡績糸織物。
【0009】
〔2〕 ポリアクリロニトリル系炭素繊維紡績糸織物を構成する紡績糸が、繊維直径DOAのポリアクリロニトリル系炭素繊維と繊維直径DOBのポリアクリロニトリル系炭素繊維との紡績糸である〔1〕に記載のポリアクリロニトリル系炭素繊維紡績糸織物。
【0010】
〔3〕 厚さ方向の電気抵抗値が3.5mΩ以下である〔1〕に記載のポリアクリロニトリル系炭素繊維紡績糸織物。
【0011】
〔4〕 繊維直径DOAが13〜26μmのポリアクリロニトリル系酸化繊維100質量部と、前記酸化繊維に対するの直径比DOB/DOAが0.4〜0.8である繊維直径DOBのポリアクリロニトリル系酸化繊維5〜25質量部とからなるポリアクリロニトリル系酸化繊維紡績糸織物を炭素化させることを特徴とする、繊維直径DCAが10〜20μmのポリアクリロニトリル系炭素繊維100質量部と、繊維直径DCBのポリアクリロニトリル系炭素繊維5〜25質量部とからなるポリアクリロニトリル系炭素繊維紡績糸織物であって、前記炭素繊維の直径比DCB/DCAが0.4〜0.8であり、厚さが0.2〜0.5mmであり、嵩密度が0.15〜0.35g/cm3であるポリアクリロニトリル系炭素繊維紡績糸織物の製造方法。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明のPAN系炭素繊維紡績糸織物は、繊維直径DCAが10〜20μmのPAN系炭素繊維(炭素繊維A)100質量部と、繊維直径DCBのPAN系炭素繊維(炭素繊維B)5〜25質量部とが互いに混合されてなる。炭素繊維Aと炭素繊維Bとの混合形態は1本の炭素繊維紡績糸に両繊維が混合していても、炭素繊維Aからなる炭素繊維紡績糸と、炭素繊維Bからなる炭素繊維紡績糸とを用いて織物を形成しても良い。
【0014】
炭素繊維Aと炭素繊維Bとの質量比(WCB/WCA)が0.05未満の場合は、炭素繊維紡績糸織物の嵩密度が0.15g/cm3より低くなって通電性が悪くなるなどの不具合を生ずるので好ましくない。WCB/WCAが0.25を超える場合は、炭素繊維紡績糸織物における炭素繊維Aと炭素繊維Bとの分散性が悪くなる、並びに、紡績糸織物の強度が低下するなどの不具合を生ずるので好ましくない。
【0015】
PAN系炭素繊維紡績糸織物を構成する炭素繊維の直径比DCB/DCAは0.4〜0.8である。炭素繊維の直径比DCB/DCAが0.4未満の場合は、炭素繊維Aと炭素繊維Bとの混合状態において繊維の分散ムラを生じて炭素繊維紡績糸織物の強度が低下するので好ましくない。炭素繊維の直径比DCB/DCAが0.8を超える場合も、炭素繊維紡績糸織物の強度が低下するので好ましくない。
【0016】
PAN系炭素繊維紡績糸織物を構成する炭素繊維の繊維直径DCAは10〜20μmである。繊維直径DCAが10μm未満の場合は、炭素繊維紡績糸織物の強度が低下するので好ましくない。繊維直径DCAが20μmを超える場合は、紡績糸織物の加工性が悪いので好ましくない。
【0017】
PAN系炭素繊維紡績糸織物の厚さは0.2〜0.5mmである。
【0018】
PAN系炭素繊維紡績糸織物の厚さが0.2mm未満の場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性は高いが、炭素化時、強度が低下する及び炭素微粉末が発生しやすいなどの不具合を生ずるので好ましくない。
【0019】
PAN系炭素繊維紡績糸織物の厚さが0.5mmを超える場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性が低く、電池性能が低下するので好ましくない。
【0020】
PAN系炭素繊維紡績糸織物の嵩密度は0.15〜0.35g/cm3である。
【0021】
PAN系炭素繊維紡績糸織物の嵩密度が0.15g/cm3未満の場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性が低く、電池性能が低下するので好ましくない。
【0022】
PAN系炭素繊維紡績糸織物の嵩密度が0.35g/cm3を超える場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性は高いが、炭素化時、強度が低下する及び炭素微粉末が発生しやすいなどの不具合を生ずるので好ましくない。
【0023】
本発明のPAN系炭素繊維紡績糸織物の厚さ方向の電気抵抗値は、後述する測定方法により測定して得られる電気抵抗値で3.5mΩ以下が好ましく、通常は0.5〜3.5mΩである。
【0024】
本発明のPAN系炭素繊維紡績糸織物は、種々の方法で製造でき、特に制限がない。
【0025】
以下に好ましい製造方法の一例を示す。即ち、先ず繊維直径DOAが13〜26μmのPAN系酸化繊維(酸化繊維A)100質量部と、前記酸化繊維Aに対するの直径比DOB/DOAが0.4〜0.8である繊維直径DOBのPAN系酸化繊維(酸化繊維B)5〜25質量部とを混合した後、紡績糸織物加工してPAN系酸化繊維紡績糸織物を得、このPAN系酸化繊維紡績糸織物を炭素化させることによって製造することができる。炭素化方法は従来公知の方法が採用できる。
【0026】
酸化繊維Aと酸化繊維Bとの質量比(WOB/WOA)が0.05未満の場合は、酸化繊維紡績糸織物の嵩密度が0.18g/cm3より低くなる、並びに、酸化繊維紡績糸織物を炭素化して得られる炭素繊維紡績糸織物の嵩密度が0.15g/cm3より低くなって通電性が悪くなるなどの不具合を生ずるので好ましくない。WOB/WOAが0.25を超える場合は、酸化繊維Aと酸化繊維Bとの分散性が悪く、カーディング加工、精紡加工、及び製織加工、即ち紡績糸織物加工、並びに、炭素化が難しくなるので好ましくない。
【0027】
なお、この製造方法においては、炭素繊維Aは酸化繊維Aに由来し、炭素繊維Bは酸化繊維Bに由来しているので、酸化繊維Aの比重と酸化繊維Bの比重とがほぼ同じ場合、酸化繊維Aと酸化繊維Bとの質量比(WOB/WOA)の値は、炭素繊維Aと炭素繊維Bとの質量比(WCB/WCA)とほぼ同じ値である。
【0028】
酸化繊維の直径比DOB/DOAが0.4未満の場合は、酸化繊維Aと酸化繊維Bとの混合時、繊維の分散ムラを生じて酸化繊維紡績糸織物の強度が低下する、並びに、炭素化時、紡績糸織物が切断されやすい及び炭素微粉末が発生しやすいなどの不具合を生ずるので好ましくない。酸化繊維の直径比DOB/DOAが0.8を超える場合は、酸化繊維Aと酸化繊維Bとの混合後のカーディング中にスライバー切れを生じやすい、酸化繊維紡績糸織物の嵩密度が0.18g/cm3より低くなる、並びに、酸化繊維紡績糸織物を炭素化して得られる炭素繊維紡績糸織物の嵩密度が0.15g/cm3より低くなって通電性が悪くなるなどの不具合を生ずるので好ましくない。
【0029】
繊維直径DOAが13μm未満の場合は、酸化繊維紡績糸織物を炭素化して得られる炭素繊維紡績糸織物の強度が低下するので好ましくない。繊維直径DOAが26μmを超える場合は、酸化繊維Aと酸化繊維Bとを混合した後、カーディングしてスライバーを得、このスライバーを精紡加工、製織加工して中間原料の酸化繊維紡績糸織物を得る際、カーディング加工性、精紡加工性、製織加工性が低下するので好ましくない。
【0030】
上記PAN系酸化繊維紡績糸織物は、酸化繊維の直径比DOB/DOAが0.4〜0.8の関係にある酸化繊維Aと酸化繊維Bとを前記質量割合で分散させた後、カーディングしてスライバーを得、このスライバーを精紡加工して紡績糸を得、この紡績糸をシート状に製織加工することによって製造することができる。これらの紡績糸織物加工方法は従来公知の方法が適宜採用できる。
【0031】
なお、PAN系酸化繊維紡績糸織物の嵩密度は、0.18〜0.45g/cm3が好ましい。
【0032】
PAN系酸化繊維紡績糸織物の嵩密度が0.18g/cm3未満の場合は、この酸化繊維紡績糸織物を炭素化して得られる炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性が低く、電池性能が低下するので好ましくない。
【0033】
0.45g/cm3を超える嵩密度のPAN系酸化繊維紡績糸織物を得るには、過度な圧縮処理条件に付する圧縮処理を必要とするため、圧縮処理後、酸化繊維紡績糸織物の強度が低下するので好ましくない。なお、この過度に圧縮処理したPAN系酸化繊維紡績糸織物を炭素化してPAN系酸化繊維紡績糸織物を得る場合、得られる炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性は高いが、炭素化時、強度が低下する及び炭素微粉末が発生しやすいなどの不具合を生ずるので好ましくない。
【0034】
【実施例】
本発明を以下の実施例及び比較例により具体的に説明する。
【0035】
以下の実施例及び比較例の条件により酸化繊維紡績糸織物、及び炭素繊維紡績糸織物を作製した。原料酸化繊維、酸化繊維紡績糸織物、及び炭素繊維紡績糸織物の諸物性値を、以下の方法により測定した。
【0036】
比重:液置換法(JIS R−7601、置換液:エチルアルコール)により測定した。
【0037】
厚さ:直径30mmの円形圧板で200gの荷重(2.8kPa)時の厚さを測定した。
【0038】
目付:酸化繊維紡績糸織物又は炭素繊維紡績糸織物の寸法及び質量から、単位面積当たりの質量を算出した。
【0039】
嵩密度:上記条件により測定した厚さ及び目付から算出した。
【0040】
紡績糸織物を構成する繊維の直径、及びその含有量:図1の繊維直径測定方法の概略説明図に示すように、測定対象の紡績糸織物を5cm角にカットし、この5cm角カット紡績糸織物2を更に3mm間隔で短冊4にカットした。次いで短冊4をピンセットでほぐした後、200mlビーカー6に入れ、これに1体積%のエタノール水溶液を150ml添加し、繊維8をエタノール水溶液に分散させた。
【0041】
この繊維分散液10をスポイトで採取し、プレパラートに載せ、倍率200倍で顕微鏡写真を撮った。この顕微鏡写真から、検体数n=100について繊維直径を測定した。繊維直径の測定値は、μm単位で小数1桁まで求めた。
【0042】
この繊維直径測定値について、横軸を繊維直径、縦軸を繊維の個数としてヒストグラムにまとめると、太い繊維のピークと、細い繊維のピークとが出現した。各ピークの±10%の繊維直径における繊維の個数から、各繊維直径の平均値を算出し、測定対象が炭素繊維紡績糸織物の場合は、それぞれDCAμm及びDCBμmとした。
【0043】
細い繊維と太い繊維との含有量の質量比(WCB/WCA)は、(細い繊維の個数×DCB 2)/(太い繊維の個数×DCA 2)の式を用いて算出した。
【0044】
電気抵抗値:2枚の50mm角(厚さ10mm)の金メッキした電極に炭素繊維紡績糸織物を圧力1MPaで挟み、両電極間の電気抵抗値(R(mΩ))を測定し、これをその厚さにおける抵抗値と表示した。
【0045】
セル電圧:炭素繊維紡績糸織物を50mm角にカットし、これに触媒(Pt−Ru)を0.3mg/cm2担持させて、高分子電解質型燃料電池電極材を得た。高分子電解質膜(ナフィオン117)の両側に、上記50mm角にカットした電極材を接合してセルを構成し、温度80℃、電流密度1.60A/cm2においてセル電圧を測定した。
【0046】
実施例1
表1に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.90dtex、比重1.40、繊維直径10.0μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)23質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.71と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.23と算出される。
【0047】
上記スライバーを精紡し、40番手双糸(PAN系酸化繊維紡績糸(紡績糸番手:2/40))を作製した。この酸化繊維紡績糸を製織し、織り形態:平織、紡績糸打込み本数40本/in(40本/(2.54cm))、目付160g/m2、厚さ0.45mm、嵩密度が0.36g/cm3のPAN系酸化繊維紡績糸織物を得た。
【0048】
このPAN系酸化繊維紡績糸織物を、窒素雰囲気下、処理温度1500℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0049】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が97g/m2、厚さが0.40mm、嵩密度が0.24g/cm3、電気抵抗値が2.1mΩ、セル電圧が0.74Vであり、良好な物性の紡績糸織物であった。
【0050】
このPAN系炭素繊維紡績糸織物において、原料酸化繊維Aに由来する太い炭素繊維Aの直径は11.1μm(DCA)、原料酸化繊維Bに由来する細い炭素繊維Bの直径は8.1μm(DCB)であった。これらDCAとDCBの値から繊維直径比DCB/DCAの値は0.73と算出される。また、炭素繊維Aと炭素繊維Bとの質量比WCB/WCAは0.23であった。
【0051】
実施例2
表1に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.72dtex、比重1.40、繊維直径8.0μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)10質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.57と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.25と算出される。
【0052】
上記スライバーを精紡し、40番手双糸(PAN系酸化繊維紡績糸(紡績糸番手:2/40))を作製した。この酸化繊維紡績糸を製織し、織り形態:平織、紡績糸打込み本数40本/in(40本/(2.54cm))、目付160g/m2、厚さ0.47mm、嵩密度が0.34g/cm3のPAN系酸化繊維紡績糸織物を得た。
【0053】
このPAN系酸化繊維紡績糸織物を、窒素雰囲気下、処理温度1500℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0054】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が88g/m2、厚さが0.45mm、嵩密度が0.20g/cm3、電気抵抗値が2.8mΩ、セル電圧が0.70Vであり、良好な物性の紡績糸織物であった。
【0055】
このPAN系炭素繊維紡績糸織物において、原料酸化繊維Aに由来する太い炭素繊維Aの直径は10.5μm(DCA)、原料酸化繊維Bに由来する細い炭素繊維Bの直径は6.5μm(DCB)であった。これらDCAとDCBの値から繊維直径比DCB/DCAの値は0.62と算出される。また、炭素繊維Aと炭素繊維Bとの質量比WCB/WCAは0.10であった。
【0056】
実施例3
表1に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.90dtex、比重1.40、繊維直径10.0μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)15質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.71と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.15と算出される。
【0057】
上記スライバーを精紡し、55番手双糸(PAN系酸化繊維紡績糸(紡績糸番手:2/55))を作製した。この酸化繊維紡績糸を製織し、織り形態:平織、紡績糸打込み本数53本/in(53本/(2.54cm))、目付145g/m2、厚さ0.39mm、嵩密度が0.37g/cm3のPAN系酸化繊維紡績糸織物を得た。
【0058】
このPAN系酸化繊維紡績糸織物を、窒素雰囲気下、処理温度1500℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0059】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が87g/m2、厚さが0.35mm、嵩密度が0.25g/cm3、電気抵抗値が2.0mΩ、セル電圧が0.75Vであり、良好な物性の紡績糸織物であった。
【0060】
このPAN系炭素繊維紡績糸織物において、原料酸化繊維Aに由来する太い炭素繊維Aの直径は11.0μm(DCA)、原料酸化繊維Bに由来する細い炭素繊維Bの直径は8.0μm(DCB)であった。これらDCAとDCBの値から繊維直径比DCB/DCAの値は0.73と算出される。また、炭素繊維Aと炭素繊維Bとの質量比WCB/WCAは0.15であった。
【0061】
【表1】

Figure 0004190768
【0062】
比較例1
表2に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.90dtex、比重1.40、繊維直径10.0μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)4質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.71と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.05と算出される。
【0063】
上記スライバーを精紡し、40番手双糸(PAN系酸化繊維紡績糸(紡績糸番手:2/40))を作製した。この酸化繊維紡績糸を製織し、織り形態:平織、紡績糸打込み本数40本/in(40本/(2.54cm))、目付160g/m2、厚さ0.60mm、嵩密度が0.27g/cm3のPAN系酸化繊維紡績糸織物を得た。
【0064】
このPAN系酸化繊維紡績糸織物を、窒素雰囲気下、処理温度1500℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0065】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が87g/m2、厚さが0.61mm、嵩密度が0.14g/cm3、電気抵抗値が3.8mΩ、セル電圧が0.67Vであり、良好な物性の紡績糸織物ではなかった。
【0066】
このPAN系炭素繊維紡績糸織物において、原料酸化繊維Aに由来する太い炭素繊維Aの直径は11.1μm(DCA)、原料酸化繊維Bに由来する細い炭素繊維Bの直径は8.0μm(DCB)であった。これらDCAとDCBの値から繊維直径比DCB/DCAの値は0.72と算出される。また、炭素繊維Aと炭素繊維Bとの質量比WCB/WCAは0.04であった。
【0067】
比較例2
表2に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.72dtex、比重1.40、繊維直径8.0μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)84質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.57と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.84と算出される。
【0068】
上記スライバーを精紡し、PAN系酸化繊維紡績糸を作製しようとしたところ、この紡績時に糸切れが多発し紡績糸は得られなかった。
【0069】
比較例3
表2に示すように、繊度2.0dtex、比重1.39、繊維直径14.0μm(DOA)のPAN系酸化繊維Aのカットファイバー(カット長51mm)100質量部に、繊度0.45dtex、比重1.40、繊維直径4.5μm(DOB)のPAN系酸化繊維Bのカットファイバー(カット長51mm)20質量部を均一に混打綿機により混合した後、カーディングし、スライバーを得た。上記DOAとDOBの値から繊維直径比DOB/DOAの値は0.32と算出される。また、酸化繊維Aと酸化繊維Bとの質量比WOB/WOAは0.20と算出される。
【0070】
上記スライバーを精紡し、PAN系酸化繊維紡績糸を作製しようとしたところ、この紡績時に糸切れが多発し紡績糸は得られなかった。
【0071】
【表2】
Figure 0004190768
【0072】
【発明の効果】
本発明のPAN系炭素繊維紡績糸織物は、上記構成にしたので、薄く、低目付で、高強度で、嵩密度が高く、更に電気抵抗が低い。
【0073】
本発明の細い炭素繊維と太い炭素繊維とからなるPAN系炭素繊維紡績糸織物の製造方法は、細い酸化繊維と太い酸化繊維とからなる中間原料のPAN系酸化繊維紡績糸織物を得、これを炭素化することによって得られる。この酸化繊維紡績糸織物を炭素化することにより、細い酸化繊維が大きく収縮し且つ太い繊維の間に細い繊維が入って紡績糸織物の高密度化が達成され通電性が高くなると共に、太い酸化繊維が炭素化して紡績糸織物の高強度化が達成される。
【0074】
本発明の製造方法により製造する炭素繊維紡績糸織物は、低目付で厚さが薄いので、場所をとらず軽量であり且つ強度が高く、高分子燃料電池用電極材等の炭素繊維材料として有用な素材である。
【0075】
更に、本発明のPAN系炭素繊維紡績糸織物を製造方法によれば、圧縮処理等の工程を必要とせず、また炭素微粉末が発生しにくいものである。
【図面の簡単な説明】
【図1】紡績糸織物を構成する繊維の直径及び含有量の測定方法を示す概略説明図である。
【符号の説明】
2 5cm角にカットした紡績糸織物
4 3mm間隔でカットした短冊
6 200mlビーカー
8 繊維
10 繊維分散液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyacrylonitrile (PAN) -based carbon fiber spun yarn fabric excellent in heat resistance and heat insulation, thin in thickness and good in electrical conductivity, and a method for producing the same. This PAN-based carbon fiber spun yarn fabric is applied to electrode materials for polymer fuel cells.
[0002]
[Prior art]
The PAN-based carbon fiber spun yarn fabric is formed by forming a PAN-based carbon fiber into a sheet shape, has excellent heat resistance and heat insulation, and has electrical conductivity, and is therefore applied to electrode materials and the like. In particular, a sheet-like PAN-based carbon fiber spun yarn fabric having a low basis weight and a small thickness is light in weight and is useful as a carbon fiber material such as an electrode material for polymer fuel cells.
[0003]
As the carbon fiber spun yarn fabric, there is a conventional carbonized PAN-based oxidized fiber spun yarn fabric.
[0004]
In order to obtain a carbon fiber spun yarn fabric with a small thickness while keeping the electrical conductivity of the carbon fiber spun yarn fabric high (while keeping the electrical resistance value low), the raw material oxidized fiber spun yarn fabric is pre-compressed. This process is required. However, when subjected to compression treatment conditions, after compression treatment, the strength of the oxidized fiber spun yarn fabric is reduced, during carbonization, the strength is reduced and carbon fine powder is easily generated, and the processing cost is increased. There's a problem.
[0005]
[Problems to be solved by the invention]
As a result of intensive studies on the above-mentioned problems to be solved, the present inventors have found that when carbonized PAN-based oxidized fibers having different fiber diameters, thin fibers shrink more than thick fibers. In addition, when carbonized after mixing, spinning and weaving thin fibers and thick fibers, the thin fibers enter between the thick fibers, and the resulting carbon fiber spun yarn fabric consisting of thin carbon fibers and thick carbon fibers. Has been found to be dense, thin and have good electrical conductivity. Furthermore, the above-mentioned carbon fiber spun yarn woven fabric made of PAN-based carbon fibers having different fiber diameters does not require a step such as compression treatment in the production process, so that the strength is kept high, and carbon fine powder is hardly generated and treated. It was learned that there was no cost and the present invention was completed.
[0006]
Accordingly, an object of the present invention is to provide a PAN-based carbon fiber spun yarn fabric and a method for producing the same, which have solved the above problems.
[0007]
[Means for Solving the Problems]
The present invention which achieves the above object is described below.
[0008]
[1] A polyacrylonitrile-based carbon fiber spun yarn woven fabric comprising 100 parts by mass of polyacrylonitrile-based carbon fibers having a fiber diameter DC A of 10 to 20 μm and 5-25 parts by mass of polyacrylonitrile-based carbon fibers having a fiber diameter DC B. The carbon fiber has a diameter ratio DC B / DC A of 0.4 to 0.8, a thickness of 0.2 to 0.5 mm, and a bulk density of 0.15 to 0.35 g / cm 3. A polyacrylonitrile-based carbon fiber spun yarn fabric.
[0009]
[2] The spun yarn constituting the polyacrylonitrile-based carbon fiber spun woven fabric is a spun yarn of a polyacrylonitrile-based carbon fiber having a fiber diameter DO A and a polyacrylonitrile-based carbon fiber having a fiber diameter DO B. Polyacrylonitrile carbon fiber spun yarn fabric.
[0010]
[3] The polyacrylonitrile-based carbon fiber spun yarn fabric according to [1], wherein an electrical resistance value in the thickness direction is 3.5 mΩ or less.
[0011]
[4] 100 parts by mass of a polyacrylonitrile-based oxidized fiber having a fiber diameter DO A of 13 to 26 μm and a poly having a fiber diameter DO B having a diameter ratio DO B / DO A to the oxidized fiber of 0.4 to 0.8 100 parts by mass of a polyacrylonitrile-based carbon fiber having a fiber diameter DC A of 10 to 20 μm, which is obtained by carbonizing a polyacrylonitrile-based oxidized fiber spun yarn fabric comprising 5 to 25 parts by mass of an acrylonitrile-based oxidized fiber; a polyacrylonitrile-based carbon fiber spun yarn fabric consisting of polyacrylonitrile-based carbon fiber 5 to 25 parts by weight of the diameter DC B, diameter ratio DC B / DC a of the carbon fiber be 0.4 to 0.8 A method for producing a polyacrylonitrile-based carbon fiber spun yarn fabric having a thickness of 0.2 to 0.5 mm and a bulk density of 0.15 to 0.35 g / cm 3 .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The PAN-based carbon fiber spun yarn fabric of the present invention has 100 parts by mass of a PAN-based carbon fiber (carbon fiber A) having a fiber diameter DC A of 10 to 20 μm and a PAN-based carbon fiber (carbon fiber B) 5 having a fiber diameter DC B. ~ 25 parts by mass are mixed with each other. The mixed form of carbon fiber A and carbon fiber B is a carbon fiber spun yarn made of carbon fiber A and a carbon fiber spun yarn made of carbon fiber B, even if both fibers are mixed in one carbon fiber spun yarn. May be used to form a woven fabric.
[0014]
When the mass ratio (WC B / WC A ) between the carbon fiber A and the carbon fiber B is less than 0.05, the bulk density of the carbon fiber spun yarn fabric is lower than 0.15 g / cm 3 and the conductivity is poor. This is not preferable because it causes problems such as. When WC B / WC A exceeds 0.25, the dispersibility of the carbon fiber A and the carbon fiber B in the carbon fiber spun yarn fabric is deteriorated, and the strength of the spun yarn fabric is reduced. Therefore, it is not preferable.
[0015]
The diameter ratio DC B / DC A of carbon fibers constituting the PAN-based carbon fiber spun yarn fabric is 0.4 to 0.8. When the carbon fiber diameter ratio DC B / DC A is less than 0.4, it is preferable because the dispersion of the fibers occurs in the mixed state of the carbon fibers A and B and the strength of the carbon fiber spun yarn fabric is reduced. Absent. A carbon fiber diameter ratio DC B / DC A exceeding 0.8 is also not preferable because the strength of the carbon fiber spun yarn fabric decreases.
[0016]
The fiber diameter DC A of the carbon fibers constituting the PAN-based carbon fiber spun yarn fabric is 10 to 20 μm. When the fiber diameter DC A is less than 10 μm, the strength of the carbon fiber spun yarn fabric is lowered, which is not preferable. When the fiber diameter DC A exceeds 20 μm, the processability of the spun yarn fabric is poor, which is not preferable.
[0017]
The thickness of the PAN-based carbon fiber spun yarn fabric is 0.2 to 0.5 mm.
[0018]
When the thickness of the PAN-based carbon fiber spun yarn fabric is less than 0.2 mm, when the carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has high conductivity, but the carbonization This is not preferable because it causes problems such as low strength and easy generation of carbon fine powder.
[0019]
When the thickness of the PAN-based carbon fiber spun yarn fabric exceeds 0.5 mm, when this carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has low conductivity and the battery performance is low. Since it falls, it is not preferable.
[0020]
The bulk density of the PAN-based carbon fiber spun yarn fabric is 0.15 to 0.35 g / cm 3 .
[0021]
When the bulk density of the PAN-based carbon fiber spun yarn fabric is less than 0.15 g / cm 3 , when this carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the conductivity of the electrode material is low, Since battery performance falls, it is not preferable.
[0022]
When the bulk density of the PAN-based carbon fiber spun yarn fabric exceeds 0.35 g / cm 3 , when the carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has high conductivity. When carbonized, problems such as reduced strength and easy generation of carbon fine powder are undesirable.
[0023]
The electrical resistance value in the thickness direction of the PAN-based carbon fiber spun yarn fabric of the present invention is preferably 3.5 mΩ or less, and usually 0.5 to 3.5 mΩ in terms of the electrical resistance value obtained by measurement by a measurement method described later. It is.
[0024]
The PAN-based carbon fiber spun yarn fabric of the present invention can be produced by various methods and is not particularly limited.
[0025]
An example of a preferable production method is shown below. That is, first, 100 parts by mass of a PAN-based oxidized fiber (oxidized fiber A) having a fiber diameter DO A of 13 to 26 μm and a fiber having a diameter ratio DO B / DO A to the oxidized fiber A of 0.4 to 0.8. After mixing 5 to 25 parts by mass of PAN-based oxidized fiber (oxidized fiber B) having a diameter of DO B , a spun yarn fabric is processed to obtain a PAN-based oxidized fiber spun fabric, and the PAN-based oxidized fiber spun fabric is made of carbon. Can be manufactured. A conventionally known method can be adopted as the carbonization method.
[0026]
When the mass ratio (WO B / WO A ) between the oxidized fiber A and the oxidized fiber B is less than 0.05, the bulk density of the oxidized fiber spun yarn fabric is lower than 0.18 g / cm 3 , and the oxidized fiber Since the carbon fiber spun yarn fabric obtained by carbonizing the spun yarn fabric has a bulk density lower than 0.15 g / cm 3 and causes problems such as poor electrical conductivity, it is not preferable. When WO B / WO A exceeds 0.25, the dispersibility of oxidized fiber A and oxidized fiber B is poor, and carding, spinning, weaving, that is, spun yarn fabric processing, and carbonization Is not preferable because it becomes difficult.
[0027]
In this manufacturing method, since the carbon fiber A is derived from the oxidized fiber A and the carbon fiber B is derived from the oxidized fiber B, the specific gravity of the oxidized fiber A and the specific gravity of the oxidized fiber B are substantially the same. The value of the mass ratio (WO B / WO A ) between the oxidized fiber A and the oxidized fiber B is almost the same value as the mass ratio (WC B / WC A ) between the carbon fiber A and the carbon fiber B.
[0028]
When the oxidized fiber diameter ratio DO B / DO A is less than 0.4, when the oxidized fiber A and the oxidized fiber B are mixed, fiber dispersion unevenness occurs, and the strength of the oxidized fiber spun woven fabric decreases. When carbonized, problems such as the spun yarn fabric being easily cut and the carbon fine powder being easily generated are not preferable. When the diameter ratio DO B / DO A of the oxidized fiber exceeds 0.8, the bulk density of the oxidized fiber spun yarn fabric is likely to cause sliver breakage during carding after mixing the oxidized fiber A and the oxidized fiber B. Problems such as lower than 0.18 g / cm 3 , and the bulk density of carbon fiber spun yarn fabric obtained by carbonizing oxidized fiber spun yarn fabric is lower than 0.15 g / cm 3, resulting in poor electrical conductivity. This is not preferable.
[0029]
When the fiber diameter DO A is less than 13 μm, the strength of the carbon fiber spun yarn fabric obtained by carbonizing the oxidized fiber spun yarn fabric is unfavorable. When the fiber diameter DO A exceeds 26 μm, the oxidized fiber A and the oxidized fiber B are mixed and then carded to obtain a sliver, and the sliver is finely spun and weaved to obtain an intermediate oxidized fiber spun yarn. When obtaining a woven fabric, carding processability, spinning processability, and weaving processability are deteriorated, which is not preferable.
[0030]
The PAN-based oxidized fiber spun yarn fabric is obtained by dispersing oxidized fibers A and oxidized fibers B having a diameter ratio DO B / DO A of the oxidized fibers of 0.4 to 0.8 in the mass ratio, It can be produced by carding to obtain a sliver, spinning the sliver to obtain a spun yarn, and weaving the spun yarn into a sheet. A conventionally well-known method can be suitably employ | adopted for these spun yarn fabric processing methods.
[0031]
The bulk density of the PAN-based oxidized fiber spun yarn fabric is preferably 0.18 to 0.45 g / cm 3 .
[0032]
When the bulk density of the PAN-based oxidized fiber spun yarn fabric is less than 0.18 g / cm 3, the carbon fiber spun yarn fabric obtained by carbonizing the oxidized fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell. When this is done, it is not preferable because the conductivity of the electrode material is low and the battery performance deteriorates.
[0033]
In order to obtain a PAN-based oxidized fiber spun yarn fabric having a bulk density exceeding 0.45 g / cm 3 , a compression treatment subject to excessive compression treatment conditions is required. Is unfavorable because it decreases. In addition, when carbonizing this PAN-based oxidized fiber spun yarn fabric subjected to excessive compression treatment to obtain a PAN-based oxidized fiber spun yarn fabric, when the obtained carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell Although the electrode material has high electrical conductivity, it is not preferable because it causes problems such as reduced strength and easy generation of fine carbon powder during carbonization.
[0034]
【Example】
The present invention will be specifically described with reference to the following examples and comparative examples.
[0035]
Oxidized fiber spun yarn fabric and carbon fiber spun yarn fabric were prepared under the conditions of the following Examples and Comparative Examples. Various physical properties of raw material oxidized fiber, oxidized fiber spun yarn fabric, and carbon fiber spun yarn fabric were measured by the following methods.
[0036]
Specific gravity: Measured by liquid replacement method (JIS R-7601, replacement liquid: ethyl alcohol).
[0037]
Thickness: The thickness at a load (2.8 kPa) of 200 g was measured with a circular pressure plate having a diameter of 30 mm.
[0038]
Mass per unit area: The mass per unit area was calculated from the size and mass of oxidized fiber spun yarn fabric or carbon fiber spun yarn fabric.
[0039]
Bulk density: Calculated from the thickness and basis weight measured under the above conditions.
[0040]
Diameter of fiber constituting the spun yarn fabric and its content: As shown in the schematic explanatory diagram of the fiber diameter measuring method in FIG. 1, the spun yarn fabric to be measured is cut into 5 cm square, and this 5 cm square cut spun yarn The fabric 2 was further cut into strips 4 at intervals of 3 mm. Next, after loosening the strip 4 with tweezers, it was put into a 200 ml beaker 6, 150 ml of 1% by volume ethanol aqueous solution was added thereto, and the fiber 8 was dispersed in the ethanol aqueous solution.
[0041]
The fiber dispersion 10 was collected with a dropper, placed on a preparation, and a photomicrograph was taken at a magnification of 200 times. From this micrograph, the fiber diameter was measured for n = 100 specimens. The measured value of the fiber diameter was obtained up to one decimal place in μm.
[0042]
When the measured value of the fiber diameter was summarized in a histogram with the horizontal axis representing the fiber diameter and the vertical axis representing the number of fibers, a thick fiber peak and a thin fiber peak appeared. The average value of each fiber diameter was calculated from the number of fibers at a fiber diameter of ± 10% of each peak. When the measurement object was a carbon fiber spun yarn fabric, DC A μm and DC B μm were used.
[0043]
The mass ratio (WC B / WC A ) of the content of fine fibers and thick fibers was calculated using the formula (number of fine fibers × DC B 2 ) / (number of thick fibers × DC A 2 ).
[0044]
Electrical resistance value: Carbon fiber spun yarn fabric was sandwiched between two 50 mm square gold plated electrodes at a pressure of 1 MPa, and the electrical resistance value (R (mΩ)) between the two electrodes was measured. The resistance value in thickness was displayed.
[0045]
Cell voltage: A carbon fiber spun yarn fabric was cut into a 50 mm square, and a catalyst (Pt-Ru) was supported at 0.3 mg / cm 2 to obtain a polymer electrolyte fuel cell electrode material. A cell was constructed by joining the electrode material cut to 50 mm square on both sides of the polymer electrolyte membrane (Nafion 117), and the cell voltage was measured at a temperature of 80 ° C. and a current density of 1.60 A / cm 2 .
[0046]
Example 1
As shown in Table 1, to 100 parts by mass of PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39, and a fiber diameter of 14.0 μm (DO A ) (cut length 51 mm), a fineness of 0.90 dtex, After 23 parts by mass of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 10.0 μm (DO B ) are uniformly mixed with a blended cotton machine, carding is performed to obtain a sliver It was. The fiber diameter ratio DO B / DO A is calculated to be 0.71 from the above DO A and DO B values. Further, the mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated as 0.23.
[0047]
The sliver was finely spun to produce 40-count double yarn (PAN-based oxidized fiber spun yarn (spun yarn count: 2/40)). Weaving this oxidized fiber spun yarn, weaving form: plain weave, number of spun yarns driven 40 / in (40 / (2.54 cm)), basis weight 160 g / m 2 , thickness 0.45 mm, and bulk density 0. A PAN-based oxidized fiber spun yarn fabric of 36 g / cm 3 was obtained.
[0048]
This PAN-based oxidized fiber spun yarn fabric was carbonized at a treatment temperature of 1500 ° C. for 2 minutes in a nitrogen atmosphere to obtain a PAN-based carbon fiber spun yarn fabric.
[0049]
As shown in Table 1, the obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 97 g / m 2 , a thickness of 0.40 mm, a bulk density of 0.24 g / cm 3 , an electric resistance value of 2.1 mΩ, The cell voltage was 0.74 V, and the spun yarn fabric had good physical properties.
[0050]
In this PAN-based carbon fiber spun yarn fabric, the diameter of the thick carbon fiber A derived from the raw material oxidized fiber A is 11.1 μm (DC A ), and the diameter of the thin carbon fiber B derived from the raw material oxidized fiber B is 8.1 μm ( DC B ). The value of the fiber diameter ratio DC B / DC A is calculated as 0.73 from these values of DC A and DC B. The mass ratio WC B / WC A of the carbon fibers A and the carbon fiber B was 0.23.
[0051]
Example 2
As shown in Table 1, 100 mass parts of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39 and a fiber diameter of 14.0 μm (DO A ), a fineness of 0.72 dtex, 10 parts by mass of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 8.0 μm (DO B ) are uniformly mixed with a blended cotton machine, and then carded to obtain a sliver It was. The fiber diameter ratio DO B / DO A is calculated to be 0.57 from the above DO A and DO B values. Further, the mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated as 0.25.
[0052]
The sliver was finely spun to produce 40-count double yarn (PAN-based oxidized fiber spun yarn (spun yarn count: 2/40)). Weaving this oxidized fiber spun yarn, weaving form: plain weave, spun yarn number of 40 yarns / in (40 yarns / (2.54 cm)), basis weight 160 g / m 2 , thickness 0.47 mm, bulk density 0. A PAN-based oxidized fiber spun yarn fabric of 34 g / cm 3 was obtained.
[0053]
This PAN-based oxidized fiber spun yarn fabric was carbonized at a treatment temperature of 1500 ° C. for 2 minutes in a nitrogen atmosphere to obtain a PAN-based carbon fiber spun yarn fabric.
[0054]
As shown in Table 1, the obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 88 g / m 2 , a thickness of 0.45 mm, a bulk density of 0.20 g / cm 3 , an electrical resistance value of 2.8 mΩ, The cell voltage was 0.70 V, and the spun yarn fabric had good physical properties.
[0055]
In this PAN-based carbon fiber spun yarn fabric, the diameter of the thick carbon fiber A derived from the raw material oxidized fiber A is 10.5 μm (DC A ), and the diameter of the thin carbon fiber B derived from the raw material oxidized fiber B is 6.5 μm ( DC B ). From these values of DC A and DC B, the value of the fiber diameter ratio DC B / DC A is calculated as 0.62. Further, the mass ratio WC B / WC A between the carbon fiber A and the carbon fiber B was 0.10.
[0056]
Example 3
As shown in Table 1, to 100 parts by mass of PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39, and a fiber diameter of 14.0 μm (DO A ) (cut length 51 mm), a fineness of 0.90 dtex, 15 parts by mass of a cut fiber (cut length: 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 10.0 μm (DO B ) are uniformly mixed with a blended cotton machine and then carded to obtain a sliver It was. The fiber diameter ratio DO B / DO A is calculated to be 0.71 from the above DO A and DO B values. The mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated to be 0.15.
[0057]
The sliver was finely spun to produce a 55th yarn (PAN-based oxidized fiber spun yarn (spun yarn count: 2/55)). Weaving this oxidized fiber spun yarn, weaving form: plain weave, spun yarn number of 53 / in (53 / (2.54 cm)), basis weight 145 g / m 2 , thickness 0.39 mm, bulk density 0. A PAN-based oxidized fiber spun yarn fabric of 37 g / cm 3 was obtained.
[0058]
This PAN-based oxidized fiber spun yarn fabric was carbonized at a treatment temperature of 1500 ° C. for 2 minutes in a nitrogen atmosphere to obtain a PAN-based carbon fiber spun yarn fabric.
[0059]
As shown in Table 1, the obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 87 g / m 2 , a thickness of 0.35 mm, a bulk density of 0.25 g / cm 3 , an electric resistance value of 2.0 mΩ, The cell voltage was 0.75 V, and the spun yarn fabric had good physical properties.
[0060]
In this PAN-based carbon fiber spun yarn fabric, the diameter of the thick carbon fiber A derived from the raw material oxidized fiber A is 11.0 μm (DC A ), and the diameter of the thin carbon fiber B derived from the raw material oxidized fiber B is 8.0 μm ( DC B ). The value of the fiber diameter ratio DC B / DC A is calculated as 0.73 from these values of DC A and DC B. Moreover, mass ratio WC B / WC A of carbon fiber A and carbon fiber B was 0.15.
[0061]
[Table 1]
Figure 0004190768
[0062]
Comparative Example 1
As shown in Table 2, to 100 parts by mass of a cut fiber (cut length 51 mm) of a PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39 and a fiber diameter of 14.0 μm (DO A ), a fineness of 0.90 dtex, 4 parts by mass of a cut fiber (cut length: 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 10.0 μm (DO B ) are uniformly mixed by a blended cotton machine, and then carded to obtain a sliver It was. The fiber diameter ratio DO B / DO A is calculated to be 0.71 from the above DO A and DO B values. The mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated as 0.05.
[0063]
The sliver was finely spun to produce 40-count double yarn (PAN-based oxidized fiber spun yarn (spun yarn count: 2/40)). Weaving this oxidized fiber spun yarn, weaving form: plain weave, number of spun yarns driven 40 / in (40 / (2.54 cm)), basis weight 160 g / m 2 , thickness 0.60 mm, bulk density 0. A PAN-based oxidized fiber spun yarn fabric of 27 g / cm 3 was obtained.
[0064]
This PAN-based oxidized fiber spun yarn fabric was carbonized at a treatment temperature of 1500 ° C. for 2 minutes in a nitrogen atmosphere to obtain a PAN-based carbon fiber spun yarn fabric.
[0065]
The obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 87 g / m 2 , a thickness of 0.61 mm, a bulk density of 0.14 g / cm 3 , an electrical resistance value of 3.8 mΩ, as shown in Table 1. The cell voltage was 0.67 V, and it was not a spun yarn fabric with good physical properties.
[0066]
In this PAN-based carbon fiber spun yarn fabric, the diameter of the thick carbon fiber A derived from the raw material oxidized fiber A is 11.1 μm (DC A ), and the diameter of the thin carbon fiber B derived from the raw material oxidized fiber B is 8.0 μm ( DC B ). From these values of DC A and DC B, the value of the fiber diameter ratio DC B / DC A is calculated as 0.72. The mass ratio WC B / WC A between the carbon fiber A and the carbon fiber B was 0.04.
[0067]
Comparative Example 2
As shown in Table 2, 100 mass parts of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39, and a fiber diameter of 14.0 μm (DO A ), a fineness of 0.72 dtex, After mixing 84 parts by mass of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 8.0 μm (DO B ) with a blended cotton machine, carding is performed to obtain a sliver It was. The fiber diameter ratio DO B / DO A is calculated to be 0.57 from the above DO A and DO B values. Further, the mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated as 0.84.
[0068]
When the above sliver was spun and an attempt was made to produce a PAN-based oxidized fiber spun yarn, yarn breakage occurred frequently during this spinning, and a spun yarn could not be obtained.
[0069]
Comparative Example 3
As shown in Table 2, to 100 parts by mass of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber A having a fineness of 2.0 dtex, a specific gravity of 1.39, and a fiber diameter of 14.0 μm (DO A ), a fineness of 0.45 dtex, After mixing 20 parts by mass of a cut fiber (cut length 51 mm) of PAN-based oxidized fiber B having a specific gravity of 1.40 and a fiber diameter of 4.5 μm (DO B ) with a blended cotton machine, carding is performed to obtain a sliver It was. The value of the fiber diameter ratio DO B / DO A is calculated as 0.32 from the values of DO A and DO B. Further, the mass ratio WO B / WO A between the oxidized fiber A and the oxidized fiber B is calculated as 0.20.
[0070]
When the sliver was finely spun and an attempt was made to produce a PAN-based oxidized fiber spun yarn, yarn breakage occurred frequently during this spinning, and a spun yarn could not be obtained.
[0071]
[Table 2]
Figure 0004190768
[0072]
【The invention's effect】
Since the PAN-based carbon fiber spun yarn fabric of the present invention has the above-described configuration, it is thin, has a low basis weight, has high strength, has a high bulk density, and has a low electrical resistance.
[0073]
The method for producing a PAN-based carbon fiber spun yarn fabric comprising thin carbon fibers and thick carbon fibers according to the present invention provides a PAN-based oxidized fiber spun yarn fabric as an intermediate raw material comprising thin oxidized fibers and thick oxidized fibers. Obtained by carbonization. By carbonizing this oxidized fiber spun yarn fabric, the thin oxidized fiber contracts greatly, and the thin fiber enters between the thick fibers to increase the density of the spun yarn fabric and increase the electrical conductivity. The fiber is carbonized to achieve high strength of the spun yarn fabric.
[0074]
The carbon fiber spun yarn fabric produced by the production method of the present invention has a low basis weight and a thin thickness, so it is light in weight and has high strength, and is useful as a carbon fiber material such as an electrode material for polymer fuel cells. Material.
[0075]
Furthermore, according to the method for producing a PAN-based carbon fiber spun yarn fabric of the present invention, a step such as a compression treatment is not required, and carbon fine powder is hardly generated.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a method for measuring the diameter and content of fibers constituting a spun yarn fabric.
[Explanation of symbols]
2 Spun yarn fabric cut to 5 cm square 4 Strips cut at intervals of 3 mm 6 200 ml beaker 8 Fiber 10 Fiber dispersion

Claims (4)

繊維直径DCAが10〜20μmのポリアクリロニトリル系炭素繊維100質量部と、繊維直径DCBのポリアクリロニトリル系炭素繊維5〜25質量部とからなるポリアクリロニトリル系炭素繊維紡績糸織物であって、前記炭素繊維の直径比DCB/DCAが0.4〜0.8であり、厚さが0.2〜0.5mmであり、嵩密度が0.15〜0.35g/cm3であるポリアクリロニトリル系炭素繊維紡績糸織物。 A polyacrylonitrile-based carbon fiber spun yarn fabric comprising 100 parts by mass of a polyacrylonitrile-based carbon fiber having a fiber diameter DC A of 10-20 μm and 5-25 parts by mass of a polyacrylonitrile-based carbon fiber having a fiber diameter DC B , A carbon fiber having a diameter ratio DC B / DC A of 0.4 to 0.8, a thickness of 0.2 to 0.5 mm, and a bulk density of 0.15 to 0.35 g / cm 3 Acrylonitrile carbon fiber spun yarn fabric. ポリアクリロニトリル系炭素繊維紡績糸織物を構成する紡績糸が、繊維直径D Aのポリアクリロニトリル系炭素繊維と繊維直径D Bのポリアクリロニトリル系炭素繊維との紡績糸である請求項1に記載のポリアクリロニトリル系炭素繊維紡績糸織物。Yarn constituting the polyacrylonitrile-based carbon fiber spun yarn fabric of claim 1 which is the spun yarn of the polyacrylonitrile-based polyacrylonitrile-based carbon fibers of the carbon fibers and the fiber diameter D C B fiber diameter D C A Polyacrylonitrile-based carbon fiber spun yarn fabric. 厚さ方向の電気抵抗値が3.5mΩ以下である請求項1に記載のポリアクリロニトリル系炭素繊維紡績糸織物。  The polyacrylonitrile-based carbon fiber spun yarn fabric according to claim 1, wherein an electric resistance value in a thickness direction is 3.5 mΩ or less. 繊維直径DOAが13〜26μmのポリアクリロニトリル系酸化繊維100質量部と、前記酸化繊維に対するの直径比DOB/DOAが0.4〜0.8である繊維直径DOBのポリアクリロニトリル系酸化繊維5〜25質量部とからなるポリアクリロニトリル系酸化繊維紡績糸織物を炭素化させることを特徴とする、繊維直径DCAが10〜20μmのポリアクリロニトリル系炭素繊維100質量部と、繊維直径DCBのポリアクリロニトリル系炭素繊維5〜25質量部とからなるポリアクリロニトリル系炭素繊維紡績糸織物であって、前記炭素繊維の直径比DCB/DCAが0.4〜0.8であり、厚さが0.2〜0.5mmであり、嵩密度が0.15〜0.35g/cm3であるポリアクリロニトリル系炭素繊維紡績糸織物の製造方法。100 parts by mass of polyacrylonitrile-based oxidized fiber having a fiber diameter DO A of 13 to 26 μm and a polyacrylonitrile-based oxide having a fiber diameter DO B having a diameter ratio DO B / DO A to the oxidized fiber of 0.4 to 0.8 100 parts by mass of polyacrylonitrile-based carbon fiber having a fiber diameter DC A of 10 to 20 μm, and a fiber diameter DC B , characterized by carbonizing a polyacrylonitrile-based oxidized fiber spun yarn fabric comprising 5 to 25 parts by mass of fibers A polyacrylonitrile-based carbon fiber spun yarn woven fabric composed of 5-25 parts by mass of a polyacrylonitrile-based carbon fiber, wherein the carbon fiber has a diameter ratio DC B / DC A of 0.4-0.8, and has a thickness of Is a method for producing a polyacrylonitrile-based carbon fiber spun yarn fabric having a bulk density of 0.15 to 0.35 g / cm 3 .
JP2002025809A 2002-02-01 2002-02-01 Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same Expired - Fee Related JP4190768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025809A JP4190768B2 (en) 2002-02-01 2002-02-01 Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025809A JP4190768B2 (en) 2002-02-01 2002-02-01 Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003227053A JP2003227053A (en) 2003-08-15
JP4190768B2 true JP4190768B2 (en) 2008-12-03

Family

ID=27747844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025809A Expired - Fee Related JP4190768B2 (en) 2002-02-01 2002-02-01 Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP4190768B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446721B2 (en) * 2003-12-01 2010-04-07 株式会社クレハ Carbon fiber spun yarn and its woven fabric
CN104409758B (en) * 2009-11-24 2017-08-01 三菱化学株式会社 Porous electrode base material
JP6193669B2 (en) * 2013-08-02 2017-09-06 日本バイリーン株式会社 Base material for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
KR102029179B1 (en) * 2018-01-18 2019-11-08 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608641B1 (en) * 1986-12-18 1990-02-23 Schappe Sa CARBON FIBER FILE
JP3521619B2 (en) * 1996-06-07 2004-04-19 東レ株式会社 Carbon fiber paper and porous carbon plate
JPH101851A (en) * 1996-06-13 1998-01-06 Mitsubishi Rayon Co Ltd Antistatic short fiber assembly and its production
JP2000299113A (en) * 1999-02-10 2000-10-24 Toray Ind Inc Conductive sheet and electrode base material for fuel cell using it
EP1162296A4 (en) * 1999-02-18 2005-11-09 Showa Denko Kk Carbon fiber woven fabric and method for production thereof
JP4179721B2 (en) * 1999-11-22 2008-11-12 旭化成せんい株式会社 Airbag base fabric
JP3995861B2 (en) * 2000-03-24 2007-10-24 東邦テナックス株式会社 Polyacrylonitrile-based oxidized fiber, carbon fiber structure, and method for producing carbon fiber structure

Also Published As

Publication number Publication date
JP2003227053A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US20060257720A1 (en) Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell
JP2009208061A (en) Carbon catalyst, slurry containing the carbon catalyst, manufacturing method of carbon catalyst, fuel cell using carbon catalyst, electric storage device and environmental catalyst
EP3125255A1 (en) Electroconductive porous body, solid polymer fuel cell, and method for manufacturing electroconductive porous body
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
EP4354529A1 (en) Electrode sheet for lithium ion secondary battery
CN1685104A (en) Carbonaceous fiber woven fabric, rolled product thereof, gas diffusion layer material for fuel cell of solid polymer type, method for producing the woven fabric, and method for producing the gas diffu
TWI352755B (en) Porous carbonized fabric with high efficiency and
KR20090055299A (en) Carbonaceous material and method of preparing same
JP3954850B2 (en) Polyacrylonitrile-based carbon fiber nonwoven fabric and method for producing the same
JP4190768B2 (en) Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP4371662B2 (en) Carbon fiber sheet and manufacturing method thereof
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP2003227054A (en) Woven fabric of spun yarn of polyacrylonitrile-based oxidized fiber, woven fabric of spun yarn of carbon fiber, and method for producing woven fabric of spun yarn of carbon fiber
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4037943B2 (en) Method for producing carbon fiber felt
KR20070075775A (en) Preparation method of diffusion layer of fuel cell
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP4974700B2 (en) Carbon fiber sheet and manufacturing method thereof
JP2004084147A (en) Carbonaceous fiber woven cloth
JP2004100102A (en) Graphite woven fabric
JP2003064539A (en) Carbon fiber fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees