JP4018550B2 - Carbon fiber spun yarn fabric and method for producing the same - Google Patents

Carbon fiber spun yarn fabric and method for producing the same Download PDF

Info

Publication number
JP4018550B2
JP4018550B2 JP2003007632A JP2003007632A JP4018550B2 JP 4018550 B2 JP4018550 B2 JP 4018550B2 JP 2003007632 A JP2003007632 A JP 2003007632A JP 2003007632 A JP2003007632 A JP 2003007632A JP 4018550 B2 JP4018550 B2 JP 4018550B2
Authority
JP
Japan
Prior art keywords
spun yarn
thickness
dtex
carbon fiber
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007632A
Other languages
Japanese (ja)
Other versions
JP2004218148A (en
Inventor
賢司 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2003007632A priority Critical patent/JP4018550B2/en
Publication of JP2004218148A publication Critical patent/JP2004218148A/en
Application granted granted Critical
Publication of JP4018550B2 publication Critical patent/JP4018550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄層の炭素繊維紡績糸織物及びその製造方法に関する。
【0002】
【従来の技術】
ポリアクリロニトリル(PAN)系酸化繊維は、一般の有機繊維と同様の引張り伸度を示し、紡績加工が容易である。このPAN系酸化繊維を用い、紡績ヤーン(より糸)加工等の紡績加工をして紡績糸を得、次いでこの紡績糸を製織し、更に炭素化することにより炭素繊維紡績糸織物を作製することができる。
【0003】
炭素繊維紡績糸織物は、強度特性に優れ、厚さ方向の電気抵抗値が低く高分子電解質型燃料電池用の電極材として有用な素材である。上述したようにPAN系酸化繊維は、炭素繊維紡績糸織物を得るのに適しているため、上記電極材の原料としての適用が進められている。
【0004】
電極材への適用に際して、高分子電解質型燃料電池の場合、電極材と電解質膜及びセパレータとが一体化され一組のスタック(単セル)となり、これが多数積重されて電池が組み立てられている。電池が自動車等の高出力を要求される用途の場合、上記スタック積重数は300〜400となる。これらの用途において、一組のスタックがより厚いと、電池全体の容積がより増大する。
【0005】
そのため、電極材の厚さもできるだけ薄い素材が要求される。しかし、現状では電極材の厚さは0.3〜0.4mmと厚い。
【0006】
なお、炭素繊維紡績糸織物の従来の製造技術としては特許文献1、2などに記載されたものがある。
【0007】
特許文献1には、炭素繊維からなる縦糸と横糸とを平織りとしたカーボンクロスを電極材に用いること、並びに、電極材となるカーボンクロス(カーボン短繊維をよった糸を織ったもの、厚さ0.4mm)についての記載がある。
【0008】
しかし、この特許文献1に記載されたカーボンクロスは、いずれも、本発明のように酸化繊維を紡績糸加工した紡績糸を用いた炭素織物とは異なる。また、記載されている厚さも、本発明の範囲より厚い。
【0009】
特許文献2には、炭素繊維を短繊維化後、炭素繊維紡績糸織物を作製する方法が記載されている。
【0010】
しかし、この特許文献2に記載された炭素繊維紡績糸織物は、本発明とは製造方法が全く異なる。しかも、厚さに関する記載がなく、用途についても電極材用途への記載がない。
【0011】
【特許文献1】
特開平7−335234号公報 (段落番号[0004]、[0027])
【特許文献2】
特開平10−280246号公報 (特許請求の範囲)
【0012】
【発明が解決しようとする課題】
本発明者は、薄層の炭素繊維紡績糸織物を得るために種々検討しているうちに、
1.炭素繊維よりも結節強度の高いPAN系酸化繊維を原料とすることにより、細い紡績糸の作製が可能となる。
2.織物加工時の紡績糸は極力細い方がよいが、タテ方向の糸は巻取り方向の張力がかかると共に、ヨコ方向の糸の張力の影響を受ける。そのため、タテ方向にヨコ方向より太い紡績糸(強力のある紡績糸)を配置し、ヨコ方向にタテ方向より細い紡績糸を打ち込むことにより製織加工性の改善を図ると共に厚さの低減化を図る。
3.更に、製造した紡績糸織物を樹脂処理し又は樹脂処理することなく熱圧縮して厚さの低減化を行う。
4.得られた紡績糸織物を炭素化する。
などの事項、操作を適用することにより、強度特性に優れ、厚さ方向の電気抵抗値が低く、高分子電解質型燃料電池用の電極材として有用で、且つ薄い炭素繊維紡績糸織物を得ることができることを知得し、本発明を完成するに到った。
【0013】
従って、本発明の目的とするところは、上記問題を解決した炭素繊維紡績糸織物及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載するものである。
【0015】
〔1〕 厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物。
【0016】
〔2〕 乾強度1.5gf/dtex以上、結節強度0.3gf/dtex以上のポリアクリロニトリル系酸化繊維の紡績糸であって、タテ方向の酸化繊維紡績糸の太さOA(dtex)及びヨコ方向の酸化繊維紡績糸の太さOB(dtex)が式3
250 < OA < 660 式3
及び式4
0.40 < OB/OA < 0.62 式4
を満たす酸化繊維紡績糸を製織した酸化繊維紡績糸織物を温度100〜350℃、圧力0.5〜20MPaで圧縮処理し、更に前記圧縮処理後の酸化繊維紡績糸織物を炭素化する、厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物の製造方法。
【0017】
〔3〕 乾強度1.5gf/dtex以上、結節強度0.3gf/dtex以上のポリアクリロニトリル系酸化繊維の紡績糸であって、タテ方向の酸化繊維紡績糸の太さOA(dtex)及びヨコ方向の酸化繊維紡績糸の太さOB(dtex)が式3
250 < OA < 660 式3
及び式4
0.40 < OB/OA < 0.62 式4
を満たす酸化繊維紡績糸を製織した酸化繊維紡績糸織物を樹脂処理して樹脂を0.2〜10質量%の範囲で添着させた後、温度100〜350℃、圧力0.5〜20MPaで圧縮処理し、更に前記樹脂処理・圧縮処理後の酸化繊維紡績糸織物を炭素化する、厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物の製造方法。
【0018】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0019】
本発明の炭素繊維紡績糸織物は、厚さが0.08〜0.15mm好ましくは0.08〜0.14mmである。
【0020】
炭素繊維紡績糸織物の厚さが0.15mmを超える場合は、この紡績糸織物を高分子電解質型燃料電池用電極材として用いた場合、燃料電池スタックのコンパクト化が難しい、並びに、電池容積が大きくなるなどの不具合を生ずるので好ましくない。
【0021】
本発明の炭素繊維紡績糸織物の嵩密度は0.45〜0.70g/cm3である。
【0022】
炭素繊維紡績糸織物の嵩密度が0.45g/cm3未満の場合は、炭素繊維紡績糸織物の厚さ方向の電気抵抗値が増加(電気伝導性が低下)するので好ましくない。炭素繊維紡績糸織物の嵩密度が0.70g/cm3を超える場合は、この紡績糸織物を高分子電解質型燃料電池用電極材として用いた場合、電池作動時のガス拡散性低下による、高電流密度(1.6A/cm2)側での電圧低下が起こるので好ましくない。
【0023】
本発明の炭素繊維紡績糸織物を構成するタテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さCA(dtex)と、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さCB(dtex)は、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす。
【0024】
炭素繊維紡績糸(タテ)の太さCAが400dtexを超える場合は、所期の厚さの薄い炭素繊維紡績糸織物が得られないので好ましくない。
【0025】
炭素繊維紡績糸(ヨコ)の太さCBと炭素繊維紡績糸(タテ)の太さCAとの比CB/CAが0.62を超える場合は、所期の厚さの薄い炭素繊維紡績糸織物を得ることができないので好ましくない。
【0026】
炭素繊維紡績糸織物の厚さ方向の電気抵抗値は4mΩが好ましい。この紡績糸織物を高分子電解質型燃料電池用電極材として用いる場合、電気抵抗値が低い程、電池性能が良い。この電気抵抗値が4mΩを超えると起電力が下がり、電池性能が悪くなるので好ましくない。
【0027】
なお、炭素繊維紡績糸織物における厚さ方向の電気抵抗値は、後述する測定方法により測定する。
【0028】
以下、本発明の炭素繊維紡績糸織物の製造方法の一例について、詳細に説明する。
【0029】
〔酸化繊維(単繊維)〕
炭素繊維紡績糸織物原料の酸化繊維(単繊維)は、PAN系酸化繊維であり、例えば市販のPAN系繊維を空気中、高温で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得られるものを用いることができる。
【0030】
PAN系酸化繊維における乾強度、結節強度は、JIS L 1015により測定した物性値である。
【0031】
酸化繊維の乾強度は、1.5gf/dtex(14.7mN/dtex)以上である。酸化繊維乾強度が1.5gf/dtex(14.7mN/dtex)未満の場合は、この酸化繊維を紡績して得られる酸化繊維紡績糸の強度低下、更にこの酸化繊維紡績糸が炭素化されてなる炭素繊維紡績糸の強度低下による微粉末発生が増加するので好ましくない。
【0032】
酸化繊維の結節強度は、0.3gf/dtex(2.9mN/dtex)以上である。酸化繊維結節強度が0.3gf/dtex(2.9mN/dtex)未満の場合は、目標とする細い酸化繊維紡績糸が得難い。得られた場合も紡績糸強度が低く、織物加工が難しい。
【0033】
酸化繊維の比重は、特に限定されないが、1.35〜1.45が好ましい。
【0034】
酸化繊維の繊度は、0.9〜4.5dtexの範囲、1.0〜2.5dtexの範囲がより好ましい。
【0035】
酸化繊維のクリンプ数は、特に限定されないが、5〜20ヶ/インチ(2.54cm)が好ましい。
【0036】
酸化繊維のクリンプ率は、特に限定されないが、7〜15%が好ましい。
【0037】
酸化繊維のカット長は、特に限定されないが、25〜100mmが好ましい。
【0038】
〔紡績加工〕
上述した酸化繊維は、製織時のタテ方向の酸化繊維紡績糸(タテ糸)と、製織時のヨコ方向の酸化繊維紡績糸(ヨコ糸)とに紡績加工する。
【0039】
ここで、タテ糸の太さOAは250〜660dtexであり、ヨコ糸の太さOBとタテ糸の太さOAとの比OB/OAは0.40〜0.62である。
【0040】
タテ糸の太さOAが250dtex未満の場合は、織物加工時に駆動方向の張力により、伸びを生じ易い、並びに、ヨコ方向の紡績糸の打込み時に紡績糸切れを生じ易いなどの不具合を生ずるので好ましくない。タテ糸の太さOAが660dtexを超える場合は、紡績糸が太すぎるため、織物加工時織物の厚さが厚くなり、目標とする厚さの炭素繊維織物を得ることができない。
【0041】
ヨコ糸の太さOBとタテ糸の太さOAとの比OB/OAが0.40未満の場合は、糸強力低下により、製織が難しい。ヨコ糸の太さOBとタテ糸の太さOAとの比OB/OAが0.62を超える場合は、目標とする厚さの炭素繊維織物の製造が難しい。
【0042】
タテ糸、ヨコ糸共、そのより数は350〜820回/mが好ましい。より数が350回/m未満の場合は、強度が低下し、ケバが発生し易いので好ましくない。より数が820回/mを超える場合は、紡績加工性低下、単繊維切れが生じ易い、並びに、ケバが発生し易いなどの不具合を生ずるので好ましくない。
【0043】
〔製織〕
上述した酸化繊維紡績糸を製織することにより、酸化繊維紡績糸織物を製造する。
【0044】
この酸化繊維織物の形態は、特に限定されないが、平織り、杉綾織り、朱子織り等が好ましい。
【0045】
酸化繊維織物の厚さは、0.08〜0.20mmが好ましい。
【0046】
酸化繊維織物の嵩密度は、1.0g/cm3以下が後工程での圧縮処理による厚さのコントロールがし易いので好ましい。酸化繊維織物の嵩密度が1.0g/cm3を超える場合は、厚さの低減化に対するコントロールが難しい。
【0047】
酸化繊維紡績糸のタテ糸・ヨコ糸の打込み本数は、紡績糸の太さにより調整されるが、30〜70本/インチ(2.54cm)の範囲が好ましい。
【0048】
〔樹脂処理〕
上述した酸化繊維紡績糸織物には、圧縮処理する前に、低減効果をより発揮させることを目的として、樹脂処理を行ってもよい。樹脂処理により、炭素化時の厚さ復元を抑制し、厚さの薄い素材を得易くなる。
【0049】
樹脂の種類は熱可塑性、熱硬化性樹脂のいずれでもよいが、後工程で高温(100〜350℃)圧縮処理される際に軟化し、繊維間で融着し、かつ焼成炭素化時(窒素雰囲気下、950〜2300℃)に僅かでも炭素化し残留する樹脂を用いることが好ましい。例えば、ポリビニルアルーコール、カルボキシメチルセルローズ、エポキシ、フェノールノボラック、アラミド、ポリイミド等の樹脂が好ましい。
【0050】
樹脂の付着量は、樹脂の種類や、炭素化後の織物の目標とする硬さにより最適量は異なるが、通常0.2〜10質量%の範囲が好ましい。樹脂の付着量が10質量%を超える場合、焼成炭素化して得られる炭素繊維紡績糸織物は、柔軟性がなくなり、脆くなるので好ましくない。
【0051】
樹脂処理の方法は浸漬法が好ましい。この方法によれば最も均一に樹脂添着が可能である。樹脂処理時の温度は常温(25℃)〜90℃の範囲が好ましい。
【0052】
〔圧縮処理〕
上述した酸化繊維紡績糸織物を、樹脂処理後又は処理せずに、100〜350℃の温度下、圧力0.5〜20MPaにて圧縮処理する。
【0053】
この圧縮処理時の温度及び圧力は、樹脂処理時の樹脂の種類及び目標とする炭素繊維紡績糸織物の厚さにより適宜調整する。
【0054】
〔焼成・炭素化〕
圧縮処理後、酸化繊維紡績糸織物を、窒素雰囲気下などの不活性ガス雰囲気下、950〜2300℃で、0.5〜20分間焼成し炭素化することが好ましい。
【0055】
焼成時の温度が950℃未満の場合は、得られる炭素繊維紡績糸織物の電気伝導性が低下するので好ましくない。焼成時の温度が2300℃を超える場合は、炭素繊維紡績糸織物の強度が劣化し、微粉末が発生するので好ましくない。
【0056】
【実施例】
本発明を以下の実施例及び比較例により詳述する。
【0057】
以下の実施例及び比較例の条件により炭素繊維紡績糸織物を作製した。原料酸化繊維、樹脂・圧縮処理前の酸化繊維紡績糸織物、樹脂・圧縮処理後の酸化繊維紡績糸織物及び焼成後の炭素繊維紡績糸織物の諸物性値を、以下の方法により測定した。
【0058】
酸化繊維の比重:アルキメデス法(溶媒アセトン)により測定した。
【0059】
繊維性能:乾強度、結節強度、クリンプ数、クリンプ率、酸化繊維の繊度、紡績糸の太さ、より数は、JIS L 1015により測定した。
【0060】
紡績糸織物の厚さ:直径30mmの円形圧板で200gfを負荷したとき(2.8kPa)の厚さを測定した。
【0061】
紡績糸織物の目付:50mm角の紡績糸織物を120℃、2時間乾燥させた質量より、単位面積当たりの質量を算出した。
【0062】
紡績糸織物の嵩密度:上記条件により測定した厚さ及び目付から算出した。
【0063】
比表面積:BET吸着法により、相対圧(窒素/ヘリウム)0.30での窒素吸着量より単位質量当たりの表面積を算出した。
【0064】
紡績糸の打込み本数:50mm角に切り出した織物について、それぞれタテ方向及びヨコ方向の紡績糸の本数/インチ(2.54cm)を測定した。
【0065】
電気抵抗値:2枚の50mm角(厚さ10mm)の金メッキした電極に炭素繊維織物の全面を接触するように挟み、両電極間の電気抵抗値(mΩ)を測定した。
【0066】
実施例1
PAN系酸化繊維〔比重1.39、繊度2.2dtex、クリンプ数9.0ヶ/インチ(2.54cm)、クリンプ率11.0%、カット長51mm、乾強度2.1gf/dtex(20.6mN/dtex)、結節強度0.4gf/dtex(3.9mN/dtex)〕を用い、表1に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数450回/m、太さ(OA)550dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数450回/m、太さ(OB)250dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.45であった。
【0067】
次いで、上記紡績糸(タテ)を打込本数37本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数50本/インチ(2.54cm)の条件で製織し、目付130g/m2、厚さ0.30mmの平織りの酸化繊維紡績糸織物を得た。
【0068】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、150℃、15MPaにて圧縮処理し、目付131g/m2、厚さ0.14mm、嵩密度0.93g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0069】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0070】
得られた炭素繊維紡績糸織物は、目付が131g/m2、厚さが0.14mm、嵩密度が0.93g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が330dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が150dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.45、厚さ方向の電気抵抗値が2.0mΩであり、良好な物性の炭素繊維紡績糸織物であった。
【0071】
実施例2
実施例1と同じPAN系酸化繊維を用い、表1に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数420回/m、太さ(OA)290dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数420回/m、太さ(OB)150dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.52であった。
【0072】
次いで、上記紡績糸(タテ)を打込本数50本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数60本/インチ(2.54cm)の条件で製織し、目付97g/m2、厚さ0.18mmの平織りの酸化繊維紡績糸織物を得た。
【0073】
さらに、この酸化繊維紡績糸織物を樹脂処理することなく、150℃、15MPaにて圧縮処理し、目付97g/m2、厚さ0.11mm、嵩密度0.88g/cm3の圧縮処理後の酸化繊維紡績糸織物を得た。
【0074】
この圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0075】
得られた炭素繊維紡績糸織物は、目付が58g/m2、厚さが0.12mm、嵩密度が0.48g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が170dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が90dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.52、厚さ方向の電気抵抗値が2.5mΩであり、良好な物性の炭素繊維紡績糸織物であった。
【0076】
実施例3
実施例1と同じPAN系酸化繊維を用い、表1に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数420回/m、太さ(OA)290dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数420回/m、太さ(OB)150dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.52であった。
【0077】
次いで、上記紡績糸(タテ)を打込本数50本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数60本/インチ(2.54cm)の条件で製織し、目付97g/m2、厚さ0.18mmの平織りの酸化繊維紡績糸織物を得た。
【0078】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、150℃、15MPaにて圧縮処理し、目付98g/m2、厚さ0.11mm、嵩密度0.89g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0079】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0080】
得られた炭素繊維紡績糸織物は、目付が59g/m2、厚さが0.10mm、嵩密度が0.59g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が170dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が90dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.52、厚さ方向の電気抵抗値が1.8mΩであり、良好な物性の炭素繊維紡績糸織物であった。
【0081】
【表1】

Figure 0004018550
【0082】
比較例1
実施例1と同じPAN系酸化繊維を用い、表2に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数450回/m、太さ(OA)550dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数450回/m、太さ(OB)400dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.72であった。
【0083】
次いで、上記紡績糸(タテ)を打込本数37本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数37本/インチ(2.54cm)の条件で製織し、目付190g/m2、厚さ0.42mmの平織りの酸化繊維紡績糸織物を得た。
【0084】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、250℃、20MPaにて圧縮処理し、目付191g/m2、厚さ0.20mm、嵩密度0.96g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0085】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0086】
得られた炭素繊維紡績糸織物は、目付が114g/m2、厚さが0.24mm、嵩密度が0.48g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が330dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が240dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.73、厚さ方向の電気抵抗値が10.1mΩであり、良好な物性の炭素繊維紡績糸織物ではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0087】
比較例2
実施例1と同じPAN系酸化繊維を用い、表2に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数450回/m、太さ(OA)550dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数450回/m、太さ(OB)190dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.35であった。
【0088】
次いで、上記紡績糸(タテ)を打込本数37本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数55本/インチ(2.54cm)の条件で製織し、目付130g/m2、厚さ0.28mmの平織りの酸化繊維紡績糸織物を得た。
【0089】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、150℃、15MPaにて圧縮処理し、目付131g/m2、厚さ0.17mm、嵩密度0.77g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0090】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0091】
得られた炭素繊維紡績糸織物は、目付が78g/m2、厚さが0.18mm、嵩密度が0.43g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が333dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が110dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.33、厚さ方向の電気抵抗値が4.2mΩであり、良好な物性の炭素繊維紡績糸織物ではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0092】
比較例3
実施例1と同じPAN系酸化繊維を用い、表2に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数450回/m、太さ(OA)170dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数450回/m、太さ(OB)150dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.88であった。
【0093】
次いで、上記紡績糸(タテ)を打込本数60本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数60本/インチ(2.54cm)の条件で製織し、目付76g/m2、厚さ0.24mmの平織りの酸化繊維紡績糸織物を得た。
【0094】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、250℃、20MPaにて圧縮処理し、目付76g/m2、厚さ0.12mm、嵩密度0.63g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0095】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0096】
得られた炭素繊維紡績糸織物は、目付が47g/m2、厚さが0.15mm、嵩密度が0.31g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が100dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が90dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.90、厚さ方向の電気抵抗値が15.0mΩであり、良好な物性の炭素繊維紡績糸織物ではなかった。表2中×で示す箇所が本発明の構成から逸脱している。
【0097】
【表2】
Figure 0004018550
【0098】
比較例4
実施例1と同じPAN系酸化繊維を用い、表3に示すように、織物用のタテ方向の紡績糸〔紡績糸(タテ)〕として、より数400回/m、太さ(OA)880dtexの双糸、織物用のヨコ方向の紡績糸〔紡績糸(ヨコ)〕として、より数400回/m、太さ(OB)400dtexの双糸を作製した。紡績糸(ヨコ)と紡績糸(タテ)との太さ比(OB/OA)は0.46であった。
【0099】
次いで、上記紡績糸(タテ)を打込本数23本/インチ(2.54cm)、上記紡績糸(ヨコ)を打込本数37本/インチ(2.54cm)の条件で製織し、目付230g/m2、厚さ0.48mmの平織りの酸化繊維紡績糸織物を得た。
【0100】
さらに、この酸化繊維紡績糸織物をPVA水溶液(0.3質量%)にて浸漬処理(樹脂処理)し、PVAを0.5質量%添着せしめた後、250℃、20MPaにて圧縮処理し、目付233g/m2、厚さ0.24mm、嵩密度0.77g/cm3の樹脂処理・圧縮処理後の酸化繊維紡績糸織物を得た。
【0101】
この樹脂処理・圧縮処理後の酸化繊維紡績糸織物を、1600℃、窒素雰囲気下、2分間焼成し炭素化することによって炭素繊維紡績糸織物を得た。
【0102】
得られた炭素繊維紡績糸織物は、目付が140g/m2、厚さが0.32mm、嵩密度が0.44g/cm3、タテ方向の炭素繊維紡績糸〔紡績糸(タテ)〕の太さ(CA)が500dtex、ヨコ方向の炭素繊維紡績糸〔紡績糸(ヨコ)〕の太さ(CB)が240dtex、紡績糸(ヨコ)と紡績糸(タテ)との太さ比(CB/CA)が0.48、厚さ方向の電気抵抗値が8.2mΩであり、良好な物性の炭素繊維紡績糸織物ではなかった。表3中×で示す箇所が本発明の構成から逸脱している。
【0103】
【表3】
Figure 0004018550
【0104】
【発明の効果】
本発明の炭素繊維紡績糸織物は、厚さ、嵩密度、並びに、タテ方向の炭素繊維紡績糸の太さCAとヨコ方向の炭素繊維紡績糸の太さCBとが所定の範囲になるように構成されているので、強度特性に優れ、厚さ方向の電気抵抗値が低く高分子電解質型燃料電池用の電極材として有用な素材であって、且つ薄い素材である。
【0105】
また、原料の酸化繊維の物性、その酸化繊維の紡績加工、製織、圧縮処理、焼成等を所定の条件で行うことにより、上記炭素繊維紡績糸織物を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin-layer carbon fiber spun yarn fabric and a method for producing the same.
[0002]
[Prior art]
Polyacrylonitrile (PAN) -based oxidized fibers exhibit the same tensile elongation as ordinary organic fibers and are easy to spin. Using this PAN-based oxidized fiber, a spun yarn (twisted yarn) or the like is spun to obtain a spun yarn, and then the spun yarn is woven and further carbonized to produce a carbon fiber spun yarn fabric. it can.
[0003]
Carbon fiber spun yarn fabric is a material that is excellent in strength characteristics, has a low electric resistance value in the thickness direction, and is useful as an electrode material for polymer electrolyte fuel cells. As described above, since the PAN-based oxidized fiber is suitable for obtaining a carbon fiber spun yarn fabric, its application as a raw material for the electrode material is being promoted.
[0004]
When applied to an electrode material, in the case of a polymer electrolyte fuel cell, the electrode material, the electrolyte membrane, and the separator are integrated to form a set (single cell), and a large number of these are stacked to assemble the battery. . When the battery is used for an automobile or the like that requires high output, the stack stack number is 300 to 400. In these applications, the thicker the set of stacks, the greater the overall battery volume.
[0005]
For this reason, the electrode material is required to be as thin as possible. However, at present, the electrode material is as thick as 0.3 to 0.4 mm.
[0006]
In addition, there exist some which were described in patent document 1, 2 etc. as a conventional manufacturing technique of a carbon fiber spun yarn fabric.
[0007]
In Patent Document 1, a carbon cloth in which warps and wefts made of carbon fibers are plain woven is used as an electrode material, and a carbon cloth to be used as an electrode material (woven yarn made of carbon short fibers, thickness 0.4mm).
[0008]
However, any of the carbon cloths described in Patent Document 1 is different from a carbon fabric using a spun yarn obtained by spinning an oxidized fiber as in the present invention. Also, the described thicknesses are thicker than the scope of the present invention.
[0009]
Patent Document 2 describes a method of producing a carbon fiber spun yarn fabric after shortening the carbon fiber.
[0010]
However, the carbon fiber spun yarn fabric described in Patent Document 2 is completely different from the present invention in the manufacturing method. Moreover, there is no description about the thickness, and there is no description about the use of the electrode material.
[0011]
[Patent Document 1]
JP 7-335234 A (paragraph numbers [0004] and [0027])
[Patent Document 2]
JP 10-280246 A (Claims)
[0012]
[Problems to be solved by the invention]
While the present inventors have been variously studied to obtain a thin-layer carbon fiber spun yarn fabric,
1. By using a PAN-based oxidized fiber having a knot strength higher than that of carbon fiber as a raw material, it becomes possible to produce a fine spun yarn.
2. The spun yarn at the time of weaving is preferably as thin as possible, but the warp yarn is subject to the tension in the winding direction and is also affected by the yarn tension in the transverse direction. For this reason, by placing a spun yarn that is thicker in the warp direction than the warp direction (strong spun yarn) and driving a spun yarn that is thinner in the warp direction than in the warp direction, weaving workability is improved and thickness is reduced. .
3. Further, the manufactured spun yarn fabric is subjected to resin treatment or heat compression without resin treatment to reduce the thickness.
4). The resulting spun yarn fabric is carbonized.
By applying such items and operations, it is possible to obtain a thin carbon fiber spun yarn fabric that has excellent strength characteristics, has a low electrical resistance value in the thickness direction, is useful as an electrode material for polymer electrolyte fuel cells, and is thin It has been found that this can be done, and the present invention has been completed.
[0013]
Accordingly, an object of the present invention is to provide a carbon fiber spun yarn fabric and a method for producing the same, which have solved the above problems.
[0014]
[Means for Solving the Problems]
The present invention for achieving the above object is described below.
[0015]
[1] Thickness is 0.08 to 0.15 mm, bulk density is 0.45 to 0.70 g / cm Three The thickness C of the carbon fiber spun yarn in the vertical direction A (dtex) and width C of carbon fiber spun yarn in the horizontal direction B (dtex) is the formula 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
Carbon fiber spun yarn fabric that meets the requirements.
[0016]
[2] Polyacrylonitrile-based oxidized fiber spun yarn having a dry strength of 1.5 gf / dtex or more and a knot strength of 0.3 gf / dtex or more, and a thickness O of the oxidized fiber spun yarn in the vertical direction A (dtex) and width of oxidized fiber spun yarn in the horizontal direction O B (dtex) is the formula 3
250 <O A <660 Equation 3
And Equation 4
0.40 <O B / O A <0.62 Formula 4
The oxidized fiber spun yarn fabric woven from the oxidized fiber spun yarn satisfying the above conditions is compressed at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa, and the oxidized fiber spun yarn fabric after the compression treatment is carbonized. 0.08 to 0.15 mm, bulk density 0.45 to 0.70 g / cm Three The thickness C of the carbon fiber spun yarn in the vertical direction A (dtex) and width C of carbon fiber spun yarn in the horizontal direction B (dtex) is the formula 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
The manufacturing method of the carbon fiber spun yarn fabric which satisfy | fills.
[0017]
[3] Polyacrylonitrile-based oxidized fiber spun yarn having a dry strength of 1.5 gf / dtex or more and a knot strength of 0.3 gf / dtex or more, and the thickness O of the oxidized fiber spun yarn in the vertical direction A (dtex) and width of oxidized fiber spun yarn in the horizontal direction O B (dtex) is the formula 3
250 <O A <660 Equation 3
And Equation 4
0.40 <O B / O A <0.62 Formula 4
Oxidized fiber spun yarn fabric woven with oxidized fiber spun yarn satisfying the above conditions is resin-treated and the resin is applied in the range of 0.2 to 10% by mass, and then compressed at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa. And carbonizing the oxidized fiber spun yarn fabric after the resin treatment / compression treatment, the thickness is 0.08 to 0.15 mm, and the bulk density is 0.45 to 0.70 g / cm. Three The thickness C of the carbon fiber spun yarn in the vertical direction A (dtex) and width C of carbon fiber spun yarn in the horizontal direction B (dtex) is the formula 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
The manufacturing method of the carbon fiber spun yarn fabric which satisfy | fills.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0019]
The carbon fiber spun yarn fabric of the present invention has a thickness of 0.08 to 0.15 mm, preferably 0.08 to 0.14 mm.
[0020]
When the thickness of the carbon fiber spun yarn fabric exceeds 0.15 mm, when this spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, it is difficult to make the fuel cell stack compact, and the battery volume is small. This is not preferable because it causes problems such as enlargement.
[0021]
The bulk density of the carbon fiber spun yarn fabric of the present invention is 0.45 to 0.70 g / cm. Three It is.
[0022]
The bulk density of carbon fiber spun yarn fabric is 0.45 g / cm Three If the ratio is less than 1, the electrical resistance value in the thickness direction of the carbon fiber spun yarn fabric increases (electric conductivity decreases), which is not preferable. Carbon fiber spun yarn fabric has a bulk density of 0.70 g / cm Three When this spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, a high current density (1.6 A / cm due to a decrease in gas diffusibility during battery operation) 2 ) Side voltage drop occurs, which is not preferable.
[0023]
Thickness C of the vertical carbon fiber spun yarn (spun yarn (vertical)) constituting the carbon fiber spun yarn fabric of the present invention A (dtex) and the thickness C of the carbon fiber spun yarn in the horizontal direction [spun yarn (horizontal)] B (dtex) is expressed by Equation 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
Meet.
[0024]
Carbon fiber spun yarn (vertical) thickness C A Is more than 400 dtex, it is not preferable because a carbon fiber spun yarn fabric having a desired thickness cannot be obtained.
[0025]
Carbon fiber spun yarn (width) thickness C B And carbon fiber spun yarn (vertical) thickness C A Ratio C B / C A Is more than 0.62, it is not preferable because a carbon fiber spun yarn fabric having a desired thickness cannot be obtained.
[0026]
The electrical resistance value in the thickness direction of the carbon fiber spun yarn fabric is preferably 4 mΩ. When this spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the lower the electric resistance value, the better the battery performance. If this electrical resistance value exceeds 4 mΩ, the electromotive force is lowered, and the battery performance is deteriorated.
[0027]
In addition, the electrical resistance value in the thickness direction of the carbon fiber spun yarn fabric is measured by a measurement method described later.
[0028]
Hereinafter, an example of the method for producing the carbon fiber spun yarn fabric of the present invention will be described in detail.
[0029]
[Oxidized fiber (single fiber)]
Oxidized fiber (single fiber) of carbon fiber spun yarn fabric raw material is a PAN-based oxidized fiber. For example, a commercially available PAN-based fiber is treated in air at high temperature to cause a cyclization reaction and increase the amount of oxygen bonds. It is possible to use those obtained by flameproofing treatment that makes them infusible and flame-retardant.
[0030]
The dry strength and knot strength in the PAN-based oxidized fiber are physical property values measured according to JIS L 1015.
[0031]
The dry strength of the oxidized fiber is 1.5 gf / dtex (14.7 mN / dtex) or more. When the oxidized fiber dry strength is less than 1.5 gf / dtex (14.7 mN / dtex), the strength of the oxidized fiber spun yarn obtained by spinning the oxidized fiber is reduced, and the oxidized fiber spun yarn is carbonized. This is not preferable because the generation of fine powder due to a decrease in strength of the carbon fiber spun yarn increases.
[0032]
The knot strength of the oxidized fiber is 0.3 gf / dtex (2.9 mN / dtex) or more. When the oxidized fiber knot strength is less than 0.3 gf / dtex (2.9 mN / dtex), it is difficult to obtain a target fine oxidized fiber spun yarn. Even when it is obtained, the spun yarn strength is low and the fabric processing is difficult.
[0033]
The specific gravity of the oxidized fiber is not particularly limited, but is preferably 1.35 to 1.45.
[0034]
The fineness of the oxidized fiber is more preferably in the range of 0.9 to 4.5 dtex and in the range of 1.0 to 2.5 dtex.
[0035]
The number of crimps of the oxidized fiber is not particularly limited, but is preferably 5 to 20 pieces / inch (2.54 cm).
[0036]
The crimp rate of the oxidized fiber is not particularly limited, but is preferably 7 to 15%.
[0037]
The cut length of the oxidized fiber is not particularly limited, but is preferably 25 to 100 mm.
[0038]
[Spinning processing]
The above-described oxidized fibers are spun into oxidized fiber spun yarn (warp yarn) in the warp direction during weaving and oxidized fiber spun yarn (weft yarn) in the warp direction during weaving.
[0039]
Here, the thickness of the warp thread O A Is 250 to 660 dtex, and the thickness of the weft thread O B And warp thread thickness O A Ratio to B / O A Is 0.40 to 0.62.
[0040]
Warp thread thickness O A Is less than 250 dtex, it is not preferable because it tends to cause elongation due to the tension in the driving direction during fabric processing and also tends to cause spun yarn breakage when spun in the horizontal direction. Warp thread thickness O A Is more than 660 dtex, the spun yarn is too thick, so that the thickness of the woven fabric is increased during the fabric processing, and a carbon fiber woven fabric having a target thickness cannot be obtained.
[0041]
Weft thickness O B And warp thread thickness O A Ratio to B / O A Is less than 0.40, weaving is difficult due to a decrease in yarn strength. Weft thickness O B And warp thread thickness O A Ratio to B / O A Is more than 0.62, it is difficult to produce a carbon fiber fabric having a target thickness.
[0042]
Both warp yarn and weft yarn are preferably 350 to 820 times / m. If the number is less than 350 times / m, the strength is lowered and cracking is likely to occur, which is not preferable. If the number is more than 820 times / m, it is not preferable because problems such as a decrease in spinning processability, a single fiber breakage easily occur, and a tendency to flakes occur.
[0043]
[Weaving]
An oxidized fiber spun yarn fabric is produced by weaving the oxidized fiber spun yarn described above.
[0044]
The form of the oxidized fiber fabric is not particularly limited, but plain weave, cedar weave, satin weave and the like are preferable.
[0045]
The thickness of the oxidized fiber fabric is preferably 0.08 to 0.20 mm.
[0046]
The bulk density of the oxidized fiber fabric is 1.0 g / cm. Three The following is preferable because it is easy to control the thickness by the compression treatment in the subsequent step. The bulk density of the oxidized fiber fabric is 1.0 g / cm Three If it exceeds 1, it is difficult to control the thickness reduction.
[0047]
The number of warp yarns and weft yarns of the oxidized fiber spun yarn is adjusted depending on the thickness of the spun yarn, but is preferably in the range of 30 to 70 yarns / inch (2.54 cm).
[0048]
[Resin treatment]
The oxidized fiber spun yarn woven fabric described above may be subjected to a resin treatment for the purpose of further exhibiting a reduction effect before the compression treatment. Resin treatment suppresses restoration of thickness during carbonization and facilitates obtaining a thin material.
[0049]
The type of the resin may be either thermoplastic or thermosetting resin, but it softens when it is compressed at a high temperature (100 to 350 ° C.) in the subsequent process, fuses between the fibers, and calcined carbonized (nitrogen) It is preferable to use a resin that remains carbonized even in a slight amount (950 to 2300 ° C.) in the atmosphere. For example, resins such as polyvinyl alcohol, carboxymethyl cellulose, epoxy, phenol novolac, aramid, and polyimide are preferable.
[0050]
The optimum amount of the resin adhesion varies depending on the type of resin and the target hardness of the woven fabric after carbonization, but is usually preferably in the range of 0.2 to 10% by mass. When the adhesion amount of the resin exceeds 10% by mass, the carbon fiber spun yarn woven fabric obtained by calcination carbonization is not preferable because it loses flexibility and becomes brittle.
[0051]
The resin treatment method is preferably an immersion method. According to this method, the resin can be applied most uniformly. The temperature during the resin treatment is preferably in the range of room temperature (25 ° C.) to 90 ° C.
[0052]
[Compression processing]
The above-mentioned oxidized fiber spun yarn fabric is subjected to a compression treatment at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa after or without the resin treatment.
[0053]
The temperature and pressure during the compression treatment are appropriately adjusted according to the type of resin during the resin treatment and the target thickness of the carbon fiber spun yarn fabric.
[0054]
[Firing / Carbonization]
After the compression treatment, the oxidized fiber spun yarn fabric is preferably carbonized by firing at 950 to 2300 ° C. for 0.5 to 20 minutes in an inert gas atmosphere such as a nitrogen atmosphere.
[0055]
When the temperature during firing is less than 950 ° C., the electrical conductivity of the resulting carbon fiber spun yarn fabric is lowered, which is not preferable. When the temperature during firing exceeds 2300 ° C., the strength of the carbon fiber spun yarn fabric deteriorates and fine powder is generated, which is not preferable.
[0056]
【Example】
The present invention is described in detail by the following examples and comparative examples.
[0057]
Carbon fiber spun yarn fabrics were produced under the conditions of the following examples and comparative examples. Various physical properties of raw material oxidized fiber, oxidized fiber spun yarn fabric before resin / compression treatment, oxidized fiber spun yarn fabric after resin / compression treatment, and carbon fiber spun yarn fabric after firing were measured by the following methods.
[0058]
Specific gravity of oxidized fiber: Measured by Archimedes method (solvent acetone).
[0059]
Fiber performance: Dry strength, knot strength, number of crimps, crimp rate, fineness of oxidized fiber, thickness of spun yarn, and the number were measured according to JIS L 1015.
[0060]
Thickness of spun yarn fabric: The thickness when a load of 200 gf was applied to a circular pressure plate with a diameter of 30 mm (2.8 kPa) was measured.
[0061]
Weight per unit area of the spun yarn fabric was calculated from a mass obtained by drying a spun yarn fabric of 50 mm square at 120 ° C. for 2 hours.
[0062]
Bulk density of spun yarn fabric: calculated from the thickness and basis weight measured under the above conditions.
[0063]
Specific surface area: The surface area per unit mass was calculated from the nitrogen adsorption amount at a relative pressure (nitrogen / helium) of 0.30 by the BET adsorption method.
[0064]
Number of spun yarns: The number of spun yarns / inch (2.54 cm) in the warp direction and the horizontal direction was measured for the woven fabric cut into 50 mm squares.
[0065]
Electrical resistance value: sandwiched between two 50 mm square (thickness 10 mm) gold-plated electrodes so that the entire surface of the carbon fiber fabric was in contact, and the electrical resistance value (mΩ) between the two electrodes was measured.
[0066]
Example 1
PAN-based oxidized fiber [specific gravity 1.39, fineness 2.2 dtex, crimp number 9.0 pcs / inch (2.54 cm), crimp rate 11.0%, cut length 51 mm, dry strength 2.1 gf / dtex (20. 6 mN / dtex) and knot strength 0.4 gf / dtex (3.9 mN / dtex)], and as shown in Table 1, warp-direction spun yarn for fabric (spun yarn (warp)) is several 450 more Times / m, thickness (O A ) 550 dtex double yarn, horizontal spun yarn for fabric [spun yarn (horizontal)], several 450 times / m, thickness (O B ) A 250 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.45.
[0067]
Next, the spun yarn (warp) is woven under conditions of 37 yarns / inch (2.54 cm) and the spun yarn (width) is 50 yarns / inch (2.54 cm). m 2 A plain weave oxidized fiber spun yarn fabric having a thickness of 0.30 mm was obtained.
[0068]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 150 ° C. and 15 MPa, 131g / m 2 , Thickness 0.14mm, bulk density 0.93g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0069]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0070]
The obtained carbon fiber spun yarn fabric has a basis weight of 131 g / m. 2 , Thickness is 0.14 mm, bulk density is 0.93 g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 330 dtex, the thickness of carbon fiber spun yarn (spun yarn (horizontal)) in the horizontal direction (C) B ) Is 150 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.45, the electric resistance value in the thickness direction was 2.0 mΩ, and the carbon fiber spun yarn fabric had good physical properties.
[0071]
Example 2
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 1, a warp-direction spun yarn for fabric (spun yarn (warp)) was several 420 times / m, and the thickness (O A ) Twist yarn of 290 dtex, woven spun yarn for fabric (spun yarn (horizontal)), more than 420 times / m, thickness (O B ) 150 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.52.
[0072]
Subsequently, the spun yarn (warp) is woven under the conditions of 50 yarns / inch (2.54 cm) and the spun yarn (width) is 60 yarns / inch (2.54 cm). m 2 A plain weave oxidized fiber spun yarn fabric having a thickness of 0.18 mm was obtained.
[0073]
Furthermore, this oxidized fiber spun yarn fabric was subjected to a compression treatment at 150 ° C. and 15 MPa without resin treatment, and a basis weight of 97 g / m. 2 , Thickness 0.11mm, bulk density 0.88g / cm Three An oxidized fiber spun yarn woven fabric after compression treatment was obtained.
[0074]
The oxidized fiber spun yarn fabric after the compression treatment was calcinated at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0075]
The obtained carbon fiber spun yarn fabric has a basis weight of 58 g / m. 2 , Thickness is 0.12 mm, bulk density is 0.48 g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 170 dtex, the carbon fiber spun yarn in the horizontal direction (spun yarn (width)) (C) B ) Is 90 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.52 and the electrical resistance value in the thickness direction was 2.5 mΩ, and the carbon fiber spun yarn fabric had good physical properties.
[0076]
Example 3
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 1, a warp-direction spun yarn for fabric (spun yarn (warp)) was several 420 times / m, and the thickness (O A ) Twist yarn of 290 dtex, woven spun yarn for fabric (spun yarn (horizontal)), more than 420 times / m, thickness (O B ) 150 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.52.
[0077]
Subsequently, the spun yarn (warp) is woven under the conditions of 50 yarns / inch (2.54 cm) and the spun yarn (width) is 60 yarns / inch (2.54 cm). m 2 A plain weave oxidized fiber spun yarn fabric having a thickness of 0.18 mm was obtained.
[0078]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 150 ° C. and 15 MPa, 98 g / m 2 , Thickness 0.11mm, bulk density 0.89g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0079]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0080]
The obtained carbon fiber spun yarn fabric has a basis weight of 59 g / m. 2 , Thickness is 0.10 mm, bulk density is 0.59 g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 170 dtex, the carbon fiber spun yarn in the horizontal direction (spun yarn (width)) (C) B ) Is 90 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.52 and the electric resistance value in the thickness direction was 1.8 mΩ, and it was a carbon fiber spun yarn fabric with good physical properties.
[0081]
[Table 1]
Figure 0004018550
[0082]
Comparative Example 1
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 2, as a spun yarn (spun yarn (warp)) in the warp direction for fabric, several 450 times / m, thickness (O A ) 550 dtex double yarn, horizontal spun yarn for fabric [spun yarn (horizontal)], several 450 times / m, thickness (O B ) A 400 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.72.
[0083]
Next, the spun yarn (warp) is woven under conditions of 37 yarns / inch (2.54 cm) and the spun yarn (width) is 37 yarns / inch (2.54 cm). m 2 A plain woven oxidized fiber spun yarn woven fabric having a thickness of 0.42 mm was obtained.
[0084]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 250 ° C. and 20 MPa, 191g / m 2 , Thickness 0.20mm, bulk density 0.96g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0085]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0086]
The obtained carbon fiber spun yarn fabric has a basis weight of 114 g / m. 2 , Thickness is 0.24 mm, bulk density is 0.48 g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 330 dtex, the thickness of carbon fiber spun yarn (spun yarn (horizontal)) in the horizontal direction (C) B ) Is 240 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.73, the electric resistance value in the thickness direction was 10.1 mΩ, and it was not a carbon fiber spun yarn fabric with good physical properties. The part shown by x in Table 2 deviates from the configuration of the present invention.
[0087]
Comparative Example 2
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 2, as a spun yarn (spun yarn (warp)) in the warp direction for fabric, several 450 times / m, thickness (O A ) 550 dtex double yarn, horizontal spun yarn for fabric [spun yarn (horizontal)], several 450 times / m, thickness (O B ) A 190 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.35.
[0088]
Next, the spun yarn (warp) is woven under the conditions of 37 yarns / inch (2.54 cm) and the spun yarn (width) is 55 yarns / inch (2.54 cm). m 2 A plain woven oxidized fiber spun yarn fabric having a thickness of 0.28 mm was obtained.
[0089]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 150 ° C. and 15 MPa, 131g / m 2 , Thickness 0.17mm, bulk density 0.77g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0090]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0091]
The obtained carbon fiber spun yarn fabric has a basis weight of 78 g / m. 2 , Thickness is 0.18mm, bulk density is 0.43g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 333 dtex, the carbon fiber spun yarn in the horizontal direction (spun yarn (horizontal)) (C B ) Is 110 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.33 and the electrical resistance value in the thickness direction was 4.2 mΩ, and it was not a carbon fiber spun yarn fabric with good physical properties. The part shown by x in Table 2 deviates from the configuration of the present invention.
[0092]
Comparative Example 3
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 2, as a spun yarn (spun yarn (warp)) in the warp direction for fabric, several 450 times / m, thickness (O A ) 170 dtex double yarn, horizontal spun yarn for fabric [spun yarn (horizontal)], several 450 times / m, thickness (O B ) 150 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.88.
[0093]
Next, the spun yarn (warp) is woven under the conditions of 60 yarns / inch (2.54 cm) and the spun yarn (width) is 60 yarns / inch (2.54 cm). m 2 A plain woven oxidized fiber spun yarn fabric having a thickness of 0.24 mm was obtained.
[0094]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 250 ° C. and 20 MPa, 76g / m 2 , Thickness 0.12mm, bulk density 0.63g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0095]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0096]
The obtained carbon fiber spun yarn fabric has a basis weight of 47 g / m. 2 , Thickness is 0.15 mm, bulk density is 0.31 g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 100 dtex, the carbon fiber spun yarn (spun yarn (width)) in the horizontal direction (C) B ) Is 90 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.90, the electric resistance value in the thickness direction was 15.0 mΩ, and it was not a carbon fiber spun yarn fabric with good physical properties. The part shown by x in Table 2 deviates from the configuration of the present invention.
[0097]
[Table 2]
Figure 0004018550
[0098]
Comparative Example 4
Using the same PAN-based oxidized fiber as in Example 1, as shown in Table 3, the warp direction spun yarn for fabric (spun yarn (warp)) was several 400 times / m, and the thickness (O A ) As an 880 dtex double yarn, a horizontal spun yarn for fabrics (spun yarn (width)), several 400 times / m, thickness (O B ) A 400 dtex double yarn was produced. Thickness ratio of spun yarn (horizontal) and spun yarn (vertical) (O B / O A ) Was 0.46.
[0099]
Next, the spun yarn (warp) is woven under the conditions of 23 yarns / inch (2.54 cm) and the spun yarn (width) is 37 yarns / inch (2.54 cm). m 2 A plain woven oxidized fiber spun yarn fabric having a thickness of 0.48 mm was obtained.
[0100]
Furthermore, this oxidized fiber spun yarn fabric was immersed in a PVA aqueous solution (0.3% by mass) (resin treatment), and after 0.5% by mass of PVA was added, it was compressed at 250 ° C. and 20 MPa, 233g / m 2 , Thickness 0.24mm, bulk density 0.77g / cm Three Oxidized fiber spun yarn fabric after resin treatment / compression treatment was obtained.
[0101]
The oxidized fiber spun yarn fabric after the resin treatment / compression treatment was baked and carbonized at 1600 ° C. in a nitrogen atmosphere for 2 minutes to obtain a carbon fiber spun yarn fabric.
[0102]
The obtained carbon fiber spun yarn fabric has a basis weight of 140 g / m. 2 , Thickness is 0.32mm, bulk density is 0.44g / cm Three , Thickness of carbon fiber spun yarn [spun yarn (vertical)] (C A ) Is 500 dtex, the thickness (C) B ) Is 240 dtex, the thickness ratio of the spun yarn (horizontal) and the spun yarn (vertical) (C B / C A ) Was 0.48, and the electrical resistance value in the thickness direction was 8.2 mΩ, which was not a carbon fiber spun yarn fabric with good physical properties. The part shown by x in Table 3 deviates from the configuration of the present invention.
[0103]
[Table 3]
Figure 0004018550
[0104]
【The invention's effect】
The carbon fiber spun yarn fabric of the present invention has a thickness, a bulk density, and a thickness C of the carbon fiber spun yarn in the vertical direction. A Width of carbon fiber spun yarn in the horizontal direction B Is a material that is excellent in strength characteristics, has a low electrical resistance value in the thickness direction, is useful as an electrode material for polymer electrolyte fuel cells, and is a thin material It is.
[0105]
Further, the carbon fiber spun yarn fabric can be obtained by performing physical properties of the oxidized fiber as a raw material, spinning processing, weaving, compression treatment, firing, and the like of the oxidized fiber under predetermined conditions.

Claims (3)

厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物。
The thickness is 0.08 to 0.15 mm, the bulk density is 0.45 to 0.70 g / cm 3 , and the length C A (dtex) of the carbon fiber spun yarn in the vertical direction and the carbon fiber spun yarn in the horizontal direction The thickness C B (dtex) of Equation 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
Carbon fiber spun yarn fabric that meets the requirements.
乾強度1.5gf/dtex以上、結節強度0.3gf/dtex以上のポリアクリロニトリル系酸化繊維の紡績糸であって、タテ方向の酸化繊維紡績糸の太さOA(dtex)及びヨコ方向の酸化繊維紡績糸の太さOB(dtex)が式3
250 < OA < 660 式3
及び式4
0.40 < OB/OA < 0.62 式4
を満たす酸化繊維紡績糸を製織した酸化繊維紡績糸織物を温度100〜350℃、圧力0.5〜20MPaで圧縮処理し、更に前記圧縮処理後の酸化繊維紡績糸織物を炭素化する、厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物の製造方法。
A spun yarn of polyacrylonitrile-based oxidized fiber having a dry strength of 1.5 gf / dtex or more and a knot strength of 0.3 gf / dtex or more, and the thickness of the oxidized fiber spun yarn in the vertical direction O A (dtex) and the oxidation in the horizontal direction fibers spun yarn thickness O B (dtex) is the formula 3
250 <O A <660 Formula 3
And Equation 4
0.40 <O B / O A < 0.62 Equation 4
The oxidized fiber spun yarn fabric woven from the oxidized fiber spun yarn satisfying the above conditions is compressed at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa, and the oxidized fiber spun yarn fabric after the compression treatment is carbonized. 0.08 to 0.15 mm, the bulk density is 0.45 to 0.70 g / cm 3 , the thickness C A (dtex) of the carbon fiber spun yarn in the vertical direction and the thickness of the carbon fiber spun yarn in the horizontal direction. C B (dtex) is expressed by Equation 1
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
The manufacturing method of the carbon fiber spun yarn fabric which satisfy | fills.
乾強度1.5gf/dtex以上、結節強度0.3gf/dtex以上のポリアクリロニトリル系酸化繊維の紡績糸であって、タテ方向の酸化繊維紡績糸の太さOA(dtex)及びヨコ方向の酸化繊維紡績糸の太さOB(dtex)が式3
250 < OA < 660 式3
及び式4
0.40 < OB/OA < 0.62 式4
を満たす酸化繊維紡績糸を製織した酸化繊維紡績糸織物を樹脂処理して樹脂を0.2〜10質量%の範囲で添着させた後、温度100〜350℃、圧力0.5〜20MPaで圧縮処理し、更に前記樹脂処理・圧縮処理後の酸化繊維紡績糸織物を炭素化する、厚さが0.08〜0.15mm、嵩密度が0.45〜0.70g/cm3であり、タテ方向の炭素繊維紡績糸の太さCA(dtex)とヨコ方向の炭素繊維紡績糸の太さCB(dtex)が、式1
150 < CA < 400 式1
及び式2
0.40 < CB/CA < 0.62 式2
を満たす炭素繊維紡績糸織物の製造方法。
A spun yarn of polyacrylonitrile-based oxidized fiber having a dry strength of 1.5 gf / dtex or more and a knot strength of 0.3 gf / dtex or more, and the thickness of the oxidized fiber spun yarn in the vertical direction O A (dtex) and the oxidation in the horizontal direction fibers spun yarn thickness O B (dtex) is the formula 3
250 <O A <660 Formula 3
And Equation 4
0.40 <O B / O A < 0.62 Equation 4
Oxidized fiber spun yarn fabric woven with oxidized fiber spun yarn satisfying the above conditions is treated with resin, and the resin is applied in the range of 0.2 to 10% by mass, and then compressed at a temperature of 100 to 350 ° C. and a pressure of 0.5 to 20 MPa. And carbonizing the oxidized fiber spun yarn fabric after the resin treatment / compression treatment, the thickness is 0.08 to 0.15 mm, the bulk density is 0.45 to 0.70 g / cm 3 , The thickness C A (dtex) of the carbon fiber spun yarn in the direction and the thickness C B (dtex) of the carbon fiber spun yarn in the horizontal direction
150 <C A <400 Formula 1
And Equation 2
0.40 <C B / C A <0.62 Formula 2
The manufacturing method of the carbon fiber spun yarn fabric which satisfy | fills.
JP2003007632A 2003-01-15 2003-01-15 Carbon fiber spun yarn fabric and method for producing the same Expired - Fee Related JP4018550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007632A JP4018550B2 (en) 2003-01-15 2003-01-15 Carbon fiber spun yarn fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007632A JP4018550B2 (en) 2003-01-15 2003-01-15 Carbon fiber spun yarn fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004218148A JP2004218148A (en) 2004-08-05
JP4018550B2 true JP4018550B2 (en) 2007-12-05

Family

ID=32897669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007632A Expired - Fee Related JP4018550B2 (en) 2003-01-15 2003-01-15 Carbon fiber spun yarn fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP4018550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5873248B2 (en) * 2011-03-25 2016-03-01 東邦テナックス株式会社 Carbon fiber spun yarn fabric, carbon fiber precursor spun yarn fabric, and method for producing carbon fiber spun yarn fabric

Also Published As

Publication number Publication date
JP2004218148A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
EP1059685B1 (en) Use of a carbon electrode material for vanadium-based redox-flow type battery
JP3868903B2 (en) Carbon fiber sheet and manufacturing method thereof
EP1237214A2 (en) Conductive carbonaceous-fiber sheet and solid polymer electrolyte fuel cell
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
JP4371662B2 (en) Carbon fiber sheet and manufacturing method thereof
JP4018550B2 (en) Carbon fiber spun yarn fabric and method for producing the same
WO2020184663A1 (en) Carbon electrode material and redox battery
EP1162296A1 (en) Carbon fiber woven fabric and method for production thereof
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP4282964B2 (en) Carbon fiber woven fabric
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP2012201996A (en) Carbon fiber spun yarn woven fabric, method for producing carbon fiber spun yarn woven fabric, and gas diffusion electrode for fuel cell
JP4113018B2 (en) Polyacrylonitrile-based carbon fiber spun yarn fabric
JP2005183325A (en) Carbon fiber sheet for polymer electrolyte gas diffusion layer and its manufacturing method
JP2003064539A (en) Carbon fiber fabric and method for producing the same
JP2002194650A (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JPH11158737A (en) Production of carbon fiber felt
JP2005036333A (en) Carbon fiber filament woven fabric and method for producing the same
JP5873248B2 (en) Carbon fiber spun yarn fabric, carbon fiber precursor spun yarn fabric, and method for producing carbon fiber spun yarn fabric
JP2004084147A (en) Carbonaceous fiber woven cloth
JP2003227054A (en) Woven fabric of spun yarn of polyacrylonitrile-based oxidized fiber, woven fabric of spun yarn of carbon fiber, and method for producing woven fabric of spun yarn of carbon fiber
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees