JP3934974B2 - High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof - Google Patents

High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof Download PDF

Info

Publication number
JP3934974B2
JP3934974B2 JP2002091449A JP2002091449A JP3934974B2 JP 3934974 B2 JP3934974 B2 JP 3934974B2 JP 2002091449 A JP2002091449 A JP 2002091449A JP 2002091449 A JP2002091449 A JP 2002091449A JP 3934974 B2 JP3934974 B2 JP 3934974B2
Authority
JP
Japan
Prior art keywords
spun yarn
yarn fabric
resistant fiber
bulk density
flame resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091449A
Other languages
Japanese (ja)
Other versions
JP2003286631A (en
Inventor
慎太郎 田中
祐介 高見
賢司 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2002091449A priority Critical patent/JP3934974B2/en
Publication of JP2003286631A publication Critical patent/JP2003286631A/en
Application granted granted Critical
Publication of JP3934974B2 publication Critical patent/JP3934974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、柔軟で折れしわが発生しにくい高嵩密度耐炎繊維紡績糸織物、及び厚さ方向の電気抵抗値が低く、固体高分子型燃料電池用ガス拡散電極に好適に用いられる炭素繊維紡績糸織物、並びにそれらの製造方法に関する。
【0002】
【従来の技術】
通電性、ガス拡散性を有し、化学的安定性に優れた特性を有するシート状の炭素材料を、燃料電池用のガス拡散電極として用いる応用開発が進められている。中でも固体高分子型燃料電池は、ガス拡散電極、高分子電解質膜、セパレータを接合したセルを、用途に応じて数十〜数百枚積層する必要があることから、燃料電池を小型化するためには、薄く、強度の高い炭素材料が求められている。また、燃料電池内において、ガス拡散電極の表面に担持された触媒にて生じた電子は、ガス拡散電極を厚さ方向に通過して、反対側のセパレータへと移動する。このため、ガス拡散電極には厚さ方向の通電性が高いことも求められている。
【0003】
従来、このような炭素材料としては、炭素成形体、炭素繊維織物等が知られている。
【0004】
炭素成形体は、シート状で高嵩密度であり、表面平滑性が高く、比較的電気抵抗値の低い材料である。これは例えば、炭素繊維チョップを抄造した後、フェノール樹脂等でバインディング、シート化し、更にこれを炭素化することにより得られる炭素繊維強化炭素製シート(C/Cペーパー)に代表される(特許第2584497号公報、特開昭63−222078号公報など)。
【0005】
しかし、この炭素成形体は、金型を用いたプレス成形によって成形されるため、厚さ精度と表面平滑性に優れている反面、柔軟性に乏しいという問題があった。このため、ローラー等の曲げを必要とする工程を通すことが出来ず、長いシートを必要とする用途には使用できなかった。また保管時にも巻物状に出来ないため、適当な寸法に裁断せざるを得ず、巻物で使用する場合よりも無駄が生じやすいという問題があった。また、この炭素成形体は脆性が高く、運搬や加工の際に生じる衝撃等により、容易に破損が起きるという問題があった。さらに、比較的電気抵抗値が低いとはいうものの炭素化度の低い樹脂が存在したり、使用する炭素繊維の繊維長が短く、厚さ方向を向いた繊維が少ないために、電極材料として用いるには電気抵抗値が高いという問題もあった。
【0006】
この炭素成形体に比較して、炭素繊維織物は柔軟で取扱いやすい炭素材料である。炭素繊維織物には、フィラメント織物(特開平4−281037号公報、特開平7−118988号公報など)と、紡績糸織物(特開平10−280246号公報など)がある。これらは、巻物状にできる程度に柔らかく、保管や連続的に用いる際に取り扱い性が良いことがその特徴として挙げられる。
【0007】
フィラメント織物は、種々のフィラメント数の炭素繊維束を用いて織物の形態にしたものである。このフィラメント織物を構成する炭素繊維のほとんどは、その繊維軸方向が織物面方向と平行であるため、織物面方向の電気抵抗値は低いが、厚さ方向の電気抵抗値は高いという問題がある。
【0008】
紡績糸織物は、炭素繊維の前駆体である耐炎繊維を紡績糸織物とし、これを炭素化することによって得る。この炭素繊維紡績糸織物は、一般的にフィラメント織物に比べ柔軟である。また、紡績糸には撚りがかかっているため、例えば二枚の平板電極で挟んで厚さ方向に通電した場合、両電極に接する単繊維の数がフィラメント織物よりも多く、結果として厚さ方向の通電性に優れた材料を得る事ができる。また、製造コストも比較的安価である。
【0009】
しかしながら、このような利点を有する炭素繊維紡績糸織物も、従来のものは固体高分子型燃料電池用ガス拡散電極として用いるには嵩密度が低く、未だ厚さ方向の電気抵抗値が十分に低いものではなかった。
【0010】
【発明が解決しようとする課題】
本発明は上記の問題点を解決するために行われたものであり、その目的は柔軟で、ローラー等の曲げを有する工程の通過性に優れ、巻物状に保管することができ、炭素繊維紡績糸織物の前駆体として有用な高嵩密度耐炎繊維紡績糸織物を提供することにある。
【0011】
また本発明の目的は、柔軟であることに加え、薄く、しかも厚さ方向の電気抵抗値が低い固体高分子型燃料電池の電極材料として好適な炭素繊維紡績糸織物を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明は、以下に記載するものである。
【0013】
〔1〕 耐炎繊維含有率が90質量%以上であり、かつ厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.6〜1.1g/cm3であることを特徴とする高嵩密度耐炎繊維紡績糸織物。
【0014】
〔2〕 りん含有率が100〜500ppmである〔1〕記載の高嵩密度耐炎繊維紡績糸織物。
【0015】
〔3〕 限界酸素指数(LOI)が30〜60である〔1〕または〔2〕記載の高嵩密度耐炎繊維紡績糸織物。
【0016】
〔4〕 引張強度が10N/cm以上である〔1〕〜〔3〕のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。
【0017】
〔5〕 耐炎繊維がポリアクリロニトリル系耐炎繊維である〔1〕〜〔4〕のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。
【0018】
〔6〕 耐炎繊維の比重が1.30〜1.39である〔1〕〜〔5〕のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。
【0019】
〔7〕 耐炎繊維含有率が90質量%以上である耐炎繊維紡績糸織物に、温度200〜360℃、圧力1〜100MPaの条件で圧縮処理を行うことを特徴とする〔1〕〜〔6〕のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物の製造方法。
【0020】
〔8〕 厚さ方向に2.8kPaの荷重を負荷したときの圧縮処理後の耐炎繊維紡績糸織物の嵩密度が、0.6〜1.1g/cm3である〔7〕記載の高嵩密度耐炎繊維紡績糸織物の製造方法。
【0021】
〔9〕 厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.35〜0.6g/cm3、厚さが0.1〜0.5mmであって、かつ剛軟度が5〜25mNcmであることを特徴とする炭素繊維紡績糸織物。
【0022】
〔10〕 引張強度が1N/cm以上である〔9〕記載の炭素繊維紡績糸織物。
【0023】
〔11〕 厚さ方向に10kPaの荷重を負荷したときの厚さ方向の電気抵抗値が4mΩ以下である〔9〕または〔10〕記載の炭素繊維紡績糸織物。
【0024】
〔12〕 炭素微粉末発生量が25mg/g以下である〔9〕〜〔11〕のいずれか1項記載の炭素繊維紡績糸織物。
【0025】
〔13〕 〔1〕〜〔6〕のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物を、不活性ガス雰囲気下で1000℃以上の温度で処理することを特徴とする炭素繊維紡績糸織物の製造方法。
【0026】
【発明の実施の形態】
本発明の高嵩密度耐炎繊維紡績糸織物は、高嵩密度で柔軟な織物とするために、耐炎繊維含有率を90質量%以上とする。耐炎繊維とは、プリカーサ繊維を耐炎化処理することによって得られる繊維をいう。耐炎繊維含有率は95質量%以上であることが好ましく、さらには98.5質量%以上であることが最適である。耐炎繊維以外の成分が少ないほど高嵩密度耐炎繊維紡績糸織物は柔軟性が高い傾向にある。また、高嵩密度耐炎繊維紡績糸織物を炭化した場合に得られる炭素繊維紡績糸織物も耐炎繊維以外の成分が少ないほど柔軟なものとなる傾向にある。
【0027】
本発明の高嵩密度耐炎繊維紡績糸織物は、厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.6〜1.1g/cm3である。嵩密度は0.62〜1.08g/cm3が好ましく、0.65〜0.1.05g/cm3がより好ましい。嵩密度がこの範囲外である場合、引張強度等の物性と柔軟性のバランスを確保することができない。特に嵩密度が0.6g/cm3未満の場合、嵩高くなるために織物の賦形性が低下する。さらに本発明の高嵩密度耐炎繊維紡績糸織物を炭素化して得た炭素繊維紡績糸織物を、燃料電池用ガス拡散電極として用いた場合には、嵩密度が低いと通電性が低下し、嵩密度が高いとガス拡散が困難となり、電池性能低下の原因となる。
【0028】
高嵩密度耐炎繊維紡績糸織物の厚さは0.1〜0.5mmであることが好ましい。
【0029】
高嵩密度耐炎繊維紡績糸織物は、りん含有率を100〜500ppmとすることが好ましい。より好ましくは120〜450ppm、最も好ましくは150〜350ppmである。りんを含有することにより、紡績糸織物の加工性が向上し、耐熱酸化性が高められる。りん含有率が100ppm未満の場合、耐熱酸化性が低くなるため高温圧縮処理により繊維強度が低下し、高嵩密度耐炎繊維紡績糸織物の強度が低下する傾向にある。りん含有率が500ppmを超える場合にも、繊維の脆性が高くなるため、耐炎繊維紡績糸織物の強度が低下する傾向にある。
【0030】
高嵩密度耐炎繊維紡績糸織物は、臨界酸素指数(以下LOI)が30〜60であることが好ましく、33〜55がより好ましく、35〜50が最も好ましい。
【0031】
高嵩密度耐炎繊維紡績糸織物の引張強度は10N/cm以上であることが好ましく、さらには10〜40N/cm、より好ましくは15〜35N/cm、最も好ましくは20〜30N/cmである。引張強度が低い場合、充分な強度が得られず、取り扱い性に劣る。また、単位断面積当たりの引張強度としては4〜16MPaであることが好ましく、より好ましくは6〜15MPa、最も好ましくは8〜14MPaであることである。用いる耐炎繊維の比重や、りん含有率を調整することによってこの範囲の引張強度とすることができる。
【0032】
以下、本発明の高嵩密度耐炎繊維紡績糸織物の製造方法について説明する。
【0033】
耐炎繊維の原料となるプリカーサ繊維としては、ポリアクリロニトリル系、ピッチ系、カイノール系、レーヨン系などのプリカーサ繊維として従来公知のいずれの繊維でも用いることができる。強力の高い紡績糸織物とするためには、強伸度の高いポリアクリロニトリル系繊維が最も好適である。
【0034】
製造原料のプリカーサ繊維としてポリアクリロニトリル系繊維を用いる場合には、アクリロニトリルモノマー単位を90〜98質量%、コモノマー単位を2〜10質量%含有するものが好ましい。コモノマーとしては、アクリル酸メチルエステル、アクリルアミド、イタコン酸等のビニルモノマーが例示できる。
【0035】
プリカーサ繊維の繊度は、0.6〜3.3dtexが好ましく、特に0.7〜3.0dtexの範囲が好ましい。繊度が0.6dtex未満の場合は、後に述べる耐炎化処理時に蓄熱切断が生じ易く、繊度が3.3dtexを超える場合は、耐炎化処理に長時間を要し、耐炎繊維の強度が劣化する傾向にある。
【0036】
耐炎繊維は、プリカーサ繊維を空気中、高温で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得ることができる。より具体的には、例えばポリアクリロニトリル系繊維を、空気中、初期耐炎化温度220〜250℃で10分間耐炎化処理後、昇温速度0.2〜0.9℃/分で、最高温度250〜280℃まで加熱し、この温度で5〜30分間保持する。
【0037】
このようにして得られる耐炎繊維は、臨界酸素指数(以下LOI)が30〜60であることが好ましく、33〜55がより好ましく、35〜50が最も好ましい。
【0038】
耐炎繊維の比重は、1.30〜1.39であることが好ましい。さらには1.33〜1.39がより好ましく、1.35〜1.39が最も好ましい。耐炎繊維の比重が1.30未満の場合、炭素化後に炭素微粉末が生じ易く、また、得られる炭素繊維紡績糸織物の強度も低下する傾向にある。耐炎繊維比重が1.39を超える場合、耐炎繊維の単繊維強度及び伸度が低下し、耐炎繊維を用いて紡績糸織物とする際の加工性が低下する傾向にある。また、圧縮処理時の繊維間膠着が起こりにくくなり、炭素化時に織物の厚さが増加する傾向にある。
【0039】
耐炎繊維は、その繊度が0.8〜4.4dtexが好ましく、1.0〜3.3dtexの範囲がより好ましい。繊度がこの範囲外では繊維切れが生じ易く、最終的に炭素繊維紡績糸織物にした場合に炭素微紛末が生じ易い傾向にある。繊度は、原料のプリカーサ繊維の繊度、耐炎化処理時のリラックス条件等により調節できる。
【0040】
このようにして得た耐炎繊維は、定長カットまたはトウリアクターでバイアスカットしてステープルとする。
【0041】
紡績糸とするための耐炎繊維のステープルとしては、耐炎繊維ステープルのクリンプ率が8〜16%であることが好ましい。クリンプ率が8%未満の場合、繊維同士の絡み合いが少ないため、紡績時に糸切れを生じ易い。クリンプ率が16%を超える場合、単繊維強度が低下し、紡績が難しい。
【0042】
ステープルのクリンプ数は2.4〜5.5ヶ/cmの範囲が好ましい。クリンプ数が2.4ヶ/cm未満の場合、紡績時に糸切れを生じ易い。クリンプ数が5.5ヶ/cmを超える場合、単繊維強度が低下したり、クリンプ加工時に繊維切れが生じたりする傾向にある。
【0043】
耐炎繊維ステープルの標準状態の強度は8〜40mN/dtexの範囲が好ましい。同じく標準状態での伸度は8〜30%であることが好ましい。強度が8mN/dtex未満の場合および伸度が8%未満の場合には、耐炎繊維紡績糸織物製造時の加工性が低下する傾向にある。
【0044】
耐炎繊維ステープルの結節強度は5〜15mN/dtexの範囲が好ましい。同じく結節伸度は5〜10%の範囲が好ましい。結節強度が5mN/dtex未満の場合および結節伸度が5%未満の場合には、耐炎繊維紡績糸織物製造時の加工性が低下し、更に得られる耐炎繊維紡績糸織物の強度が低下する傾向にある。
【0045】
次に、上記耐炎繊維ステープルを用いて単糸もしくは双糸で構成された紡績糸を作製する。
【0046】
耐炎繊維紡績糸の上撚り及び下撚り数は200〜900回/mが好ましい。撚り数が200回/m未満の場合、繊維の収束性が低い為、圧縮処理によってより薄く、嵩密度の高い耐炎繊維紡績糸織物を得る事が出来るが、紡績糸の強度が低い為、織物加工が困難となる。撚り数が900回/mを超える場合、繊維の収束性が高過ぎる為、圧縮処理によって目標とする嵩密度の耐炎繊維紡績糸織物が得られにくい。
【0047】
耐炎繊維紡績糸の太さは15〜40番手が好ましい。太さが15番手を超える場合、得られる織物は厚くなりやすく、圧縮処理によって目標とする嵩密度の耐炎繊維紡績糸織物が得られにくい。太さが40番手未満の場合、紡績糸の強度が低い為、織物加工が困難となる。
【0048】
次に、この耐炎繊維紡績糸を製織して、耐炎繊維紡績糸織物を作製する。織り形態については平織り、綾織り、朱子織りのいずれでもよいが、薄く、目ずれの少ない織物を得る為には平織りが好ましい。
【0049】
耐炎繊維紡績糸織物の織密度は、経緯共に8〜24本/cmが好ましい。織り密度が8本/cm未満の場合、織物の賦形性の低下や目付斑を生ずる。24本/cmを超える場合、圧縮処理によって目標とする嵩密度の耐炎繊維紡績糸織物が得られにくい。
【0050】
耐炎繊維紡績糸織物の目付は100〜300g/m2が好ましい。目付が100g/m2未満の場合、炭素化後の炭素繊維紡績糸織物の強度が低く、取り扱い性が低下する。また、繊維同志の接点が少なくなるため、厚さ方向の電気抵抗値が高くなってしまうという難点がある。目付が300g/m2を超える場合、薄くなりにくい。このような高目付の耐炎繊維紡績糸織物を炭素化しても、得られるのはせいぜい180g/m2の炭素繊維紡績糸織物であり、固体高分子型燃料電池に適した薄さの炭素繊維紡績糸織物にならないことが多い。また、厚さ方向の電気抵抗値も高くなる傾向にある。また、目付が高すぎることからガス拡散が困難となり、電池性能低下の原因となる。
【0051】
耐炎繊維紡績糸織物の、厚さ方向に2.8kPaの荷重を負荷したときの厚さは0.4〜0.8mmが好ましい。厚さが0.8mmを超える場合、圧縮処理によって目標とする嵩密度の耐炎繊維紡績糸織物が得られにくい。
【0052】
本発明の高嵩密度耐炎繊維紡績糸織物のりん含有率を上記の範囲とするには、下記のりん系有機化合物を、プリカーサ繊維の紡糸時もしくは耐炎化処理後に付着させる。
【0053】
りん系有機化合物としては、アルキル基又はアリル基を有するホスフォネート又はホスフェート、具体的にはトリブチルホスフォネート((C493PO4)、トリヒドロキシエチルホスフェート((HOCH2CH23PO4)、トリセチルホスフェート((C16333PO4)等が例示できる。また、これらのりん系有機化合物に、アニオン系、カチオン系、又はノニオン系分散剤を混合してもよい。
【0054】
その付着量は紡績糸織物加工後の耐炎繊維紡績糸織物の状態で0.5〜1.5質量%が好ましく、また、同じく耐炎繊維紡績糸織物のりん含有率で100〜500ppmとなるよう付着させるのが好ましい。より好ましくは120〜450ppm、最も好ましくは150〜350ppmである。
【0055】
りん含有率が100ppm未満の場合、耐炎繊維の耐熱酸化性が低くなる傾向にあり、繊維が酸化劣化を起こしやすく、高嵩密度耐炎繊維紡績糸織物の強度が著しく低下する傾向にある。りん含有率が500ppmを超える場合には、繊維の脆性が高くなる傾向にあり、耐炎繊維紡績糸織物の強度劣化を生じやすい。また、炭素化後にロール状に巻いた場合幅方向に折れしわが発生する傾向が強まり、強度の低下や巻姿が悪くなる傾向にある。また、繊維の脆性が高い場合には炭素化後に炭素微粉末が発生しやすい。
【0056】
また、下記の圧縮処理を行う前に耐炎繊維紡績糸織物にカルボキシメチルセルロース等の樹脂を少量付着させてもよいが、付着させないことが好ましい。樹脂を付着させることにより嵩密度の高い耐炎繊維紡績糸織物を得ることができるが、一方炭素化後の炭素繊維紡績糸織物の剛性と脆性が高くなる傾向にある。樹脂の付着量は多くとも10質量%とする。樹脂の付着量の多い耐炎繊維紡績糸織物を炭素化して得た炭素繊維紡績糸織物では、剛軟度が高くなり、ロール状に巻いた場合に折れて幅方向に折れしわが発生しやすく、しわ部分の強度が低下する傾向にあり、巻姿も悪くなりやすい。
【0057】
本発明の高嵩密度耐炎繊維紡績糸織物は、上記の耐炎繊維紡績糸織物に圧縮処理を行うことにより得ることができる。
【0058】
圧縮処理は、上記のようにして得られる耐炎繊維含有率が90質量%以上の低嵩密度の耐炎繊維紡績糸織物に、温度200〜360℃、圧力1〜100MPaの条件で圧縮処理を行う。
【0059】
圧縮処理温度は、200〜360℃であるが、さらには220〜320℃、最も好ましくは240〜280℃で処理することが好ましい。圧縮処理温度が200℃未満の場合、耐炎繊維同士の膠着が不充分であり、炭素化時に厚さの復元が大きく、本発明のような嵩密度の高い炭素繊維紡績糸織物を得ることが出来ない。圧縮処理温度が360℃を超える場合、りん含有率を本発明の範囲内で最大にしても処理時の単繊維の酸化劣化が著しい。このものを炭素化しても、強度が低く、炭素微粉末が発生しやすいため、取り扱い性が悪く、好ましくない。なお、酸化劣化を防ぐために、窒素等の不活性ガス雰囲気下で圧縮処理を行うことが好ましい。
【0060】
圧縮処理圧力は、1〜100MPaであるが、さらには2〜50MPa、最も好ましくは3〜20MPaとすることが好ましい。圧縮処理圧力が1MPa未満の場合は圧縮効果が低く、目標とする嵩密度の耐炎繊維紡績糸織物を得ることが出来ない。また、圧縮処理圧力が100MPaを超える場合、単繊維の損傷が生じ、得られる高嵩密度耐炎繊維紡績糸織物の強度低下が起きる。その結果、炭素化時において、連続炭素化処理が困難になる。
【0061】
耐炎繊維紡績糸織物の圧縮処理時間は、上記条件において好ましくは3分間以内、より好ましくは0.1秒〜1分間である。3分間よりも長時間圧縮処理を行っても、厚さ低減効果はそれほど変わらない。圧縮処理時間が短いほど繊維の損傷を抑制することができる。
【0062】
本発明の製造方法では、圧縮処理後の高嵩密度耐炎繊維紡績糸織物の厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.6〜1.1g/cm3となるように上記の条件を適宜選択して圧縮処理を行う。圧縮処理を施すには、ホットプレスやカレンダーローラー等を用いることが好ましい。
【0063】
このようにして得られた本発明の高嵩密度耐炎繊維紡績糸織物は、高嵩密度でありながら薄く、柔軟で折れしわが発生しにくいので、炭素繊維紡績糸織物の原料となるのはもちろん、それ自体を耐炎性のシート状物として用いることができる。本発明の高嵩密度耐炎繊維紡績糸織物は、熱に弱い成分が少ないため、高温の条件下でも安定的に使用することができる。例えば、摩擦材としての機能や耐炎性を付与するための、構造体の被覆用シート材などの用途に好適に用いることができる。
【0064】
本発明の炭素繊維紡績糸織物は、厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.35〜0.6g/cm3であるが、0.37〜0.55g/cm3が好ましく、0.40〜0.50g/cm3であることが最も好ましい。嵩密度がこの範囲外である場合、燃料電池用ガス拡散電極として用いたときに電気抵抗とガスの透過性とのバランスを確保することができない。すなわち、嵩密度が0.35g/cm3未満の場合には通電性が低下し、嵩密度が0.6g/cm3を超える場合にはガス拡散が困難となり、電池性能低下の原因となる。
【0065】
また、本発明の炭素繊維紡績糸織物は、厚さを0.1〜0.5mmとする。この範囲内では燃料電池用ガス拡散電極として好適に用いることができる。目付は60〜180g/m2の範囲が好ましい。
【0066】
本発明の炭素繊維紡績糸織物の剛軟度は、5〜25mNcmである。好ましくは6〜15mNcm、最適には7〜13mNcmの範囲である。剛軟度が5mNcm未満の炭素繊維紡績糸織物は、本発明の嵩密度、厚さの範囲内では実際的ではない。剛軟度が25mNcmを超える場合、剛直すぎることからローラーに通すことが出来ず、連続的な加工が困難である為、取り扱い性が悪い。また、炭素化後にロール状に巻いた場合、幅方向に折れしわが発生し、強度の低下や巻姿が悪くなる。
【0067】
本発明の炭素繊維紡績糸織物の、厚さ方向に10kPaの荷重を負荷したときの厚さ方向電気抵抗値は、通電材料として用いる場合は、4.0mΩ以下が好ましい。さらには3.5mΩ以下が好ましく、最も好ましくは3.0mΩ以下である。厚さ方向の電気抵抗値が4.0mΩを超える場合、通電材料として用いた場合の抵抗値が高くなり発熱するため、炭素材料の脆化が起こる傾向がある。
【0068】
炭素繊維紡績糸織物の引張強度は1N/cm以上が好ましい。より好ましくは1〜10N/cmの範囲である。引張強度が1N/cm未満の場合、連続的な加工等で炭素繊維紡績糸織物自体に張力をかける場合に破断し易く、取り扱い性が悪くなる傾向がある。また、断面積あたりの引張強力は、0.3〜4MPaであることが好ましく、さらには1〜3.5MPaがより好ましく、1.5〜3MPaの範囲が最も好ましい。
【0069】
炭素繊維紡績糸織物の炭素微粉末発生量は25mg/g以下が望ましい。23mg/g以下がより好ましく、さらに20mg/g以下が好ましい。炭素微粉末発生量は、実施例記載の方法により測定した値をいう。炭素繊維紡績糸織物の加工時に炭素微粉末が発生すると、加工工程でのトラブル発生、品質ムラ、工程環境の汚染の原因となる。更に、炭素微粉末は導電性を有しているので、周囲に飛散した場合、電子機器の故障や、コンセントのショート等の原因となる。本発明では繊維の脆化を抑えることにより、炭素微粉末発生量を減少させることができる。
【0070】
また、本発明の炭素繊維紡績糸織物は、本発明の嵩密度耐炎繊維紡績糸織物を、不活性ガス雰囲気下で1000℃以上の温度で処理することにより製造することができる。
【0071】
炭素化は、窒素、ヘリウム、アルゴン等の不活性雰囲気下、好ましくは1000〜2500℃で行う。なお、昇温下で炭素化する場合の昇温速度は200℃/分以下が好ましく、170℃/分以下がより好ましい。昇温速度が200℃/分を超える場合、結晶子の成長速度は向上するが、繊維強度が低下し、炭素微粉末が多量に発生する。
【0072】
最高温度での滞留時間は30分間以内が好ましく、0.5〜20分程度がより好ましい。
【0073】
炭素化時の厚さ変化率は20%以下が好ましい。20%を超える場合、上記範囲の嵩密度を有する本発明の炭素繊維紡績糸織物が得られにくい。
【0074】
このようにして得られた本発明の炭素繊維紡績糸織物は、高嵩密度でありながら柔軟であり、容易に紙巻に巻くことが可能なものである。さらに厚さ方向の電気抵抗値が低いので、燃料電池ガス拡散電極用の炭素繊維紡績糸織物として極めて適したものである。
【0075】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、各物性の測定は次の方法によった。
【0076】
(1)耐炎繊維比重
溶剤置換法(溶剤:アセトン)により測定した。
【0077】
(2)耐炎繊維物性
標準状態の強度、伸度、結節強度、結節伸度はJIS L 1015により測定した。
【0078】
(3)厚さ
直径30mmの円形圧板で2.8kPaの荷量を負荷したときの厚さを測定した。
【0079】
(4)目付
200mm×250mmの紡績糸織物を120℃で1時間真空乾燥した後の質量値より算出した。
【0080】
(5)嵩密度
上記の目付と厚さより算出した。
【0081】
(6)りん系有機化合物付着量
1〜10gの耐炎繊維紡績糸織物を120℃で1時間真空乾燥した後質量を測定し、そのもののりん系有機化合物をソックスレー抽出法(溶剤:エタノール/ベンゼン)により抽出した。抽出物の質量を耐炎繊維紡績糸織物の質量で除し、得られた値を百分率で表した。
【0082】
(7)耐炎繊維含有率
上記りん系有機化合物付着量から以下の式を用いて算出した。
耐炎繊維含有率(質量%)=100−りん系有機化合物付着量(質量%)−樹脂付着量(質量%)
(8)りん含有率
耐炎繊維紡績糸織物を750℃で灰化し、残渣を王水で溶解して希釈した後、その一定量に発色液(メタバナジン酸アンモニウム)を加えて吸光度を測定し、標準液との吸光度比から求めた。
【0083】
(9)臨界酸素指数(LOI)
JIS K 7201にしたがって測定した。
【0084】
(10)紡績糸織物の引張強度
幅25.4mm、長さ120mm以上のサンプルを、チャック間距離100mmの治具に固定し、速度30mm/minで引っ張った時の破断強度を求めた。10mm幅に換算した値を引張強度1として単位N/cmで示し、単位断面積当たりに換算した値を引張強度2として単位MPaで示した。
【0085】
(11)炭素微粉末発生量
300mlのビーカー中に25℃に温度調整した水/エタノール(90/10容量基準)液200mlを入れ、更にこの溶液に、炭素繊維紡績糸織物(10mm×5mmにカット)の1gを入れ、ラボラン型回転子(長さ30mm、直径8mm)で10分間撹拌する。その後、撹拌した炭素繊維紡績糸織物をステンレス製金網(8メッシュ)で濾別し、濾液中の炭素微粉末をメンブレンフィルター(孔径6μm)で分離し、その重量を測定した。この値から炭素繊維紡績糸織物単位重量当たりの炭素微粉末発生量(mg/g)を算出した。
【0086】
(12)剛軟度
JIS L 1096記載の方法(B法)に準拠して測定した。
【0087】
(13)柔軟性
幅W(mm)のスリット上に、長さ100mm、幅25.4mmの紡績糸織物を長さ方向がスリットと垂直になるように配置し、幅2mmの金属ブレードで紡績糸織物をスリット間に深さ15mmまで3mm/秒の速さで押し込む時の最大荷重を測定し、その値を柔軟性とした。なお、スリット幅Wは、紡績糸織物の厚さt(mm)に対し、以下の範囲で調整する。
【0088】
W/t=10〜12
(14)厚さ方向電気抵抗値
2枚の50mm角(厚さ10mm)の金メッキした電極で紡績糸織物の両面を全面接触するように挟み、荷重10kPaを厚さ方向にかけた時の厚さ方向電気抵抗値を測定した。
【0089】
(15)厚さ変化率
高嵩密度耐炎繊維紡績糸織物の厚さ(Ta)と、炭素化後の炭素繊維紡績糸織物の厚さ(Tb)より、以下の式を用いて算出した。
【0090】
厚さ変化率(%)=(Tb−Ta)/Ta×100
(16)折れしわ数
直径76.2mmの紙管に、長さ5m、幅800mmの炭素繊維紡績糸織物を厚さ方向に9.8N/cmの線圧をかけながら長さ方向に巻く。再び広げて、目視によりしわ数を数え、1m当りに換算した。
【0091】
[参考例1](圧縮処理前の耐炎繊維紡績糸織物1の作製)
コモノマーとしてアクリル酸メチルを含有するポリアクリロニトリル系繊維(繊度1.7dtex、アクリロニトリルモノマー97質量%)を空気中、初期耐炎化温度230℃にて10分間処理後、温度勾配0.5℃/分で260℃まで昇温した後、この温度で7分間処理した。得られた繊度2.3dtex、比重1.37の耐炎繊維にりん系有機化合物(トリヒドロキシエチルホスフェート/ポリオキシエチレン)を1.0質量%付着させ、クリンプ処理後51mmに定長カットした結果、クリンプ数3.5ヶ/cm、クリンプ率11%、強度23mN/dtex、伸度23%、結節強度14mN/dtex、結節伸度8%の耐炎繊維ステープルを得た。
この比重1.37の耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率325ppm、平織りの耐炎繊維紡績糸織物1を作製した。
【0092】
[参考例2](圧縮処理前の耐炎繊維紡績糸織物2の作製)
参考例1の耐炎化処理時の温度勾配を0.5℃/分から、0.7℃/分に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.33の耐炎繊維であり、長さ51mm、クリンプ数3.8ヶ/cm、クリンプ率14%、強度25mN/dtex、伸度25%、結節強度16mN/dtex、結節伸度11%の耐炎繊維ステープルを得た。
この比重1.33の耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率322ppm、平織りの耐炎繊維紡績糸織物2を作製した。
【0093】
[参考例3](圧縮処理前の耐炎繊維紡績糸織物3の作製)
参考例1の耐炎化処理時の最高温度を260℃から、270℃に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.38の耐炎繊維であり、長さ51mm、クリンプ数3.7ヶ/cm、クリンプ率13%、強度22mN/dtex、伸度19%、結節強度13mN/dtex、結節伸度5%の耐炎繊維ステープルを得た。
この比重1.38の耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率321ppm、平織りの耐炎繊維紡績糸織物3を作製した。
【0094】
[参考例4](圧縮処理前の耐炎繊維紡績糸織物4の作製)
参考例1の耐炎化処理時の温度勾配を0.5℃/分から、0.7℃/分に変更し、最高温度を260℃から、255℃に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.28の耐炎繊維であり、長さ51mm、クリンプ数3.8ヶ/cm、クリンプ率13%、強度30mN/dtex、伸度18%、結節強度17mN/dtex、結節伸度11%の耐炎繊維ステープルを得た。
この比重1.28の耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率326ppm、平織りの耐炎繊維紡績糸織物4を作製した。
【0095】
[参考例5](圧縮処理前の耐炎繊維紡績糸織物5の作製)
参考例1のりん系有機化合物(トリヒドロキシエチルホスフェート/ポリオキシエチレン)付着量を1.0質量%から、0.6質量%に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.38の耐炎繊維であり、長さ51mm、クリンプ数3.7ヶ/cm、クリンプ率13%、強度23mN/dtex、伸度24%、結節強度14mN/dtex、結節伸度10%の耐炎繊維ステープルを得た。
この耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率261ppm、平織りの耐炎繊維紡績糸織物5を作製した。
【0096】
[参考例6](圧縮処理前の耐炎繊維紡績糸織物6の作製)
参考例1のりん系有機化合物(トリヒドロキシエチルホスフェート/ポリオキシエチレン)付着量を1.0質量%から、1.4質量%に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.38の耐炎繊維であり、長さ51mm、クリンプ数3.5ヶ/cm、クリンプ率12%、強度22mN/dtex、伸度25%、結節強度14mN/dtex、結節伸度10%の耐炎繊維ステープルを得た。
【0097】
この耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率490ppm、平織りの耐炎繊維紡績糸織物6を作製した。
【0098】
[参考例7](圧縮処理前の耐炎繊維紡績糸織物7の作製)
参考例1のりん系有機化合物(トリヒドロキシエチルホスフェート/ポリオキシエチレン)付着量を1.0質量%から、0.1質量%に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.38の耐炎繊維であり、長さ51mm、クリンプ数3.5ヶ/cm、クリンプ率11%、強度23mN/dtex、伸度21%、結節強度14mN/dtex、結節伸度9%の耐炎繊維ステープルを得た。
この耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率41ppm、平織りの耐炎繊維紡績糸織物7を作製した。
【0099】
[参考例8](圧縮処理前の耐炎繊維紡績糸織物8の作製)
参考例1のりん系有機化合物(トリヒドロキシエチルホスフェート/ポリオキシエチレン)付着量を1.0質量%から、2.0質量%に変更した以外は参考例1と同様の処理を行った。得られた繊維は繊度2.3dtex、比重1.38の耐炎繊維であり、長さ51mm、クリンプ数3.5ヶ/cm、クリンプ率12%、強度21mN/dtex、伸度18%、結節強度13mN/dtex、結節伸度9%の耐炎繊維ステープルを得た。
この耐炎繊維ステープルを紡績し、上撚り数400回/m、下撚り数400回/mの34番手双糸を得た。
次に、この耐炎繊維紡績糸を製織し、織密度が経緯共に16本/cm、目付200g/m2、厚さ0.50mm、嵩密度0.40g/cm3、燐含有率843ppm、平織りの耐炎繊維紡績糸織物を作製した。
【0100】
[実施例1]
(高嵩密度耐炎繊維紡績糸織物の作製)
参考例1の耐炎繊維紡績糸織物に温度330℃、圧力5MPaの条件下、空気中で1分間圧縮処理を施したところ、目付200g/m2、厚さ0.25mm、嵩密度0.80g/cm3、耐炎繊維含有率99.0%、引張強度27N/cmの高嵩密度耐炎繊維紡績糸織物を得た。LOIは40であった。また、紙巻に容易に巻きつけることができ、巻姿も良好であった。物性を表1に示す。
【0101】
(炭素繊維紡績糸織物の作製)
この高嵩密度耐炎繊維紡績糸織物を窒素ガス雰囲気下、常温より昇温勾配120℃/分で1900℃まで昇温した後、この温度で2分間処理して目付120g/m2、厚さ0.27mm、嵩密度0.44g/cm3、引張強度5.8N/cm、剛軟度10mNcm、電気抵抗値2.3mΩ、炭素微粉末発生量19mg/gの炭素繊維紡績糸織物を得た。炭素化時の厚さ変化率は8%であった。紙管に巻いたときの折れしわ数は0ケ/mであり、巻姿は良好であった。物性を表1に併せて示す。
【0102】
【表1】

Figure 0003934974
【0103】
[実施例2〜8]
参考例1の圧縮前の耐炎繊維紡績糸織物1を用いる代わりに、参考例2〜8の圧縮前の耐炎繊維紡績糸織物を用いて、高嵩密度耐炎繊維紡績糸織物および炭素繊維紡績糸織物を作製した。それぞれの物性を表1に併せて示す。
【0104】
[実施例9〜14]
参考例1の圧縮前の耐炎繊維紡績糸織物を用い、圧縮条件のみを実施例1の温度330℃、圧力5MPaの条件から、表2に記載する条件に変更した以外は実施例1と同様に行い、高嵩密度耐炎繊維紡績糸織物および炭素繊維紡績糸織物を作製した。それぞれの物性を表2に併せて示す。
【0105】
【表2】
Figure 0003934974
【0106】
[実施例15]
参考例1の圧縮前の耐炎繊維紡績糸織物1を用意し、この耐炎繊維紡績糸織物1をカルボキシメチルセルロース(CMC)水溶液に浸漬、乾燥して、CMC樹脂付着量3.0質量%の圧縮前の耐炎繊維紡績糸織物を得た。この耐炎繊維紡績糸織物に温度330℃、圧力5MPaの条件下、空気中で1分間圧縮を施したところ、目付206g/m2、厚さ0.22mm、嵩密度0.91g/cm3、耐炎繊維含有率96.0%、引張強度18N/cmの高嵩密度耐炎繊維紡績糸織物を得た。
【0107】
この高嵩密度耐炎繊維紡績糸織物を窒素ガス雰囲気下、常温より昇温勾配120℃/分で1900℃まで昇温した後、この温度で2分間処理して目付120g/m2、厚さ0.23mm、嵩密度0.52g/cm3、引張強度0.5N/cm、剛軟度88mNcm、電気抵抗値7.2mΩ、炭素微粉末発生量78mg/gの炭素繊維紡績糸織物を得た。炭素化時の厚さ変化率は5%であった。柔軟性は52gと優れており、紙巻に巻きつけることができた。ただし、紙管に巻いたときの折れしわ数は31ケ/mと多目であった。
【0108】
[比較例1]
実施例15のCMC樹脂付着量を3.0質量%から、12.0質量%に変更した以外は、実施例15と同様に行い、高嵩密度耐炎繊維紡績糸織物および炭素繊維紡績糸織物を作製した。得られた高嵩密度耐炎繊維紡績糸織物は硬く、紙巻に巻くことができないものであった。また、得られた炭素繊維紡績糸織物は、電気抵抗値が14.7mΩと高く、柔軟性も163gと劣ったものであり、紙管に巻いたときの折れしわ数は39ヶ/mと多く、巻姿も不良であった。
【0109】
【発明の効果】
本発明によれば、高嵩密度でありながら柔軟で取り扱い性に優れた高嵩密度耐炎繊維紡績糸織物を得ることができる。本発明の高嵩密度耐炎繊維紡績糸織物は、耐炎繊維以外の成分が少なく、炭素化して高嵩密度の炭素繊維紡績糸織物とするのに適したものである。
【0110】
また本発明により、柔軟でローラー等の曲げを有する工程の通過性に優れ、巻物状に保管することができる炭素繊維紡績糸織物を得ることができる。本発明の炭素繊維紡績糸織物は、薄く、厚さ方向の電気抵抗値が低いので、固体高分子型燃料電池の電極材料として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber spinning that can be used suitably for a gas diffusion electrode for a polymer electrolyte fuel cell having a high bulk density flame-resistant fiber spun yarn fabric that is flexible and hardly generates creases and has a low electrical resistance value in the thickness direction. The present invention relates to a yarn fabric and a method for producing the same.
[0002]
[Prior art]
Application development using a sheet-like carbon material having electric conductivity, gas diffusibility, and excellent chemical stability as a gas diffusion electrode for a fuel cell is in progress. In particular, in order to reduce the size of a fuel cell, a polymer electrolyte fuel cell needs to be stacked with several tens to several hundreds of cells joined with a gas diffusion electrode, a polymer electrolyte membrane, and a separator depending on the application. Therefore, a thin carbon material having high strength is required. In the fuel cell, electrons generated by the catalyst supported on the surface of the gas diffusion electrode pass through the gas diffusion electrode in the thickness direction and move to the separator on the opposite side. For this reason, the gas diffusion electrode is also required to have high conductivity in the thickness direction.
[0003]
Conventionally, as such carbon materials, carbon molded bodies, carbon fiber fabrics, and the like are known.
[0004]
The carbon molded body is a sheet-like material having a high bulk density, a high surface smoothness, and a relatively low electric resistance value. This is represented by, for example, a carbon fiber reinforced carbon sheet (C / C paper) obtained by making a carbon fiber chop, binding and sheeting with a phenol resin or the like, and further carbonizing the sheet (Patent No. 1). No. 2584497, JP-A 63-2222078, etc.).
[0005]
However, since this carbon molded body is molded by press molding using a mold, it has a problem that it is excellent in thickness accuracy and surface smoothness but lacks flexibility. For this reason, the process which requires bending, such as a roller, cannot be passed and it cannot be used for the use which requires a long sheet | seat. Further, since it cannot be formed into a scroll shape even at the time of storage, there is a problem that it has to be cut into an appropriate size, and waste is easily generated as compared with the case where it is used with a scroll. Further, the carbon molded body has high brittleness, and there is a problem that breakage easily occurs due to an impact or the like generated during transportation or processing. Furthermore, although the electrical resistance value is relatively low, there is a resin with a low carbonization degree, and the carbon fiber used has a short fiber length and few fibers facing the thickness direction, so it is used as an electrode material. Also had a problem of high electrical resistance.
[0006]
Compared to this carbon molded body, the carbon fiber fabric is a carbon material that is flexible and easy to handle. Carbon fiber fabrics include filament fabrics (JP-A-4-283737, JP-A-7-118988, etc.) and spun yarn fabrics (JP-A-10-280246, etc.). Their characteristics are that they are soft enough to be rolled up and have good handling properties when stored or continuously used.
[0007]
The filament woven fabric is formed into a woven fabric using carbon fiber bundles having various numbers of filaments. Most of the carbon fibers constituting this filament fabric have a problem that the fiber axis direction is parallel to the fabric surface direction, so the electrical resistance value in the fabric surface direction is low, but the electrical resistance value in the thickness direction is high. .
[0008]
The spun yarn fabric is obtained by converting a flame resistant fiber, which is a precursor of carbon fiber, into a spun yarn fabric and carbonizing it. This carbon fiber spun yarn fabric is generally softer than a filament fabric. Also, since the spun yarn is twisted, for example, when energized in the thickness direction between two flat electrodes, the number of single fibers contacting both electrodes is larger than that of the filament fabric, resulting in the thickness direction. It is possible to obtain a material with excellent electrical conductivity. Also, the manufacturing cost is relatively low.
[0009]
However, carbon fiber spun yarn fabrics having such advantages are also low in bulk density and still have a sufficiently low electric resistance value in the thickness direction in order to be used as gas diffusion electrodes for solid polymer fuel cells. It was not a thing.
[0010]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and its purpose is flexible, excellent in the passability of a process having bending of a roller or the like, can be stored in a scroll shape, An object of the present invention is to provide a high bulk density flame resistant fiber spun yarn fabric useful as a precursor of a yarn fabric.
[0011]
Another object of the present invention is to provide a carbon fiber spun woven fabric suitable as an electrode material for a polymer electrolyte fuel cell which is thin and has a low electric resistance value in the thickness direction in addition to being flexible.
[0012]
[Means for Solving the Problems]
The present invention for solving the above problems is described below.
[0013]
[1] The flame density when the flame resistant fiber content is 90% by mass or more and a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm. Three A high bulk density flame resistant fiber spun yarn fabric characterized by
[0014]
[2] The high bulk density flame resistant fiber spun yarn fabric according to [1], wherein the phosphorus content is 100 to 500 ppm.
[0015]
[3] The high bulk density flame resistant fiber spun yarn fabric according to [1] or [2], which has a limiting oxygen index (LOI) of 30 to 60.
[0016]
[4] The high bulk density flame resistant fiber spun yarn fabric according to any one of [1] to [3], which has a tensile strength of 10 N / cm or more.
[0017]
[5] The high-bulk density flame resistant fiber spun yarn fabric according to any one of [1] to [4], wherein the flame resistant fiber is a polyacrylonitrile-based flame resistant fiber.
[0018]
[6] The high-bulk density flame resistant fiber spun yarn fabric according to any one of [1] to [5], wherein the specific gravity of the flame resistant fiber is 1.30 to 1.39.
[0019]
[7] A flameproof fiber spun yarn fabric having a flameproof fiber content of 90% by mass or more is subjected to a compression treatment under conditions of a temperature of 200 to 360 ° C. and a pressure of 1 to 100 MPa [1] to [6] The manufacturing method of the high bulk density flame-resistant fiber spun yarn fabric of any one of these.
[0020]
[8] The bulk density of the flame resistant fiber spun yarn fabric after the compression treatment when a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm. Three [7] The method for producing a high bulk density flameproof fiber spun yarn fabric according to [7].
[0021]
[9] Bulk density when a load of 2.8 kPa is applied in the thickness direction is 0.35 to 0.6 g / cm Three A carbon fiber spun yarn fabric having a thickness of 0.1 to 0.5 mm and a bending resistance of 5 to 25 mNcm.
[0022]
[10] The carbon fiber spun yarn fabric according to [9], which has a tensile strength of 1 N / cm or more.
[0023]
[11] The carbon fiber spun yarn fabric according to [9] or [10], wherein an electrical resistance value in the thickness direction when a load of 10 kPa is applied in the thickness direction is 4 mΩ or less.
[0024]
[12] The carbon fiber spun yarn fabric according to any one of [9] to [11], wherein a carbon fine powder generation amount is 25 mg / g or less.
[0025]
[13] Carbon fiber spinning, characterized in that the high bulk density flame resistant fiber spun yarn fabric according to any one of [1] to [6] is treated at a temperature of 1000 ° C. or higher in an inert gas atmosphere. Yarn fabric manufacturing method.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The high bulk density flame resistant fiber spun yarn fabric of the present invention has a flame resistant fiber content of 90% by mass or more in order to obtain a flexible fabric with a high bulk density. The flame resistant fiber refers to a fiber obtained by subjecting a precursor fiber to flame resistance treatment. The flame resistant fiber content is preferably 95% by mass or more, and more preferably 98.5% by mass or more. Higher bulk density flame resistant fiber spun yarn fabrics tend to have higher flexibility as the amount of components other than flame resistant fibers decreases. In addition, the carbon fiber spun yarn fabric obtained when carbonizing the high bulk density flame resistant fiber spun yarn fabric tends to be more flexible as the amount of components other than the flame resistant fiber decreases.
[0027]
The high bulk density flameproof fiber spun yarn fabric of the present invention has a bulk density of 0.6 to 1.1 g / cm when a load of 2.8 kPa is applied in the thickness direction. Three It is. Bulk density is 0.62-1.08 g / cm Three Is preferred, 0.65 to 0.1.05 g / cm Three Is more preferable. When the bulk density is outside this range, a balance between physical properties such as tensile strength and flexibility cannot be ensured. Especially bulk density is 0.6g / cm Three If the amount is less than 1, the shape of the fabric is lowered due to the bulkiness. Furthermore, when the carbon fiber spun yarn fabric obtained by carbonizing the high bulk density flame resistant fiber spun yarn fabric of the present invention is used as a gas diffusion electrode for a fuel cell, if the bulk density is low, the electrical conductivity decreases and the bulk If the density is high, gas diffusion becomes difficult, which causes a decrease in battery performance.
[0028]
The thickness of the high bulk density flame resistant fiber spun yarn fabric is preferably 0.1 to 0.5 mm.
[0029]
The high bulk density flameproof fiber spun yarn fabric preferably has a phosphorus content of 100 to 500 ppm. More preferably, it is 120-450 ppm, Most preferably, it is 150-350 ppm. By containing phosphorus, the workability of the spun yarn fabric is improved and the heat oxidation resistance is enhanced. When the phosphorus content is less than 100 ppm, the thermal oxidation resistance is lowered, so that the fiber strength is lowered by the high temperature compression treatment, and the strength of the high bulk density flame resistant fiber spun yarn fabric tends to be lowered. Even when the phosphorus content exceeds 500 ppm, the brittleness of the fibers increases, so the strength of the flame-resistant fiber spun yarn fabric tends to decrease.
[0030]
The high bulk density flameproof fiber spun yarn fabric preferably has a critical oxygen index (hereinafter LOI) of 30 to 60, more preferably 33 to 55, and most preferably 35 to 50.
[0031]
The tensile strength of the high bulk density flameproof fiber spun yarn fabric is preferably 10 N / cm or more, more preferably 10 to 40 N / cm, more preferably 15 to 35 N / cm, and most preferably 20 to 30 N / cm. When the tensile strength is low, sufficient strength cannot be obtained and handling properties are inferior. In addition, the tensile strength per unit cross-sectional area is preferably 4 to 16 MPa, more preferably 6 to 15 MPa, and most preferably 8 to 14 MPa. The tensile strength in this range can be obtained by adjusting the specific gravity of the flame resistant fiber to be used and the phosphorus content.
[0032]
Hereinafter, the manufacturing method of the high bulk density flame resistant fiber spun yarn fabric of this invention is demonstrated.
[0033]
As a precursor fiber used as a raw material for the flame resistant fiber, any of conventionally known fibers can be used as a precursor fiber of polyacrylonitrile-based, pitch-based, kainol-based, rayon-based or the like. In order to obtain a spun yarn fabric having high strength, polyacrylonitrile fiber having a high strength and elongation is most suitable.
[0034]
When polyacrylonitrile fiber is used as the precursor fiber for production, it is preferable to use 90 to 98% by mass of acrylonitrile monomer units and 2 to 10% by mass of comonomer units. Examples of the comonomer include vinyl monomers such as acrylic acid methyl ester, acrylamide, and itaconic acid.
[0035]
The fineness of the precursor fiber is preferably 0.6 to 3.3 dtex, and particularly preferably 0.7 to 3.0 dtex. When the fineness is less than 0.6 dtex, heat storage cutting is likely to occur during the flameproofing process described later, and when the fineness exceeds 3.3 dtex, the flameproofing process takes a long time and the strength of the flameproof fiber tends to deteriorate. It is in.
[0036]
The flame resistant fiber can be obtained by a flame resistant treatment in which the precursor fiber is treated in air at a high temperature to cause a cyclization reaction, thereby increasing the oxygen bond amount to make it infusible and flame retardant. More specifically, for example, after a polyacrylonitrile fiber is flameproofed in air at an initial flameproofing temperature of 220 to 250 ° C. for 10 minutes, a maximum temperature of 250 at a heating rate of 0.2 to 0.9 ° C / min. Heat to ~ 280 ° C and hold at this temperature for 5-30 minutes.
[0037]
The flame resistant fiber thus obtained preferably has a critical oxygen index (hereinafter LOI) of 30 to 60, more preferably 33 to 55, and most preferably 35 to 50.
[0038]
The specific gravity of the flame resistant fiber is preferably 1.30 to 1.39. Furthermore, 1.33-1.39 is more preferable, and 1.35-1.39 is the most preferable. When the specific gravity of the flame resistant fiber is less than 1.30, fine carbon powder is likely to be produced after carbonization, and the strength of the obtained carbon fiber spun yarn fabric tends to decrease. When the specific gravity of the flame resistant fiber exceeds 1.39, the single fiber strength and elongation of the flame resistant fiber are lowered, and the workability of the spun yarn fabric using the flame resistant fiber tends to be lowered. In addition, interfiber sticking is less likely to occur during compression treatment, and the thickness of the fabric tends to increase during carbonization.
[0039]
The fineness of the flame resistant fiber is preferably 0.8 to 4.4 dtex, and more preferably 1.0 to 3.3 dtex. When the fineness is outside this range, fiber breakage is likely to occur, and when it is finally made into a carbon fiber spun yarn fabric, carbon fine powder tends to be easily generated. The fineness can be adjusted by the fineness of the precursor fiber as a raw material, the relaxing conditions during the flameproofing treatment, and the like.
[0040]
The flame resistant fiber thus obtained is staple cut by constant length cutting or bias cutting with a tow reactor.
[0041]
The flame resistant fiber staple used as the spun yarn preferably has a crimp rate of 8 to 16%. When the crimp rate is less than 8%, the fibers are less entangled, so that yarn breakage is likely to occur during spinning. When the crimp rate exceeds 16%, the single fiber strength is lowered and spinning is difficult.
[0042]
The number of crimps of the staple is preferably in the range of 2.4 to 5.5 / cm. When the number of crimps is less than 2.4 pieces / cm, yarn breakage is likely to occur during spinning. When the number of crimps exceeds 5.5 pcs / cm, the single fiber strength tends to decrease, or fiber breakage tends to occur during crimping.
[0043]
The standard strength of the flame resistant fiber staple is preferably in the range of 8 to 40 mN / dtex. Similarly, the elongation in the standard state is preferably 8 to 30%. When the strength is less than 8 mN / dtex and the elongation is less than 8%, the workability during the production of flame-resistant fiber spun fabric tends to be lowered.
[0044]
The knot strength of the flame resistant fiber staple is preferably in the range of 5 to 15 mN / dtex. Similarly, the knot elongation is preferably in the range of 5 to 10%. When the knot strength is less than 5 mN / dtex and the knot elongation is less than 5%, the workability at the time of producing the flame-resistant fiber spun yarn fabric is deteriorated, and the strength of the flame-resistant fiber spun yarn fabric obtained further tends to decrease It is in.
[0045]
Next, a spun yarn composed of single yarn or twin yarn is produced using the flame resistant fiber staple.
[0046]
The number of upper twists and lower twists of the flame resistant fiber spun yarn is preferably 200 to 900 times / m. When the number of twists is less than 200 times / m, since the convergence of the fibers is low, it is possible to obtain a flame-resistant spun yarn fabric with a thinner and higher bulk density by compression treatment, but because the strength of the spun yarn is low, the fabric Processing becomes difficult. When the number of twists exceeds 900 times / m, the fiber convergence is too high, and it is difficult to obtain a flame-resistant spun yarn woven fabric having a target bulk density by compression treatment.
[0047]
The thickness of the flame resistant fiber spun yarn is preferably 15 to 40. If the thickness exceeds 15th, the resulting woven fabric tends to be thick, and it is difficult to obtain a flame-resistant spun yarn woven fabric having a target bulk density by compression treatment. If the thickness is less than 40th, the textile processing becomes difficult because the strength of the spun yarn is low.
[0048]
Next, the flame resistant fiber spun yarn is woven to prepare a flame resistant fiber spun yarn fabric. The weaving form may be any of plain weave, twill weave, and satin weave, but plain weave is preferable in order to obtain a thin fabric with little misalignment.
[0049]
The weaving density of the flame resistant fiber spun yarn fabric is preferably 8 to 24 yarns / cm in both circumstances. When the weaving density is less than 8 pieces / cm, the formability of the woven fabric is deteriorated and unevenness occurs. When it exceeds 24 yarns / cm, it is difficult to obtain a spun yarn spun woven fabric having a target bulk density by compression treatment.
[0050]
The basis weight of the flame-resistant spun yarn fabric is 100 to 300 g / m. 2 Is preferred. The basis weight is 100 g / m 2 If it is less than 1, the strength of the carbon fiber spun yarn fabric after carbonization is low, and the handleability is lowered. In addition, since there are fewer contact points between fibers, there is a problem in that the electrical resistance value in the thickness direction increases. The basis weight is 300g / m 2 When it exceeds, it is difficult to become thin. Even if such a high-weight flame-resistant fiber spun yarn fabric is carbonized, it can be obtained at most 180 g / m. 2 In many cases, the carbon fiber spun yarn fabric does not become a thin carbon fiber spun yarn fabric suitable for a polymer electrolyte fuel cell. Also, the electric resistance value in the thickness direction tends to increase. Moreover, since the basis weight is too high, gas diffusion becomes difficult, which causes a decrease in battery performance.
[0051]
The thickness of the flame-resistant spun yarn fabric when a load of 2.8 kPa is applied in the thickness direction is preferably 0.4 to 0.8 mm. When the thickness exceeds 0.8 mm, it is difficult to obtain a flame-resistant spun yarn fabric having a target bulk density by compression treatment.
[0052]
In order to make the phosphorus content of the high bulk density flame resistant fiber spun yarn fabric of the present invention within the above range, the following phosphorus organic compound is adhered during spinning of the precursor fiber or after the flame resistance treatment.
[0053]
Phosphorus organic compounds include phosphonates or phosphates having an alkyl group or an allyl group, specifically, tributyl phosphonate ((C Four H 9 ) Three PO Four ), Trihydroxyethyl phosphate ((HOCH 2 CH 2 ) Three PO Four ), Tricetyl phosphate ((C 16 H 33 ) Three PO Four ) Etc. can be illustrated. Further, anionic, cationic, or nonionic dispersant may be mixed with these phosphorus organic compounds.
[0054]
The adhering amount is preferably 0.5 to 1.5% by mass in the state of the flame-resistant fiber spun yarn fabric after the spun yarn fabric processing, and is similarly adhered so that the phosphorus content of the flame-resistant fiber spun yarn fabric is 100 to 500 ppm. It is preferable to do so. More preferably, it is 120-450 ppm, Most preferably, it is 150-350 ppm.
[0055]
When the phosphorus content is less than 100 ppm, the heat-resistant oxidation resistance of the flame resistant fiber tends to be low, the fiber tends to undergo oxidative degradation, and the strength of the high bulk density flame resistant fiber spun yarn fabric tends to remarkably decrease. If the phosphorus content exceeds 500 ppm, the brittleness of the fiber tends to increase, and the strength of the flame-resistant fiber spun yarn fabric tends to deteriorate. Moreover, when it rolls after carbonization to a roll shape, the tendency to generate | occur | produce a wrinkle in the width direction becomes strong, and it exists in the tendency for the fall of intensity | strength and a winding shape to worsen. In addition, when the fiber is highly brittle, carbon fine powder is likely to be generated after carbonization.
[0056]
In addition, a small amount of resin such as carboxymethylcellulose may be attached to the flame-resistant spun yarn fabric before performing the compression treatment described below, but it is preferable not to attach it. By attaching the resin, a flame resistant fiber spun yarn woven fabric having a high bulk density can be obtained. On the other hand, the carbon fiber spun yarn fabric after carbonization tends to increase in rigidity and brittleness. The amount of resin attached is at most 10% by mass. The carbon fiber spun yarn fabric obtained by carbonizing the flame resistant fiber spun yarn fabric with a large amount of resin attached has high bending resistance, and when it is wound into a roll, it is likely to bend in the width direction and be wrinkled. The strength of the wrinkled portion tends to decrease, and the winding shape tends to deteriorate.
[0057]
The high bulk density flame resistant fiber spun yarn fabric of the present invention can be obtained by subjecting the flame resistant fiber spun yarn fabric to a compression treatment.
[0058]
The compression treatment is performed on the flame proof fiber spun yarn fabric having a flame resistance fiber content of 90% by mass or more obtained as described above under the conditions of a temperature of 200 to 360 ° C. and a pressure of 1 to 100 MPa.
[0059]
The compression treatment temperature is 200 to 360 ° C, but it is further preferable to treat at 220 to 320 ° C, most preferably 240 to 280 ° C. When the compression treatment temperature is less than 200 ° C., the flame-resistant fibers are not sufficiently stuck together, and the carbon fiber spun yarn woven fabric having a high bulk density as in the present invention can be obtained because the thickness is largely restored during carbonization. Absent. When the compression treatment temperature exceeds 360 ° C., even if the phosphorus content is maximized within the range of the present invention, the oxidative deterioration of the single fiber during the treatment is remarkable. Even if this material is carbonized, the strength is low and carbon fine powder is likely to be generated. In order to prevent oxidative degradation, it is preferable to perform the compression treatment in an inert gas atmosphere such as nitrogen.
[0060]
The compression treatment pressure is 1 to 100 MPa, more preferably 2 to 50 MPa, and most preferably 3 to 20 MPa. When the compression treatment pressure is less than 1 MPa, the compression effect is low, and a flame-resistant spun yarn fabric with a target bulk density cannot be obtained. Further, when the compression treatment pressure exceeds 100 MPa, single fibers are damaged, and the strength of the resulting high bulk density flame resistant fiber spun yarn fabric is reduced. As a result, continuous carbonization treatment becomes difficult during carbonization.
[0061]
The compression treatment time of the flame resistant fiber spun yarn fabric is preferably within 3 minutes, more preferably from 0.1 second to 1 minute under the above conditions. Even if the compression treatment is performed for a longer time than 3 minutes, the thickness reduction effect does not change so much. As the compression treatment time is shorter, the damage to the fibers can be suppressed.
[0062]
In the production method of the present invention, the bulk density when a load of 2.8 kPa is applied in the thickness direction of the high bulk density flameproof fiber spun yarn fabric after the compression treatment is 0.6 to 1.1 g / cm. Three The above conditions are appropriately selected so that the compression processing is performed. In order to perform the compression treatment, it is preferable to use a hot press, a calendar roller, or the like.
[0063]
The high bulk density flame resistant fiber spun yarn fabric of the present invention obtained in this way is thin, flexible and not easily wrinkled while having a high bulk density, and of course it becomes a raw material for carbon fiber spun yarn fabric. , Itself can be used as a flame-resistant sheet. Since the high bulk density flame-resistant fiber spun yarn fabric of the present invention has few heat-sensitive components, it can be used stably even under high temperature conditions. For example, it can be suitably used for applications such as a sheet material for covering a structure for imparting a function as a friction material and flame resistance.
[0064]
The carbon fiber spun yarn fabric of the present invention has a bulk density of 0.35 to 0.6 g / cm when a load of 2.8 kPa is applied in the thickness direction. Three But 0.37-0.55 g / cm Three Is preferred, 0.40 to 0.50 g / cm Three Most preferably. When the bulk density is outside this range, a balance between electrical resistance and gas permeability cannot be ensured when used as a fuel cell gas diffusion electrode. That is, the bulk density is 0.35 g / cm Three If it is less than 1, the conductivity is reduced and the bulk density is 0.6 g / cm. Three If it exceeds 1, gas diffusion becomes difficult, causing a decrease in battery performance.
[0065]
The carbon fiber spun yarn fabric of the present invention has a thickness of 0.1 to 0.5 mm. Within this range, it can be suitably used as a fuel cell gas diffusion electrode. The basis weight is 60 to 180 g / m. 2 The range of is preferable.
[0066]
The bending resistance of the carbon fiber spun yarn fabric of the present invention is 5 to 25 mNcm. The range is preferably 6 to 15 mNcm, and most preferably 7 to 13 mNcm. A carbon fiber spun yarn fabric having a bending resistance of less than 5 mNcm is not practical within the range of the bulk density and thickness of the present invention. When the bending resistance exceeds 25 mNcm, since it is too rigid, it cannot be passed through a roller, and continuous processing is difficult. Moreover, when it rolls after carbonization in a roll shape, a wrinkle will generate | occur | produce in the width direction and a fall of intensity | strength and a winding form will worsen.
[0067]
The electrical resistance value in the thickness direction when a load of 10 kPa is applied in the thickness direction of the carbon fiber spun yarn fabric of the present invention is preferably 4.0 mΩ or less when used as a current-carrying material. Furthermore, it is preferably 3.5 mΩ or less, and most preferably 3.0 mΩ or less. When the electric resistance value in the thickness direction exceeds 4.0 mΩ, the resistance value when used as a current-carrying material increases and heat is generated, so that the carbon material tends to become brittle.
[0068]
The tensile strength of the carbon fiber spun yarn fabric is preferably 1 N / cm or more. More preferably, it is the range of 1-10 N / cm. When the tensile strength is less than 1 N / cm, when a tension is applied to the carbon fiber spun yarn fabric itself by continuous processing or the like, the carbon fiber spun yarn fabric tends to break and the handleability tends to be poor. The tensile strength per cross-sectional area is preferably 0.3 to 4 MPa, more preferably 1 to 3.5 MPa, and most preferably 1.5 to 3 MPa.
[0069]
The amount of fine carbon powder generated from the carbon fiber spun yarn fabric is preferably 25 mg / g or less. 23 mg / g or less is more preferable, and 20 mg / g or less is more preferable. The amount of carbon fine powder generated refers to the value measured by the method described in the examples. When fine carbon powder is generated during the processing of the carbon fiber spun yarn fabric, troubles in the processing process, uneven quality, and contamination of the process environment may be caused. Furthermore, since the carbon fine powder has conductivity, if it is scattered around, it may cause a failure of an electronic device or a short circuit of an outlet. In the present invention, the generation amount of carbon fine powder can be reduced by suppressing the embrittlement of the fiber.
[0070]
Moreover, the carbon fiber spun yarn fabric of the present invention can be produced by treating the bulk density flame resistant fiber spun fabric of the present invention at a temperature of 1000 ° C. or higher in an inert gas atmosphere.
[0071]
Carbonization is preferably performed at 1000 to 2500 ° C. in an inert atmosphere such as nitrogen, helium, or argon. In addition, the temperature increase rate in the case of carbonization under temperature increase is preferably 200 ° C./min or less, and more preferably 170 ° C./min or less. When the rate of temperature rise exceeds 200 ° C./min, the growth rate of the crystallite is improved, but the fiber strength is lowered and a large amount of carbon fine powder is generated.
[0072]
The residence time at the maximum temperature is preferably within 30 minutes, more preferably about 0.5 to 20 minutes.
[0073]
The thickness change rate during carbonization is preferably 20% or less. When it exceeds 20%, it is difficult to obtain the carbon fiber spun yarn fabric of the present invention having a bulk density in the above range.
[0074]
The carbon fiber spun yarn fabric of the present invention thus obtained is flexible while being high in bulk density, and can be easily wound on a paper roll. Furthermore, since the electric resistance value in the thickness direction is low, it is extremely suitable as a carbon fiber spun yarn fabric for a fuel cell gas diffusion electrode.
[0075]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Each physical property was measured by the following method.
[0076]
(1) Flame resistant fiber specific gravity
It was measured by a solvent replacement method (solvent: acetone).
[0077]
(2) Flame resistant fiber properties
Standard strength, elongation, nodule strength, and nodular elongation were measured in accordance with JIS L 1015.
[0078]
(3) Thickness
The thickness when a load of 2.8 kPa was loaded on a circular pressure plate with a diameter of 30 mm was measured.
[0079]
(4) Weight per unit area
It calculated from the mass value after vacuum-drying a 200 mm x 250 mm spun yarn fabric at 120 degreeC for 1 hour.
[0080]
(5) Bulk density
It calculated from said fabric weight and thickness.
[0081]
(6) Adhesion amount of phosphorus organic compounds
1 to 10 g of flame-resistant fiber spun yarn fabric was vacuum-dried at 120 ° C. for 1 hour, the mass was measured, and the phosphorus-based organic compound was extracted by the Soxhlet extraction method (solvent: ethanol / benzene). The mass of the extract was divided by the mass of the flame-resistant fiber spun yarn fabric, and the obtained value was expressed as a percentage.
[0082]
(7) Flame resistant fiber content
It calculated using the following formula | equation from the said phosphorus organic compound adhesion amount.
Flame resistant fiber content (mass%) = 100-phosphorus organic compound adhesion (mass%)-resin adhesion (mass%)
(8) Phosphorus content
After flame-spun spun yarn fabric is incinerated at 750 ° C. and the residue is dissolved in aqua regia and diluted, a color developing solution (ammonium metavanadate) is added to a certain amount, and the absorbance is measured. From the absorbance ratio with the standard solution Asked.
[0083]
(9) Critical oxygen index (LOI)
It measured according to JISK7201.
[0084]
(10) Tensile strength of spun yarn fabric
A sample having a width of 25.4 mm and a length of 120 mm or more was fixed to a jig having a distance between chucks of 100 mm, and the breaking strength when pulled at a speed of 30 mm / min was determined. A value converted to a width of 10 mm was shown as a unit of N / cm as a tensile strength 1, and a value converted per unit sectional area was shown as a unit of MPa as a tensile strength 2.
[0085]
(11) Amount of fine carbon powder generated
In a 300 ml beaker, put 200 ml of a water / ethanol (90/10 volume standard) solution adjusted to 25 ° C., and add 1 g of carbon fiber spun yarn fabric (cut to 10 mm × 5 mm) to this solution. Stir for 10 minutes with a rotor (length 30 mm, diameter 8 mm). Thereafter, the stirred carbon fiber spun yarn fabric was filtered with a stainless steel wire mesh (8 mesh), the fine carbon powder in the filtrate was separated with a membrane filter (pore diameter 6 μm), and the weight was measured. From this value, the carbon fine powder generation amount (mg / g) per unit weight of the carbon fiber spun yarn fabric was calculated.
[0086]
(12) Flexibility
It measured based on the method (B method) of JISL1096 description.
[0087]
(13) Flexibility
A spun yarn fabric having a length of 100 mm and a width of 25.4 mm is arranged on a slit having a width W (mm) so that the length direction is perpendicular to the slit, and the spun yarn fabric is placed between the slits with a metal blade having a width of 2 mm. The maximum load at the time of pushing in at a speed of 3 mm / second up to a depth of 15 mm was measured, and the value was defined as flexibility. The slit width W is adjusted in the following range with respect to the thickness t (mm) of the spun yarn fabric.
[0088]
W / t = 10-12
(14) Thickness direction electric resistance
The electric resistance value in the thickness direction when a load of 10 kPa was applied in the thickness direction was measured by sandwiching both sides of the spun yarn fabric with two 50 mm square (thickness 10 mm) gold-plated electrodes.
[0089]
(15) Thickness change rate
Based on the thickness (Ta) of the high bulk density flame resistant fiber spun yarn fabric and the thickness (Tb) of the carbon fiber spun yarn fabric after carbonization, it was calculated using the following formula.
[0090]
Thickness change rate (%) = (Tb−Ta) / Ta × 100
(16) Number of creases
A carbon fiber spun yarn woven fabric having a length of 5 m and a width of 800 mm is wound around a paper tube having a diameter of 76.2 mm in the length direction while applying a linear pressure of 9.8 N / cm in the thickness direction. It was expanded again and the number of wrinkles was counted by visual observation and converted per 1 m.
[0091]
[Reference Example 1] (Preparation of flame-resistant fiber spun yarn fabric 1 before compression treatment)
A polyacrylonitrile fiber (fineness 1.7 dtex, acrylonitrile monomer 97% by mass) containing methyl acrylate as a comonomer is treated in air at an initial flameproofing temperature of 230 ° C. for 10 minutes, followed by a temperature gradient of 0.5 ° C./minute. After raising the temperature to 260 ° C., it was treated at this temperature for 7 minutes. As a result of attaching 1.0 mass% of a phosphorus organic compound (trihydroxyethyl phosphate / polyoxyethylene) to the obtained flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.37, and performing a constant length cut to 51 mm after crimping, A flame resistant fiber staple having a crimp number of 3.5 pcs / cm, a crimp rate of 11%, a strength of 23 mN / dtex, an elongation of 23%, a knot strength of 14 mN / dtex, and a knot elongation of 8% was obtained.
This flame resistant fiber staple having a specific gravity of 1.37 was spun to obtain a 34th double yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A plain woven flame resistant fiber spun yarn fabric 1 having a phosphorus content of 325 ppm was prepared.
[0092]
[Reference Example 2] (Preparation of flame-resistant fiber spun yarn fabric 2 before compression treatment)
The same treatment as in Reference Example 1 was performed except that the temperature gradient during the flameproofing treatment in Reference Example 1 was changed from 0.5 ° C./min to 0.7 ° C./min. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.33. The length is 51 mm, the number of crimps is 3.8 pcs / cm, the crimp rate is 14%, the strength is 25 mN / dtex, the elongation is 25%, and the knot strength. A flame resistant fiber staple having 16 mN / dtex and a knot elongation of 11% was obtained.
This flame resistant fiber staple having a specific gravity of 1.33 was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A plain woven flame resistant fiber spun yarn fabric 2 having a phosphorus content of 322 ppm was produced.
[0093]
[Reference Example 3] (Preparation of flameproof fiber spun yarn fabric 3 before compression treatment)
The same treatment as in Reference Example 1 was performed except that the maximum temperature during the flameproofing treatment of Reference Example 1 was changed from 260 ° C. to 270 ° C. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.38, a length of 51 mm, a crimp number of 3.7 pcs / cm, a crimp rate of 13%, a strength of 22 mN / dtex, an elongation of 19%, and a knot strength. A flame resistant fiber staple having 13 mN / dtex and a knot elongation of 5% was obtained.
This flame resistant fiber staple having a specific gravity of 1.38 was spun to obtain a 34th double yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A plain woven flame resistant fiber spun yarn fabric 3 having a phosphorus content of 321 ppm was produced.
[0094]
[Reference Example 4] (Preparation of flame-resistant fiber spun yarn fabric 4 before compression treatment)
The same treatment as in Reference Example 1 except that the temperature gradient during the flameproofing treatment in Reference Example 1 was changed from 0.5 ° C / min to 0.7 ° C / min and the maximum temperature was changed from 260 ° C to 255 ° C. Went. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.28, a length of 51 mm, a crimp number of 3.8 pcs / cm, a crimp rate of 13%, a strength of 30 mN / dtex, an elongation of 18%, and a knot strength. A flame resistant fiber staple having 17 mN / dtex and a knot elongation of 11% was obtained.
This flame resistant fiber staple having a specific gravity of 1.28 was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A flame-resistant spun yarn fabric 4 having a phosphorus content of 326 ppm and a plain weave was prepared.
[0095]
[Reference Example 5] (Preparation of flame-resistant spun yarn fabric 5 before compression treatment)
The same treatment as in Reference Example 1 was performed except that the adhesion amount of the phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) in Reference Example 1 was changed from 1.0% by mass to 0.6% by mass. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.38, a length of 51 mm, a crimp number of 3.7 pcs / cm, a crimp rate of 13%, a strength of 23 mN / dtex, an elongation of 24%, and a knot strength. A flame resistant fiber staple having 14 mN / dtex and a knot elongation of 10% was obtained.
This flame resistant fiber staple was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A flame-resistant spun yarn fabric 5 having a phosphorus content of 261 ppm and a plain weave was produced.
[0096]
[Reference Example 6] (Preparation of flameproof fiber spun yarn fabric 6 before compression treatment)
The same treatment as in Reference Example 1 was performed except that the adhesion amount of the phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) in Reference Example 1 was changed from 1.0% by mass to 1.4% by mass. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.38, a length of 51 mm, a crimp number of 3.5 pcs / cm, a crimp rate of 12%, a strength of 22 mN / dtex, an elongation of 25%, and a knot strength. A flame resistant fiber staple having 14 mN / dtex and a knot elongation of 10% was obtained.
[0097]
This flame resistant fiber staple was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A plain woven flame resistant fiber spun yarn fabric 6 having a phosphorus content of 490 ppm was prepared.
[0098]
[Reference Example 7] (Preparation of flame-resistant spun yarn fabric 7 before compression treatment)
The same treatment as in Reference Example 1 was performed, except that the adhesion amount of the phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) in Reference Example 1 was changed from 1.0% by mass to 0.1% by mass. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.38, a length of 51 mm, a crimp number of 3.5 pcs / cm, a crimp rate of 11%, a strength of 23 mN / dtex, an elongation of 21%, and a knot strength. A flame resistant fiber staple having 14 mN / dtex and a knot elongation of 9% was obtained.
This flame resistant fiber staple was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three A flame-resistant spun yarn fabric 7 having a phosphorus content of 41 ppm and a plain weave was prepared.
[0099]
[Reference Example 8] (Preparation of flame-resistant fiber spun yarn fabric 8 before compression treatment)
The same treatment as in Reference Example 1 was performed, except that the adhesion amount of the phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) in Reference Example 1 was changed from 1.0% by mass to 2.0% by mass. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.38, a length of 51 mm, a crimp number of 3.5 pcs / cm, a crimp rate of 12%, a strength of 21 mN / dtex, an elongation of 18%, and a knot strength. A flame resistant fiber staple having 13 mN / dtex and a knot elongation of 9% was obtained.
This flame resistant fiber staple was spun to obtain a 34th twin yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m.
Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 pieces / cm for both the background and the basis weight is 200 g / m. 2 , Thickness 0.50mm, bulk density 0.40g / cm Three , Phosphorus content 843ppm, plain woven flame resistant fiber spun yarn fabric 8 Was made.
[0100]
[Example 1]
(Production of high bulk density flame-resistant fiber spun yarn fabric)
When the flame-resistant spun yarn fabric of Reference Example 1 was subjected to a compression treatment in air for 1 minute under the conditions of a temperature of 330 ° C. and a pressure of 5 MPa, the basis weight was 200 g / m. 2 , Thickness 0.25mm, bulk density 0.80g / cm Three A high bulk density flame resistant fiber spun yarn fabric having a flame resistant fiber content of 99.0% and a tensile strength of 27 N / cm was obtained. The LOI was 40. In addition, it could be easily wound around a cigarette and the winding shape was good. The physical properties are shown in Table 1.
[0101]
(Production of carbon fiber spun yarn fabric)
This high bulk density flame resistant fiber spun yarn fabric was heated from a normal temperature to 1900 ° C. at a temperature rising gradient of 120 ° C./min in a nitrogen gas atmosphere, then treated at this temperature for 2 minutes, and a basis weight of 120 g / m. 2 , Thickness 0.27mm, bulk density 0.44g / cm Three A carbon fiber spun yarn woven fabric having a tensile strength of 5.8 N / cm, a bending resistance of 10 mNcm, an electric resistance value of 2.3 mΩ, and a carbon fine powder generation amount of 19 mg / g was obtained. The thickness change rate during carbonization was 8%. The number of creases when wound on a paper tube was 0 / m, and the winding shape was good. The physical properties are also shown in Table 1.
[0102]
[Table 1]
Figure 0003934974
[0103]
[Examples 2 to 8]
Instead of using the flame-resistant spun yarn fabric 1 before compression of Reference Example 1, the flame-resistant fiber spun yarn fabric before compression of Reference Examples 2 to 8 is used. Was made. The respective physical properties are also shown in Table 1.
[0104]
[Examples 9 to 14]
Using the flameproof fiber spun yarn fabric before compression of Reference Example 1 and changing only the compression conditions from the conditions of the temperature of 330 ° C. and the pressure of 5 MPa of Example 1 to the conditions described in Table 2, the same as in Example 1 Thus, a high bulk density flameproof fiber spun yarn fabric and a carbon fiber spun yarn fabric were produced. Each physical property is shown together in Table 2.
[0105]
[Table 2]
Figure 0003934974
[0106]
[Example 15]
The flame-resistant fiber spun yarn fabric 1 before compression of Reference Example 1 is prepared, and the flame-resistant fiber spun yarn fabric 1 is dipped in an aqueous carboxymethyl cellulose (CMC) solution and dried, before compression with a CMC resin adhesion amount of 3.0 mass%. Flame proof fiber spun yarn fabric was obtained. When this flame resistant fiber spun yarn fabric was compressed in air for 1 minute under the conditions of a temperature of 330 ° C. and a pressure of 5 MPa, the basis weight was 206 g / m. 2 , Thickness 0.22mm, bulk density 0.91g / cm Three A high bulk density flame resistant fiber spun yarn fabric having a flame resistant fiber content of 96.0% and a tensile strength of 18 N / cm was obtained.
[0107]
This high bulk density flame resistant fiber spun yarn fabric was heated from a normal temperature to 1900 ° C. at a temperature rising gradient of 120 ° C./min in a nitrogen gas atmosphere, then treated at this temperature for 2 minutes, and a basis weight of 120 g / m. 2 , Thickness 0.23mm, bulk density 0.52g / cm Three A carbon fiber spun yarn woven fabric having a tensile strength of 0.5 N / cm, a bending resistance of 88 mNcm, an electric resistance of 7.2 mΩ, and a carbon fine powder generation amount of 78 mg / g was obtained. The thickness change rate during carbonization was 5%. The flexibility was as excellent as 52 g and could be wound around a cigarette. However, the number of creases when wound on a paper tube was as large as 31 / m.
[0108]
[Comparative Example 1]
Except that the CMC resin adhesion amount of Example 15 was changed from 3.0% by mass to 12.0% by mass, the same procedure as in Example 15 was carried out to obtain a high bulk density flameproof fiber spun yarn fabric and a carbon fiber spun yarn fabric. Produced. The resulting high bulk density flame resistant fiber spun yarn fabric was hard and could not be wound on a cigarette. The obtained carbon fiber spun yarn fabric has a high electrical resistance value of 14.7 mΩ and inferior flexibility of 163 g, and the number of creases when wound on a paper tube is as high as 39 / m. The winding figure was also poor.
[0109]
【The invention's effect】
According to the present invention, it is possible to obtain a high bulk density flame resistant fiber spun yarn fabric which is flexible and excellent in handleability while having a high bulk density. The high bulk density flame resistant fiber spun yarn fabric of the present invention has few components other than the flame resistant fiber, and is suitable for carbonization to obtain a high bulk density carbon fiber spun yarn fabric.
[0110]
Further, according to the present invention, it is possible to obtain a carbon fiber spun yarn woven fabric that is flexible and has excellent passability in a process of bending a roller or the like and can be stored in a roll shape. Since the carbon fiber spun yarn fabric of the present invention is thin and has a low electrical resistance value in the thickness direction, it is suitable as an electrode material for a polymer electrolyte fuel cell.

Claims (10)

耐炎繊維含有率が90質量%以上、目付が100〜300g/m 2 であり、かつ厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.6〜1.1g/cm3である耐炎繊維同士が膠着された高嵩密度耐炎繊維紡績糸織物。The flame-resistant fiber content is 90% by mass or more , the basis weight is 100 to 300 g / m 2 , and the bulk density when a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm 3 . A high bulk density flame resistant fiber spun yarn fabric in which certain flame resistant fibers are glued together . りん含有率が100〜500ppmである請求項1記載の高嵩密度耐炎繊維紡績糸織物。  The high bulk density flame resistant fiber spun yarn fabric according to claim 1, wherein the phosphorus content is 100 to 500 ppm. 限界酸素指数(LOI)が30〜60である請求項1または2記載の高嵩密度耐炎繊維紡績糸織物。  The high-bulk density flame resistant fiber spun yarn fabric according to claim 1 or 2, having a limiting oxygen index (LOI) of 30 to 60. 引張強度が10N/cm以上である請求項1〜3のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。  The high-bulk density flame resistant fiber spun yarn fabric according to any one of claims 1 to 3, wherein the tensile strength is 10 N / cm or more. 耐炎繊維がポリアクリロニトリル系耐炎繊維である請求項1〜4のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。  The high bulk density flame resistant fiber spun yarn fabric according to any one of claims 1 to 4, wherein the flame resistant fiber is a polyacrylonitrile-based flame resistant fiber. 耐炎繊維の比重が1.30〜1.39である請求項1〜5のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物。  The high-bulk density flame-resistant fiber spun yarn fabric according to any one of claims 1 to 5, wherein the specific gravity of the flame-resistant fiber is 1.30 to 1.39. 耐炎繊維含有率が90質量%以上、目付が100〜300g/m 2 である耐炎繊維紡績糸織物に、温度200〜360℃、圧力1〜100MPaの条件で圧縮処理を行うことを特徴とする請求項1〜6のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物の製造方法。A flame resistant fiber spun yarn fabric having a flame resistant fiber content of 90% by mass or more and a basis weight of 100 to 300 g / m 2 is subjected to a compression treatment under conditions of a temperature of 200 to 360 ° C. and a pressure of 1 to 100 MPa. Item 7. The method for producing a high bulk density flame-resistant spun yarn fabric according to any one of Items 1 to 6. 厚さ方向に2.8kPaの荷重を負荷したときの圧縮処理後の耐炎繊維紡績糸織物の嵩密度が、0.6〜1.1g/cm3である請求項7記載の高嵩密度耐炎繊維紡績糸織物の製造方法。8. The high bulk density flame resistant fiber according to claim 7, wherein the bulk density of the flame resistant fiber spun yarn fabric after the compression treatment when a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm 3. A method for producing a spun yarn fabric. 請求項1〜6のいずれか1項に記載の高嵩密度耐炎繊維紡績糸織物を、不活性ガス雰囲気下で1000℃以上の温度で処理することを特徴とする炭素繊維紡績糸織物の製造方法。  A method for producing a carbon fiber spun yarn fabric, comprising treating the high bulk density flame resistant fiber spun yarn fabric according to any one of claims 1 to 6 at a temperature of 1000 ° C or higher in an inert gas atmosphere. . 耐炎繊維含有率が90質量%以上、目付が100〜300g/mFlame resistant fiber content is 90% by mass or more, basis weight is 100 to 300 g / m 22 であり、かつ厚さ方向に2.8kPaの荷重を負荷したときの嵩密度が0.6〜1.1g/cmThe bulk density is 0.6 to 1.1 g / cm when a load of 2.8 kPa is applied in the thickness direction. 3Three である耐炎繊維同士が膠着されたガス拡散電極製造用高嵩密度耐炎繊維紡績糸織物。A high bulk density flame resistant fiber spun yarn fabric for producing a gas diffusion electrode in which flame resistant fibers are glued together.
JP2002091449A 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof Expired - Fee Related JP3934974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091449A JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091449A JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Publications (2)

Publication Number Publication Date
JP2003286631A JP2003286631A (en) 2003-10-10
JP3934974B2 true JP3934974B2 (en) 2007-06-20

Family

ID=29236528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091449A Expired - Fee Related JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Country Status (1)

Country Link
JP (1) JP3934974B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446721B2 (en) * 2003-12-01 2010-04-07 株式会社クレハ Carbon fiber spun yarn and its woven fabric
JP5873248B2 (en) * 2011-03-25 2016-03-01 東邦テナックス株式会社 Carbon fiber spun yarn fabric, carbon fiber precursor spun yarn fabric, and method for producing carbon fiber spun yarn fabric
FR3094380B1 (en) * 2019-03-28 2022-01-07 Safran Aircraft Engines Checking the positioning and continuity of threads in a loom

Also Published As

Publication number Publication date
JP2003286631A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP3868903B2 (en) Carbon fiber sheet and manufacturing method thereof
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
US20060257720A1 (en) Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell
CN101583747A (en) Method for production of carbonized cloth, and carbonized cloth produced by the method
JP4329296B2 (en) Conductive carbon fiber sheet and polymer electrolyte fuel cell
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2008169490A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
CN101578404A (en) Method for production of carbonized cloth, and carbonized cloth produced thereby
JP4582905B2 (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
CN101578406A (en) Method for production of carbonized cloth, and carbonized cloth produced thereby
JP2004100102A (en) Graphite woven fabric
JP2004084147A (en) Carbonaceous fiber woven cloth
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP2002348743A (en) Structural material of woven fabric made of flat carbon fiber-spun yarn
JP2003064539A (en) Carbon fiber fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees