JP2004084147A - Carbonaceous fiber woven cloth - Google Patents

Carbonaceous fiber woven cloth Download PDF

Info

Publication number
JP2004084147A
JP2004084147A JP2002250379A JP2002250379A JP2004084147A JP 2004084147 A JP2004084147 A JP 2004084147A JP 2002250379 A JP2002250379 A JP 2002250379A JP 2002250379 A JP2002250379 A JP 2002250379A JP 2004084147 A JP2004084147 A JP 2004084147A
Authority
JP
Japan
Prior art keywords
woven fabric
yarn
carbonaceous
thickness
fiber woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250379A
Other languages
Japanese (ja)
Inventor
Satoshi Hirahara
平原 聡
Mitsuo Suzuki
鈴木 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002250379A priority Critical patent/JP2004084147A/en
Publication of JP2004084147A publication Critical patent/JP2004084147A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous fiber woven cloth having well-balanced gas permeability, electrical conductivity, water retention, drainage properties, evenness of thickness, etc., and suitable as a material for a gas diffusion layer of a solid polymer-type fuel cell. <P>SOLUTION: This carbonaceous fiber woven cloth is mainly composed of carbonaceous fiber yarn, wherein the woven cloth has a Metsuke (areal density) of 50-200 g/m<SP>2</SP>, a thickness of 0.05-2 mm, a bulk density of 0.2-0.6 g/cc, a volume resistivity of ≤0.15 Ωcm, when measured in the surfacial direction of the cloth, and a coefficient of variation of ≤3.2% in thicknesses of the cloth at 20 points, when measured so that a square cloth in which one of the sides is parallel to the warp and the other is parallel to the weft is sampled, two diagonal lines of the square are each equally divided into 11 parts, and the thicknesses at the 20 points in total corresponding to the equally divided parts are measured to calculate the coefficient, and further weft and warp threads composing the woven cloth each have such a cross section that a ratio of the major axis of the cross section to the minor axis is 2 or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭素質繊維織布に関する。
【0002】
【従来の技術】
近年、燃料電池の開発に多大な努力が注がれている。
燃料電池は、用いる電解質の種類により、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型などに分類されるが、これらの中でも、低温で運転することができ、扱いやすく、かつ出力密度も高い固体高分子型燃料電池が、電気自動車用或いは家庭用電源などの用途に注目されている。固体高分子型燃料電池は、発電の際に発生する熱を暖房、給湯などに利用することで、総合的に熱効率を向上させるコージェネレーションシステムへの展開が検討されている。
【0003】
固体高分子型燃料電池用の単セルの主要構成部材は、通常、膜電極体と溝付セパレータである。膜電極体の基本構造は、高分子固体電解質膜(イオン交換膜)の両面に、触媒層、ガス拡散層及び集電体を順次接合したものである。触媒層は主に触媒とカーボンブラックとの混合物からなっている。また、ガス拡散層に集電体の機能を兼ねさせることもある。この膜電極体の両面に溝付セパレータを接合することで、固体高分子型燃料電池の単セルが形成される。
【0004】
固体高分子型燃料電池は、溝付セパレータの溝を経てアノード側触媒層に燃料(水素ガス)、カソード側触媒層に酸化剤(酸素含有ガス)をそれぞれ供給して電池反応を生起させ、このとき膜電極体を介して発生する電子の流れを電気エネルギーとして外部に取り出す仕組みになっている。従って、ガス拡散層材料としては、次のようなことが望まれる。
▲1▼ この仕組みを効率よく作動させるために、膜電極接合体に燃料と酸化剤を円滑かつ均等に供給すること、
▲2▼ 電気エネルギーの取り出し効率を出来るだけ低下させないために、十分な導電性を有する(即ち体積固有抵抗が低い)こと、
▲3▼ 膜電極体の中央の固体電解質膜がプロトン伝導性を発現できるように、適度の水分を保持していること(保水性)、
▲4▼ 電池反応に伴って生成する水を円滑に排出することができること(排水性)。
【0005】
しかしながら、保水性と排水性とは相反するものであり、両者を同時に満足させることは一般的には困難である。
ガス拡散層(これは集電体を兼ねることもある)の材料としては、主にカーボンペーパーが用いられているが、炭素質繊維を製織してなる炭素質繊維織布を用いることが最近検討されてきている。
【0006】
炭素質繊維織布は、カーボンペーパーに比べて、通気性が大きく、燃料を円滑、均等に膜電極接合体に供給しやすく、体積固有抵抗を低くしやすいこと、材料や製織方法によっては、厚み方向に弾性を持たせることができて機械的脆さがなく、保水性や排水性もコントロールしやすいことから、カーボンペーパーにない利点がある。
【0007】
しかしながら、炭素質繊維織布では織布の縦糸と横糸とが交差するため、カーボンペーパーと比べて微少な厚さムラが発生しやすい。したがって、セパレータとガス拡散層材料としてのカーボンクロスとの接触状態には微少レベルで差異が発生することにより、その部分での電気抵抗が安定せず、結果として織布全体の電気抵抗も不安定となり易いという問題がある。
【0008】
炭素質繊維織布のこのような問題を解決する方法もいくつか提案されている。例えば特開昭58−165254号公報には、フッ素樹脂とカーボンブラックとの混合物を炭素質繊維織布の空隙部に充填することが記載されている。また特開平10−261421号公報には、フッ素樹脂とカーボンブラックとから成る層を炭素質繊維織布の表面に形成することが記載されている。これらの方法は、フッ素樹脂/カーボンブラックの混合相をクロス表面に形成することにより厚さムラを低減する効果が期待される。
【0009】
しかしながら、これらの方法は、炭素質繊維織布にフッ素樹脂、カーボンブラック等を充填することにより、ガス拡散層の保水性、排水性、ガス透過性等を調整しようとするものであるため、電気抵抗が増大して電池特性が低下したり、炭素質繊維織布の利点であるガス透過性を低下させる欠点を伴っている。
【0010】
【発明が解決しようとする課題】
従って本発明の課題は、ガス透過性、導電性(低抵抗)、保水性、排水性等のガス拡散層材料として望まれる性質がバランスしている炭素質繊維織布を提供することであり、また、均一な、特に厚みムラの小さい、固体高分子型燃料電池用ガス拡散層材料として好適な炭素質繊維織布を提供することである。
【0011】
【課題を解決するための手段】
即ち本発明の要旨は、主として炭素質繊維の糸で構成された織布であって、目付量が50〜200g/m、厚さが0.05〜2mm、嵩密度が0.2〜0.6g/cc、面方向の体積固有抵抗が0.15Ωcm以下であり、該織布をその縦糸方向及び横糸方向を辺とする正方形に切りだしたとき、その対角線2本をそれぞれ11等分した合計20個の分割点における織布の厚さの変動係数が3.2%以下であり、かつ、織布を構成する縦糸及び横糸はその断面の長径が短径の2倍以上であることを特徴とする炭素質繊維織布、に存する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明の炭素質繊維織布は、主として炭素質繊維糸で構成された織布であって、目付量、厚さ及びその変動係数、嵩密度、及び面方向体積固有抵抗が特定の範囲にあり、かつ、織布を構成する縦糸及び横糸の断面が特定の形状を有することを特徴としている。
【0013】
本発明の炭素質繊維織布の製造方法は、特定の物性を満たすものが得られる限りにおいて特に限定されないが、例えば、炭素質前駆体繊維を、製織し、得られた織布をプレス加工したのち、炭素化処理することによって、また所望によりさらに黒鉛化することによって、製造することができる。
以下、この製造方法について詳細に説明する。
【0014】
(炭素質前駆体繊維)
出発材料の炭素質前駆体繊維としては、ポリアクリロニトリル系、ピッチ系、セルロース系、ポリノジック系、フェノール樹脂系、あるいは、これらの混合物など、公知の任意の炭素質前駆体繊維を用いることができる。通常はピッチ系又はポリアクリロニトリル系を用いる。なかでもポリアクリロニトリル系の炭素質前駆体繊維を用いるのが好ましい。ポリアクリロニトリル系の炭素質前駆体繊維には、アクリロニトリル単位の含有比率により、アクリロニトリルほぼ100%のポリアクリロニトリルを原料とするもの、アクリロニトリルが50%以上のアクリロニトリルを主体とするアクリロニトリル系共重合体を原料とするもの、更にはアクリロニトリルが20〜50%のアクリロニトリルを含むアクリロニトリル系共重合体を原料とするものなど各種のものがあるが、これらのいずれを原料とする炭素質前駆体繊維も用いることができる。
【0015】
(耐炎化処理)
上記炭素質前駆体繊維は、製織して織布とするのに先だって、耐炎化処理をしておくことができる。
耐炎化処理(不融化処理)はピッチやポリアクリロニトリルの分子構造中に酸素原子が導入される化学反応であり、通常は200〜300℃、高くても400℃未満の温度で、酸素と数十分間接触させることにより行われる。そして、一般に分子構造中への酸素の導入量が多いほど後続する炭素化処理に際しての融着防止効果が大きいとされている。その指標としては、一般にLOI値という繊維を燃焼させるのに必要な限界酸素濃度が用いられている。通常の炭素質繊維の製造の場合のように融着を起させないためには、LOI値が35〜60となるように耐炎化処理すべきものとされている。本発明の炭素質繊維織布の製造においても、炭素質前駆体のLOI値が35〜60となるように耐炎化処理するのが好ましい。
【0016】
即ち、織布を構成する炭素質繊維を融着させない場合には、LOI値が35〜60となるように耐炎化処理すればよい。逆に繊維を融着させて剛性を有する織布とすることにより、燃料電池の特性を改善したい場合などには、LOI値が35未満、特に33以下となるように耐炎化処理してもよい。なお、LOI値が小さすぎると後続する炭素化処理に際して融着が激しくなりすぎて、得られる炭素質繊維織布が脆くなるので、LOI値が20以上、特に25以上となるように耐炎化処理を行うのが好ましい。LOI値は、耐炎化処理時の酸素との接触温度や接触時間を変化させることにより調節できる。
【0017】
例えば好ましい方法の一つでは、ポリアクリロニトリル系繊維を空気中で200〜300℃で耐炎化処理して得た耐炎化繊維を用いる。耐炎化処理に供するポリアクリロニトリル系繊維としては長繊維でも短繊維を紡績したもののいずれでもよく、また糸も単糸及び双糸のいずれでもよい。また耐炎化処理に際して繊維に延伸を施して、繊維の靭性を向上させることもできる。
【0018】
(炭素質前駆体繊維糸)
製織に用いるための糸は、フィラメント糸、紡績糸のいずれでもよいが、緻密かつ均一な織布組織が得られ、かつ糸の生産性が高い等の理由から紡績糸が好適である。紡績糸(spun yarn)を得るための紡績方法としては公知のいずれの手法も適用でき、例えば綿紡績、2インチ紡績、梳毛紡績、紡毛紡績、直紡績等の紡績方法が挙げられる。ポリアクリロニトリル系耐炎化繊維の場合、ポリアクリロニトリルの連続フィラメントトウを牽切して得たスライバーを梳毛紡績で紡績して得られる紡績糸を用いることが好ましい。
【0019】
(糸の種類)
上記製織に用いるための糸は、単糸、双糸、3本撚糸、フィラメント糸、更には原料の異なる炭素質前駆体繊維から成る複合糸のいずれでもよい。
紡績糸は双糸、単糸のいずれであってもよいが、一般に双糸の方が、、単糸より、糸の引張強度が大きくなるため、均一な厚さの織布を作製することができるので好ましい。
【0020】
(糸の繊度(番手))
糸の繊度は、メートル番手で、通常14番手以上、好ましくは16番手以上、より好ましくは18番手以上であり、また、通常50番手以下、好ましくは45番手以下である。
単糸の場合、メートル番手で、通常1/14Nm以上、好ましくは1/16Nm以上、より好ましくは1/18Nm以上であり、また、通常1/50Nm以下、好ましくは1/45Nm以下である。双糸の場合は、メートル番手で、通常2/28Nm以上、好ましくは2/32Nm以上、より好ましくは2/36Nm以上であり、また、通常2/100Nm以下、好ましくは2/90Nm以下である。
【0021】
1/14Nm又は2/28Nmより太番手の場合、単位長さあたりの毛羽数が多くなる傾向がある。また、1/50Nm又は2/100Nmより細番手の場合、糸の引張強度が低くなる傾向がある。
(糸の撚り数)
糸の撚り数は、JIS L 1095(一般紡績糸試験方法)により測定される。
【0022】
単糸の場合の撚り数は、糸長1m当たりで、通常300回/m以上、好ましくは500回/m以上であり、また、通常800回/m以下、好ましくは700回/m以下である。好適な撚り数は、糸番手により若干異なるが、300回未満の場合、糸の毛羽数が多くなりやすい。また、撚り数が大きすぎると、加撚時に糸切れが発生しやすくなる。撚り数を増やすと、毛羽数が低減するが、700回以上では撚数増による毛羽低減の効果はほぼ飽和する。
【0023】
双糸の場合、上撚り数は、糸長1m当たりで、通常300回/m以上、好ましくは400回/m以上であり、また、通常800回/m以下、好ましくは750回/m以下である。上撚り数が小さいと、毛羽数が大きくなりやすい。また、上撚り数が大きいと、加撚時に糸切れ発生確率が増加し、太さむらが増加する場合もある。また、下撚り数は、通常500回/m以上、好ましくは600回/m以上であり、また、通常900回/m以下、好ましくは850回/m以下である。下撚り数が小さいと、毛羽数が大きくなりやすい。また、下撚り数が大きいと、加撚時に糸切れ発生確率が増加しやすい。
【0024】
(製織)
上記のポリアクリロニトリル系耐炎化繊維等の、耐炎化処理した炭素質前駆体繊維を製織して耐炎化織布としてもよいし、ポリアクリロニトリル系繊維そのもの等の、耐炎化処理していない炭素質前駆体繊維を製織して織布とし、これに耐炎化処理を施して耐炎化織布としてもよい。この場合には、織布を空気、オゾン、酸化窒素などの酸化性ガスや、硫酸、硝酸などに接触させて、好適なLOI値を有する耐炎化織布とすればよい。
【0025】
(織り方)
織布の組織は、平織、斜文織、朱子織、その他任意の組織であってよいが、平織が、縦糸、横糸の単位面積あたりの交差数が最も多いので、織布の体積固有抵抗が小さくなるため好ましい。
(経緯密度)
平織の場合の経緯密度(単位長さ当たりの縦糸及び横糸の本数)は、一般的には1インチ当り20〜60本であるが、具体的には単糸、双糸の別や糸の太さに応じて適宜選択する。
【0026】
(炭素質前駆体繊維織布)
炭素質前駆体繊維織布の目付量、即ち単位面積当りの質量は、通常50g/m以上、好ましくは60g/m以上、より好ましくは80g/m以上であり、また、通常350g/m2 以下、好ましくは250g/m以下である。目付量が小さすぎると剛性や引張強度が小さくなり、目付量が大きすぎると、目が詰まりすぎてガス拡散性が低下する。
【0027】
織布の厚さは、通常0.05mm以上、好ましくは0.10mm以上、より好ましくは0.20mm以上であり、また、通常5mm以下、好ましくは3mm以下である。厚さが小さすぎると引張強度が低下し、また、大きすぎると、目が詰まり過ぎてガス透過性が低下する。
織布の嵩密度は、通常0.2g/cc以上、好ましくは0.25g/cc以上であり、また、通常0.8g/cc以下、好ましくは0.7g/cc以下である。嵩密度が小さすぎると引張強度が低下し、嵩密度が大きすぎると目が詰まり過ぎてガス透過性が低下する。
【0028】
織布の幅は、通常5cm以上、好ましくは10cm以上であり、また、通常250cm以下、好ましくは200cm以下、さらに好ましくは100cm以下である。幅が小さすぎると織布の幅方向の収縮が大きくなる場合があり、その結果、皺が発生し、厚さムラが生じる。また、幅が大きすぎると均一に炭素化処理及び黒鉛化処理をすることが困難となり、特に、炭素化処理時に不均一に収縮するため厚さムラが発生しやすい。
【0029】
織布の長さは、通常50cm以上、好ましくは100cm以上であり、また、通常300m以下、好ましくは200m以下である。長さが短すぎると長さ方向(長尺方向)の収縮が大きくなる場合があり、皺が発生し厚さムラが生じやすい。また、長さは、長いほうが、ガス拡散層材料に利用する場合(織布へカーボンブラックを主成分とするペーストを塗布することにより目止め加工処理を連続的に行う際)に、織布どうしの接続回数(織布の端と端をつなぐ回数)が減るために好ましいが、実際的には300m以上の長尺物の捲回物を、厚さムラの発生を防ぐために、巻取張力を制御して巻き始めから巻き終わりまで安定して捲回できるような巻き取り設備は実質的に存在しない。
【0030】
(プレス加工)
上記の炭素質前駆体繊維織布の厚さムラを低減するためにプレス加工を行う。通常、プレス加工としては炭素化(黒鉛化)後の織布をプレス加工すれば厚みむらを抑制することができると発想しがちであるが、後述する比較例3、4に示すように、繊維形状を保持しようと穏和なプレス条件でプレスすると厚みむらが大きくなる。一方、厚みむらをなくそうと強いプレス条件にすると繊維自体が本来の形状を維持できなくなる。従って特定のプレス加工処理を行うことによって、本発明の特定の物性を有する織布を得ることができる。
【0031】
(プレス器の種類)
プレス加工を行うためのプレス器としては、プレス面が平板の平板型プレス器、ロールでプレス加工を行うロール型プレス器等が挙げられ、いずれでもよいが、長尺の炭素質前駆体繊維織布を連続的にプレス加工できることから、ロール型プレス器が好ましい。また、プレス器の加圧方式としては、油圧式、空気圧式、スプリング圧式等が挙げられ、いずれでもよいが、一般に高圧のプレスが可能な油圧式が好ましい。
【0032】
(ロール型プレス器)
ロール型プレス器では、一般に、回転する金属製の上段ロールと下段ロールとの間に織布を挟みこんで連続的にプレス加工を行う。ロール型プレス器のロールの直径は通常10〜80cm程度であり、ロール径により異なるがロールと織布との接触部分の幅は2〜10mm程度である。またロールの有効長さは均一な圧力でプレス加工を行うために、50〜200cm程度が好ましい。油圧等により加圧してかかる総加重を有効ロール長で除して得られる、ロール単位長さ当たりの圧力は50〜500kg/cm、好ましくは100〜400kg/cmである。50kg/cm未満では厚さムラは低減するもののその低減量は小さい。一方、500kg/cmを越えるとプレス前の織布の厚さ、厚さムラ、糸の太さ、織布の経緯密度等により若干異なるが、織布の繊維が部分的に圧縮破壊されて織布の強度が著しく低下する場合がある。プレス用ロール間への織布の通過速度は、プレス圧力により異なるが、通常2〜20m/分程度が好ましい。この範囲以外では、均一なプレス加工がなされない場合もある。
【0033】
プレス加工処理の回数は、1回だけでなく、2〜10回程度繰り返してもよい。
(平板型プレス器)
平板型プレス器の場合、プレス加工時のプレス圧力は面圧で20〜2000kg/cmが好ましい。20kg/cm未満でも厚さムラは低減するものの、その低減量は少ない。また、2000kg/cmを超えると、プレス前の織布の厚さ、厚さムラ、糸の太さ、織布の経緯密度等により若干異なるが、織布の繊維が部分的に圧縮破壊されて織布の強度が著しく低下する場合がある。
【0034】
所定の圧力で加圧する時間は通常10秒間〜10分間が好ましい。10秒間未満では厚さムラの低減効果は少ない。他方、10分間を超える長時間でプレス加工しても効果は小さい。
いずれの場合においても、プレス器でプレス加工する織布の枚数は通常1枚づつであるが、生産性を上げるために、2〜20枚程度を重ねてプレス加工してもよい。ただし、20枚以上では、プレス加工後の織布に厚さムラの低減効果が見られない場合がある。
【0035】
また、厚さムラの低減効果を高めるために、プレス加工前の織布に、ポリビニルアルコール、でんぷん糊等の糊剤、またはフェノール樹脂、フラン樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の熱硬化性樹脂または熱可塑性樹脂を有機溶剤等で溶解させたもの、またはこれらの樹脂の微粉砕物を、添着させてもよい。
【0036】
また、プレス加工時に、プレス面の温度を室温より高い温度(例えば50〜500℃、好ましくは100〜300℃程度)に昇温してプレス加工してもよい。この場合、上述の樹脂を溶融・硬化させたり、織布に含まれる水分等が除去されることなどから、より均一なプレス加工ができる。
上記のようにプレス加工することにより、厚さムラが低減するだけでなく、燃料電池の電圧低下の要因の1つとなりうる、炭素質繊維織布の表面に存在する長さ数mm程度の毛羽の毛羽立ちが低減される効果も期待できる。
【0037】
(炭素化処理)
上記プレス加工に引き続いて炭素質前駆体繊維織布の炭素化処理を行う。
炭素化処理は、不活性ガス中で400℃以上、好ましくは600℃以上で、1400℃以下、好ましくは1300℃以下に加熱すればよい。織布の導電性の点からは700℃以上、さらには800℃以上に加熱するのが好ましく、900℃以上に加熱するのが更に好ましい。
【0038】
炭素化処理においては、300〜750℃程度の熱分解温度を経由して800〜1400℃で炭素化を行う。熱分解過程の昇温速度は5〜300℃/分、炭素化過程での温度保持時間は1分以上4時間以内が好ましい。また、熱処理炉の熱容量及び原料織布の炉内への搬送速度にもよるが、750℃以下の熱分解ゾーンを設けずに、最初から一定温度の炭素化ゾーンへ織布を投入し、織布が炭素化ゾーンから受ける熱により、なりゆきで織布の温度が上昇して熱分解が起こり、その後、炭素化が進行するようにしてもよい。また、炉内のガス雰囲気はいずれの場合でも酸素濃度100ppm以下の不活性雰囲気が好ましい。
【0039】
炭素化処理を行うための炭素化炉は、バッチ式熱処理炉または連続式熱処理炉のいずれでもよいが、長尺の織布を連続的にかつ均一に炭素化処理が行える利点から連続式炉が好ましい。
連続式熱処理炉とは、複数段の加熱手段を備えた横型連続加熱炉又は縦型連続加熱炉によるものであり、縦型より横型の方が、織布の自重による変形、不均一化が起こりにくいために好ましい。被処理物の炉内搬送は、金属製(スチール、ステンレス等)のメッシュまたはメッシュなしのベルト上に、通常は直接載置し、ベルトの外部コントロールによる一定速度の移動によって搬送されていくものが好ましい。
【0040】
(黒鉛化処理)
炭素化処理に続けて、さらに黒鉛化処理まですることができる。
黒鉛化処理の温度は、通常1400℃以上、好ましくは1600℃以上であり、また、通常3000℃以下、好ましくは2500℃以下である。温度が1400℃以上であればさらに織布の体積固有抵抗が減少し、ガス拡散層材料としてより好ましい。なお、3000℃程度までの処理で熱処理後の体積固有抵抗はガス拡散層材料として使用上問題がないものとなる。
【0041】
黒鉛化処理の時間は、通常10分以上、好ましくは20分以上であり、また、通常4時間以下、好ましくは2時間以下である。処理時間が10分未満では黒鉛化が均一に完了しない場合がある。他方、処理時間が長い場合は生産性及び熱効率が低く、また黒鉛化炉の断熱材、発熱体等から発生する不純物で織布が汚染される場合がある。
【0042】
(その他の処理)
上記で得られた炭素質繊維織布は炭素質繊維100重量%よりなるものであるが、更に、これに、粉末活性炭、導電性カーボンブラック、各種ピッチの炭化物などの導電性物質を含有させることもできる。例えば、ピッチを有機溶媒に溶解させてピッチ溶液とし、これに粉末活性炭や導電性カーボンブラックを懸濁させたものを上記で得られた織布に塗布し、次いで不活性ガス中で加熱してピッチを炭素化させたものが挙げられる。その場合でも、織布に占める炭素質繊維の割合は60重量%以上であり、好ましくは80重量%以上である。
【0043】
上記により得られた炭素質繊維織布は、そのままでも燃料電池のガス拡散層の材料として用いることができるが、これを更に加工してガス拡散層の材料として用いることもできる。例えば電池を構成する膜電極体に適度の水分を保持させたり、電池に供給される燃料や酸化剤に含まれる不純物を吸着除去して電池特性の低下を防止するために、上記で得られた炭素質繊維織布に、800〜1200℃程度の水蒸気や二酸化炭素、または300〜500℃程度の空気を接触させ、炭素質の一部をガス化して炭素質繊維に微細な孔を生成させ、多孔性の炭素質繊維からなる織布とすることができる。
【0044】
(炭素質繊維織布の物性)
得られる炭素質繊維織布の目付量は、50g/m以上、好ましくは60g/m以上であり、また、200g/m以下、好ましくは180g/m以下である。目付量が小さすぎると引張強度が小さくなり、ガス拡散層材料として使用できない。目付量が大きすぎるとガス透過性が小さくなりすぎる。
【0045】
炭素質繊維織布の嵩密度(g/cc)は、織布の目付量を織布の厚さで除すことにより得られる。織布の嵩密度は、0.2g/cc以上、好ましくは、0.25g/cc以上であり、また、0.6g/cc以下、好ましくは、0.55g/cc以下である。嵩密度が0.2g/cc未満では織布の引張強度が弱く実用的でない。また、嵩密度が大きすぎるとガス拡散性が低下する。
【0046】
炭素質繊維織布の面方向の体積固有抵抗は、0.15Ωcm以下、好ましくは0.10Ωcm以下である。この値は低いほど好ましいが、0.05Ωcm以下程度であればガス拡散層材料として十分に低い体積固有抵抗である。
織布を構成する糸の繊度は、メートル番手で、通常16番手以上、好ましくは18番手以上、より好ましくは20番手以上であり、また、通常60番手以下、好ましくは55番手以下である。
【0047】
単糸の場合、メートル番手で、通常1/16Nm以上、好ましくは1/18Nm以上、より好ましくは1/20Nm以上であり、また、通常1/60Nm以下、好ましくは1/55Nm以下である。双糸の場合、メートル番手で、通常2/32Nm以上、好ましくは2/36Nm以上、より好ましくは2/40Nm以上であり、また、通常2/120Nm以下、好ましくは2/110Nm以下である。
【0048】
1/16Nm又は2/32Nmより太番手の場合、単位長さあたりの毛羽数が多くなる傾向がある。また、1/60Nm又は2/120Nmより細番手の場合、糸の引張強度が低くなる傾向がある。
なお、炭素質繊維は、紡糸−耐炎化−炭素化−(黒鉛化)という工程を経て得られるが、耐炎化糸を炭素化、さらには黒鉛化する工程で、繊度は約10〜20%程度減少する。本発明において織布を構成する糸の繊度は、最終的に得られた織布の糸についてのものであり、織布から糸を抜き出して計測することにより測定できる。
【0049】
平織の場合の炭素質繊維織布の経緯密度(単位長さ当たりの縦糸及び横糸の本数)は、織布を構成する糸(耐炎化糸)が炭素化、黒鉛化する工程で繊度が約10%程度減少するため、一般的には1インチ当り30〜70本であるが、具体的には単糸、双糸の別や糸の太さに応じて適宜選択する。例えば、2/40Nmの紡績糸の双糸を縦糸及び横糸に用いた場合の経緯密度は、織布の長さ10cm当たり、通常は縦糸、横糸とも100〜300本/10cmであり、好ましくは180〜250本/10cmである。また、縦糸と横糸の糸間の空隙が、走査型電子顕微鏡で観察した場合、その糸間の空隙に該当する孔径が10〜150μmであることが、燃料電池のガス拡散層に用いたときの保水性・排水性を確保するために好ましい。
【0050】
好ましい織布の1例は、直径が7〜10μmの単繊維から成る40〜60番手糸の双糸を、1インチ当り縦糸、横糸とも30〜70本の密度で平織して得られるものである。
炭素質繊維織布の厚さ(平均値)及び厚みムラ(変動係数)は次のようにして求める。織布からその縦糸方向及び横糸方向を辺とする正方形を、端から5mmまで、好ましくは10mmまでの部分は含まないように、切り出し、その対角線2本をそれぞれ11等分した合計20個の分割点の織布の厚さを測定する。測定値から平均値及び厚さの変動係数(織布厚さの標準偏差/織布厚さの平均値x100%)を求める。切り出す織布のサイズは、織布の幅によって異なるが、端部を除く40〜98%の布幅で、中でも70〜90%程度の布幅で、正方形に切り出すのが標準的であり、特に限定しないが、10〜40cm角の正方形が好ましい。
【0051】
厚さの測定は、直径が5mmの円盤型の端子を約10g/cmの加重で織布表面に接触させて厚さを測定した。上記の測定を、織布の長さ方向に、端から5mmまで、好ましくは10mmまでの部分は含まないように、5〜50mおきに実施するが、織布長さが5m未満のときは、任意の部分1点を正方形に切り出して測定した値から炭素質繊維織布の厚さ及び厚さの変動係数を求める。長さが5m以上の場合は、長さ方向に5等分し、それぞれから任意の部分1点を正方形に切り出した計5点について厚さ及び厚さの変動係数を求め、それらの平均値を長尺炭素質繊維織布の厚さ及び厚さの変動係数とする。
【0052】
炭素質繊維織布の厚さは、0.05mm以上、好ましくは0.1mm以上であり、また、2mm以下、好ましくは1mm以下、より好ましくは0.35mm以下である。厚さが0.05mm未満では引張強度が小さく、ガス拡散層材料として不十分であり、他方、厚さが2mmを越えるとガス透過性が低下し、ガス拡散層材料として不十分である。
【0053】
炭素質繊維織布の厚さの変動係数は、3.2%以下、好ましくは3%以下、より好ましくは2.8%以下である。変動係数は小さいほどよいが、1%程度なら十分である。
(織布を構成する縦糸及び横糸の断面形状)
プレス加工を行っていない通常の織布においては、製織後の糸の全体断面形状は、ほぼ真円形、または長径/短径の比が1に近い楕円形で近似することができる。これに対し、プレス加工後の織布の糸の断面形状は、面方向が長径、厚さ方向が短径で長径/短径の比が2以上の楕円形で近似することができる。
【0054】
織布中の糸の断面形状の観察方法は、特に限定されないが、例えば、織布の破断面を縦糸または横糸に平行に切断し、切断した断面を走査電子顕微鏡等の顕微鏡で撮影した写真から求めることができる。織布の切断は刃の鋭利なハサミを使用することが可能であるが、それ以外に、織布を硬化後の寸法変化の小さい熱硬化性樹脂中に埋設し、完全硬化した後、破断面を切削器具で切り出して観察対象試料としてもよい。
【0055】
織布を構成する縦糸及び横糸の断面の長径/短径の比の値は、糸の太さ(糸番手)、糸の撚り数、双糸か単糸か、或いは織布の経緯密度により若干異なるが、2以上でなければならず、好ましくは2.5以上、より好ましくは3以上である。長径/短径の比が2未満では厚さムラの低減効果が小さい。なお、長径/短径の比は通常10以下であり、好ましくは8以下である。該比が10を越える場合には、極度に織布の厚さが薄くなる部分が発生し、厚さムラが大きくなる場合がある。
【0056】
なお上記長径及び短径の実測値は、糸の太さ(糸番手)、糸の撚り数、双糸か単糸か、或いは織布の経緯密度により若干異なるが、長径が通常200〜800μmであり、短径が通常80〜200μmである。
(ガス透過性)
ガス透過性は、JIS L 1096(一般織物試験法)の通気性試験(フラジール形法)により測定した。この評価法により得られたガス透過性の測定値は、燃料電池用ガス拡散層材料としての炭素質繊維を使用する場合のガス透過性及び保水性の程度を反映する。
【0057】
織布のガス透過性は、通常、200cm/cm・sec以下であり、好ましくは150cm/cm・sec以下である。ガス透過性は低いほど保水性が向上するため好ましいが、ガス拡散層材料として使用するためには、30cm/cm・sec以上、自動車用の固体高分子型燃料電池のような瞬時に大電流の発生を必要とする高出力用途で使用する場合は、50cm/cm・sec以上が好ましい。
【0058】
(炭素質繊維の単繊維のサイズ)
炭素質繊維の単繊維の直径は通常6〜50μm、好ましくは6〜30μmの範囲である。特に直径7〜15μmの単繊維からなる紡績糸から得られた織布は、上記の炭素化処理、黒鉛化処理により厚さムラが発生しにくいため好ましい。
(炭素質繊維織布中の金属不純物)
織布中の金属不純物は、燃料電池の作動時に生成水の電気分解反応により電池特性の低下要因となるため、極力少なくするのが好ましい。例えば鉄は50μg/g以下、ニッケルは50μg/g以下、ナトリウムは100μg/g以下であるのが好ましい。織布中の金属不純物は、織布ないしはその原料の炭素質繊維、更にはその原料糸などを、塩酸、酢酸などの酸で洗浄することにより、その含有量を低減させることができる。
【0059】
(固体高分子型燃料電池用ガス拡散層材料)
本発明の炭素質繊維織布は、燃料電池のガス拡散層として好適に用いることができる。例えば、ポリテトラフルオロエチレンの分散液と触媒及びカーボンブラックとを混合して得たペーストを高分子固体電解質膜に塗布して高分子固体電解質膜と触媒層との接合体を形成し、これに本発明の炭素質繊維織布をガス拡散層として接合することにより膜電極体を形成することができる。高分子固体電解質膜と触媒層との接合体の形成は、離型シート上にポリテトラフロオロエチレンの分散液と触媒及びカーボンブラックとのペーストを塗布して触媒層を形成し、これと高分子固体電解質膜とをホットプレスで接合することにより形成することもできる。また逆に本発明の炭素質繊維織布に触媒ペーストを塗布してガス拡散層と触媒層との接合体を形成し、これと高分子固体電解質膜とをホットプレスで接合することにより膜電極体を形成することもできる。いずれの方法による場合でも、本発明の炭素質繊維織布は適度の剛性を有しているので、取扱いが容易である。
【0060】
本発明の炭素質繊維織布を用いた固体高分子型燃料電池は、自動車用電源やコージェネレーション発電システム用電源として好適に用いられるものである。
【0061】
【実施例】
次に本発明の具体的態様を実施例に基づきさらに詳細に説明するが、本発明はその要旨を越えない限り以下の実施例によって限定されるものではない。
[実施例1]
(炭素質前駆体繊維織布)
メートル番手40番手双糸(2/40Nm)のLOI値50のポリアクリロニトリル耐炎化紡績糸を平織とした。織布のサイズは幅100cm、長さ150mであり、厚さは0.318mm(平均値)、目付量は171g/m(平均値)、嵩密度は0.538g/ccであった。
【0062】
(プレス加工処理)
上記炭素質前駆体繊維織布を、ロール型プレス器の上段ロールと下段ロールとの隙間に、接触圧力300kg/cmで接触させ、10m/分の搬送速度で織布を1回通過させてプレス加工を行った。
プレス加工後の織布の厚さは0.299mm(平均値)、目付量は171g/m(平均値)、嵩密度は0.572g/ccであった。
【0063】
(炭素化処理)
プレス加工後の炭素質前駆体繊維織布を幅50cmで切り出し、窒素雰囲気下の横型連続式炭素化炉で950℃で炭素化処理を行った。
(炭素化後の炭素質繊維織布の物性)
炭素化後の炭素質繊維織布の物性を前記の方法に従って測定した。ただし、織布の厚さの測定のために織布の縦糸方向及び横糸方向を辺として切り出す正方形のサイズは40cm四方とした。
【0064】
炭素化後の炭素質繊維織布の厚さは0.234mm、厚さの変動係数は2.6%、目付量は112g/m、嵩密度は0.479g/cc、体積固有抵抗は0.12Ωcm、ガス透過性は98cm/cm・sec、糸の長径/短径の比は縦糸5.5、横糸5.7であった。
(黒鉛化処理)
巻き取った炭素化後の炭素質繊維織布を真空黒鉛化炉で2000℃以上で黒鉛化処理して黒鉛化処理された織布を得た。
【0065】
(黒鉛化後の炭素質繊維織布の物性)
黒鉛化後の炭素質繊維織布の物性を前記の方法に従って測定した。ただし、織布の厚さの測定のために織布の縦糸方向及び横糸方向を辺として切り出す正方形のサイズは40cm四方とした。
黒鉛化後の炭素質繊維織布の厚さは0.208mm、厚さの変動係数は2.6%、
目付量は96g/m、嵩密度は0.462g/cc、体積固有抵抗は0.02Ωcm、ガス透過性は92cm/cm・sec、糸の長径/短径の比は縦糸5.0、横糸5.2であった。
【0066】
[実施例2]
(炭素質前駆体繊維織布)
メートル番手35番手双糸(2/35Nm)のLOI値50のポリアクリロニトリル耐炎化紡績糸を平織とした。織布のサイズは実施例1と同様であり、厚さは0.352mm、目付量は199g/m、嵩密度は0.565g/ccであった。
【0067】
(プレス加工処理)
上記炭素質前駆体繊維織布につき、プレス加工を2回繰り返した以外は実施例1と同様にプレス加工を行った。
プレス加工後の織布の厚さは0.318mm(平均値)、目付量は198g/m(平均値)、嵩密度は0.623g/ccであった。
【0068】
(炭素化処理)
実施例1と同様に炭素化処理を行った。
(炭素化後の炭素質繊維織布の物性)
炭素化後の炭素質繊維織布の物性を実施例1と同様に測定した。
炭素化後の炭素質繊維織布の厚さは0.264mm、厚さの変動係数は2.7%、目付量は134g/m、嵩密度は0.508g/cc、体積固有抵抗は0.13Ωcm、ガス透過性は75cm/cm・sec、糸の長径/短径の比は縦糸5.4、横糸5.5であった。
【0069】
(黒鉛化処理)
実施例1と同様に黒鉛化処理を行った。
(黒鉛化後の炭素質繊維織布の物性)
黒鉛化後の炭素質繊維織布の物性を実施例1と同様に測定した。
黒鉛化後の炭素質繊維織布の厚さは0.290mm、厚さの変動係数は2.8%、
目付量は123g/m、嵩密度は0.424g/cc、体積固有抵抗は0.02Ωcm、ガス透過性は70cm/cm・sec、体積固有抵抗は0.02Ωcm、糸の長径/短径の比は縦糸5.1、横糸5.3であった。
【0070】
[実施例3]
(炭素質前駆体繊維織布)
実施例1と同じ炭素質前駆体繊維織布を使用した。
(プレス加工処理)
平板型プレス器を使用してプレス加工を行った。
【0071】
有効寸法が約60cm四方の正方形の平面プレス板に、50cmx50cmの寸法に切り出した炭素質前駆体繊維織布を載せて、プレス面の面圧を常圧から100kg/cmの面圧まで約1分間で昇圧した後、100kg/cmの面圧を2分間保持した後、圧抜きを行って常圧まで戻した。
プレス加工後の織布の厚さは0.307mm(平均値)、目付量は170g/m(平均値)、嵩密度は0.554g/ccであった。
【0072】
(炭素化処理)
実施例1と同様に炭素化処理を行った。
(炭素化後の炭素質繊維織布の物性)
炭素化後の炭素質繊維織布の物性を実施例1と同様に測定した。
炭素化後の炭素質繊維織布の厚さは0.255mm、厚さの変動係数は2.6%、目付量は111g/m、嵩密度は0.435g/cc、体積固有抵抗は0.13Ωcm、ガス透過性は98cm/cm・sec、糸の長径/短径の比は縦糸4.5、横糸4.7であった。
【0073】
(黒鉛化処理)
実施例1と同様に黒鉛化処理を行った。
(黒鉛化後の炭素質繊維織布の物性)
黒鉛化後の炭素質繊維織布の物性を実施例1と同様に測定した。
黒鉛化後の炭素質繊維織布の厚さは0.220mm、厚さの変動係数は2.7%、
目付量は96g/m、嵩密度は0.436g/cc、体積固有抵抗は0.02Ωcm、ガス透過性は92cm/cm・sec、糸の長径/短径の比は縦糸4.0、横糸4.3であった。
【0074】
[比較例1]
(炭素質前駆体繊維織布)
実施例1と同じ炭素質前駆体繊維織布を使用した。
(プレス加工処理)
プレス加工は行わなかった。
【0075】
(炭素化処理)
実施例1と同様に炭素化処理を行った。
(炭素化後の炭素質繊維織布の物性)
炭素化後の炭素質繊維織布の物性を実施例1と同様に測定した。
炭素化後の炭素質繊維織布の厚さは0.255mm、厚さの変動係数は3.4%、目付量は118g/m、嵩密度は0.463g/cc、体積固有抵抗は0.13Ωcm、ガス透過性は100cm/cm・sec、糸の長径/短径の比は縦糸1.7、横糸1.8であった。
【0076】
(黒鉛化処理)
実施例1と同様に黒鉛化処理を行った。
(黒鉛化後の炭素質繊維織布の物性)
黒鉛化後の炭素質繊維織布の物性を実施例1と同様に測定した。
黒鉛化後の炭素質繊維織布の厚さは0.246mm、厚さの変動係数は3.5%、
目付量は101g/m、嵩密度は0.411g/cc、体積固有抵抗は0.02Ωcm、ガス透過性は105cm/cm・sec、糸の長径/短径の比は縦糸1.8、横糸1.9であった。
【0077】
[比較例2]
(炭素質前駆体繊維織布)
実施例2と同じ炭素質前駆体繊維織布を使用した。
(プレス加工処理)
プレス加工は行わなかった。
【0078】
(炭素化処理)
実施例2と同様に炭素化処理を行った。
(炭素化後の炭素質繊維織布の物性)
炭素化後の炭素質繊維織布の物性を実施例1と同様に測定した。
炭素化後の炭素質繊維織布の厚さは0.301mm、厚さの変動係数は3.5%、目付量は139g/m、嵩密度は0.462g/cc、体積固有抵抗は0.13Ωcm、ガス透過性は82cm/cm・sec、糸の長径/短径の比は縦糸1.7、横糸1.9であった。
【0079】
(黒鉛化処理)
実施例1と同様に黒鉛化処理を行った。
(黒鉛化後の炭素質繊維織布の物性)
黒鉛化後の炭素質繊維織布の物性を実施例1と同様に測定した。
黒鉛化後の炭素質繊維織布の厚さは0.320mm、厚さの変動係数は3.6%、
目付量は124g/m、嵩密度は0.388g/cc、体積固有抵抗は0.02Ωcm、ガス透過性は75cm/cm・sec、糸の長径/短径の比は縦糸、横糸共に1.8であった。
【0080】
[比較例3]
比較例1で得た黒鉛化後の炭素質繊維織布につき、実施例1のロール式プレス器により実施例1と同じ加圧条件でプレス加工を行った。プレス加工後の織布の大部分は破壊されて、織布の引張強度は著しく低下し、実質的にガス拡散層材料として使用することのできないものであった。
【0081】
[比較例4]
比較例1で得た黒鉛化後の炭素質繊維織布につき、実施例3と同じ平板型プレス器を使用してプレス加工を行った。
有効寸法が約60cm四方の正方形の平面プレス板に、50cmx50cmの寸法に切り出した炭素質繊維織布を載せて、プレス面の面圧を常圧から10kg/cmの面圧まで約1分間で昇圧した後、10kg/cmの面圧を2分間保持した後、圧抜きを行って常圧まで戻した。
【0082】
プレス加工直後の織布の厚さは0.19mmであったが、30分後には、0.231mmとなっていた。このもの(30分経過品)の厚さの変動係数は3.6%、目付量は102g/m、嵩密度は0.442g/cc、体積固有抵抗は0.02Ωcm、糸の長径/短径の比は縦糸2.0、横糸2.0であった。
【0083】
【発明の効果】
本発明により、ガス透過性、導電性(低抵抗)、保水性、排水性、厚さむら(平滑性)等のガス拡散層材料として望まれる性質がバランスし、特に固体高分子型燃料電池用ガス拡散層材料として好適な炭素質繊維織布が提供される。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbonaceous fiber woven fabric.
[0002]
[Prior art]
In recent years, great efforts have been put into the development of fuel cells.
Fuel cells are classified into alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte used. 2. Description of the Related Art A polymer electrolyte fuel cell that is easy and has a high output density has attracted attention for applications such as electric vehicles and home power supplies. The development of solid polymer fuel cells into cogeneration systems that improve the overall thermal efficiency by utilizing the heat generated during power generation for heating, hot water supply, etc., is being studied.
[0003]
The main components of a single cell for a polymer electrolyte fuel cell are usually a membrane electrode assembly and a grooved separator. The basic structure of the membrane electrode assembly is such that a catalyst layer, a gas diffusion layer, and a current collector are sequentially joined to both surfaces of a polymer solid electrolyte membrane (ion exchange membrane). The catalyst layer mainly comprises a mixture of a catalyst and carbon black. Further, the gas diffusion layer may also have the function of a current collector. By joining grooved separators to both surfaces of the membrane electrode assembly, a single cell of a polymer electrolyte fuel cell is formed.
[0004]
In the polymer electrolyte fuel cell, a fuel (hydrogen gas) is supplied to the anode-side catalyst layer and an oxidant (oxygen-containing gas) is supplied to the cathode-side catalyst layer via the grooves of the grooved separator to cause a cell reaction. At this time, the flow of electrons generated through the membrane electrode body is extracted to the outside as electric energy. Therefore, the following is desired as a gas diffusion layer material.
(1) To operate this mechanism efficiently, supply fuel and oxidant to the membrane electrode assembly smoothly and evenly.
(2) having sufficient conductivity (that is, low volume resistivity) so as not to lower the extraction efficiency of electric energy as much as possible;
{Circle around (3)} The solid electrolyte membrane in the center of the membrane electrode body holds an appropriate amount of water so that proton conductivity can be exhibited (water retention);
{Circle around (4)} The water generated by the battery reaction can be discharged smoothly (drainage).
[0005]
However, water retention and drainage are contradictory, and it is generally difficult to satisfy both at the same time.
As a material of the gas diffusion layer (which may also serve as a current collector), mainly carbon paper is used, but recently a carbon fiber woven fabric made by weaving carbon fibers has been studied. Have been.
[0006]
Compared to carbon paper, carbonaceous fiber woven fabric has high air permeability, facilitates smooth and uniform supply of fuel to the membrane electrode assembly, easily lowers volume resistivity, and has a thickness depending on the material and weaving method. Since it is possible to provide elasticity in the direction, there is no mechanical brittleness, and it is easy to control water retention and drainage, there are advantages that carbon paper does not have.
[0007]
However, in the carbonaceous fiber woven fabric, since the warp and the weft of the woven fabric intersect, minute thickness unevenness is easily generated as compared with the carbon paper. Therefore, a slight difference occurs in the contact state between the separator and the carbon cloth as the gas diffusion layer material, so that the electric resistance at that portion is not stable, and as a result, the electric resistance of the entire woven fabric is also unstable. There is a problem that it is easy to become.
[0008]
Several methods have been proposed for solving this problem of carbonaceous fiber woven fabrics. For example, JP-A-58-165254 describes filling a void of a carbonaceous fiber woven fabric with a mixture of a fluororesin and carbon black. Japanese Patent Application Laid-Open No. 10-261421 describes that a layer composed of a fluororesin and carbon black is formed on the surface of a carbonaceous fiber woven fabric. These methods are expected to have the effect of reducing thickness unevenness by forming a mixed phase of fluororesin / carbon black on the cloth surface.
[0009]
However, these methods are intended to adjust the water retention, drainage, gas permeability, etc. of the gas diffusion layer by filling the carbonaceous fiber woven fabric with a fluororesin, carbon black or the like. There are disadvantages such as an increase in resistance and a decrease in battery characteristics, and a decrease in gas permeability, which is an advantage of the carbonaceous fiber woven fabric.
[0010]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a carbonaceous fiber woven fabric in which properties desired as a gas diffusion layer material such as gas permeability, conductivity (low resistance), water retention, drainage, etc. are balanced. Another object of the present invention is to provide a carbonaceous fiber woven fabric which is uniform and has particularly small thickness unevenness and which is suitable as a gas diffusion layer material for a polymer electrolyte fuel cell.
[0011]
[Means for Solving the Problems]
That is, the gist of the present invention is a woven fabric mainly composed of carbon fiber yarns, and has a basis weight of 50 to 200 g / m2. 2 The thickness is 0.05 to 2 mm, the bulk density is 0.2 to 0.6 g / cc, the volume resistivity in the surface direction is 0.15 Ωcm or less, and the woven fabric is defined by the sides in the warp direction and the weft direction. When cut into squares, the coefficient of variation of the thickness of the woven fabric at a total of 20 division points obtained by dividing the two diagonal lines into 11 equal parts is 3.2% or less, and the warp constituting the woven fabric And the weft yarn is in a carbonaceous fiber woven fabric characterized in that the major axis of the cross section is at least twice the minor axis.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The carbonaceous fiber woven fabric of the present invention is a woven fabric mainly composed of carbonaceous fiber yarns, and the basis weight, thickness and its variation coefficient, bulk density, and surface specific volume resistivity are in specific ranges. The cross section of the warp and the weft constituting the woven fabric has a specific shape.
[0013]
The method for producing a carbonaceous fiber woven fabric of the present invention is not particularly limited as long as a material satisfying specific physical properties is obtained.For example, a carbonaceous precursor fiber was woven, and the obtained woven fabric was pressed. Thereafter, it can be produced by carbonization treatment and, if desired, further graphitization.
Hereinafter, this manufacturing method will be described in detail.
[0014]
(Carbon precursor fiber)
As the carbonaceous precursor fiber as a starting material, any known carbonaceous precursor fiber such as polyacrylonitrile-based, pitch-based, cellulose-based, polynosic-based, phenolic resin-based, or a mixture thereof can be used. Usually, a pitch type or polyacrylonitrile type is used. Among them, it is preferable to use a polyacrylonitrile-based carbonaceous precursor fiber. The polyacrylonitrile-based carbonaceous precursor fibers are made of a raw material of polyacrylonitrile of almost 100% acrylonitrile or a raw material of an acrylonitrile-based copolymer containing 50% or more of acrylonitrile, depending on the content ratio of acrylonitrile units. And various types of acrylonitrile-based copolymers containing acrylonitrile containing 20 to 50% of acrylonitrile as raw materials, and carbonaceous precursor fibers using any of these as raw materials may be used. it can.
[0015]
(Flame-resistant treatment)
Prior to weaving the carbonaceous precursor fiber into a woven fabric, a flameproofing treatment can be performed.
The flame-resistance treatment (infusibility treatment) is a chemical reaction in which oxygen atoms are introduced into the molecular structure of pitch or polyacrylonitrile. This is done by contacting for minutes. In general, the larger the amount of oxygen introduced into the molecular structure, the greater the effect of preventing fusion during the subsequent carbonization treatment. As the index, a limit oxygen concentration, which is generally required to burn fibers, is referred to as an LOI value. In order not to cause fusion as in the case of producing ordinary carbonaceous fibers, it is supposed that a flame-proof treatment should be performed so that the LOI value is 35 to 60. Also in the production of the carbonaceous fiber woven fabric of the present invention, it is preferable to carry out a flameproofing treatment so that the LOI value of the carbonaceous precursor is 35 to 60.
[0016]
That is, in the case where the carbonaceous fibers constituting the woven fabric are not fused, it is only necessary to perform the flameproofing treatment so that the LOI value becomes 35 to 60. Conversely, when it is desired to improve the characteristics of the fuel cell by fusing the fibers into a woven fabric having rigidity, the flame resistance treatment may be performed so that the LOI value is less than 35, particularly 33 or less. . If the LOI value is too small, the fusion becomes so intense during the subsequent carbonization treatment that the resulting carbonaceous fiber woven fabric becomes brittle, so that the oxidization treatment is carried out so that the LOI value becomes 20 or more, especially 25 or more. Is preferably performed. The LOI value can be adjusted by changing the contact temperature and contact time with oxygen during the oxidation treatment.
[0017]
For example, in one of the preferable methods, an oxidized fiber obtained by oxidizing a polyacrylonitrile fiber at 200 to 300 ° C. in air is used. The polyacrylonitrile-based fiber to be subjected to the flame-resistant treatment may be either a long fiber or a spun short fiber, and the yarn may be a single yarn or a double yarn. In addition, at the time of the flame-proofing treatment, the fiber can be stretched to improve the toughness of the fiber.
[0018]
(Carbon precursor fiber yarn)
The yarn to be used for weaving may be either a filament yarn or a spun yarn, but a spun yarn is preferable because a dense and uniform woven fabric structure is obtained and the yarn productivity is high. As a spinning method for obtaining a spun yarn, any known method can be applied, and examples thereof include a spinning method such as cotton spinning, 2 inch spinning, carded spinning, woolen spinning, and direct spinning. In the case of the polyacrylonitrile-based flame-resistant fiber, it is preferable to use a spun yarn obtained by spinning a sliver obtained by cutting a continuous filament tow of polyacrylonitrile by carding spinning.
[0019]
(Type of thread)
The yarn to be used in the weaving may be any one of a single yarn, a twin yarn, a three-ply yarn, a filament yarn, and a composite yarn composed of carbonaceous precursor fibers of different raw materials.
The spun yarn may be either a twin yarn or a single yarn, but in general, a twin yarn has a higher tensile strength than a single yarn, so that a woven fabric having a uniform thickness can be produced. It is preferable because it is possible.
[0020]
(Yarn fineness (count))
The fineness of the yarn is metric count, usually 14 count or more, preferably 16 count or more, more preferably 18 count or more, and is usually 50 count or less, preferably 45 count or less.
In the case of a single yarn, it is usually 1/14 Nm or more, preferably 1/16 Nm or more, more preferably 1/18 Nm or more, and usually 1/50 Nm or less, preferably 1/45 Nm or less. In the case of twin yarn, the yarn count is usually 2/28 Nm or more, preferably 2/32 Nm or more, more preferably 2/36 Nm or more, and usually 2/100 Nm or less, preferably 2/90 Nm or less.
[0021]
In the case of a thicker count than 1/14 Nm or 2/28 Nm, the number of fluffs per unit length tends to increase. Further, when the yarn count is smaller than 1/50 Nm or 2/100 Nm, the tensile strength of the yarn tends to be low.
(Number of twists of yarn)
The number of twists of the yarn is measured according to JIS L 1095 (General spun yarn test method).
[0022]
The number of twists in the case of a single yarn is usually 300 times / m or more, preferably 500 times / m or more, and usually 800 times / m or less, preferably 700 times / m or less per 1 m of yarn length. . The preferred number of twists slightly varies depending on the yarn count, but if it is less than 300, the number of fluffs of the yarn tends to increase. On the other hand, if the number of twists is too large, yarn breakage tends to occur during twisting. When the number of twists is increased, the number of fluffs is reduced. However, when the number of twists is 700 or more, the effect of fluff reduction by increasing the number of twists is almost saturated.
[0023]
In the case of a twin yarn, the number of twists is usually 300 turns / m or more, preferably 400 turns / m or more, and usually 800 turns / m or less, preferably 750 turns / m or less per 1 m of yarn length. is there. If the number of twists is small, the number of fluffs tends to increase. Further, when the number of twists is large, the probability of yarn breakage during twisting increases, and the thickness unevenness may increase. The number of twists is usually 500 times / m or more, preferably 600 times / m or more, and is usually 900 times / m or less, preferably 850 times / m or less. If the number of ply twists is small, the number of fluffs tends to increase. In addition, when the number of twists is large, the probability of occurrence of yarn breakage during twisting tends to increase.
[0024]
(Weaving)
The above-mentioned polyacrylonitrile-based oxidized fiber or the like, the oxidized carbonaceous precursor fiber may be woven to form an oxidized-resistant fabric, or the polyacrylonitrile-based fiber itself or the like, which is not subjected to the oxidized-treated carbonaceous precursor fiber. The body fiber may be woven into a woven fabric, which may be subjected to a flame-resistant treatment to form a flame-resistant woven fabric. In this case, the woven fabric may be brought into contact with an oxidizing gas such as air, ozone, or nitrogen oxide, sulfuric acid, nitric acid, or the like to obtain a flame-resistant woven fabric having a suitable LOI value.
[0025]
(Weaving)
The structure of the woven fabric may be plain weave, oblique weave, satin weave, or any other structure, but since plain weave has the largest number of intersections per unit area of warp and weft, the volume resistivity of the woven fabric is low. It is preferable because it becomes smaller.
(Background density)
The weft density (the number of warp yarns and weft yarns per unit length) in the case of plain weave is generally 20 to 60 yarns per inch. It is appropriately selected according to the situation.
[0026]
(Carbon precursor fiber woven fabric)
The basis weight of the carbonaceous precursor fiber woven fabric, that is, the mass per unit area is usually 50 g / m 2 Or more, preferably 60 g / m 2 Or more, more preferably 80 g / m 2 And usually 350 g / m 2 Or less, preferably 250 g / m 2 It is as follows. If the basis weight is too small, the rigidity and the tensile strength are reduced, and if the basis weight is too large, the clogging is too clogged and the gas diffusivity is reduced.
[0027]
The thickness of the woven fabric is usually at least 0.05 mm, preferably at least 0.10 mm, more preferably at least 0.20 mm, and is usually at most 5 mm, preferably at most 3 mm. If the thickness is too small, the tensile strength will decrease, and if it is too large, the clogging will be too tight and the gas permeability will decrease.
The bulk density of the woven fabric is usually 0.2 g / cc or more, preferably 0.25 g / cc or more, and is usually 0.8 g / cc or less, preferably 0.7 g / cc or less. If the bulk density is too low, the tensile strength decreases, and if the bulk density is too high, the clogging becomes too clogged and the gas permeability decreases.
[0028]
The width of the woven fabric is usually 5 cm or more, preferably 10 cm or more, and is usually 250 cm or less, preferably 200 cm or less, and more preferably 100 cm or less. If the width is too small, the shrinkage of the woven fabric in the width direction may increase, resulting in wrinkles and uneven thickness. On the other hand, if the width is too large, it is difficult to perform the carbonization and graphitization uniformly, and in particular, uneven shrinkage is likely to occur due to uneven shrinkage during the carbonization.
[0029]
The length of the woven fabric is usually at least 50 cm, preferably at least 100 cm, and is usually at most 300 m, preferably at most 200 m. If the length is too short, the shrinkage in the length direction (long direction) may increase, and wrinkles may occur, resulting in uneven thickness. In addition, the longer the length is, the more the woven fabric is used for the gas diffusion layer material (when the filling process is continuously performed by applying a paste containing carbon black as a main component to the woven fabric). Although it is preferable to reduce the number of times of connection (the number of times of connecting the ends of the woven fabric), in practice, a long wound material having a length of 300 m or more is wound up in order to prevent the occurrence of thickness unevenness. There is substantially no winding equipment capable of controlling and winding stably from the start to the end of winding.
[0030]
(Press working)
Press processing is performed to reduce the thickness unevenness of the carbonaceous precursor fiber woven fabric. Usually, it is often conceived that press working of carbonized (graphitized) woven fabric can suppress thickness unevenness. However, as shown in Comparative Examples 3 and 4 described below, fiber Pressing under mild pressing conditions to maintain the shape increases the thickness unevenness. On the other hand, if strong pressing conditions are used to eliminate thickness unevenness, the fiber itself cannot maintain its original shape. Therefore, the woven fabric having the specific physical properties of the present invention can be obtained by performing the specific press working.
[0031]
(Type of press machine)
Examples of the press machine for performing press working include a flat press machine having a flat press surface, a roll press machine for performing press working with a roll, and the like. A roll-type press is preferable because the cloth can be continuously pressed. The pressurizing method of the press may be a hydraulic type, a pneumatic type, a spring pressure type, or the like, and any type may be used, but a hydraulic type capable of high-pressure pressing is generally preferable.
[0032]
(Roll type press)
In a roll-type press, generally, a woven fabric is sandwiched between a rotating upper roll and a lower roll made of metal to perform a continuous press working. The roll diameter of the roll-type press is usually about 10 to 80 cm, and the width of the contact portion between the roll and the woven fabric is about 2 to 10 mm, depending on the roll diameter. The effective length of the roll is preferably about 50 to 200 cm in order to perform press working with a uniform pressure. The pressure per unit roll length, which is obtained by dividing the total load applied by hydraulic pressure or the like by the effective roll length, is 50 to 500 kg / cm, preferably 100 to 400 kg / cm. If it is less than 50 kg / cm, the thickness unevenness is reduced, but the reduction is small. On the other hand, if it exceeds 500 kg / cm, it slightly differs depending on the thickness of the woven fabric before pressing, the thickness unevenness, the thickness of the yarn, the weft density of the woven fabric, etc. The strength of the cloth may be significantly reduced. The passing speed of the woven fabric between the press rolls depends on the press pressure, but is usually preferably about 2 to 20 m / min. Outside this range, uniform pressing may not be performed.
[0033]
The number of times of the press processing is not limited to one, and may be repeated about 2 to 10 times.
(Flat plate press)
In the case of a flat-plate type press, the press pressure during press working is 20 to 2000 kg / cm in terms of surface pressure. 2 Is preferred. 20kg / cm 2 Even if the thickness is less than the above, the thickness unevenness is reduced, but the reduction amount is small. Also, 2000kg / cm 2 If it exceeds, the thickness of the woven fabric before pressing, the thickness unevenness, the thickness of the yarn, the weft density of the woven fabric, etc. slightly vary, but the fibers of the woven fabric are partially compressed and destroyed, and the strength of the woven fabric is reduced. It may be significantly reduced.
[0034]
The time for pressurizing at a predetermined pressure is usually preferably 10 seconds to 10 minutes. If the time is less than 10 seconds, the effect of reducing thickness unevenness is small. On the other hand, even if the pressing is performed for a long time exceeding 10 minutes, the effect is small.
In any case, the number of woven fabrics to be pressed by the press is usually one by one. However, in order to increase productivity, about 2 to 20 woven fabrics may be stacked and pressed. However, when the number of sheets is 20 or more, the effect of reducing thickness unevenness may not be observed in the woven fabric after the press working.
[0035]
In addition, in order to enhance the effect of reducing thickness unevenness, the woven fabric before press working, polyvinyl alcohol, a paste such as starch paste, or phenol resin, furan resin, polyimide resin, polyethylene resin, polypropylene resin, polyimide resin, A thermosetting resin such as a polyamide resin or a thermoplastic resin dissolved with an organic solvent or the like, or a finely pulverized product of these resins may be attached.
[0036]
Further, at the time of press working, the temperature of the press surface may be raised to a temperature higher than room temperature (for example, about 50 to 500 ° C., preferably about 100 to 300 ° C.) to perform the press working. In this case, more uniform pressing can be performed because the above-described resin is melted and hardened, or moisture or the like contained in the woven fabric is removed.
By performing the press working as described above, not only the thickness unevenness is reduced, but also a fluff having a length of about several mm existing on the surface of the carbonaceous fiber woven fabric, which can be one of the factors of the voltage drop of the fuel cell. The effect of reducing fluffing can also be expected.
[0037]
(Carbonization treatment)
Subsequent to the press working, the carbonaceous precursor fiber woven fabric is carbonized.
The carbonization treatment may be performed by heating at 400 ° C. or higher, preferably 600 ° C. or higher, and 1400 ° C. or lower, preferably 1300 ° C. or lower in an inert gas. From the viewpoint of the conductivity of the woven fabric, the woven fabric is preferably heated to 700 ° C or higher, more preferably 800 ° C or higher, and more preferably 900 ° C or higher.
[0038]
In the carbonization treatment, carbonization is performed at 800 to 1400 ° C. via a thermal decomposition temperature of about 300 to 750 ° C. The rate of temperature rise during the thermal decomposition process is preferably 5 to 300 ° C./min, and the temperature holding time during the carbonization process is preferably 1 minute or more and 4 hours or less. Also, depending on the heat capacity of the heat treatment furnace and the speed of transporting the raw woven fabric into the furnace, the woven fabric is put into the carbonization zone at a constant temperature from the beginning without providing a pyrolysis zone at 750 ° C or lower, The heat received by the fabric from the carbonization zone may cause the temperature of the woven fabric to rise, resulting in thermal decomposition, followed by carbonization. In any case, the gas atmosphere in the furnace is preferably an inert atmosphere having an oxygen concentration of 100 ppm or less.
[0039]
The carbonization furnace for performing the carbonization treatment may be either a batch-type heat treatment furnace or a continuous-type heat treatment furnace, but a continuous furnace is advantageous in that the carbonization treatment can be performed continuously and uniformly on a long woven fabric. preferable.
A continuous heat treatment furnace is a horizontal continuous heating furnace or a vertical continuous heating furnace equipped with a plurality of heating means, and the horizontal type is more deformed and uneven due to the weight of the woven fabric than the vertical type. It is preferable because it is difficult. In the furnace, the object to be processed is usually placed directly on a metal (steel, stainless steel, etc.) mesh or meshless belt, and is transported by moving the belt at a constant speed by external control. preferable.
[0040]
(Graphitization)
Subsequent to the carbonization treatment, further graphitization treatment can be performed.
The temperature of the graphitization treatment is usually 1400 ° C. or higher, preferably 1600 ° C. or higher, and is usually 3000 ° C. or lower, preferably 2500 ° C. or lower. When the temperature is 1400 ° C. or higher, the volume resistivity of the woven fabric is further reduced, which is more preferable as a gas diffusion layer material. It should be noted that the volume resistivity after the heat treatment in the treatment up to about 3000 ° C. has no problem in use as a gas diffusion layer material.
[0041]
The graphitization time is usually at least 10 minutes, preferably at least 20 minutes, and is usually at most 4 hours, preferably at most 2 hours. If the treatment time is less than 10 minutes, the graphitization may not be completed uniformly. On the other hand, when the treatment time is long, the productivity and the thermal efficiency are low, and the woven fabric may be contaminated with impurities generated from the heat insulating material, the heating element and the like of the graphitization furnace.
[0042]
(Other processing)
The carbonaceous fiber woven fabric obtained above is composed of 100% by weight of carbonaceous fibers, and further contains conductive substances such as powdered activated carbon, conductive carbon black, and carbides of various pitches. You can also. For example, the pitch is dissolved in an organic solvent to form a pitch solution, and a suspension of powdered activated carbon or conductive carbon black is applied to the woven fabric obtained above, and then heated in an inert gas. A carbonized pitch can be used. Even in that case, the proportion of the carbonaceous fiber in the woven fabric is at least 60% by weight, preferably at least 80% by weight.
[0043]
The carbonaceous fiber woven fabric obtained as described above can be used as it is as a material for a gas diffusion layer of a fuel cell, but it can be further processed and used as a material for a gas diffusion layer. For example, to obtain a suitable amount of water in the membrane electrode body constituting the battery, or to remove the impurities contained in the fuel and the oxidizing agent supplied to the battery to prevent the deterioration of the battery characteristics, to obtain the above obtained The carbonaceous fiber woven fabric is brought into contact with water vapor or carbon dioxide at about 800 to 1200 ° C. or air at about 300 to 500 ° C. to gasify part of the carbonaceous material to generate fine pores in the carbonaceous fiber, It can be a woven fabric made of porous carbonaceous fibers.
[0044]
(Physical properties of carbonaceous fiber woven fabric)
The basis weight of the obtained carbonaceous fiber woven fabric is 50 g / m 2 Or more, preferably 60 g / m 2 And 200 g / m 2 Or less, preferably 180 g / m 2 It is as follows. If the basis weight is too small, the tensile strength will be low and cannot be used as a gas diffusion layer material. If the basis weight is too large, the gas permeability becomes too small.
[0045]
The bulk density (g / cc) of the carbonaceous fiber woven fabric is obtained by dividing the basis weight of the woven fabric by the thickness of the woven fabric. The bulk density of the woven fabric is 0.2 g / cc or more, preferably 0.25 g / cc or more, and 0.6 g / cc or less, preferably 0.55 g / cc or less. If the bulk density is less than 0.2 g / cc, the tensile strength of the woven fabric is weak, which is not practical. On the other hand, if the bulk density is too large, the gas diffusivity is reduced.
[0046]
The volume resistivity in the plane direction of the carbonaceous fiber woven fabric is 0.15 Ωcm or less, preferably 0.10 Ωcm or less. This value is preferably as low as possible, but if it is about 0.05 Ωcm or less, the volume resistivity is sufficiently low as a gas diffusion layer material.
The fineness of the yarn constituting the woven fabric is metric count, usually 16 count or more, preferably 18 count or more, more preferably 20 count or more, and is usually 60 count or less, preferably 55 count or less.
[0047]
In the case of a single yarn, it is usually 1/16 Nm or more, preferably 1/18 Nm or more, more preferably 1/20 Nm or more, and usually 1/60 Nm or less, preferably 1/55 Nm or less. In the case of a twin yarn, the yarn count is usually 2/32 Nm or more, preferably 2/36 Nm or more, more preferably 2/40 Nm or more, and usually 2/120 Nm or less, preferably 2/110 Nm or less.
[0048]
When the count is thicker than 1/16 Nm or 2/32 Nm, the number of fluffs per unit length tends to increase. Further, when the yarn count is smaller than 1/60 Nm or 2/120 Nm, the tensile strength of the yarn tends to be low.
In addition, the carbonaceous fiber is obtained through a process of spinning, flame resistance, carbonization, and (graphitization). In the process of carbonizing and further graphitizing the flame resistant yarn, the fineness is about 10 to 20%. Decrease. In the present invention, the fineness of the yarn constituting the woven fabric is about the yarn of the woven fabric finally obtained, and can be measured by extracting the yarn from the woven fabric and measuring.
[0049]
The weft density (number of warp yarns and weft yarns per unit length) of the carbonaceous fiber woven fabric in the case of plain weave has a fineness of about 10 in the process of carbonizing and graphitizing the yarn (flame-resistant yarn) constituting the woven fabric. In general, the number is 30 to 70 yarns per inch to reduce by about%, but specifically, it is appropriately selected according to the difference between single yarn and double yarn and the thickness of yarn. For example, when the 2/40 Nm spun yarn is used for the warp and the weft, the weft density is usually 100 to 300 yarns / 10 cm for both the warp and the weft per 10 cm length of the woven fabric, and preferably 180. 250250 lines / 10 cm. Further, when the gap between the yarns of the warp and the weft is observed with a scanning electron microscope, the pore diameter corresponding to the gap between the yarns is 10 to 150 μm, which is used for a gas diffusion layer of a fuel cell. It is preferable to ensure water retention and drainage.
[0050]
An example of a preferable woven fabric is obtained by plain weaving a double yarn of 40 to 60 count yarn consisting of a single fiber having a diameter of 7 to 10 μm with a density of 30 to 70 warp yarns and weft yarns per inch. .
The thickness (average value) and thickness unevenness (coefficient of variation) of the carbonaceous fiber woven fabric are determined as follows. From the woven fabric, a square having sides in the warp direction and the weft direction is cut out so as not to include a portion up to 5 mm from the end, preferably up to 10 mm, and two diagonal lines thereof are each divided into 11 equal parts, for a total of 20 divisions. Measure the thickness of the woven fabric at the point. From the measured values, the average value and the coefficient of variation of the thickness (standard deviation of woven fabric thickness / average of woven fabric thickness x 100%) are determined. The size of the woven fabric to be cut varies depending on the width of the woven fabric, but it is standard to cut the fabric into a square with a cloth width of 40 to 98% excluding the end portion, and particularly with a cloth width of about 70 to 90%. Although not limited, a square of 10 to 40 cm square is preferable.
[0051]
The thickness was measured using a disk-shaped terminal with a diameter of 5 mm at about 10 g / cm. 2 And the thickness was measured by contacting the surface of the woven fabric with the weight. The above measurement is carried out every 5 to 50 m so as not to include the portion up to 5 mm from the end, preferably up to 10 mm from the end in the length direction of the woven fabric, but when the woven fabric length is less than 5 m, The thickness of the carbonaceous fiber woven fabric and the coefficient of variation of the thickness are determined from the measured values obtained by cutting out one arbitrary point into a square. When the length is 5 m or more, the thickness is divided into five equal parts in the length direction, and one point is cut out of each part into a square to obtain the thickness and the coefficient of variation of the thickness for a total of five points. The thickness and the coefficient of variation of the thickness of the long carbonaceous fiber woven fabric.
[0052]
The thickness of the carbonaceous fiber woven fabric is 0.05 mm or more, preferably 0.1 mm or more, and 2 mm or less, preferably 1 mm or less, more preferably 0.35 mm or less. If the thickness is less than 0.05 mm, the tensile strength is low and the material is insufficient as a gas diffusion layer material. On the other hand, if the thickness exceeds 2 mm, the gas permeability decreases and the gas diffusion layer material is insufficient.
[0053]
The coefficient of variation of the thickness of the carbonaceous fiber woven fabric is 3.2% or less, preferably 3% or less, more preferably 2.8% or less. The smaller the coefficient of variation, the better, but about 1% is sufficient.
(Cross-sectional shape of warp and weft constituting woven fabric)
In an ordinary woven fabric that has not been subjected to press working, the overall cross-sectional shape of the yarn after weaving can be approximated by a substantially perfect circle or an ellipse having a ratio of major axis / minor axis close to 1. On the other hand, the cross-sectional shape of the thread of the woven fabric after the press working can be approximated by an ellipse having a major axis in the plane direction, a minor axis in the thickness direction, and a major / major axis ratio of 2 or more.
[0054]
The method of observing the cross-sectional shape of the yarn in the woven fabric is not particularly limited.For example, a cut surface of the woven fabric is cut in parallel with a warp or a weft, and the cut cross section is taken from a photograph taken with a microscope such as a scanning electron microscope. You can ask. It is possible to use scissors with sharp blades to cut the woven fabric, but in addition, embed the woven fabric in a thermosetting resin with small dimensional change after curing, completely cure, and then May be cut out with a cutting instrument to obtain a sample to be observed.
[0055]
The value of the ratio of the major axis / minor axis of the cross section of the warp and weft constituting the woven fabric may vary slightly depending on the thickness of the yarn (yarn count), the number of twists of the yarn, whether it is twin yarn or single yarn, or the weft density of the woven fabric. Although different, it must be 2 or more, preferably 2.5 or more, more preferably 3 or more. If the ratio of major axis / minor axis is less than 2, the effect of reducing thickness unevenness is small. The ratio of the major axis / minor axis is usually 10 or less, and preferably 8 or less. If the ratio exceeds 10, a portion where the thickness of the woven fabric becomes extremely thin may occur, and the thickness unevenness may increase.
[0056]
The measured values of the major axis and the minor axis are slightly different depending on the thickness (yarn count) of the yarn, the number of twists of the yarn, the twin yarn or the single yarn, or the weft density of the woven fabric, but the major diameter is usually 200 to 800 μm. Yes, and the minor axis is usually 80 to 200 μm.
(Gas permeability)
The gas permeability was measured by a breathability test (Fragile method) according to JIS L 1096 (General Fabric Test Method). The measured value of gas permeability obtained by this evaluation method reflects the degree of gas permeability and water retention when carbonaceous fibers are used as a gas diffusion layer material for a fuel cell.
[0057]
The gas permeability of the woven fabric is typically 200 cm 3 / Cm 2 * Sec or less, preferably 150 cm 3 / Cm 2 ・ Second or less. The lower the gas permeability, the better the water retention is, which is preferable. However, for use as a gas diffusion layer material, 30 cm 3 / Cm 2 50 seconds when used in high-power applications requiring instantaneous generation of a large current, such as a polymer electrolyte fuel cell for automobiles 3 / Cm 2 -Sec or more is preferable.
[0058]
(Size of carbon fiber monofilament)
The diameter of the single fiber of the carbonaceous fiber is usually in the range of 6 to 50 μm, preferably 6 to 30 μm. In particular, a woven fabric obtained from a spun yarn made of a single fiber having a diameter of 7 to 15 μm is preferable because unevenness in thickness hardly occurs due to the above carbonization treatment and graphitization treatment.
(Metal impurities in carbonaceous fiber woven fabric)
Metal impurities in the woven fabric are preferably reduced as much as possible because they cause a reduction in cell characteristics due to an electrolysis reaction of generated water during operation of the fuel cell. For example, iron is preferably 50 μg / g or less, nickel is preferably 50 μg / g or less, and sodium is preferably 100 μg / g or less. The content of metal impurities in the woven fabric can be reduced by washing the woven fabric or the carbonaceous fiber of the raw material, and further, the raw material yarn with an acid such as hydrochloric acid or acetic acid.
[0059]
(Gas diffusion layer material for polymer electrolyte fuel cells)
The carbonaceous fiber woven fabric of the present invention can be suitably used as a gas diffusion layer of a fuel cell. For example, a paste obtained by mixing a dispersion of polytetrafluoroethylene, a catalyst and carbon black is applied to a polymer solid electrolyte membrane to form a joined body of the polymer solid electrolyte membrane and the catalyst layer, and By bonding the carbonaceous fiber woven fabric of the present invention as a gas diffusion layer, a membrane electrode body can be formed. The formation of the bonded body of the polymer solid electrolyte membrane and the catalyst layer is performed by applying a paste of a dispersion of polytetrafluoroethylene, a catalyst and carbon black on a release sheet, forming a catalyst layer, and forming a catalyst layer. It can also be formed by joining a molecular solid electrolyte membrane with a hot press. Conversely, a catalyst paste is applied to the carbonaceous fiber woven fabric of the present invention to form a joined body of the gas diffusion layer and the catalyst layer, and this is joined to the polymer solid electrolyte membrane by hot pressing to obtain a membrane electrode. It can also form a body. Regardless of which method is used, the carbonaceous fiber woven fabric of the present invention has an appropriate rigidity and is easy to handle.
[0060]
The polymer electrolyte fuel cell using the carbonaceous fiber woven fabric of the present invention is suitably used as a power source for an automobile or a power source for a cogeneration power generation system.
[0061]
【Example】
Next, specific embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.
[Example 1]
(Carbon precursor fiber woven fabric)
A polyacrylonitrile flame-resistant spun yarn having a LOI value of 50 of a metric count 40-count double yarn (2/40 Nm) was plain woven. The size of the woven fabric is 100 cm in width and 150 m in length, the thickness is 0.318 mm (average value), and the basis weight is 171 g / m. 2 (Average value), bulk density was 0.538 g / cc.
[0062]
(Press processing)
The carbonaceous precursor fiber woven fabric is brought into contact with a gap between an upper roll and a lower roll of a roll-type press at a contact pressure of 300 kg / cm, and passed through the woven fabric once at a transport speed of 10 m / min. Processing was performed.
The thickness of the woven fabric after pressing is 0.299 mm (average value), and the basis weight is 171 g / m. 2 (Average value), bulk density was 0.572 g / cc.
[0063]
(Carbonization treatment)
The press-processed carbonaceous precursor fiber woven fabric was cut out at a width of 50 cm, and carbonized at 950 ° C. in a horizontal continuous carbonization furnace in a nitrogen atmosphere.
(Physical properties of carbonaceous fiber woven fabric after carbonization)
The physical properties of the carbonaceous fiber woven fabric after carbonization were measured according to the methods described above. However, the size of a square cut out using the warp direction and the weft direction of the woven fabric as sides for measuring the thickness of the woven fabric was 40 cm square.
[0064]
The thickness of the carbonaceous fiber woven fabric after carbonization is 0.234 mm, the coefficient of variation of the thickness is 2.6%, and the basis weight is 112 g / m. 2 , Bulk density 0.479 g / cc, volume resistivity 0.12 Ωcm, gas permeability 98 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 5.5 for the warp and 5.7 for the weft.
(Graphitization)
The wound carbonized fiber woven fabric after carbonization was graphitized in a vacuum graphitization furnace at 2000 ° C. or higher to obtain a graphitized woven fabric.
[0065]
(Physical properties of carbonized fiber woven fabric after graphitization)
The physical properties of the graphitized carbonaceous fiber woven fabric were measured according to the method described above. However, the size of a square cut out using the warp direction and the weft direction of the woven fabric as sides for measuring the thickness of the woven fabric was 40 cm square.
The thickness of the carbonized fiber woven fabric after graphitization is 0.208 mm, the coefficient of variation of the thickness is 2.6%,
The basis weight is 96 g / m 2 , Bulk density is 0.462 g / cc, volume resistivity is 0.02 Ωcm, gas permeability is 92 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 5.0 for the warp and 5.2 for the weft.
[0066]
[Example 2]
(Carbon precursor fiber woven fabric)
A polyacrylonitrile flame-resistant spun yarn having an LOI value of 50 of a 35-meter metric twin yarn (2/35 Nm) was plain woven. The size of the woven fabric was the same as in Example 1, the thickness was 0.352 mm, and the basis weight was 199 g / m. 2 And the bulk density was 0.565 g / cc.
[0067]
(Press processing)
The above carbonaceous precursor fiber The woven fabric was pressed in the same manner as in Example 1 except that the pressing was repeated twice.
The thickness of the woven fabric after pressing is 0.318 mm (average value), and the basis weight is 198 g / m. 2 (Average value), bulk density was 0.623 g / cc.
[0068]
(Carbonization treatment)
Carbonization treatment was performed in the same manner as in Example 1.
(Physical properties of carbonaceous fiber woven fabric after carbonization)
Physical properties of the carbonaceous fiber woven fabric after carbonization were measured in the same manner as in Example 1.
The thickness of the carbonaceous fiber woven fabric after carbonization is 0.264 mm, the coefficient of variation of the thickness is 2.7%, and the basis weight is 134 g / m. 2 , Bulk density 0.508 g / cc, volume resistivity 0.13 Ωcm, gas permeability 75 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 5.4 in the warp and 5.5 in the weft.
[0069]
(Graphitization)
Graphitization was performed in the same manner as in Example 1.
(Physical properties of carbonized fiber woven fabric after graphitization)
The physical properties of the carbonized fiber woven fabric after graphitization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after graphitization is 0.290 mm, the coefficient of variation of the thickness is 2.8%,
The basis weight is 123 g / m 2 , Bulk density is 0.424 g / cc, volume resistivity is 0.02 Ωcm, gas permeability is 70 cm 3 / Cm 2 Sec, the volume resistivity was 0.02 Ωcm, and the ratio of the major axis / minor axis of the yarn was 5.1 for the warp and 5.3 for the weft.
[0070]
[Example 3]
(Carbon precursor fiber woven fabric)
The same carbonaceous precursor fiber woven fabric as in Example 1 was used.
(Press processing)
Press working was performed using a flat plate press.
[0071]
The carbonaceous precursor fiber woven fabric cut out to a size of 50 cm × 50 cm is placed on a square flat press plate having an effective size of about 60 cm square, and the surface pressure of the press surface is reduced from normal pressure to 100 kg / cm. 2 After the pressure is increased to about 1 minute in about 1 minute, 100 kg / cm 2 After maintaining the surface pressure for 2 minutes, the pressure was released to return to normal pressure.
The thickness of the woven fabric after pressing is 0.307 mm (average value), and the basis weight is 170 g / m. 2 (Average value), bulk density was 0.554 g / cc.
[0072]
(Carbonization treatment)
Carbonization treatment was performed in the same manner as in Example 1.
(Physical properties of carbonaceous fiber woven fabric after carbonization)
Physical properties of the carbonaceous fiber woven fabric after carbonization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after carbonization is 0.255 mm, the coefficient of variation of the thickness is 2.6%, and the basis weight is 111 g / m. 2 , Bulk density 0.435 g / cc, volume resistivity 0.13 Ωcm, gas permeability 98 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 4.5 for the warp and 4.7 for the weft.
[0073]
(Graphitization)
Graphitization was performed in the same manner as in Example 1.
(Physical properties of carbonized fiber woven fabric after graphitization)
The physical properties of the carbonized fiber woven fabric after graphitization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after graphitization is 0.220 mm, the coefficient of variation of the thickness is 2.7%,
The basis weight is 96 g / m 2 , Bulk density is 0.436 g / cc, volume resistivity is 0.02 Ωcm, gas permeability is 92 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 4.0 for the warp and 4.3 for the weft.
[0074]
[Comparative Example 1]
(Carbon precursor fiber woven fabric)
The same carbonaceous precursor fiber woven fabric as in Example 1 was used.
(Press processing)
No pressing was performed.
[0075]
(Carbonization treatment)
Carbonization treatment was performed in the same manner as in Example 1.
(Physical properties of carbonaceous fiber woven fabric after carbonization)
Physical properties of the carbonaceous fiber woven fabric after carbonization were measured in the same manner as in Example 1.
The thickness of the carbonaceous fiber woven fabric after carbonization is 0.255 mm, the coefficient of variation of the thickness is 3.4%, and the basis weight is 118 g / m. 2 , Bulk density is 0.463 g / cc, volume resistivity is 0.13 Ωcm, gas permeability is 100 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 1.7 for the warp and 1.8 for the weft.
[0076]
(Graphitization)
Graphitization was performed in the same manner as in Example 1.
(Physical properties of carbonized fiber woven fabric after graphitization)
The physical properties of the carbonized fiber woven fabric after graphitization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after graphitization is 0.246 mm, the coefficient of variation of the thickness is 3.5%,
The basis weight is 101 g / m 2 , Bulk density 0.411 g / cc, volume resistivity 0.02 Ωcm, gas permeability 105 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 1.8 for the warp yarn and 1.9 for the weft yarn.
[0077]
[Comparative Example 2]
(Carbon precursor fiber woven fabric)
The same carbonaceous precursor fiber woven fabric as in Example 2 was used.
(Press processing)
No pressing was performed.
[0078]
(Carbonization treatment)
Carbonization treatment was performed in the same manner as in Example 2.
(Physical properties of carbonaceous fiber woven fabric after carbonization)
Physical properties of the carbonaceous fiber woven fabric after carbonization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after carbonization is 0.301 mm, the coefficient of variation of the thickness is 3.5%, and the basis weight is 139 g / m. 2 , Bulk density is 0.462 g / cc, volume resistivity is 0.13 Ωcm, gas permeability is 82 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 1.7 for the warp yarn and 1.9 for the weft yarn.
[0079]
(Graphitization)
Graphitization was performed in the same manner as in Example 1.
(Physical properties of carbonized fiber woven fabric after graphitization)
The physical properties of the carbonized fiber woven fabric after graphitization were measured in the same manner as in Example 1.
The thickness of the carbonized fiber woven fabric after graphitization is 0.320 mm, the coefficient of variation of the thickness is 3.6%,
The basis weight is 124 g / m 2 , Bulk density is 0.388 g / cc, volume resistivity is 0.02 Ωcm, gas permeability is 75 cm 3 / Cm 2 Sec, the ratio of the major axis / minor axis of the yarn was 1.8 for both the warp and weft yarns.
[0080]
[Comparative Example 3]
The graphitized carbonaceous fiber woven fabric obtained in Comparative Example 1 was pressed by the roll press of Example 1 under the same pressure conditions as in Example 1. Most of the woven fabric after pressing was broken, and the tensile strength of the woven fabric was significantly reduced, so that it could not be used substantially as a gas diffusion layer material.
[0081]
[Comparative Example 4]
The graphitized carbonaceous fiber woven fabric obtained in Comparative Example 1 was pressed using the same flat plate press as in Example 3.
A carbon fiber woven fabric cut out to a size of 50 cm × 50 cm is placed on a square flat press plate having an effective size of about 60 cm square, and the surface pressure of the press surface is reduced from normal pressure to 10 kg / cm. 2 10kg / cm 2 After maintaining the surface pressure for 2 minutes, the pressure was released to return to normal pressure.
[0082]
The thickness of the woven fabric immediately after the press working was 0.19 mm, but it was 0.231 mm after 30 minutes. The coefficient of variation of the thickness of this product (30-minute product) is 3.6%, and the basis weight is 102 g / m. 2 The bulk density was 0.442 g / cc, the volume resistivity was 0.02 Ωcm, and the ratio of the major axis / minor axis of the yarn was 2.0 warp yarn and 2.0 weft yarn.
[0083]
【The invention's effect】
According to the present invention, properties desired as a gas diffusion layer material such as gas permeability, conductivity (low resistance), water retention, drainage, uneven thickness (smoothness) and the like are balanced, and especially for polymer electrolyte fuel cells. A carbonaceous fiber woven fabric suitable as a gas diffusion layer material is provided.

Claims (10)

主として炭素質繊維の糸で構成された織布であって、目付量が50〜200g/m、厚さが0.05〜2mm、嵩密度が0.2〜0.6g/cc、面方向の体積固有抵抗が0.15Ωcm以下であり、該織布をその縦糸方向及び横糸方向を辺とする正方形に切りだしたとき、その対角線2本をそれぞれ11等分した合計20個の分割点における織布の厚さの変動係数が3.2%以下であり、かつ、織布を構成する縦糸及び横糸はその断面の長径が短径の2倍以上であることを特徴とする炭素質繊維織布。A woven fabric mainly composed of carbon fiber yarns, having a basis weight of 50 to 200 g / m 2 , a thickness of 0.05 to 2 mm, a bulk density of 0.2 to 0.6 g / cc, and a surface direction Is less than or equal to 0.15 Ωcm, and when the woven fabric is cut into a square having sides in the warp direction and the weft direction, two diagonal lines are each divided into 11 equal parts, for a total of 20 division points. A carbon fiber woven fabric characterized in that the coefficient of variation of the thickness of the woven fabric is 3.2% or less, and the warp and weft constituting the woven fabric have a cross section whose major axis is at least twice the minor axis. cloth. 糸繊度がメートル番手で16〜60番手の糸で構成されている、請求項1に記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to claim 1, wherein the yarn fineness is constituted by a yarn having a metric count of 16 to 60. 織布のガス透過性が、30〜200cm/cm・secである、請求項1又は2に記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to claim 1, wherein the woven fabric has a gas permeability of 30 to 200 cm 3 / cm 2 · sec. 織布の組織が平織であり、かつ、その縦糸及び横糸の経緯密度が長さ1インチ当たり30〜70本である、請求項1〜3のいずれかに記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to any one of claims 1 to 3, wherein the structure of the woven fabric is plain weave, and the warp and weft yarns have a weft density of 30 to 70 yarns per inch. 炭素質繊維の単繊維の直径が6〜50μmである、請求項1〜4のいずれかに記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to any one of claims 1 to 4, wherein the diameter of the single fiber of the carbonaceous fiber is 6 to 50 µm. 織布を構成する糸が、紡績糸である、請求項1〜5のいずれかに記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to any one of claims 1 to 5, wherein the yarn constituting the woven fabric is a spun yarn. 織布を構成する縦糸及び/又は横糸が、双糸である、請求項6に記載の炭素質繊維織布。7. The carbonaceous fiber woven fabric according to claim 6, wherein the warp yarn and / or the weft yarn constituting the woven fabric are twin yarns. 織布を構成する糸が、メートル番手2/32〜2/120Nmの双糸、又はメートル番手1/16〜1/60Nmの単糸である、請求項6に記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to claim 6, wherein the yarn constituting the woven fabric is a double yarn having a metric count of 2/32 to 2 / 120Nm or a single yarn having a metric count of 1/16 to 1 / 60Nm. 炭素質繊維が、アクリロニトリルを含むモノマーの重合体を紡糸して得たアクリル系繊維の炭素化物である、請求項1〜8のいずれかに記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to any one of claims 1 to 8, wherein the carbonaceous fibers are carbonized acrylic fibers obtained by spinning a polymer of a monomer containing acrylonitrile. 炭素質前駆体繊維を製織したのち炭素化する工程を経て製造されたものである、請求項1〜9のいずれかに記載の炭素質繊維織布。The carbonaceous fiber woven fabric according to any one of claims 1 to 9, which is produced through a step of weaving and carbonizing a carbonaceous precursor fiber.
JP2002250379A 2002-08-29 2002-08-29 Carbonaceous fiber woven cloth Pending JP2004084147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250379A JP2004084147A (en) 2002-08-29 2002-08-29 Carbonaceous fiber woven cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250379A JP2004084147A (en) 2002-08-29 2002-08-29 Carbonaceous fiber woven cloth

Publications (1)

Publication Number Publication Date
JP2004084147A true JP2004084147A (en) 2004-03-18

Family

ID=32057228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250379A Pending JP2004084147A (en) 2002-08-29 2002-08-29 Carbonaceous fiber woven cloth

Country Status (1)

Country Link
JP (1) JP2004084147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234359A (en) * 2006-02-28 2007-09-13 Honda Motor Co Ltd Membrane electrode assembly for solid polymer fuel cell
JP2008523261A (en) * 2004-12-07 2008-07-03 スネクマ・プロピュルシオン・ソリド Obtaining carbon fiber texture by carbonizing cellulose precursor
JP2011219907A (en) * 2010-04-14 2011-11-04 Toho Tenax Co Ltd Carbon fiber sheet, heat-treated frame resistant fiber sheet and manufacturing method thereof
JP2012202003A (en) * 2011-03-25 2012-10-22 Toho Tenax Co Ltd Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric
JP2022524223A (en) * 2019-03-29 2022-04-28 コントロラマティクス コーポレーション How to generate a highly active monolithic net-shaped biochar

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111840A (en) * 1998-06-29 1999-01-06 Toray Ind Inc Fabric of flat filament
WO2000049213A1 (en) * 1999-02-18 2000-08-24 Showa Denko K. K. Carbon fiber woven fabric and method for production thereof
JP2001240477A (en) * 2000-02-28 2001-09-04 Mitsubishi Rayon Co Ltd Carbonaceous porous body and its manufacturing method
JP2001283865A (en) * 2000-03-31 2001-10-12 Toray Ind Inc Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
WO2002042534A1 (en) * 2000-11-24 2002-05-30 Toho Tenax Co., Ltd. Carbon fiber sheet and method for producing the same
JP2002348743A (en) * 2001-05-29 2002-12-04 Toho Tenax Co Ltd Structural material of woven fabric made of flat carbon fiber-spun yarn
JP2003336145A (en) * 2002-03-13 2003-11-28 Mitsubishi Chemicals Corp Conductive carbonaceous fiber woven fabric and solid polymer fuel cell using the same
JP2004084136A (en) * 2002-08-28 2004-03-18 Mitsubishi Chemicals Corp Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
JP2004511672A (en) * 2000-10-11 2004-04-15 カール・フロイデンベルク・カーゲー Conductive non-woven fabric
JP2004131914A (en) * 2002-08-12 2004-04-30 Mitsubishi Chemicals Corp Spun yarn, method for producing the same and woven fabric of the spun yarn

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111840A (en) * 1998-06-29 1999-01-06 Toray Ind Inc Fabric of flat filament
WO2000049213A1 (en) * 1999-02-18 2000-08-24 Showa Denko K. K. Carbon fiber woven fabric and method for production thereof
JP2001240477A (en) * 2000-02-28 2001-09-04 Mitsubishi Rayon Co Ltd Carbonaceous porous body and its manufacturing method
JP2001283865A (en) * 2000-03-31 2001-10-12 Toray Ind Inc Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
JP2004511672A (en) * 2000-10-11 2004-04-15 カール・フロイデンベルク・カーゲー Conductive non-woven fabric
WO2002042534A1 (en) * 2000-11-24 2002-05-30 Toho Tenax Co., Ltd. Carbon fiber sheet and method for producing the same
JP2002348743A (en) * 2001-05-29 2002-12-04 Toho Tenax Co Ltd Structural material of woven fabric made of flat carbon fiber-spun yarn
JP2003336145A (en) * 2002-03-13 2003-11-28 Mitsubishi Chemicals Corp Conductive carbonaceous fiber woven fabric and solid polymer fuel cell using the same
JP2004131914A (en) * 2002-08-12 2004-04-30 Mitsubishi Chemicals Corp Spun yarn, method for producing the same and woven fabric of the spun yarn
JP2004084136A (en) * 2002-08-28 2004-03-18 Mitsubishi Chemicals Corp Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523261A (en) * 2004-12-07 2008-07-03 スネクマ・プロピュルシオン・ソリド Obtaining carbon fiber texture by carbonizing cellulose precursor
JP2007234359A (en) * 2006-02-28 2007-09-13 Honda Motor Co Ltd Membrane electrode assembly for solid polymer fuel cell
JP2011219907A (en) * 2010-04-14 2011-11-04 Toho Tenax Co Ltd Carbon fiber sheet, heat-treated frame resistant fiber sheet and manufacturing method thereof
JP2012202003A (en) * 2011-03-25 2012-10-22 Toho Tenax Co Ltd Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric
JP2022524223A (en) * 2019-03-29 2022-04-28 コントロラマティクス コーポレーション How to generate a highly active monolithic net-shaped biochar

Similar Documents

Publication Publication Date Title
US20060257720A1 (en) Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
JP3774439B2 (en) Conductive nonwoven fabric
US20020160252A1 (en) Conductive carbonaceous-fiber sheet and solid polymer electrolyte fuel cell
US20040241078A1 (en) Fuel cell-use carbon fiber woven fabric, electrode element, fuel cell mobile unit, and production method for fuel cell-use carbon fiber woven fabric
JP4329296B2 (en) Conductive carbon fiber sheet and polymer electrolyte fuel cell
JP2002352807A (en) Gas diffuser and manufacturing method therefor
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP4282964B2 (en) Carbon fiber woven fabric
JP2004084147A (en) Carbonaceous fiber woven cloth
KR100763548B1 (en) preparation method of diffusion layer of fuel cell
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
JP3993151B2 (en) Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP2004091947A (en) Method for producing carbonaceous fiber woven fabric
JP2004111341A (en) Manufacturing method of carbon fiber woven fabric or nonwoven fabric for fuel cell gas diffusion layer
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof
JP2012201996A (en) Carbon fiber spun yarn woven fabric, method for producing carbon fiber spun yarn woven fabric, and gas diffusion electrode for fuel cell
WO2023080236A1 (en) Electrode material for redox flow batteries, and redox flow battery provided with same
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP2005281871A (en) Carbon fiber woven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526