JP2003064539A - Carbon fiber fabric and method for producing the same - Google Patents

Carbon fiber fabric and method for producing the same

Info

Publication number
JP2003064539A
JP2003064539A JP2001254555A JP2001254555A JP2003064539A JP 2003064539 A JP2003064539 A JP 2003064539A JP 2001254555 A JP2001254555 A JP 2001254555A JP 2001254555 A JP2001254555 A JP 2001254555A JP 2003064539 A JP2003064539 A JP 2003064539A
Authority
JP
Japan
Prior art keywords
spun yarn
woven fabric
carbon fiber
fiber
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001254555A
Other languages
Japanese (ja)
Inventor
Kenji Shimazaki
賢司 島崎
Shintaro Tanaka
慎太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2001254555A priority Critical patent/JP2003064539A/en
Publication of JP2003064539A publication Critical patent/JP2003064539A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber fabric without showing the oozing out of a treating agent to the untreated surface even on treating one side surface in a thin type fabric, its raw material and methods for producing them. SOLUTION: This carbon fiber fabric consisting of spun yarns or a filament bundle is provided by using monofilaments having a flat cross section for constituting the spun yarns or filament bundle. The method for producing the carbon fiber fabric is provided by spin-processing or intermingle-treating a polyacrylonitrile-based oxidized fiber to obtain the spun yarns or filament bundle, compression-treating the obtained spun yarns or filament bundle at 150-400 deg.C temperature and under 5-50 MPa pressure, fabric-processing and then carbonizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通電材(電極材、
ア−ス用構造材)等に用いる炭素繊維織物、その原料、
及びそれらの製造方法に関する。
TECHNICAL FIELD The present invention relates to a current-carrying material (electrode material,
Carbon fiber woven fabric for use as a structural material for earth, etc., its raw material,
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】ポリアクリロニトリル系炭素繊維は、柔
軟性があり、薄く、しかも通電性がある織物の製造が可
能で、構造体としてコンパクトな通電材(電極材、アー
ス用構造材)への応用が期待されている。
2. Description of the Related Art Polyacrylonitrile-based carbon fibers are flexible, thin, and capable of producing electrically conductive fabrics, and are applied as a compact current-carrying material (electrode material, grounding structural material) as a structure. Is expected.

【0003】薄い炭素繊維織物として通電材に応用する
場合、片面の撥水処理や、樹脂処理、セラミック処理等
が必要とされたり、また、他の機能性シート等と一体化
されたりして、製品化されている。
When applied as a current carrying material as a thin carbon fiber woven fabric, water repellent treatment on one side, resin treatment, ceramic treatment, etc. are required, or it is integrated with other functional sheets, etc. It has been commercialized.

【0004】炭素繊維織物は紡績糸やフィラメント束よ
り構成される。しかし、これら紡績糸やフィラメント束
の間隔が開いていたりすると、片面処理時に非処理面へ
の樹脂が滲み出し易い。また、紡績糸やフィラメント束
の間隔が詰まっていても、炭素繊維織物の厚さが薄いと
片面処理時に非処理面への樹脂が滲み出し易いという問
題がある。
The carbon fiber woven fabric is composed of spun yarn and filament bundles. However, if the spun yarns or filament bundles are spaced apart from each other, the resin easily exudes to the non-treated surface during the one-side treatment. Further, even if the spacing between spun yarns and filament bundles is narrow, if the thickness of the carbon fiber woven fabric is thin, the resin tends to ooze out to the non-treated surface during the one-side treatment.

【0005】炭素繊維織物の片面処理時に、処理剤が非
処理面(反対側の面)に滲み出すと、工程での接触面へ処
理剤の付着、汚染、更に製品としての品質低下を招く。
If the treating agent oozes out to the non-treated surface (opposite side) during the one-side treatment of the carbon fiber woven fabric, the treating agent adheres to the contact surface in the process, is contaminated, and further deteriorates the quality of the product.

【0006】このようなことから、厚さがより薄くて、
柔軟性があり、片面処理時に非処理面への処理剤が滲み
出さず、厚さ方向の通電性に優れた素材が望まれてい
る。
From the above, the thickness is thinner,
There is a demand for a material that is flexible and does not exude the treatment agent to the non-treated surface during one-side treatment and has excellent electrical conductivity in the thickness direction.

【0007】[0007]

【発明が解決しようとする課題】炭素繊維紡績糸織物に
ついて、本発明者等は、構成している紡績糸を扁平化さ
せ、紡績糸間の隙間を無くす(目隙度を少なくする)こ
とにより処理剤の滲み出しを改善し、先に出願した(特
願2001−160232)。
Regarding the carbon fiber spun yarn woven fabric, the inventors of the present invention have made the spun yarns which are composed flat by eliminating the gaps between the spun yarns (reducing the gap degree). The application of a processing agent was improved (Japanese Patent Application No. 2001-160232).

【0008】しかし、炭素繊維紡績糸織物が薄く且つ目
付の低い素材の場合、又は炭素繊維織物がフィラメント
束からなる場合、処理剤の滲み出しの改善は不十分であ
った。
However, when the carbon fiber spun yarn fabric is a thin and low basis weight material, or when the carbon fiber fabric is composed of a bundle of filaments, the bleeding of the treating agent was not sufficiently improved.

【0009】本発明者等は、上記問題を解決すべく更に
鋭意検討した結果、目隙度の改善と共に、紡績糸又はフ
ィラメント束の単繊維自体を扁平化させ、その扁平面
を、織物の表面の平面に平行に配向させることにより、
処理剤の滲み出しをより改善できることを知得し、本発
明を完成するに至った。
The inventors of the present invention have conducted further studies as a solution to the above problems, and as a result, improved the porosity and flattened the filaments of the spun yarn or filament bundle, and the flat surface thereof was used as the surface of the woven fabric. By orienting parallel to the plane of
It was found that the exudation of the treatment agent could be further improved, and the present invention was completed.

【0010】従って、本発明の目的とするところは、上
記問題を解決し、薄型の織物において、片面処理しても
処理剤が非処理面への滲み出しの無い炭素繊維織物、そ
の原料、及びそれらの製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and in a thin woven fabric, a carbon fiber woven fabric in which the treating agent does not seep to the non-treated face even after one-side treatment, its raw material, and It is to provide the manufacturing method of them.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成する本
発明は、以下に記載するものである。
The present invention which achieves the above-mentioned object is described below.

【0012】〔1〕 断面形状が扁平であるポリアクリ
ロニトリル系酸化単繊維を少なくとも含む紡績糸又はフ
ィラメント束。
[1] A spun yarn or filament bundle containing at least polyacrylonitrile oxide monofilament having a flat cross section.

【0013】〔2〕 紡績糸又はフィラメント束からな
る炭素繊維織物であって、紡績糸又はフィラメント束を
構成する単繊維の断面形状が扁平である炭素繊維織物。
[2] A carbon fiber woven fabric comprising spun yarns or filament bundles, wherein the single fibers constituting the spun yarns or filament bundles have a flat cross-sectional shape.

【0014】〔3〕 単繊維の断面の最大直径(L1
と、単繊維の断面の最小直径(L2)とで示される単繊
維の扁平度(L2/L1)が0.2〜0.7である〔2〕
に記載の炭素繊維織物。
[3] Maximum diameter of cross section of single fiber (L 1 )
And the flatness (L 2 / L 1 ) of the single fiber represented by the minimum diameter (L 2 ) of the cross section of the single fiber is 0.2 to 0.7 [2]
The carbon fiber woven fabric according to 1.

【0015】〔4〕 ポリアクリロニトリル系酸化繊維
を紡績加工して又はインターミングル処理して、紡績糸
又はフィラメント束を得、得られた紡績糸又はフィラメ
ント束を、温度150〜400℃、圧力5〜50MPa
にて圧縮処理を行うことを特徴とする断面形状が扁平で
あるポリアクリロニトリル系酸化単繊維を少なくとも含
む紡績糸又はフィラメント束の製造方法。
[4] A spun yarn or filament bundle is obtained by spinning or intermingling polyacrylonitrile oxide fiber, and the spun yarn or filament bundle is obtained at a temperature of 150 to 400 ° C. and a pressure of 5 to 5. 50 MPa
A method for producing a spun yarn or filament bundle containing at least polyacrylonitrile oxide monofilament having a flat cross-sectional shape, which is characterized in that compression treatment is performed.

【0016】〔5〕 ポリアクリロニトリル系酸化繊維
を紡績加工して又はインターミングル処理して、紡績糸
又はフィラメント束を得、得られた紡績糸又はフィラメ
ント束を、温度150〜400℃、圧力5〜50MPa
にて圧縮処理を行い、次いで織物加工した後、炭素化す
ることを特徴とする炭素繊維織物の製造方法。ポリアク
リロニトリル系繊維を酸化処理して酸化繊維を得、得ら
れた酸化繊維を紡績加工して又はインターミングル処理
して、紡績糸又はフィラメント束を得、得られた紡績糸
又はフィラメント束を、温度150〜400℃、圧力5
〜50MPaにて圧縮処理を行い、次いで織物加工した
後、炭素化することを特徴とする炭素繊維織物の製造方
法。
[5] The polyacrylonitrile oxide fiber is spun or intermingled to obtain a spun yarn or filament bundle, and the spun yarn or filament bundle is obtained at a temperature of 150 to 400 ° C. and a pressure of 5 to 5. 50 MPa
A method for producing a carbon fiber woven fabric, which comprises subjecting the woven fabric to compression treatment, then processing the woven fabric, and then carbonizing. The polyacrylonitrile-based fiber is oxidized to obtain an oxidized fiber, the obtained oxidized fiber is spun or intermingled to obtain a spun yarn or filament bundle, and the spun yarn or filament bundle obtained is subjected to a temperature 150 ~ 400 ℃, pressure 5
A method for producing a carbon fiber woven fabric, which comprises compressing at -50 MPa, then processing the woven fabric, and then carbonizing.

【0017】[0017]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0018】本発明の炭素繊維織物は、紡績糸又はフィ
ラメント束からなる炭素繊維織物であって、紡績糸又は
フィラメント束を構成する単繊維の断面形状が扁平であ
る炭素繊維織物である。
The carbon fiber woven fabric of the present invention is a carbon fiber woven fabric comprising a spun yarn or a filament bundle, and a single fiber constituting the spun yarn or the filament bundle has a flat cross section.

【0019】本発明の炭素繊維織物において、単繊維の
扁平度(L2/L1)は0.2〜0.7が好ましい。
In the carbon fiber woven fabric of the present invention, the flatness (L 2 / L 1 ) of the single fiber is preferably 0.2 to 0.7.

【0020】単繊維の扁平度が0.2未満の場合は、繊
維強度が低下し、微粉末が発生するので好ましくない。
When the flatness of the single fiber is less than 0.2, the fiber strength is lowered and fine powder is generated, which is not preferable.

【0021】単繊維の扁平度が0.7を超える場合は、
処理剤の滲み出し抑制効果が低下するので好ましくな
い。
When the flatness of the single fiber exceeds 0.7,
This is not preferable because the effect of suppressing the exudation of the treatment agent is reduced.

【0022】この単繊維の扁平度は、例えば紡績糸又は
フィラメント束を構成している単繊維の断面の電子顕微
鏡写真より、単繊維の断面の最大直径(L1)と最小直
径(L2)とを測定し、その比率(L1/L2)を算出す
ることにより求めることができる。
The flatness of this monofilament is determined by, for example, an electron micrograph of the cross section of the monofilament constituting the spun yarn or filament bundle, showing the maximum diameter (L 1 ) and the minimum diameter (L 2 ) of the cross section of the monofilament. Can be obtained by measuring and and calculating the ratio (L 1 / L 2 ).

【0023】本発明の炭素繊維織物の目付は、30〜1
50g/m2であることが好ましい。
The basis weight of the carbon fiber woven fabric of the present invention is 30 to 1
It is preferably 50 g / m 2 .

【0024】炭素繊維織物の目付が30g/m2より低
い場合は、片面処理時に裏面へ滲み出し易い、強度が低
下する、並びに、厚さ方向の電気抵抗値が増加するなど
の不具合を生ずるので好ましくない。
If the basis weight of the carbon fiber woven fabric is lower than 30 g / m 2 , problems such as easy exudation to the back surface during the one-side treatment, a decrease in strength, and an increase in electrical resistance in the thickness direction occur. Not preferable.

【0025】炭素繊維織物の目付が150g/m2より
高い場合は、厚さ方向の電気抵抗値が増加する、並び
に、紡績糸及びフィラメント束の扁平化加工が難しいな
どの不具合を生ずるので好ましくない。
When the basis weight of the carbon fiber woven fabric is higher than 150 g / m 2 , the electric resistance value in the thickness direction increases and the flattening process of the spun yarn and filament bundle is difficult, which is not preferable. .

【0026】本発明の炭素繊維織物の厚さは、0.15
〜0.7mmであることが好ましい。
The carbon fiber woven fabric of the present invention has a thickness of 0.15.
It is preferably about 0.7 mm.

【0027】炭素繊維織物の厚さが0.15mm未満の
場合は、炭素繊維紡績糸織物の強度が低下する、加工時
に切断、伸びが発生し易くなる、並びに、加工性が低下
するなどの不具合を生ずるので好ましくない。
When the thickness of the carbon fiber woven fabric is less than 0.15 mm, the strength of the carbon fiber spun yarn woven fabric is reduced, cutting and elongation are likely to occur during processing, and workability is reduced. It is not preferable because it causes

【0028】炭素繊維織物の厚さが0.7mmを超える
場合は、厚さ方向の電気抵抗値が増加するので好ましく
ない。
When the thickness of the carbon fiber woven fabric exceeds 0.7 mm, the electric resistance value in the thickness direction increases, which is not preferable.

【0029】本発明の炭素繊維織物の目隙度は7%以下
であることが好ましい。
The porosity of the carbon fiber woven fabric of the present invention is preferably 7% or less.

【0030】炭素繊維織物の目隙度が7%より大きい場
合は、樹脂や触媒等の処理剤による片面処理時に裏面へ
滲み出し易い、並びに、厚さ方向の電気抵抗値増加する
(他部材との接触面積低下による)などの不具合を生ず
るので好ましくない。
If the carbon fiber woven fabric has a porosity of more than 7%, it tends to seep to the back surface during one-side treatment with a treating agent such as resin or catalyst, and the electrical resistance value in the thickness direction increases (compared with other members). (Due to the reduction of the contact area) and the like, which is not preferable.

【0031】片面処理時における処理剤の滲み出し率
は、少ない程良く、0%が最も好ましい。
The bleeding rate of the treating agent during the one-sided treatment is preferably as small as possible, and 0% is most preferable.

【0032】処理剤の滲み出し率が3%より高い場合
は、工程での処理剤付着、固着による炭素繊維織物の表
面損傷や品質低下を生じ易いので好ましくない。
When the exudation rate of the treating agent is higher than 3%, the surface damage and the quality deterioration of the carbon fiber woven fabric due to the attaching and fixing of the treating agent in the process are likely to occur, which is not preferable.

【0033】炭素繊維織物のX線結晶サイズは、1.3
〜4.5nmが好ましい。
The X-ray crystal size of the carbon fiber woven fabric is 1.3.
~ 4.5 nm is preferred.

【0034】電気抵抗値は炭素の炭素化・黒鉛化度が進
むほど低い値を示す。この炭素化・黒鉛化度の指標は、
X線結晶サイズの大きさにて示すことができる。
The electric resistance value becomes lower as the degree of carbonization / graphitization of carbon increases. This carbonization / graphitization index is
It can be indicated by the size of the X-ray crystal size.

【0035】炭素繊維織物のX線結晶サイズが1.3n
mより低い場合は、厚さ方向の電気抵抗値が増加するの
で好ましくない。
X-ray crystal size of carbon fiber woven fabric is 1.3 n
If it is lower than m, the electric resistance value in the thickness direction increases, which is not preferable.

【0036】炭素繊維織物のX線結晶サイズが4.5n
mより高い場合は、炭素繊維紡績糸織物の強度が低下す
る、並びに、炭素微粉末発生が増加するなどの不具合を
生ずるので好ましくない。
X-ray crystal size of carbon fiber woven fabric is 4.5n
When it is higher than m, the strength of the carbon fiber spun yarn woven fabric is deteriorated and the generation of carbon fine powder is increased, which is not preferable.

【0037】X線結晶サイズの調整は、炭素繊維織物を
炭素化する際、焼成温度、時間を調整することにより行
うことができる。
The X-ray crystal size can be adjusted by adjusting the firing temperature and time when carbonizing the carbon fiber woven fabric.

【0038】(炭素繊維織物の製造)本発明の炭素繊維
織物は、その物性が上記範囲内にあれば、その製造方法
としては、特に限定されるものではないが、例えば、ポ
リアクリロニトリル系繊維(プリカーサー)を酸化処理
して酸化繊維を得、得られた酸化繊維を紡績加工して又
はインターミングル処理して、紡績糸又はフィラメント
束を得、得られた紡績糸又はフィラメント束を、温度1
50〜400℃、圧力5〜50MPaにて圧縮処理を行
い、次いで織物加工した後、炭素化する炭素繊維織物の
製造方法により製造することができる。
(Production of carbon fiber woven fabric) The carbon fiber woven fabric of the present invention is not particularly limited in its production method as long as the physical properties thereof are within the above-mentioned ranges. For example, polyacrylonitrile fiber ( The precursor) is oxidized to obtain oxidized fiber, the obtained oxidized fiber is spun or intermingled to obtain a spun yarn or filament bundle, and the spun yarn or filament bundle is obtained at a temperature of 1
It can be manufactured by a method of manufacturing a carbon fiber woven fabric in which compression treatment is performed at 50 to 400 ° C. and a pressure of 5 to 50 MPa, and then the woven fabric is processed and then carbonized.

【0039】以下、本発明の炭素繊維織物の製造方法に
ついて、詳細に説明する。
The method for producing the carbon fiber woven fabric of the present invention will be described in detail below.

【0040】(酸化繊維)本発明の炭素繊維織物の原料
である酸化繊維は、ポリアクリロニトリル系プリカーサ
ーを空気中で、初期酸化温度220〜280℃で酸化処
理することにより得られる。
(Oxidized Fiber) Oxidized fiber, which is a raw material for the carbon fiber woven fabric of the present invention, is obtained by subjecting a polyacrylonitrile precursor to an oxidation treatment in air at an initial oxidation temperature of 220 to 280 ° C.

【0041】酸化繊維の適正な繊度は0.8〜2.8d
texである。繊度の調整は、用いられるプリカーサー
の繊度、酸化時のリラックス条件により実施することが
できる。
The proper fineness of the oxidized fiber is 0.8 to 2.8d.
tex. The fineness can be adjusted depending on the fineness of the precursor used and the relaxing conditions at the time of oxidation.

【0042】酸化繊維の繊度が0.8dtexより低い
場合は、圧縮処理時の圧力が各単繊維に及びにくく、単
繊維の扁平化加工が難しくなるので好ましくない。
If the fineness of the oxidized fiber is lower than 0.8 dtex, the pressure during the compression process is difficult to reach each single fiber, and the flattening process of the single fiber becomes difficult, which is not preferable.

【0043】酸化繊維の繊度が2.8dtexより高い
場合は、酸化時間が長時間となり、生産性が悪い、並び
に、紡績糸やフィラメント束を細く加工するのが難しい
などの不具合を生ずるので好ましくない。
If the fineness of the oxidized fiber is higher than 2.8 dtex, the oxidation time will be long, the productivity will be poor, and problems such as difficulty in finely processing the spun yarn or filament bundle will occur. .

【0044】酸化繊維の適正な比重は、1.30〜1.
39である。酸化繊維の比重が1.30より低い場合
は、圧縮時に酸化繊維強度が劣化する、並びに、炭素繊
維微粉末が発生するなどの不具合を生ずるので好ましく
ない。酸化繊維の比重が1.39より高い場合は、単繊
維の扁平加工が難しくなり、圧縮効果が低下するので好
ましくない。
The proper specific gravity of the oxidized fiber is 1.30 to 1.
39. If the specific gravity of the oxidized fiber is lower than 1.30, the strength of the oxidized fiber is deteriorated during compression, and the carbon fiber fine powder is generated, which is not preferable. If the specific gravity of the oxidized fiber is higher than 1.39, flattening of the single fiber becomes difficult and the compression effect is deteriorated, which is not preferable.

【0045】(酸化繊維織物)上記酸化繊維は、下記方
法により酸化繊維紡績糸織物又は酸化繊維フィラメント
織物にされる。以下、各の酸化繊維織物の製造方法につ
いて詳述する。
(Oxidized Fiber Woven Fabric) The oxidized fiber is made into an oxidized fiber spun yarn woven fabric or an oxidized fiber filament woven fabric by the following method. Hereinafter, the method for producing each oxidized fiber fabric will be described in detail.

【0046】(a:酸化繊維紡績糸織物) (a−1:紡績加工)酸化繊維を所定の長さにカット又
はバイアスカットした短繊維の綿状物を紡績加工すると
共に撚りを加えて酸化繊維紡績糸を得る。
(A: Oxidized fiber spun yarn woven fabric) (a-1: Spinning process) A short fiber cotton material obtained by cutting or bias-cutting an oxidized fiber to a predetermined length is spun and twisted, and the oxidized fiber is added. Get spun yarn.

【0047】得られた酸化繊維紡績糸の太さは、15番
手単糸〜25番手単糸又は30番手双糸〜50番手双糸
が好ましい。
The thickness of the obtained oxidized fiber spun yarn is preferably 15th count single yarn to 25th count single yarn or 30th count double yarn to 50th count double yarn.

【0048】酸化繊維紡績糸の撚り数は、上撚り又は下
撚りの何れの場合も100〜800回/mが好ましい。
The number of twists of the oxidized fiber spun yarn is preferably 100 to 800 times / m in both cases of upper twist and lower twist.

【0049】酸化繊維紡績糸の短繊維本数は、90〜9
00本/紡績糸が好ましい。
The number of short fibers of the oxidized fiber spun yarn is 90 to 9
00 / spun yarn is preferred.

【0050】(a−2:圧縮処理)得られた酸化繊維紡
績糸を圧縮処理する。あらかじめ樹脂処理した後に圧縮
処理しても良い。酸化繊維紡績糸の樹脂処理は、所定の
濃度の樹脂浴に浸漬し、樹脂を10.0質量%以下の範
囲で付着させることが好ましい。
(A-2: Compression treatment) The obtained oxidized fiber spun yarn is subjected to compression treatment. You may perform compression processing after resin-treating beforehand. For the resin treatment of the oxidized fiber spun yarn, it is preferable to immerse it in a resin bath having a predetermined concentration to deposit the resin in the range of 10.0% by mass or less.

【0051】樹脂の付着量が10.0質量%より多い場
合は、炭素繊維紡績糸織物の柔軟性が損なわれ、脆性が
高くなるので好ましくない。
When the amount of the resin adhered is more than 10.0% by mass, the flexibility of the carbon fiber spun yarn fabric is impaired and brittleness becomes high, which is not preferable.

【0052】樹脂処理に用いる樹脂は、ポリアクリル酸
エステル、カルボキシメチルセローズ及びポリビニルア
ルコール等の取扱性の良い水溶性の樹脂が好ましい。
The resin used for the resin treatment is preferably a water-soluble resin having good handleability such as polyacrylic acid ester, carboxymethyl cellulose and polyvinyl alcohol.

【0053】樹脂浴の濃度は、0.1〜5.0質量%が
好ましい。
The concentration of the resin bath is preferably 0.1 to 5.0% by mass.

【0054】酸化繊維紡績糸は、樹脂処理後、又は樹脂
処理せずに圧縮処理を行う。
The oxidized fiber spun yarn is subjected to a compression treatment after the resin treatment or without the resin treatment.

【0055】圧縮処理温度は150〜400℃が好まし
い。圧縮処理温度が150℃より低い場合は、単繊維の
扁平効果が低下するので好ましくない。圧縮処理温度が
400℃より高い場合は、単繊維の扁平効果は大きい
が、圧縮処理後の酸化繊維紡績糸の強度が低下する、並
びに、織物加工性が低下するなどの不具合を生ずるので
好ましくない。
The compression treatment temperature is preferably 150 to 400 ° C. When the compression treatment temperature is lower than 150 ° C., the flattening effect of the single fiber is lowered, which is not preferable. When the compression treatment temperature is higher than 400 ° C, the flattening effect of the single fiber is large, but the strength of the oxidized fiber spun yarn after the compression treatment is lowered, and the fabric processability is deteriorated, which is not preferable. .

【0056】圧縮処理時の圧力は5〜50MPaが好ま
しい。圧力が5MPaより低い場合は、単繊維の扁平効
果が低下するので好ましくない。圧力が50MPaより
高い場合は、単繊維の扁平効果は大きいが、圧縮処理後
の酸化繊維紡績糸の強度が低下するので好ましくない。
The pressure during the compression treatment is preferably 5 to 50 MPa. When the pressure is lower than 5 MPa, the flattening effect of the single fiber is lowered, which is not preferable. When the pressure is higher than 50 MPa, the flattening effect of the single fiber is large, but the strength of the oxidized fiber spun yarn after compression is reduced, which is not preferable.

【0057】圧縮処理に用いる圧力装置は、ホットプレ
ス、熱ローラー等のいずれの装置でも良い。
The pressure device used for the compression treatment may be any device such as a hot press or a heat roller.

【0058】(a−3:製織)圧縮処理した上記酸化繊
維紡績糸を製織することにより酸化繊維紡績糸織物を得
る。酸化繊維紡績糸織物の形態は、炭素化した後の炭素
繊維紡績糸織物について、カット時、目ズレの少ない、
且つ賦形性のよい平織の形態が好ましい。
(A-3: Weaving) An oxidized fiber spun yarn woven fabric is obtained by weaving the compressed oxidized fiber spun yarn. The form of the oxidized fiber spun yarn fabric is such that the carbon fiber spun yarn fabric after carbonization has little misalignment at the time of cutting,
Moreover, a plain weave form having good shaping properties is preferable.

【0059】この酸化繊維紡績糸織物は、炭素化後の炭
素繊維紡績糸織物について、厚さが0.5〜2.0m
m、目付が70〜250g/m2、目隙度が5%以下に
なるのものが好ましい。
This oxidized fiber spun yarn woven fabric has a thickness of 0.5 to 2.0 m with respect to the carbon fiber spun yarn woven fabric after carbonization.
m, the basis weight is 70 to 250 g / m 2 , and the porosity is preferably 5% or less.

【0060】炭素化後の炭素繊維紡績糸織物を上記の物
性にするには、酸化繊維紡績糸の製織において酸化繊維
紡績糸織物中の紡績糸の打ち込み本数を4〜24本/c
mとすることが好ましい。
In order to make the carbon fiber spun yarn fabric after carbonization have the above-mentioned physical properties, in the weaving of the oxidized fiber spun yarn, the number of spun yarns in the oxidized fiber spun yarn fabric is 4 to 24 / c.
It is preferably m.

【0061】(b:酸化繊維フィラメント織物) (b−1:インターミングル処理)所定本数の酸化繊維
(単繊維フィラメント)をインターミングル処理して酸
化繊維フィラメント束を得る。
(B: Oxidized fiber filament woven fabric) (b-1: Intermingle treatment) A predetermined number of oxidized fibers (single fiber filaments) are intermingled to obtain an oxidized fiber filament bundle.

【0062】インターミングル処理とは、繊維の交絡処
理のことで、単繊維フィラメントの束をノズルに連続的
に通し、通過方向に対して直角の方向から、圧力空気
(0.1〜1MPa)を当て、単繊維同士を交絡させる
処理のことである。
The intermingling treatment is a fiber entanglement treatment, in which a bundle of monofilament filaments is continuously passed through a nozzle, and pressurized air (0.1 to 1 MPa) is applied from a direction perpendicular to the passing direction. It is a process of applying and intertwining the single fibers.

【0063】インターミングル処理して得られるフィラ
メント束における単繊維フィラメント数は、100〜5
0000本/束が好ましい。
The number of monofilament filaments in the filament bundle obtained by the intermingle treatment is 100 to 5
0000 pieces / bundle is preferable.

【0064】フィラメント束における単繊維フィラメン
ト数が100本/束未満の場合は、フィラメント束の総
強力が低いため、織物加工性が低下するので好ましくな
い。
When the number of monofilament filaments in the filament bundle is less than 100 filaments / bundle, the total strength of the filament bundle is low and the fabric processability is deteriorated, which is not preferable.

【0065】フィラメント束における単繊維フィラメン
ト数が50000本/束を超える場合は、圧縮処理時に
フィラメント束の扁平化及び単繊維の扁平化が難しくな
るので好ましくない。
When the number of monofilament filaments in the filament bundle exceeds 50,000 filaments / bundle, flattening of the filament bundle and flattening of the monofilament become difficult during the compression treatment, which is not preferable.

【0066】インターミングル処理により酸化繊維フィ
ラメントの収束性が向上し、織物加工性が改善される。
また織物加工後のフィラメントが一部厚さ方向に配列す
る為、炭素化後の炭素繊維織物の厚さ方向の通電性が改
善される。
The intermingle treatment improves the convergence of the oxidized fiber filaments and improves the fabric processability.
In addition, since the filaments after the fabric processing are partially arranged in the thickness direction, the electrical conductivity in the thickness direction of the carbon fiber fabric after carbonization is improved.

【0067】引き裂き強力によりインターミングルの程
度(繊維交絡度)を示すことができる。
The degree of intermingling (fiber entanglement degree) can be indicated by the tear strength.

【0068】酸化繊維フィラメントのインターミングル
処理において、引き裂き強力は5〜50gとすることが
好ましい。
In the intermingle treatment of the oxidized fiber filament, the tear strength is preferably 5 to 50 g.

【0069】インターミングル処理における引き裂き強
力が5g未満の場合は、織物加工時にフィラメント束の
収束性が低く、単繊維の飛散やフィラメント束の切れ等
を生じ、織物加工性が低下するので好ましくない。
When the tear strength in the intermingle treatment is less than 5 g, the filament bundles have a low convergence when the fabric is processed, scattering of single fibers and breaks of the filament bundles occur, and the fabric processability deteriorates, which is not preferable.

【0070】インターミングル処理における引き裂き強
力が50gを超える場合は、圧縮加工時にフィラメント
束の収束性が高くなり過ぎ、圧縮処理時のフィラメント
束の扁平化及び単繊維の扁平化が難しく、目標とする厚
さの薄い織物が得られないので好ましくない。
When the tear strength in the intermingle treatment exceeds 50 g, the filament bundles have too high a convergence during compression processing, and it is difficult to flatten the filament bundles and flatten the single fibers during the compression treatment. It is not preferable because a thin fabric cannot be obtained.

【0071】(b−2:圧縮処理、製織)上記インター
ミングル処理で得られた酸化繊維フィラメント束の圧縮
処理、製織は、前述した紡績糸織物と同様の方法、条件
にて行うことができる。
(B-2: Compression treatment, weaving) The compression treatment and weaving of the oxidized fiber filament bundle obtained by the above intermingle treatment can be performed by the same method and conditions as those for the spun yarn woven fabric described above.

【0072】(炭素化)圧縮処理、製織した酸化繊維紡
績糸織物又は酸化繊維フィラメント織物は、不活性ガス
雰囲気下に加熱し、連続的に炭素化する。不活性ガスと
しては、窒素、アルゴン、ヘリウム等を用いることがで
きる。
(Carbonization) The oxidized fiber spun yarn woven fabric or oxidized fiber filament woven fabric which has been compressed and woven is heated in an inert gas atmosphere to be continuously carbonized. Nitrogen, argon, helium or the like can be used as the inert gas.

【0073】炭素化温度は1300〜2500℃が好ま
しい。炭素化温度が1300℃より低い場合は、電気抵
抗値が増加するので好ましくない。炭素化温度が250
0℃より高い場合は、電気抵抗値は低下して安定する
が、炭素繊維織物の強度が低下する、並びに、炭素微粉
末が発生するなどの不具合があるので好ましくない。
The carbonization temperature is preferably 1300 to 2500 ° C. When the carbonization temperature is lower than 1300 ° C, the electric resistance value increases, which is not preferable. Carbonization temperature is 250
When the temperature is higher than 0 ° C., the electric resistance value decreases and becomes stable, but the strength of the carbon fiber woven fabric decreases and there are problems such as generation of carbon fine powder, which is not preferable.

【0074】[0074]

【実施例】本発明を以下の実施例及び比較例により詳述
する。
EXAMPLES The present invention will be described in detail with reference to the following examples and comparative examples.

【0075】以下の実施例及び比較例の条件により酸化
繊維紡績糸織物、酸化繊維フィラメント織物、炭素繊維
紡績糸織物、炭素繊維フィラメント織物等を作製し、得
られた酸化繊維紡績糸織物、酸化繊維フィラメント織
物、炭素繊維紡績糸織物、炭素繊維フィラメント織物等
の諸物性値を、以下の方法により測定した。
Oxidized fiber spun yarn woven fabrics, oxidized fiber filament woven fabrics, carbon fiber spun yarn woven fabrics, carbon fiber filament woven fabrics, etc. were produced under the conditions of the following examples and comparative examples, and the obtained oxidized fiber spun yarn woven fabrics and oxidized fibers were obtained. Various physical properties of the filament woven fabric, the carbon fiber spun yarn woven fabric, the carbon fiber filament woven fabric and the like were measured by the following methods.

【0076】単繊維の扁平度:紡績糸又はフィラメント
束を構成している単繊維断面の電子顕微鏡写真(倍率5
000倍)より繊維の最小直径と最大直径を測定し、下
記式により算出した。 単繊維の扁平度= L2 / L11:単繊維断面における最大直径 L2:単繊維断面における最小直径 フィラメント束のインターミングルの程度(繊維交絡
度);引き裂き強力:フィラメント束の横断面のほぼ中
央からフィラメント束の長さ方向に約10cmにわたっ
て2分割した。分割した2つの糸条それぞれに、セロハ
ンテープ等の薄いテープを先端から約5cm貼り、これ
をテンシロン引張り試験機中のチャック部に装着し、引
張り速度200mm/min、引張り距離30mm、チ
ャック間隔10cmにて引き裂いた。得られた平均強力
(Ff)と引き裂き後の片側糸条の質量(Ft)から下式
により求められる値を引裂き強力(F)とした。 F=Ff−Ft 厚さ:直径30mmの円形圧板で200gの荷重(2.8kP
a)時の厚さを測定した。
Flatness of monofilament: Electron micrograph of cross section of monofilament constituting spun yarn or filament bundle (magnification: 5
The minimum diameter and the maximum diameter of the fiber were measured from (000 times) and calculated by the following formula. Flatness of single fiber = L 2 / L 1 L 1 : Maximum diameter in single fiber cross section L 2 : Minimum diameter in single fiber cross section Degree of intermingling of filament bundle (fiber entanglement degree); Tear strength: Cross section of filament bundle Of the filament bundle was divided into two in the length direction of the filament bundle over about 10 cm. A thin tape such as cellophane tape is attached to each of the two divided yarns from the tip by about 5 cm, and this is attached to the chuck part of the Tensilon tensile tester, and the pulling speed is 200 mm / min, the pulling distance is 30 mm, and the chuck interval is 10 cm. Torn. The tear strength (F) was determined by the following formula from the obtained average strength (F f ) and the mass (F t ) of the yarn on one side after tearing. F = F f −F t Thickness: 200 g load (2.8 kP
The thickness at time a) was measured.

【0077】比重:アルキメデス法(溶媒:アセトン)
により測定した。
Specific gravity: Archimedes method (solvent: acetone)
It was measured by.

【0078】繊維性能:乾強度、乾伸度はJIS L 1
015により測定した。
Fiber performance: Dry strength and dry elongation are JIS L 1
015.

【0079】目付:単位面積当たりの質量と、上記条件
により測定した厚さより算出した。
Basis weight: Calculated from the mass per unit area and the thickness measured under the above conditions.

【0080】酸素結合量:元素分析装置(CHNOコー
ダー)により、酸素含有率を測定し、これを酸素結合量
(酸化度合いの尺度)とした。
Oxygen bond amount: The oxygen content was measured with an elemental analyzer (CHNO coder), and this was used as the oxygen bond amount (a measure of the degree of oxidation).

【0081】X線結晶サイズ:広角X線回折測定での2
θのピークの半値幅と下記のシェラーの式より求めた。 X線結晶サイズ(nm)=(k×λ)/β×cosθ k:装置定数 0.90 λ:X線波長 0.154nm β:2θ=26.0°付近の最大ピークの半値幅 通電性(比抵抗値):2枚の50mm角(厚さ10m
m)の金メッキした電極に炭素繊維織物の両面を圧力1
MPaで挟み、両電極間の電気抵抗値(R)を測定し、
厚さ(T)と接触面積(S)より下式にて算出した。 通電性(比抵抗値:Ωcm)=(R×S)/T 目隙度:1.5×104〜2.5×104ルックスの光源
の上に織物をのせ、上部より倍率100倍で顕微鏡撮影
し、得られた画像を画像解析し、測定対象織物の全面積
(A1)と透過光部(紡績糸の非存在部)の面積(A2
を求める。これらの値より目隙度を下式により算出し
た。 目隙度(%)=(A2/A1)×100 樹脂の滲み出し状態:ポリビニルアルコール(PVA:
分子量2000)の水溶液(粘度10000mP・S)を用い、
20cm角の炭素繊維織物の片面(上面)に、20〜2
8℃の温度で塗布量を100〜150g/m2の範囲で
均一に塗布した後、25℃、1時間放置後の反対面(裏
面)の樹脂の滲み出し状態を観察し、倍率25倍で顕微
鏡写真撮影後、画像処理により、裏面の全面積に対する
滲み出し部分の全面積を測定し下記式により算出した。 滲み出し率%=(樹脂の滲み出し面積/方面の全面積)
×100 実施例1 繊度2.5dtex、比重1.33、クリンプ数3.8
ヶ/cm、クリンプ率11%、乾強度2.7g/dte
x、乾伸度25%、平均カット長51mmのポリアクリ
ロニトリル(PAN)系酸化繊維ステ−プルを紡績し、
上撚り250回/m、下撚り450回/mの35番手双
糸(紡績糸)を得た。
X-ray crystal size: 2 in wide-angle X-ray diffraction measurement
It was calculated from the half-width of the peak of θ and the Scherrer's formula below. X-ray crystal size (nm) = (k × λ) / β × cos θ k: device constant 0.90 λ: X-ray wavelength 0.154 nm β: 2θ = 26.0 ° Specific resistance value: Two 50 mm squares (thickness 10 m
m) gold-plated electrode on both sides of carbon fiber fabric with pressure 1
It is sandwiched by MPa, the electric resistance value (R) between both electrodes is measured,
It was calculated from the thickness (T) and the contact area (S) by the following formula. Electrical conductivity (specific resistance value: Ωcm) = (R × S) / T Porosity: 1.5 × 10 4 to 2.5 × 10 4 Place a woven fabric on a light source with a magnification of 100 times from the top. microscope photography, the area of the image obtained by image analysis, the total area of the measurement target fabric (a 1) and the transmitted light portion (absence of the spun yarn) (a 2)
Ask for. The gap degree was calculated from these values by the following formula. Porosity (%) = (A 2 / A 1 ) × 100 Resin exudation state: Polyvinyl alcohol (PVA:
Using an aqueous solution with a molecular weight of 2000) (viscosity 10000 mP · S),
20 to 20 on one side (upper surface) of 20 cm square carbon fiber woven fabric
After uniformly applying the coating amount in the range of 100 to 150 g / m 2 at a temperature of 8 ° C., observing the exudation state of the resin on the opposite surface (back surface) after leaving it at 25 ° C. for 1 hour, and magnifying at 25 times. After the micrograph was taken, the total area of the exuded portion with respect to the total area of the back surface was measured by image processing and calculated by the following formula. Exudation rate% = (exuded area of resin / total area in the direction)
× 100 Example 1 Fineness 2.5 dtex, specific gravity 1.33, crimp number 3.8
/ Cm, crimp rate 11%, dry strength 2.7g / dte
x, a dry elongation of 25%, an average cut length of 51 mm, spun polyacrylonitrile (PAN) -based oxidized fiber staple,
A 35th count twine (spun yarn) having an upper twist of 250 turns / m and a lower twist of 450 turns / m was obtained.

【0082】得られた紡績糸を金属加熱ローラーにて温
度250℃、圧力25MPaの条件下圧縮処理すること
により、単繊維の扁平化処理を行った。この扁平化処理
後の紡績糸を用いて、縦、緯共に織り密度が14本/c
mの平織(酸化繊維紡績糸織物)を作製した。得られた
酸化繊維紡績糸織物の目付は245g/m2、厚さは
0.45mmであった。
The obtained spun yarn was compressed with a metal heating roller under conditions of a temperature of 250 ° C. and a pressure of 25 MPa to flatten the monofilament. Using the spun yarn after the flattening treatment, the weaving density in both warp and weft is 14 yarns / c
m plain weave (oxidized fiber spun yarn woven fabric) was produced. The obtained oxidized fiber spun yarn woven fabric had a basis weight of 245 g / m 2 and a thickness of 0.45 mm.

【0083】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維紡績糸
織物を得た。得られた炭素繊維紡績糸織物の物性を表1
に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber spun yarn fabric. Table 1 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.
Shown in.

【0084】表1に示すように、得られた炭素繊維紡績
糸織物の各物性は優れたものであった。
As shown in Table 1, the physical properties of the obtained carbon fiber spun yarn woven fabric were excellent.

【0085】実施例2 実施例1で得られた35番手双糸(紡績糸)を金属加熱
ローラーにて温度250℃、圧力15MPaの条件下圧
縮処理することにより、単繊維の扁平化処理を行った。
この扁平化処理後の紡績糸を用いて、縦、緯共に織り密
度が15本/cmの平織(酸化繊維紡績糸織物)を作製
した。得られた酸化繊維紡績糸織物の目付は250g/
2、厚さは0.48mmであった。
Example 2 The flattening treatment of monofilaments was performed by compressing the 35th count twine yarn (spun yarn) obtained in Example 1 with a metal heating roller under the conditions of a temperature of 250 ° C. and a pressure of 15 MPa. It was
Using the spun yarn after the flattening treatment, a plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 15 warps / cm was prepared. The weight of the obtained oxidized fiber spun yarn fabric is 250 g /
m 2 and the thickness was 0.48 mm.

【0086】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維紡績糸
織物を得た。得られた炭素繊維紡績糸織物の物性を表1
に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber spun yarn fabric. Table 1 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.
Shown in.

【0087】表1に示すように、得られた炭素繊維紡績
糸織物の各物性は優れたものであった。
As shown in Table 1, the physical properties of the obtained carbon fiber spun yarn woven fabric were excellent.

【0088】比較例1 実施例1で得られた35番手双糸(紡績糸)を金属加熱
ローラーにて温度350℃、圧力75MPaの条件下圧
縮処理することにより、単繊維の扁平化処理を行った。
この扁平化処理後の紡績糸を用いて、縦、緯共に織り密
度が16本/cmの平織(酸化繊維紡績糸織物)を作製
した。得られた酸化繊維紡績糸織物の目付は244g/
2、厚さは0.44mmであった。
Comparative Example 1 The single-filament flattening treatment was carried out by compressing the 35th count twine yarn (spun yarn) obtained in Example 1 with a metal heating roller under the conditions of a temperature of 350 ° C. and a pressure of 75 MPa. It was
Using the spun yarn after the flattening treatment, a plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 16 warp / cm was prepared. The basis weight of the obtained oxidized fiber spun yarn fabric is 244 g /
m 2 and the thickness was 0.44 mm.

【0089】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成した。しかし、焼
成中の炭素繊維紡績糸織物は強度が著しく低下し、焼成
中切断した。
Further, this oxidized fiber spun yarn woven fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere. However, the strength of the carbon fiber spun yarn fabric during firing was significantly reduced, and the fabric was cut during firing.

【0090】[0090]

【表1】 [Table 1]

【0091】比較例2 実施例1で得られた35番手双糸(紡績糸)を金属加熱
ローラーにて温度120℃、圧力75MPaの条件下圧
縮処理することにより、単繊維の扁平化処理を行った。
この扁平化処理後の紡績糸を用いて、縦、緯共に織り密
度が18本/cmの平織(酸化繊維紡績糸織物)を作製
した。得られた酸化繊維紡績糸織物の目付は256g/
2、厚さは0.81mmであった。
Comparative Example 2 The single-filament flattening treatment was carried out by compressing the 35th count twine yarn (spun yarn) obtained in Example 1 with a metal heating roller under the conditions of temperature 120 ° C. and pressure 75 MPa. It was
Using the spun yarn after the flattening treatment, a plain weave (oxidized fiber spun yarn woven fabric) having a weave density of 18 warps / cm was prepared. The basis weight of the obtained oxidized fiber spun yarn fabric is 256 g /
m 2 and the thickness was 0.81 mm.

【0092】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維紡績糸
織物を得た。得られた炭素繊維紡績糸織物の物性を表2
に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber spun yarn fabric. Table 2 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.
Shown in.

【0093】表2に示すように、得られた炭素繊維紡績
糸織物は、樹脂の滲み出しが2質量%と多く、不適なも
のであった。
As shown in Table 2, the obtained carbon fiber spun yarn woven fabric had a large amount of resin exudation of 2% by mass, which was unsuitable.

【0094】実施例3 実施例1で得られた35番手双糸(紡績糸)をカルボキ
シメチルセルローズ水溶液に浸漬して処理し、カルボキ
シメチルセルローズを2質量%付着含有させた後、金属
加熱ローラーにて温度200℃、圧力35MPaの条件
下圧縮処理することにより、単繊維の扁平化処理を行っ
た。この扁平化処理後の紡績糸を用いて、縦、緯共に織
り密度が15本/cmの平織(酸化繊維紡績糸織物)を
作製した。得られた酸化繊維紡績糸織物の目付は252
g/m2、厚さは0.50mmであった。
Example 3 The No. 35 yarn (spun yarn) obtained in Example 1 was treated by immersing it in an aqueous solution of carboxymethyl cellulose and adding 2% by mass of carboxymethyl cellulose to the metal heated roller. The flattening treatment of the single fiber was performed by performing compression treatment under the conditions of a temperature of 200 ° C. and a pressure of 35 MPa. Using the spun yarn after the flattening treatment, a plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 15 warps / cm was prepared. The weight of the obtained oxidized fiber spun yarn fabric is 252.
It was g / m 2 and had a thickness of 0.50 mm.

【0095】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維紡績糸
織物を得た。得られた炭素繊維紡績糸織物の物性を表2
に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber spun yarn fabric. Table 2 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.
Shown in.

【0096】表2に示すように、得られた炭素繊維紡績
糸織物の各物性は優れたものであった。
As shown in Table 2, the physical properties of the obtained carbon fiber spun yarn woven fabric were excellent.

【0097】比較例3 繊度2.5dtex、比重1.44、クリンプ数3.7
ヶ/cm、クリンプ率10%、乾強度2.3g/dte
x、乾伸度21%、平均カット長51mmのポリアクリ
ロニトリル(PAN)系酸化繊維ステ−プルを紡績し、
上撚り250回/m、下撚り550回/mの35番手双
糸(紡績糸)を得た。
Comparative Example 3 Fineness 2.5 dtex, specific gravity 1.44, crimp number 3.7
/ Cm, crimp rate 10%, dry strength 2.3 g / dte
x, a dry elongation of 21%, an average cut length of 51 mm was spun on a polyacrylonitrile (PAN) -based oxidized fiber staple,
A 35th count twine (spun yarn) having an upper twist of 250 turns / m and a lower twist of 550 turns / m was obtained.

【0098】得られた紡績糸をカルボキシメチルセルロ
ーズ水溶液に浸漬して処理し、カルボキシメチルセルロ
ーズを2質量%付着含有させた後、金属加熱ローラーに
て温度200℃、圧力3MPaの条件下圧縮処理するこ
とにより、単繊維の扁平化処理を行った。この扁平化処
理後の紡績糸を用いて、縦、緯共に織り密度が17本/
cmの平織(酸化繊維紡績糸織物)を作製した。得られ
た酸化繊維紡績糸織物の目付は260g/m2、厚さは
0.74mmであった。
The obtained spun yarn is treated by immersing it in an aqueous solution of carboxymethyl cellulose, and after containing 2% by mass of carboxymethyl cellulose, it is compressed with a metal heating roller under the conditions of a temperature of 200 ° C. and a pressure of 3 MPa. Thus, the flattening treatment of the single fiber was performed. Using the flattened spun yarn, weaving density of 17 yarns in both warp and weft
cm plain weave (oxidized fiber spun yarn fabric) was prepared. The resulting oxidized fiber spun yarn woven fabric had a basis weight of 260 g / m 2 and a thickness of 0.74 mm.

【0099】更に、焼成温度1900℃、窒素ガス雰囲
気下で焼成し炭素繊維紡績糸織物を得た。得られた炭素
繊維紡績糸織物の物性を表2に示す。
Further, it was fired in a nitrogen gas atmosphere at a firing temperature of 1900 ° C. to obtain a carbon fiber spun yarn woven fabric. Table 2 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.

【0100】表2に示すように、得られた炭素繊維紡績
糸織物は、樹脂の滲み出しが3質量%と多く、不適なも
のであった。
As shown in Table 2, the obtained carbon fiber spun yarn woven fabric had a large amount of resin exudation of 3% by mass, which was unsuitable.

【0101】[0101]

【表2】 [Table 2]

【0102】実施例4 繊度2.3dtex、比重1.38、単繊維数1000
本のポリアクリロニトリル(PAN)系酸化繊維のフィ
ラメント束に、圧力空気を圧力0.1MPaにてフィラ
メント束の走向方向に対し垂直方向に吹きつけ、連続的
に単繊維の交絡処理(インターミングル処理)を行い、
引き裂き強力15gのフィラメント束を得た。
Example 4 Fineness 2.3 dtex, specific gravity 1.38, single fiber number 1000
A filament bundle of polyacrylonitrile (PAN) -based oxidized fibers is blown with pressurized air at a pressure of 0.1 MPa in a direction perpendicular to the traveling direction of the filament bundle to continuously entangle single fibers (intermingle treatment). And then
A filament bundle having a tear strength of 15 g was obtained.

【0103】このインターミングル処理後のフィラメン
ト束を、金属加熱ローラーにて温度200℃、圧力35
MPaの条件下圧縮処理することにより、単繊維の扁平
化処理を行った。この扁平化処理後の紡績糸を用いて、
縦、緯共に織り密度が7本/cmの平織(酸化繊維紡績
糸織物)を作製した。得られた酸化繊維紡績糸織物の目
付は215g/m2、厚さは0.65mmであった。
The filament bundle after the intermingle treatment was heated with a metal heating roller at a temperature of 200 ° C. and a pressure of 35.
The flattening treatment of the single fiber was performed by performing the compression treatment under the condition of MPa. Using the spun yarn after this flattening treatment,
A plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 7 yarns / cm was prepared for both warp and weft. The obtained oxidized fiber spun yarn fabric had a basis weight of 215 g / m 2 and a thickness of 0.65 mm.

【0104】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維フィラ
メント織物を得た。得られた炭素繊維フィラメント織物
の物性を表3に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber filament fabric. Table 3 shows the physical properties of the obtained carbon fiber filament woven fabric.

【0105】表3に示すように、得られた炭素繊維フィ
ラメント織物の各物性は優れたものであった。
As shown in Table 3, the physical properties of the obtained carbon fiber filament woven fabric were excellent.

【0106】実施例5 繊度2.3dtex、比重1.38、単繊維数1000
本のポリアクリロニトリル(PAN)系酸化繊維のフィ
ラメント束に、圧力空気を圧力0.3MPaにてフィラ
メント束の走向方向に対し垂直方向に吹きつけ、連続的
に単繊維の交絡処理(インターミングル処理)を行い、
引き裂き強力35gのフィラメント束を得た。
Example 5 Fineness 2.3 dtex, specific gravity 1.38, single fiber number 1000
The filament bundle of polyacrylonitrile (PAN) -based oxidized fibers is blown with pressurized air at a pressure of 0.3 MPa in a direction perpendicular to the traveling direction of the filament bundle to continuously entangle the single fibers (intermingle treatment). And then
A filament bundle having a tear strength of 35 g was obtained.

【0107】このインターミングル処理後のフィラメン
ト束を、ポリビニルアルコ−ル水溶液に浸漬して処理
し、ポリビニルアルコールを1.0質量%付着含有させ
た後、金属加熱ローラーにて温度220℃、圧力35M
Paの条件下圧縮処理することにより、単繊維の扁平化
処理を行った。この扁平化処理後の紡績糸を用いて、
縦、緯共に織り密度が7本/cmの平織(酸化繊維紡績
糸織物)を作製した。得られた酸化繊維紡績糸織物の目
付は217g/m2、厚さは0.64mmであった。
The filament bundle after the intermingle treatment was dipped in an aqueous solution of polyvinyl alcohol to be treated so that 1.0% by mass of polyvinyl alcohol was adhered and contained therein, and the temperature was 220 ° C. and the pressure was 35 M with a metal heating roller.
The flattening treatment of the single fiber was performed by performing the compression treatment under the condition of Pa. Using the spun yarn after this flattening treatment,
A plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 7 yarns / cm was prepared for both warp and weft. The basis weight of the obtained oxidized fiber spun yarn woven fabric was 217 g / m 2 , and the thickness was 0.64 mm.

【0108】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維フィラ
メント織物を得た。得られた炭素繊維フィラメント織物
の物性を表3に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber filament fabric. Table 3 shows the physical properties of the obtained carbon fiber filament woven fabric.

【0109】表3に示すように、得られた炭素繊維フィ
ラメント織物の各物性は優れたものであった。
As shown in Table 3, the physical properties of the obtained carbon fiber filament woven fabric were excellent.

【0110】比較例4 繊度2.3dtex、比重1.38、単繊維数1000
本のポリアクリロニトリル(PAN)系酸化繊維のフィ
ラメント束(交絡処理なし、引き裂き強度3g)をポリ
ビニルアルコール水溶液に浸漬して処理し、ポリビニル
アルコールを1.0質量%付着含有させた後、金属加熱
ローラーでの単繊維の扁平化処理を行わないまま、この
紡績糸を用いて、縦、緯共に織り密度が8本/cmの平
織(酸化繊維紡績糸織物)を作製した。得られた酸化繊
維紡績糸織物の目付は235g/m2、厚さは0.87
mmであった。
Comparative Example 4 Fineness 2.3 dtex, specific gravity 1.38, single fiber number 1000
A filament bundle of polyacrylonitrile (PAN) -based oxidized fibers (without entanglement treatment, tear strength 3 g) is dipped in an aqueous polyvinyl alcohol solution to be treated, and 1.0% by mass of polyvinyl alcohol is adhered and contained therein, and then a metal heating roller. A plain weave (oxidized fiber spun yarn woven fabric) having a weaving density of 8 warps / cm was produced using this spun yarn without performing the flattening treatment of the single fiber in 1. The obtained oxidized fiber spun yarn fabric has a basis weight of 235 g / m 2 and a thickness of 0.87.
It was mm.

【0111】更に、この酸化繊維紡績糸織物を焼成温度
1900℃、窒素ガス雰囲気下で焼成し炭素繊維フィラ
メント織物を得た。得られた炭素繊維紡績糸織物の物性
を表3に示す。
Further, this oxidized fiber spun yarn fabric was fired at a firing temperature of 1900 ° C. in a nitrogen gas atmosphere to obtain a carbon fiber filament fabric. Table 3 shows the physical properties of the obtained carbon fiber spun yarn woven fabric.

【0112】表3に示すように、得られた炭素繊維フィ
ラメント織物は、樹脂の滲み出しが7質量%と多く、不
適なものであった。
As shown in Table 3, the obtained carbon fiber filament woven fabric was unsuitable because the resin exudation was as large as 7% by mass.

【0113】[0113]

【表3】 [Table 3]

【0114】[0114]

【発明の効果】本発明の炭素繊維織物は、紡績糸又はフ
ィラメント束からなる炭素繊維織物であって、紡績糸又
はフィラメント束を構成する単繊維の断面形状が扁平で
あるので、薄型の織物であっても、片面処理において処
理剤が非処理面に滲み出さない炭素繊維織物である。
The carbon fiber woven fabric of the present invention is a carbon fiber woven fabric composed of spun yarns or filament bundles, and is a thin woven fabric since the single fibers constituting the spun yarns or filament bundles have a flat cross section. Even if it is present, it is a carbon fiber woven fabric in which the treating agent does not seep to the non-treated surface in the one-side treatment.

【0115】更に、本発明の炭素繊維構造体の製造方法
によれば、ポリアクリロニトリル系酸化繊維を紡績加工
して又はインターミングル処理して、紡績糸又はフィラ
メント束を得、得られた紡績糸又はフィラメント束を、
所定条件において、圧縮処理を行い、次いで織物加工し
た後、炭素化しているので、片面処理において処理剤が
非処理面に滲み出さない炭素繊維織物を得ることができ
る。
Further, according to the method for producing a carbon fiber structure of the present invention, the polyacrylonitrile-based oxidized fiber is subjected to a spinning process or an intermingling process to obtain a spun yarn or a filament bundle, and the obtained spun yarn or The filament bundle
Since compression treatment is performed under predetermined conditions, and then the fabric is processed and then carbonized, it is possible to obtain a carbon fiber fabric in which the treatment agent does not ooze out to the non-treated surface in the one-side treatment.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L036 MA04 MA20 MA24 MA33 MA35 PA18 PA31 PA42 4L037 CS02 CS03 FA01 FA02 FA04 FA15 UA04 4L048 AA05 AA53 AB01 AC14 BA01 BA02 CA05 CA06 DA24 EB05   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4L036 MA04 MA20 MA24 MA33 MA35                       PA18 PA31 PA42                 4L037 CS02 CS03 FA01 FA02 FA04                       FA15 UA04                 4L048 AA05 AA53 AB01 AC14 BA01                       BA02 CA05 CA06 DA24 EB05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 断面形状が扁平であるポリアクリロニト
リル系酸化単繊維を少なくとも含む紡績糸又はフィラメ
ント束。
1. A spun yarn or filament bundle containing at least polyacrylonitrile oxide monofilament having a flat cross section.
【請求項2】 紡績糸又はフィラメント束からなる炭素
繊維織物であって、紡績糸又はフィラメント束を構成す
る単繊維の断面形状が扁平である炭素繊維織物。
2. A carbon fiber woven fabric comprising spun yarns or filament bundles, wherein the single fibers constituting the spun yarns or filament bundles have a flat cross-sectional shape.
【請求項3】 単繊維の断面の最大直径(L1)と、単
繊維の断面の最小直径(L2)とで示される単繊維の扁
平度(L2/L1)が0.2〜0.7である請求項2に記
載の炭素繊維織物。
3. The flatness (L 2 / L 1 ) of the monofilament, which is represented by the maximum diameter (L 1 ) of the cross section of the monofilament and the minimum diameter (L 2 ) of the cross section of the monofilament, is 0.2 to. The carbon fiber woven fabric according to claim 2, which is 0.7.
【請求項4】 ポリアクリロニトリル系酸化繊維を紡績
加工して又はインターミングル処理して、紡績糸又はフ
ィラメント束を得、得られた紡績糸又はフィラメント束
を、温度150〜400℃、圧力5〜50MPaにて圧
縮処理を行うことを特徴とする断面形状が扁平であるポ
リアクリロニトリル系酸化単繊維を少なくとも含む紡績
糸又はフィラメント束の製造方法。
4. A spun yarn or filament bundle is obtained by spinning or intermingling polyacrylonitrile oxide fiber, and the spun yarn or filament bundle is obtained at a temperature of 150 to 400 ° C. and a pressure of 5 to 50 MPa. A method for producing a spun yarn or filament bundle containing at least polyacrylonitrile oxide monofilament having a flat cross-sectional shape, which is characterized in that compression treatment is performed.
【請求項5】 ポリアクリロニトリル系酸化繊維を紡績
加工して又はインターミングル処理して、紡績糸又はフ
ィラメント束を得、得られた紡績糸又はフィラメント束
を、温度150〜400℃、圧力5〜50MPaにて圧
縮処理を行い、次いで織物加工した後、炭素化すること
を特徴とする炭素繊維織物の製造方法。
5. A spun yarn or filament bundle is obtained by spinning or intermingling polyacrylonitrile oxide fiber, and the spun yarn or filament bundle is obtained at a temperature of 150 to 400 ° C. and a pressure of 5 to 50 MPa. A method for producing a carbon fiber woven fabric, which comprises subjecting the woven fabric to compression treatment, then processing the woven fabric, and then carbonizing.
JP2001254555A 2001-08-24 2001-08-24 Carbon fiber fabric and method for producing the same Withdrawn JP2003064539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254555A JP2003064539A (en) 2001-08-24 2001-08-24 Carbon fiber fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254555A JP2003064539A (en) 2001-08-24 2001-08-24 Carbon fiber fabric and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003064539A true JP2003064539A (en) 2003-03-05

Family

ID=19082701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254555A Withdrawn JP2003064539A (en) 2001-08-24 2001-08-24 Carbon fiber fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003064539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054554A1 (en) * 2003-12-01 2005-06-16 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
WO2009060653A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
WO2009060793A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
KR101206421B1 (en) 2010-11-02 2012-11-29 박명숙 Manufacturing method of carbon fiber
KR20190088319A (en) * 2018-01-18 2019-07-26 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054554A1 (en) * 2003-12-01 2005-06-16 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
US7610743B2 (en) 2003-12-01 2009-11-03 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
WO2009060653A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
WO2009060793A1 (en) * 2007-11-06 2009-05-14 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
US8124228B2 (en) 2007-11-06 2012-02-28 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
US8129017B2 (en) 2007-11-06 2012-03-06 Toho Tenax Co., Ltd. Carbon fiber strand and process for producing the same
KR101206421B1 (en) 2010-11-02 2012-11-29 박명숙 Manufacturing method of carbon fiber
KR20190088319A (en) * 2018-01-18 2019-07-26 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof
KR102029179B1 (en) * 2018-01-18 2019-11-08 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3868903B2 (en) Carbon fiber sheet and manufacturing method thereof
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP2003064539A (en) Carbon fiber fabric and method for producing the same
JP2002266217A (en) Carbon fiber nonwoven fabric and method for producing the same
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP4936588B2 (en) Carbon fiber for metal oxide coating and method for producing the same
WO2005054554A1 (en) Carbon fiber spun yarn and woven fabric thereof
JP4582905B2 (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP4282964B2 (en) Carbon fiber woven fabric
JP4190768B2 (en) Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof
JP5873248B2 (en) Carbon fiber spun yarn fabric, carbon fiber precursor spun yarn fabric, and method for producing carbon fiber spun yarn fabric
KR20030047072A (en) A rayon-type twisted carbon fiber and a method of preparing same
JP4018550B2 (en) Carbon fiber spun yarn fabric and method for producing the same
JP4113018B2 (en) Polyacrylonitrile-based carbon fiber spun yarn fabric
JP2003166168A (en) Oxidized fiber structure, carbon fiber structure, and method for producing them
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP4333106B2 (en) Method for producing carbon fiber woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101202