KR20070075775A - Preparation method of diffusion layer of fuel cell - Google Patents

Preparation method of diffusion layer of fuel cell Download PDF

Info

Publication number
KR20070075775A
KR20070075775A KR1020060004402A KR20060004402A KR20070075775A KR 20070075775 A KR20070075775 A KR 20070075775A KR 1020060004402 A KR1020060004402 A KR 1020060004402A KR 20060004402 A KR20060004402 A KR 20060004402A KR 20070075775 A KR20070075775 A KR 20070075775A
Authority
KR
South Korea
Prior art keywords
diffusion layer
fuel cell
gas diffusion
carbon fiber
carbon
Prior art date
Application number
KR1020060004402A
Other languages
Korean (ko)
Other versions
KR100763548B1 (en
Inventor
김찬
Original Assignee
주식회사 아모메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모메디 filed Critical 주식회사 아모메디
Priority to KR1020060004402A priority Critical patent/KR100763548B1/en
Publication of KR20070075775A publication Critical patent/KR20070075775A/en
Application granted granted Critical
Publication of KR100763548B1 publication Critical patent/KR100763548B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a method for forming a diffusion layer for a fuel cell, wherein the diffusion layer has excellent mechanical and electrical properties and uniform pores, supplies fuel and air smoothly, is capable of controlling even moisture, and reduces the volume of a total system. The method for forming a diffusion layer for a fuel cell comprises the steps of: using, as a carbon fiber precursor, at least one selected from polyacrylonitrile(PAN), phenol, and pitch, a mixture thereof, or a compound with a nano-size material to prepare a spinning solution; applying high voltage to the spinning solution to perform electrospinning; subjecting the electrospun material to oxidation stabilization under an air atmosphere; carbonizing the elecrospun material at 500-1500°C to obtain nanocomposite carbon fiber and subjecting the nanocomposite carbon fiber to water repelling treatment; and using the obtained nanocomposite carbon fiber as a gas diffusion layer of a fuel cell.

Description

연료전지용 가스 확산층의 형성방법{preparation method of diffusion layer of fuel cell}Preparation method of diffusion layer of fuel cell

도1은 본 발명이 적용되는 고체고분자 전해질형 연료전지(직접 메탄올 연료전지 포함)의 개략도,1 is a schematic diagram of a solid polymer electrolyte fuel cell (including a direct methanol fuel cell) to which the present invention is applied;

도2는 본 발명의 실시예에 따라 형성되는 가스 확산층에 적용된 나노복합체 탄소섬유 부직포의 디지털 이미지 사진,2 is a digital image photograph of a nanocomposite carbon fiber nonwoven fabric applied to a gas diffusion layer formed in accordance with an embodiment of the present invention;

도3은 본 발명의 실시예에 따라 형성되는 가스 확산층에 적용된 나노복합체 탄소섬유를 3000℃에서 열처리한 시료의 주사전자현미경 사진,Figure 3 is a scanning electron micrograph of a sample heat-treated at 3000 ° C nanocomposite carbon fiber applied to the gas diffusion layer formed in accordance with an embodiment of the present invention,

도4는 본 발명의 실시예에 따라 형성되는 가스 확산층에 적용된 나노복합체 탄소섬유를 1000℃에서 열처리했을 경우의 전기전도도 그래프 (4단자법에 의해 측정)4 is an electrical conductivity graph when the nanocomposite carbon fiber applied to the gas diffusion layer formed according to the embodiment of the present invention is heat-treated at 1000 ° C. (measured by the 4-terminal method).

도5는 본 발명의 실시예에 따라 형성되는 가스 확산층에 적용된 20% 테프론으로 발수처리된 나노복합체 탄소섬유와, 비교예에 의한 탄소섬유의 주사전자현미경 사진이다.5 is a scanning electron micrograph of the carbon nanofibers according to the comparative example and the nanocomposite carbon fiber water-repellent treated with 20% Teflon applied to the gas diffusion layer formed according to the embodiment of the present invention.

본 발명은 연료전지용 가스 확산층의 형성방법에 관한 것으로서, 보다 상세하게는 전기방사에 의해 제조된 나노복합체 탄소섬유로 구성되어, 기계적 물성 및 전기적 특성이 우수하며 균일한 기공이 형성되어 연료 및 공기의 공급이 원활하고 균일한 수분관리가 가능하면서 손쉽게 고체고분자 전해질형 연료전지(직접 메탄올 연료전지 포함) 전극에 적용할 수 있는 연료전지용 가스 확산층의 형성방법에 관한 것이다. The present invention relates to a method for forming a gas diffusion layer for a fuel cell, and more particularly, composed of nanocomposite carbon fibers produced by electrospinning, has excellent mechanical properties and electrical properties, and uniform pores are formed to provide fuel and air. The present invention relates to a method for forming a gas diffusion layer for a fuel cell that can be easily applied to a solid polymer electrolyte fuel cell (including a direct methanol fuel cell) electrode while providing a smooth and uniform moisture management.

고체고분자 전해질형 연료전지는 막/전극 접합체(MEA, Membrane Electrode Assembly)의 양측에 개스켓(gasket)을 넣고 분리막을 접합시킨 것을 여러 장 중첩시켜 만든 것이다. The solid polymer electrolyte fuel cell is made by stacking a plurality of membranes by inserting gaskets on both sides of a membrane / electrode assembly (MEA).

MEA에는 수소이온 전도성 전해질막 양측에 백금(Pt)이나 백금중합체(Pt/allay)를 담지한 촉매층(catalyst layer)이 구성되고 이 촉매층에는 전극 반응에 이용되는 수소 및 산소의 반응 가스와 생성된 전자 및 수분의 확산을 담당하는 가스 확산층(diffusion layer : 카본페이퍼, 탄소천, 탄소종이)이 접하고 있으며, 이 가스확산층 양면에는 흑연이나 금속 등으로 유로를 형성시킨 분리막(separator)이 접하고 있다. 그림 1은 직접메탄올 연료전지의 개략도를 나타낸다. In the MEA, a catalyst layer carrying platinum (Pt) or platinum polymer (Pt / allay) is formed on both sides of the hydrogen ion conductive electrolyte membrane, and the catalyst layer contains a reaction gas of hydrogen and oxygen used for electrode reaction and generated electrons. And a gas diffusion layer (carbon paper, carbon cloth, carbon paper) in charge of diffusion of water, and a separator in which a flow path is formed of graphite, metal, or the like, is in contact with both sides of the gas diffusion layer. Figure 1 shows a schematic of a direct methanol fuel cell.

수소 등의 연료나 공기는 분리판의 유로를 통과하여 가스확산층의 틈새를 경유해서 공급되고, 전해질과 접촉한 촉매층의 연료극에서 수소연료가 수소이온과 전자로 분해되어 수소이온은 고분자 이온교환막(고분자 전해질)을 통과하고, 전자는 촉매담체인 전도성 카본블랙 이나 탄소재료, 전도성 다공질 가스 확산층 및 집전 가스 분리막(bipolar plate)을 경유하여 외부회로를 통해 공기극(cathode)으로 이 동하며, 공기극에서는 산소, 전자 및 수소이온이 반응해서 물이 생성된다. 이와 같은 반응에 의해 생성된 물은 분리막의 유로를 통과하여 외부로 배출된다.Fuel or air, such as hydrogen, is supplied through the gap of the gas diffusion layer through the flow path of the separator plate, and the hydrogen fuel is decomposed into hydrogen ions and electrons at the anode of the catalyst layer in contact with the electrolyte, and the hydrogen ions are polymer ion exchange membranes (polymers). Electrolyte, and the electrons move to the cathode through an external circuit via the conductive carbon black or carbon material, the conductive porous gas diffusion layer, and the bipolar plate, which are oxygen carriers. The electrons and hydrogen ions react to form water. Water generated by the reaction is discharged to the outside through the flow path of the membrane.

특히, 산화성 가스를 공급하는 공기극(cathode)에서의 입구와 출구의 수분의 밀도가 달라 전체적인 연료전지 시스템의 성능저하를 일으키는 원인의 하나로 지적되고 있다. 고체고분자 전해질형 연료전지의 수소이온 전도성 전해질 막의 특징의 하나는 함수율의 증가에 따라 이온전도도 값이 증가하는 경향이 있어 팽윤상태로 유지할 필요성이 있다. 따라서 반응가스를 소정의 습도로 유지하도록 하기 위해 가습을 하고, 반응가스 공급과 함께 수소이온 전도성 고분자막 전해질의 보온성을 확보하는 방법이 채택되고 있다. 그 결과 전극반응에 의해 생성된 물은 분리막의 가스유로를 통과해 반응가스와 함께 유로의 입구로부터 출구쪽을 경우하여 최종적으로 연료전지 시스템 밖으로 배출된다. 따라서 분리막(separator)의 출구쪽은 전극면적이 크거나, 유로가 긴 경우, 또는 장기간 운전시 입구쪽에 비해 가스확산층으로부터 나온 수분의 배출기능이 저하되고, 기공이 수분에 의해 밀폐되어 반응가스의 확산성이 현저하게 감소되는 현상(blocking effect)이 발생하여 전체적인 전극전압 강하를 일으키는 원인이 된다. In particular, the density of moisture at the inlet and the outlet in the cathode supplying the oxidizing gas is pointed out as one of the causes of the performance degradation of the overall fuel cell system. One of the characteristics of the hydrogen ion conductive electrolyte membrane of the solid polymer electrolyte fuel cell is that the ion conductivity value tends to increase as the water content increases, so it is necessary to keep it in a swollen state. Therefore, in order to maintain the reaction gas at a predetermined humidity, a method of humidifying and securing the insulation of the hydrogen ion conductive polymer membrane electrolyte together with the supply of the reaction gas has been adopted. As a result, the water produced by the electrode reaction passes through the gas flow path of the separator and is discharged out of the fuel cell system along with the reaction gas from the inlet to the outlet. Therefore, the outlet side of the separator has a large electrode area, a long flow path, or a discharge function of moisture from the gas diffusion layer is lower than that of the inlet side during long-term operation, and the pores are sealed by the moisture to diffuse the reaction gas. Significant reduction in the properties (blocking effect) occurs, which causes the overall electrode voltage drop.

종래, 이러한 가스확산층으로 사용되고 있는 것은 고분자를 용융방사하여 이를 산화안정화, 탄소화 한 후 탄소섬유를 직조하거나 부직포 상태로 만든 후 발수처리한 카본페이퍼(탄소종이)가 사용되고 있다. 이러한 카본페이퍼의 친수능력을 향상시키기 위해 SiO2 등을 이용한 친수화 방법이 일본특허(특개평 9-245800호 공 보) 및 미국특허(제5292600호)에 제안되고 있다. 즉, 탄소섬유에 SiO2에 의한 친수화 처리에 의해 공기극(cathode)측에 생성된 물의 배출 및 전해질층의 발수성을 향상시켜 연료전지 전극의 투과성을 확보하고 있다. Conventionally, the gas diffusion layer is used as a carbon paper (carbon paper) that is melt-spun into a polymer, oxidatively stabilizes and carbonizes the carbon fiber, and then weaves carbon fibers or makes them into a nonwoven fabric. In order to improve the hydrophilic ability of such carbon paper, a hydrophilization method using SiO 2 or the like has been proposed in Japanese Patent Application Laid-Open No. 9-245800 and US Patent No. 5292600. In other words, the carbon fibers are hydrophilized by SiO 2 to improve the discharge of water generated on the cathode side and the water repellency of the electrolyte layer, thereby securing the permeability of the fuel cell electrode.

그런데, 종래 탄소섬유 등에 SiO2를 처리할 경우 발수능력은 향상되나 전체적인 전기전도도가 저하되어 연료전지 전체의 성능을 저하시키는 원인의 하나로 지적되고 있다. 따라서 발수능력 및 전기전도도가 동시에 우수한 탄소섬유가 요구되고 있다. However, in the case of treating SiO 2 with carbon fiber or the like, the water repellency is improved, but the overall electrical conductivity is lowered. Therefore, there is a demand for a carbon fiber excellent in water repellency and electrical conductivity at the same time.

종래, 가스확산층에 사용되는 탄소섬유는 용융방사방법(melt-spinning)에 의해 제조되고 있어 섬유의 직경이 대부분 10 - 20㎛ 내외의 것이 사용되며, 이를 가스 확산층으로 이용할 경우 연료전지(Fuel cell, micro fuel cell)의 전체적인 시스템의 부피가 증가하는 원인과 섬유간 형성된 기공이 커 수분조절을 효과적으로 조절하기 어려운 원인의 하나로 작용할 수 있다. Conventionally, the carbon fiber used in the gas diffusion layer is manufactured by melt spinning method (melt-spinning), the diameter of the fiber is mostly 10 ~ 20㎛ used, if used as a gas diffusion layer fuel cell (Fuel cell, The reason why the volume of the overall system of the micro fuel cell) increases and the pores formed between the fibers may be large, which may act as one of the reasons why it is difficult to effectively control the moisture control.

또한, 용융방사법에 의해 제조된 유기섬유를 직조화 하거나 부직포화한 다음 산화안정화, 탄소화 내지는 흑연화하여 공정을 거쳐 연료전지용 가스확산층으로 사용하거나, 탄소화 내지는 흑연화 후 직조 또는 부직포화(종이화)하여 사용하는 경우, 직조와, 부직포화 내지는 종이화 공정이 필수적인 공정이므로 전체적인 가격 상승의 원인으로 작용하고 있다. In addition, the organic fibers produced by the melt spinning method are woven or nonwoven fabrics, and then subjected to oxidation stabilization, carbonization or graphitization to be used as a gas diffusion layer for fuel cells, or woven or nonwoven fabrics after carbonization or graphitization. In the case of use, weaving, non-woven fabrication or papermaking process are essential processes, which is a cause of overall price increase.

따라서, 본 발명은 상기한 바와 같은 요구와 문제점을 충족하기 위해 이루어 진 것으로서, 본 발명의 목적은 기계적 물성 및 전기적 특성이 우수하며 균일한 기공이 형성되어 연료 및 공기의 공급이 원활하고 균일한 수분관리가 가능하고 전체적인 시스템의 부피를 줄일 수 있으며 제조공정을 줄일 수 있는 연료전지용 가스확산층의 형성방법을 제공하는 데 있다.Accordingly, the present invention has been made to meet the above-mentioned demands and problems, and an object of the present invention is to provide excellent porosity and mechanical properties and to provide uniform pores so that fuel and air can be supplied smoothly and uniformly. The present invention provides a method for forming a gas diffusion layer for fuel cells that can be managed, can reduce the volume of the overall system, and can reduce the manufacturing process.

본 발명에 의한 연료전지용 가스확산층의 형성방법은, 탄소섬유 전구체 물질인 폴리아크릴로 나이트릴(PAN), 페놀(Phenol), 피치(pitch) 중의 적어도 하나를 단독 또는 나노재료와 복합화 하여 방사용액을 제조한 다음, 상기 방사용액에 고전압을 가해 전기방사 하고, 이를 공기분위기에서 산화안정화한 후 탄소화 온도인 500-1500℃ 범위에서 탄소화 처리하여 나노복합체 탄소섬유를 얻어, 상기 나노복합체 탄소섬유를 연료전지의 가스확산층으로 사용하는 것을 특징으로 한다. In the method of forming a gas diffusion layer for a fuel cell according to the present invention, at least one of polyacrylonitrile (PAN), phenol (Phenol), and pitch (carbon fiber precursor material) may be used alone or in combination with a nanomaterial to form a spinning solution. After manufacturing, electrospinning by applying a high voltage to the spinning solution, oxidative stabilization in an air atmosphere and carbonization treatment in the range of 500-1500 ℃ carbonization temperature to obtain a nanocomposite carbon fiber, the nanocomposite carbon fiber It is used as a gas diffusion layer of the fuel cell.

또한, 상기 나노복합체 탄소섬유를 3000 ℃ 미만의 온도에서 흑연화하여 흑연섬유를 얻고, 상기 흑연섬유를 발수처리하여, 고체고분자 전해질형 연료전지의 가스확산층으로 사용하는 것을 특징으로 한다.In addition, the nanocomposite carbon fiber is graphitized at a temperature of less than 3000 ℃ to obtain a graphite fiber, and the water-repellent treatment of the graphite fiber, characterized in that it is used as a gas diffusion layer of a solid polymer electrolyte fuel cell.

이하, 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

먼저, 정제처리된 다층카본나노튜브를 N,N-dimethyformamide (DMF) 또는 이들의 혼합유기용액에 1 - 50 중량부 혼합하여 초음파 내지는 분산제를 이용하여 분산시킨다. 카본나노튜브가 분산된 용액에 섬유성형성 고분자인 폴리아크릴로 나이트릴을 5 - 30 중량부 혼합/용해하여 방사용액을 제조한다. First, 1-50 parts by weight of the purified multilayer carbon nanotubes are mixed with N, N-dimethyformamide (DMF) or a mixed organic solution thereof and dispersed using an ultrasonic wave or a dispersant. A spinning solution is prepared by mixing / dissolving 5-30 parts by weight of polyacrylonitrile, a fibrous forming polymer, in a solution in which carbon nanotubes are dispersed.

상기 섬유성형성 고분자로는 탄소섬유 전구체 고분자인 폴리아크릴로 나이트 릴, 셀룰로오스, 페놀, 피치 등을 사용하고, 나노재료로는 단층카본나노튜브(single walled carbon nanotube, SWCNT), 다층카본나노튜브(multi-walled carbon nanotube, MWCNT), 나노혼(nano hone), 컵스택 카본나노튜브(cup stacked carbon nanotube), 기상성장 탄소섬유(vapor grown carbon fiber, VGCF), 흑연(graphite)분말, 카본블랙 등을 사용하고, 나노분말의 함량은 0.5 ~ 15중량부인 것이 바람직하다. As the fibrous forming polymer, polyacrylonitrile, cellulose, phenol, pitch, etc., which are carbon fiber precursor polymers, are used, and as nanomaterials, single walled carbon nanotubes (SWCNTs) and multilayer carbon nanotubes ( multi-walled carbon nanotube (MWCNT), nano hone, cup stacked carbon nanotube, vapor grown carbon fiber (VGCF), graphite powder, carbon black, etc. It is preferable that the content of the nanopowder is 0.5 to 15 parts by weight.

다음으로 상기 방사용액을 고전압하에서 전기방사하여 탄소섬유 전구체 고분자와 카본나노튜브가 혼합된 형태의 나노복합체 섬유를 제조한다. 이때 전기방사는 통상의 전기방사 장치를 사용하여 상온, 진공, 온도조절 등의 환경에서 방사를 실시할 수 있다. Next, the spinning solution is electrospun under high voltage to produce a nanocomposite fiber in which a carbon fiber precursor polymer and a carbon nanotube are mixed. At this time, the electrospinning can be performed in an environment such as room temperature, vacuum, temperature control using a conventional electrospinning apparatus.

상기 제조된 나노복합체 섬유를 온도조절기와 공기유량을 조절할 수 있는 전기로에 넣고 상온에서 350 ℃까지 분당 0.5 - 5℃로 승온하여 산화안정화 처리를 하여 불융화 섬유를 얻는다. The prepared nanocomposite fiber is placed in an electric furnace capable of controlling a temperature controller and air flow rate, and the temperature is raised from 0.5 to 5 ° C. per minute from 350 ° C. to 350 ° C. to obtain an incompatible fiber.

불융화된 섬유를 불활성 분위기나 진공상태에서 500 - 1500 ℃의 온도범위에서 탄소화 처리하여 카본나노튜브가 분산된 나노복합체 탄소섬유를 얻는다. 이와 같이 얻어진 나노복합체 섬유의 직경은 대략 50 - 500 nm 범위가 대부분이다. 이와 같이 얻어진 나노복합체 탄소섬유는 고체고분자 전해질형 연료전지를 비롯한 직접 메탄올 연료전지 등의 가스확산층에 사용한다. The unfused fibers are carbonized at an inert atmosphere or in a vacuum at a temperature in the range of 500-1500 ° C. to obtain nanocomposite carbon fibers in which carbon nanotubes are dispersed. The diameter of the nanocomposite fibers thus obtained is mostly in the range of approximately 50-500 nm. The nanocomposite carbon fibers thus obtained are used in gas diffusion layers such as direct methanol fuel cells, including solid polymer electrolyte fuel cells.

한편, 상기 나노복합체 탄소섬유를 흑연화로를 사용하여 ~3000℃ 미만의 온도에서 흑연화하여 흑연섬유로 제조하고, 이 흑연섬유를 테프론 용액으로 발수처리 하고, 건조하여 고체고분자 전해질형 연료전지용 가스확산층에 사용할 수도 있다. Meanwhile, the nanocomposite carbon fibers are graphitized at a temperature of less than ˜3000 ° C. using a graphitization furnace to prepare graphite fibers, and the graphite fibers are water repelled with a Teflon solution and dried to dry the gas diffusion layer for a solid polymer electrolyte fuel cell. Can also be used for

이하, 실시예를 통하여 본 발명을 더욱 구체화한다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다. Hereinafter, the present invention is further embodied by examples. However, the present invention is not limited only to the following examples.

[실시예 1]Example 1

PAN에 MWCNT를 중량비 1-15% 첨가하여 DMF에 10-30중량부 용해하여 25KV에서 전기방사하였다. 전기방사된 섬유는 공기분위기 하에서 350℃까지 열처리하여 산화안정화 공정을 거친 다음, 불활성 분위기하에서 탄소화, 흑연화 처리하였다. MWCNT was added to the PAN by 1-15% by weight to dissolve 10-30 parts by weight in DMF was electrospun at 25KV. The electrospun fibers were heat treated to 350 ° C. under an air atmosphere, subjected to an oxidation stabilization process, and then carbonized and graphitized under an inert atmosphere.

도2에는 MWCNT의 함량에 따른 나노복합체 섬유의 디지털 이미지 사진을 나타냈었다. 도2에서 (a) 100% PAN, (b) PAN/MWCNT=99/1, (c) PAN/MWCNT=97/3, (d) PAN/MWCNT=95/5, (e) PAN/MWCNT=90/10, (f) PAN/MWCNT=85/15 중량 %에 대한 것이다.Figure 2 shows a digital image photograph of the nanocomposite fiber according to the content of MWCNT. 2, (a) 100% PAN, (b) PAN / MWCNT = 99/1, (c) PAN / MWCNT = 97/3, (d) PAN / MWCNT = 95/5, (e) PAN / MWCNT = 90/10, (f) for PAN / MWCNT = 85/15 weight%.

도3에는 3000??에서 흑연화처리된 나노복합체 탄소섬유의 전자현미경 사진을 나타내었다. 도3에서, (a)100% PAN, (b) PAN/MWCNT=99/1, (c) PAN/MWCNT=97/3, (d) PAN/MWCNT=95/5 중량%에 대한 것이다.Figure 3 shows an electron micrograph of the graphitized nanocomposite carbon fiber at 3000 ??. In FIG. 3, (a) 100% PAN, (b) PAN / MWCNT = 99/1, (c) PAN / MWCNT = 97/3, and (d) PAN / MWCNT = 95/5 wt%.

도4는 실시예 1에 따라 형성되는 가스 확산층에 적용된 나노복합체 탄소섬유를 1000℃에서 열처리했을 경우의 전기전도도 그래프(4단자법에 의해 측정)를 나타내었다. 표시한 바와 같이, 탄소나노튜브의 함량에 따른 섬유경의 변화는 크지 않았으나 전기전도도 값은 나노튜브의 함량이 증가할 수 록 증가하는 경향이 있었으며 특히 1%이상의 경우에는 증가폭이 크게 둔화되는 것을 알 수 있다. 즉, 탄소나노튜브의 함량이 전구체 대비 1%정도만 되어도 전기전도도에는 급격한 효과가 있는 것을 증명한 것이다. 그러나 카본나노튜브의 함량이 증가할 수 록 전체적인 기공도는 감소하는 것을 알 수 있다(도3 참조). 이것은 카본나노튜브가 섬유외부로 돌출되어 전기방사된 섬유간 형성된 네트웍을 방해하여 기공도를 감소시키는 것에 기인하는 것이다. Figure 4 shows the electrical conductivity graph (measured by four-terminal method) when the nanocomposite carbon fiber applied to the gas diffusion layer formed according to Example 1 at 1000 ℃. As indicated, the change in fiber diameter according to the content of carbon nanotubes was not large, but the conductivity value tended to increase as the content of nanotubes increased, especially in the case of more than 1%. have. In other words, even if the carbon nanotube content of about 1% compared to the precursor is proved to have a sharp effect on the electrical conductivity. However, as the content of carbon nanotubes increases, the overall porosity decreases (see FIG. 3). This is due to the carbon nanotubes protruding out of the fiber to interfere with the network formed between the electrospun fibers to reduce the porosity.

[실시예 2]Example 2

PAN에 폴리이미드의 전구체인 PAA(polyamic acid)를 중량비 10-90%까지 첨가하여 실시예 1의 방법에 의거하여 실시하였다. PAA의 함량이 증가할 수 록 전기전도도 값은 감소하고 섬유경과 탄소화 수율은 증가하는 것을 알 수 있었다. 이것은 PAA의 높은 분자량에 따른 점도의 영향에 기인하는 것이다. PAA (polyamic acid), which is a precursor of polyimide, was added to PAN to a weight ratio of 10-90%, and was carried out according to the method of Example 1. As the PAA content increased, the conductivity value decreased and the fiber diameter and carbonization yield increased. This is due to the influence of viscosity on the high molecular weight of PAA.

[실시예 3]Example 3

피치(Pitch)를 THF(tetrahydrofuran)를 이용하여 농도 30-60중량부로 용해하여 실시예 1의 방법에 의해 전기방사를 실시하고, 산화안정화, 탄소화 흑연화를 실시하였다. Pitch was dissolved at 30-60 parts by weight using tetrahydrofuran (THF), electrospinning was carried out by the method of Example 1, and oxidation stabilization and carbonization graphitization were carried out.

[실시예 4] Example 4

피치 및 PAN을 복합화하여 상기 실시예 1의 방법에 의해 전기방사를 실시하고, 산화안정화, 탄소화, 흑연화를 실시하였다. Pitch and PAN were combined to electrospin by the method of Example 1, and oxidative stabilization, carbonization, and graphitization were performed.

상기 실시예 1 내지 실시예 4의 방법으로 얻어진 나노복합체 탄소섬유의 물성 및 섬유경의 변화를 하기 [표 1]에 나타내었다. 하기 [표 1]에서, 전기전도도는 4 point probe method에 의한 벌크 전기전도도를 측정한 것이며, 기공율(%)은 Mercury porosimetry법에 의한 기공률을 측정한 것이다. 기공율의 경우 방사조건에 따라 상이한 값을 나타낼 수 있다. 즉, 섬유의 적층두께에 따라 기공율은 조절이 가능함을 암시하고 있다. [표 1]의 결과는 전구체 종류별 탄소섬유의 두께를 거의 일정(300 ~ 500㎛) 범위로 조절하여 측정한 결과이다.Changes in physical properties and fiber diameters of the nanocomposite carbon fibers obtained by the method of Examples 1 to 4 are shown in the following [Table 1]. In the following [Table 1], the electrical conductivity is measured bulk electrical conductivity by the 4 point probe method, the porosity (%) is measured by the porosity by Mercury porosimetry method. In the case of porosity, different values may be displayed depending on spinning conditions. That is, the porosity implies that the porosity can be adjusted according to the thickness of the fiber. The result of [Table 1] is a result measured by adjusting the thickness of the carbon fiber for each precursor type in a substantially constant (300 ~ 500㎛) range.

[표 1]TABLE 1

구분(전구체별)Classification (Bullet type distinction) 평균섬유경 (nm)Average fiber diameter (nm) 처리온도(??)Treatment temperature (??) 전기전도도(S/cm)Electrical Conductivity (S / cm) 기공율(%)Porosity (%) PAN/MWCNT=99/1PAN / MWCNT = 99/1 200 - 400200-400 10001000 > 10.0> 10.0 30 - 5030-50 PAN/MWCNT=97/3PAN / MWCNT = 97/3 200 - 400200-400 10001000 > 10.0> 10.0 30 - 40 30-40 PAN/MWCNT=95/5PAN / MWCNT = 95/5 200 - 400200-400 10001000 > 10.0> 10.0 20 - 4020-40 PitchPitch > 1000> 1000 10001000 > 7.0> 7.0 20 - 4020-40 PAN/PAA=7/3PAN / PAA = 7/3 300 - 500300-500 10001000 > 5.0> 5.0 20 - 5020-50 PAN/PAA=5/5PAN / PAA = 5/5 500 - 700500-700 10001000 > 5.0> 5.0 30 - 6030-60 PAN/PAA=3/7PAN / PAA = 3/7 600 - 900600-900 10001000 > 5.0> 5.0 40 - 7040-70 PAN/Pitch-5/5PAN / Pitch-5 / 5 500 - 700500-700 10001000 > 5.0> 5.0 40 - 70 40-70 Phenol-resinPhenol-resin 500 - 700500-700 10001000 > 2.0> 2.0 30 - 7030-70

[실시예 5]Example 5

상기 실시예 1 내지 실시예 4에 따라 제조된 나노복합체 탄소섬유 부직포에 10 - 50% 테프론(Teflon)을 이용하여 발수 처리하고, 이를 < 150℃이하에서 진공건조 하여 고체고분자 전해질형 연료전지 전극의 가스확산층으로 이용하여 전류전압강하 실험을 실시하고 그 결과를 비교예와 함께 하기 [표 2]에 나타냈다. 비교예로 사용된 가스확산층은 용융방사에 의해 제조된 탄소섬유 종이를 사용했다(Toray 제품).The nanocomposite carbon fiber nonwoven fabric prepared according to Examples 1 to 4 was subjected to a water repellent treatment using 10-50% Teflon, and dried under vacuum at <150 ° C. to obtain a solid polymer electrolyte fuel cell electrode. Using the gas diffusion layer was carried out a current voltage drop experiment and the results are shown in Table 2 together with the comparative example. The gas diffusion layer used as a comparative example used carbon fiber paper produced by melt spinning (Toray).

[표 2]TABLE 2

구분(전구체별)Classification (Bullet type distinction) 처리온도(℃)Treatment temperature (℃) 전기저항(mΩ㎠)Electric resistance (mΩ㎠) 평가evaluation PAN/MWCNT=99/1PAN / MWCNT = 99/1 10001000 1010 O PAN/MWCNT=97/3PAN / MWCNT = 97/3 10001000 9.89.8 O PAN/MWCNT=95/5PAN / MWCNT = 95/5 10001000 9.59.5 PitchPitch 10001000 9.69.6 PAN/PAA=7/3PAN / PAA = 7/3 10001000 10.510.5 PAN/PAA=5/5PAN / PAA = 5/5 10001000 11.011.0 O PAN/PAA=3/7PAN / PAA = 3/7 10001000 11.211.2 PAN/Pitch-5/5PAN / Pitch-5 / 5 10001000 9.79.7 Phenol-resinPhenol-resin 10001000 1010 O 비교예Comparative example 10001000 11.511.5 ××

상기 [표 2]에서 평가는 공기극에 있어서 수분의 함량 및 전체 시스템의 전력변화를 보면서 평가하였으며, ×는 나쁨, △ 는 보통, O는 우수, ◎는 최우수를 나타낸다. [표 2]는 20% 테프론 발수처리하여 얻어진 결과이다.In Table 2, the evaluation was made by looking at the moisture content in the air electrode and the power change of the entire system, where x is bad, △ is usually, O is good, and ◎ is the best. Table 2 shows the results obtained by 20% Teflon water treatment.

도5에는 용융방사 방법에 의해 제조된 가스확산층과 전기방사에 의해 제조된 가스확산층의 비교를 위하여 20%의 테프론으로 발수처리된 시료의 전자현미경 사진을 나타냈다(비교예). 도 5에서와 같이 용융방사에 의해 제조된 섬유의 경우 탄소섬유의 직경이 약 20㎛인 것에 비해 전기방사에 의해 제조된 탄소섬유의 경우 직경이 약 200nm 정도되어, 직경에서 약 100배 정도 작음을 알 수 있으며, 세공의 경우도 30 - 250㎛인 것에 비해 전기방사된 탄소섬유의 경우는 대부분 10㎛ 미만의 균일한 세공이 형성되어 수분관리가 보다 효과적인 가스확산층을 제조할 수 있었다. 도5의 (a)는 비교예 (Toray사의 연료전지 가스확산층용 탄소섬유)이고, 도5의 (b)는 전기방사에 의해 제조된 본 발명의 탄소나노섬유를 나타낸다.5 shows an electron micrograph of a sample water-repellent treated with 20% Teflon for comparison between the gas diffusion layer prepared by the melt spinning method and the gas diffusion layer prepared by electrospinning (comparative example). In the case of the fiber produced by melt spinning as shown in FIG. 5, the diameter of the carbon fiber produced by electrospinning is about 200 nm, compared to about 20 μm in diameter, and about 100 times smaller in diameter. As can be seen, the pores were also 30 to 250㎛ compared to the case of the electrospun carbon fiber was formed mostly uniform pores of less than 10㎛ could produce a gas diffusion layer more effective in water management. Figure 5 (a) is a comparative example (carbon fiber for fuel cell gas diffusion layer of Toray), Figure 5 (b) shows the carbon nanofiber of the present invention produced by electrospinning.

본 발명은 전기방사법에 의해 나노복합체 탄소섬유를 제조하여 가스확산층을 형성하므로, 최적의 수분관리 및 반응물/생성물의 이동채널이 우수하고 전기전도도가 우수한 가스확산층을 손쉽게 제공하고, 향상된 성능의 연료전지용 가스확산층을 제공할 수 있게 된다. 특히 탄소섬유의 직경을 획기적으로 줄일 수 있어( < 1㎛ 미만) 전체적인 시스템의 부피를 최소화할 수 있으며 부직포(종이상) 상태로 제조하므로 제조 공정 및 제조단가를 획기적으로 단축시킬 수 있는 효과가 있다. The present invention forms a gas diffusion layer by manufacturing a nanocomposite carbon fiber by the electrospinning method, and thus provides a gas diffusion layer with excellent moisture management and excellent movement channels of the reactants / products and an excellent electrical conductivity for fuel cells with improved performance. It is possible to provide a gas diffusion layer. In particular, the diameter of the carbon fiber can be significantly reduced (<1 μm), thereby minimizing the volume of the overall system and manufacturing the non-woven fabric (more than one type), thereby reducing the manufacturing process and manufacturing cost. .

Claims (5)

탄소섬유 전구체 물질인 폴리아크릴로 나이트릴(PAN), 페놀(Phenol), 피치(pitch) 중의 적어도 하나를 단독, 블렌드(복합) 또는 나노재료와 복합화하여 방사용액을 제조한 다음, After spinning at least one of polyacrylonitrile (PAN), phenol (Phenol), pitch as a carbon fiber precursor material alone, blend (composite) or nanomaterials to prepare a spinning solution, 상기 방사용액에 고전압을 가해 전기방사 하고, 이를 공기분위기에서 산화안정화한 후 탄소화 온도인 500-1500℃ 범위에서 탄소화 처리하여 나노복합체 탄소섬유를 얻어 발수처리한 후, 상기 나노복합체 탄소섬유를 연료전지의 가스확산층으로 사용하는 것을 특징으로 하는 연료전지용 가스 확산층의 형성방법. Electrospinning by applying a high voltage to the spinning solution, and oxidative stabilization in an air atmosphere and carbonization treatment in the carbonization temperature range of 500-1500 ℃ to obtain a nanocomposite carbon fiber to obtain a water repellent treatment, the nanocomposite carbon fiber A method of forming a gas diffusion layer for a fuel cell, characterized in that it is used as a gas diffusion layer of a fuel cell. 제1항에 있어서,The method of claim 1, 상기 나노복합체 탄소섬유를 3000 ℃ 미만의 온도에서 흑연화하여 흑연섬유를 얻고, Graphitizing the nanocomposite carbon fiber at a temperature of less than 3000 ℃ to obtain a graphite fiber, 상기 흑연섬유를 발수처리하여, 고체고분자 전해질형 연료전지 및 직접메탄올 연료전지의 가스확산층으로 사용하는 것을 특징으로 하는 연료전지용 가스 확산층의 형성방법.The method of forming a gas diffusion layer for a fuel cell, characterized in that the graphite fiber is water-repellent, and used as a gas diffusion layer of a solid polymer electrolyte fuel cell and a direct methanol fuel cell. 제1항에 있어서, The method of claim 1, 상기 나노복합체 탄소섬유는, 그 직경이 100 - 1000 nm이고 전기전도도가 2 S/cm 이상이면서 기공율이 20% 이상인 것을 특징으로 하는 연료전지용 가스 확산층 의 형성방법.The nanocomposite carbon fiber has a diameter of 100-1000 nm, an electrical conductivity of 2 S / cm or more, and a porosity of 20% or more. 제2항에 있어서, The method of claim 2, 발수처리된 흑연섬유는, 그 전기저항이 11.5 mΩ㎠ 이하인 것을 특징으로 하는 연료전지용 가스 확산층의 형성방법.The water repellent treated graphite fiber has an electrical resistance of 11.5 mΩcm 2 or less, wherein the gas diffusion layer for fuel cell is formed. 제1항에 있어서, The method of claim 1, 상기 나노분말은 카본나노튜브, 카본나노혼, 기상성장 탄소섬유, 컵스택타입의 카본나노튜브, 흑연분말, 카본블랙 중의 적어도 하나를 사용하고, 나노재료의 함량이 0.5 ~ 15중량부인 것을 특징으로 하는 연료전지용 가스 확산층의 형성방법.The nano powder uses at least one of carbon nanotubes, carbon nanohorns, vapor-grown carbon fibers, cup stack-type carbon nanotubes, graphite powder, and carbon black, and the nanomaterial content is 0.5 to 15 parts by weight. A method of forming a gas diffusion layer for a fuel cell.
KR1020060004402A 2006-01-16 2006-01-16 preparation method of diffusion layer of fuel cell KR100763548B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060004402A KR100763548B1 (en) 2006-01-16 2006-01-16 preparation method of diffusion layer of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060004402A KR100763548B1 (en) 2006-01-16 2006-01-16 preparation method of diffusion layer of fuel cell

Publications (2)

Publication Number Publication Date
KR20070075775A true KR20070075775A (en) 2007-07-24
KR100763548B1 KR100763548B1 (en) 2007-10-04

Family

ID=38500811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060004402A KR100763548B1 (en) 2006-01-16 2006-01-16 preparation method of diffusion layer of fuel cell

Country Status (1)

Country Link
KR (1) KR100763548B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108977A (en) * 2013-03-04 2014-09-15 삼성에스디아이 주식회사 Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
KR20190024276A (en) * 2017-08-31 2019-03-08 주식회사 파이노 Manufacturing method of mea

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011644A (en) * 2008-07-25 2010-02-03 주식회사 아모메디 Fuel cell electrode being unified catalyst layer and gas diffusion layer with carbon nanofibers web and method of preparing the same and fuel cell using the same
US11289721B2 (en) * 2016-09-27 2022-03-29 Guardnec Co., Ltd. Gas diffusion layer comprising porous carbonaceous film layer for fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080342A1 (en) 2000-04-17 2001-10-25 Johnson Matthey Pulic Limited Company Gas diffusion substrate
US7407722B2 (en) * 2001-03-08 2008-08-05 Sony Corporation Gas diffusing electrode body, method of manufacturing the same and electrochemical device
US20050130025A1 (en) * 2002-01-11 2005-06-16 Tetsuji Kadowaki Carbonaceous material and dispersion containing the same
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108977A (en) * 2013-03-04 2014-09-15 삼성에스디아이 주식회사 Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
US10862136B2 (en) 2013-03-04 2020-12-08 Kolon Industries, Inc. Support for fuel cell, method of preparing the same, and electrode for fuel cell, membrane-electrode assemby for a fuel cell and fuel cell system including same
KR20190024276A (en) * 2017-08-31 2019-03-08 주식회사 파이노 Manufacturing method of mea

Also Published As

Publication number Publication date
KR100763548B1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
TWI641180B (en) Carbon fiber nonwoven fabric, manufacturing method of carbon fiber nonwoven fabric, and carbon fiber precursor fiber nonwoven fabric
KR101484762B1 (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell comprising the gas diffusion layer
JP5320579B2 (en) Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material
US7144476B2 (en) Carbon fiber electrode substrate for electrochemical cells
US20030091891A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
KR20180097622A (en) Gas diffusion electrode and manufacturing method thereof
JP2001283865A (en) Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
TWI794685B (en) Gas Diffusion Layers for Fuel Cells
DE102007012495B4 (en) METHOD FOR PRODUCING A DIFFUSION MEDIUM
KR100763548B1 (en) preparation method of diffusion layer of fuel cell
KR20100011644A (en) Fuel cell electrode being unified catalyst layer and gas diffusion layer with carbon nanofibers web and method of preparing the same and fuel cell using the same
KR20090055299A (en) Carbonaceous material and method of preparing same
JP4177697B2 (en) Polymer membrane electrode assembly and polymer electrolyte fuel cell
JP2008186718A (en) Gas diffusion layer for fuel cell, fuel cell, fuel cell mounted device
EP4131519A1 (en) Method for producing gas diffusion electrode substrate
JP2006216385A (en) Electrode catalyst layer for fuel cell and fuel cell using it
TWI819357B (en) Gas diffusion layer for fuel cells with improved bending properties
KR20190103175A (en) Gas Diffusion Electrodes and Fuel Cells
JP4438408B2 (en) Fuel cell
US9859572B2 (en) Gas diffusion substrate
KR102407319B1 (en) Anode Material for Microbial Fuel Cell, Method for Producing the Same and Microbial Fuel Cell Comprising the Anode Material
JP4202205B2 (en) Fuel cell stack
JP2014063730A (en) Porous carbon electrode and method for manufacturing the same
KR20220153522A (en) Carbon fiber substrate for gas diffusion layer of fuel cell comprising recycled carbon fiber, gas diffusion layer comprising the same and fuel cell comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130925

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150901

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161011

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190812

Year of fee payment: 13