JP2002266217A - Carbon fiber nonwoven fabric and method for producing the same - Google Patents

Carbon fiber nonwoven fabric and method for producing the same

Info

Publication number
JP2002266217A
JP2002266217A JP2001064967A JP2001064967A JP2002266217A JP 2002266217 A JP2002266217 A JP 2002266217A JP 2001064967 A JP2001064967 A JP 2001064967A JP 2001064967 A JP2001064967 A JP 2001064967A JP 2002266217 A JP2002266217 A JP 2002266217A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
carbon fiber
carbon
fibers
fiber nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064967A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
誠 中村
Mitsuo Hamada
光夫 浜田
Yoshiaki Hama
義紹 濱
Toru Kondo
徹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Awa Paper Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Awa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Awa Paper Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001064967A priority Critical patent/JP2002266217A/en
Publication of JP2002266217A publication Critical patent/JP2002266217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon fiber nonwoven fabric having excellent electroconductivity, thermal conductivity, heat resistance and corrosion resistance, controlling surface roughness and falling off of fibers and to provide a method for producing the same. SOLUTION: This carbon fiber nonwoven fabric is characterized in that the nonwoven fabric comprises >=70 mass % of polyacrylonitrile-based short carbon fibers and the short carbon fibers are mutually interlaced by a water current. In this method for carbon fiber nonwoven fabric comprising at least carbon fibers, a slurry containing at least polyacrylonitrile-based short carbon fibers is prepared so that the content of the short carbon fibers in the nonwoven fabric is >=70 mass %, the slurry is made into paper by a continuous papermaking method to give a web, to which a columnar high-pressure water current is applied and the short carbon fibers are interlaced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温で使用中の設
備・装置にたまった塵・ほこりのふき取りや熱伝導性マ
ットとして暖房機器など多用途で使用でき、さらには燃
料電池等の気体透過性が必要とされる電極基材の材料と
しても好適な導電性・熱伝導性・耐熱性・耐腐食性に優
れた、炭素繊維の特性を十分に発揮させることが可能な
炭素繊維不織布およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention can be used for various purposes such as heating equipment as a wiping of dust and dirt accumulated on equipment and devices used at high temperature and as a heat conductive mat, and furthermore, gas permeation of fuel cells and the like. Carbon fiber non-woven fabric with excellent electrical conductivity, thermal conductivity, heat resistance, and corrosion resistance, which is also suitable as a material for an electrode substrate where the property is required, and a carbon fiber non-woven fabric capable of fully exhibiting the properties of carbon fiber It relates to a manufacturing method.

【0002】[0002]

【従来の技術】炭素繊維は他の繊維と比較して分散性、
繊維同士の絡み合いが弱く、バインダーを大量に使用し
なければ不織布としての形状を保持するのは困難であ
り、そのため、炭素繊維本来の機能を十分に発揮できな
かった。その理由としては、炭素繊維が他の繊維と比較
して高強度・高弾性で糸が硬く・曲がりにくいことや糸
表面の表面摩擦力が小さいことが原因であると考えられ
る。また、分散性が悪いことが影響して繊維の結着点が
少なくなることも形状保持が困難となる原因の一つだと
考えられる。
2. Description of the Related Art Carbon fibers are more dispersible than other fibers.
The entanglement between the fibers is weak, and it is difficult to maintain the shape as a nonwoven fabric unless a large amount of binder is used. Therefore, the original function of the carbon fiber cannot be sufficiently exhibited. It is considered that the reason is that the carbon fiber has high strength and high elasticity as compared with other fibers and the yarn is hard and hard to bend, and the surface friction force of the yarn surface is small. In addition, it is considered that the decrease in the number of binding points of the fibers due to the poor dispersibility is one of the causes of the difficulty in maintaining the shape.

【0003】一方、高圧柱状水流を打ち付けて、繊維同
士を交絡させる方法は、一般的に使用されているが、こ
れを炭素繊維に適用した場合、炭素繊維が他の繊維と比
較して高強度・高弾性で糸が硬いことが影響して、交絡
させると基材表面が荒れて、その部分から、繊維が抜け
落ちるなどの問題がある。そのため、比較的柔らかい、
耐炎化短繊維の状態で交絡させてから、それを炭素化す
る方法が主流となっている。
[0003] On the other hand, a method in which fibers are entangled with each other by striking a high-pressure columnar water stream is generally used. However, when this method is applied to carbon fibers, carbon fibers have higher strength than other fibers. -Due to the high elasticity and the hardness of the yarn, there is a problem in that when the fibers are entangled, the surface of the base material becomes rough, and the fibers fall off from that part. Therefore, relatively soft,
The mainstream method is to entangle in the state of oxidized short fibers and then to carbonize them.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、バインダーの使用量を減らし、炭
素繊維の特性である導電性・熱伝導性・耐熱性・耐腐食
性に優れ、かつ表面の荒れや繊維の抜け落ちも抑えられ
た炭素繊維不織布及びその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, reduces the amount of binder used, and improves the properties of carbon fibers such as conductivity, heat conductivity, heat resistance and corrosion resistance. It is an object of the present invention to provide a carbon fiber nonwoven fabric which is excellent and in which surface roughness and fiber dropout are suppressed, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明は、ポリアクリロニトリル系炭素短繊維を70
質量%以上含み、該炭素繊維同士が互いに水流交絡され
てなる炭素繊維不織布である。本発明の不織布はバイン
ダーの量が少なくても互いの結着力が強く、形状を維持
できる。
In order to solve the above-mentioned problems, the present invention provides a polyacrylonitrile-based carbon short fiber of 70%.
It is a carbon fiber nonwoven fabric containing not less than 10% by mass and wherein the carbon fibers are hydroentangled with each other. The nonwoven fabric of the present invention has a strong binding force to each other even if the amount of the binder is small, and can maintain the shape.

【0006】また本発明は、少なくとも炭素繊維を含む
炭素繊維不織布の製造方法において、少なくともポリア
クリロニトリル系炭素短繊維を含むスラリーを、不織布
中の該炭素短繊維の含有量が70質量%以上となるよう
に調製し、該スラリーを連続抄紙法により抄紙して得ら
れるウェブに柱状高圧水流を当てて該炭素短繊維を交絡
させることを特徴とする炭素繊維不織布の製造方法であ
る。
Further, the present invention provides a method for producing a carbon fiber nonwoven fabric containing at least carbon fibers, wherein a slurry containing at least polyacrylonitrile-based carbon short fibers has a content of the carbon short fibers in the nonwoven fabric of 70% by mass or more. A method for producing a carbon fiber nonwoven fabric, characterized in that the carbon short fibers are entangled by applying a columnar high-pressure water stream to a web obtained by making the slurry by a continuous papermaking method.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0008】本発明においては、ポリアクリロニトリル
系炭素短繊維を不織布中に70質量%以上含み、炭素繊
維同士を互いに水流交絡させることにより、バインダー
の量が少なくても互いの結着力が強く、形状を維持でき
る炭素繊維不織布が得られる。ここでの炭素繊維不織布
は、炭素短繊維同士または、他の繊維と交絡させること
でシート状に形成されるものすべてであり、形成後処理
を加えたものも含まれる。
In the present invention, the polyacrylonitrile-based short carbon fiber is contained in the nonwoven fabric in an amount of 70% by mass or more, and the carbon fibers are hydroentangled with each other so that even if the amount of the binder is small, the binding force between them is strong, and Is obtained. The carbon fiber nonwoven fabric here is all that is formed into a sheet by being entangled with short carbon fibers or with other fibers, and includes those subjected to post-formation treatment.

【0009】炭素繊維にはポリアクリロニトリル(PA
N)系以外にもピッチ系・フェノール系・グラファイト
系のものがあるが、これらはポリアクリロニトリル系の
ものと比較して繊維径が太いため、水流交絡させるには
より高い水圧が必要になってくる。また、ポリアクリロ
ニトリル系のものが最も強いので水圧による損傷の心配
が最も低いことから、炭素繊維の中では、ポリアクリロ
ニトリル系炭素繊維が水流交絡に適している。
[0009] Polyacrylonitrile (PA) is used as carbon fiber.
There are also pitch-based, phenol-based, and graphite-based types besides N) -based ones, but since these have a larger fiber diameter than polyacrylonitrile-based ones, a higher water pressure is required for hydroentanglement. come. In addition, since polyacrylonitrile-based fibers are the strongest and are less likely to be damaged by water pressure, among carbon fibers, polyacrylonitrile-based carbon fibers are suitable for hydroentanglement.

【0010】ポリアクリロニトリル系炭素繊維の比率は
70質量%以上であることが必須であり、好ましくは9
0%以上さらに好ましくは95%以上必要である。ポリ
アクリロニトリル系炭素繊維が70質量%未満の場合、
炭素繊維特有の電気導電性・熱伝導性・耐熱性・耐腐食
性が生かされなくなる。
It is essential that the ratio of the polyacrylonitrile-based carbon fiber is 70% by mass or more, and preferably 9% by mass.
0% or more, more preferably 95% or more is required. When the polyacrylonitrile-based carbon fiber is less than 70% by mass,
The electric conductivity, heat conductivity, heat resistance and corrosion resistance peculiar to carbon fiber cannot be utilized.

【0011】ポリアクリロニトリル系炭素繊維以外の構
成成分として、本発明の不織布中には、ポリアクリロニ
トリル系炭素繊維と混抄および水流交絡できるものであ
れば含むことができる。混抄および水流交絡できるもの
としては、例えば、繊維同士の結着力を大きくするのに
必要な繊維状・パウダー状・パルプ状の有機高分子のよ
うに結着剤としての役割を果たすものや水流交絡を活性
化する柔軟性の高い有機繊維、その他、導電性物質・耐
熱性物質・耐腐食性物質などが挙げられる。
[0011] As a component other than the polyacrylonitrile-based carbon fiber, the nonwoven fabric of the present invention may include any component that can be mixed with the polyacrylonitrile-based carbon fiber and hydroentangled. Compounds that can be mixed and hydro-entangled include, for example, those that act as a binder, such as fibrous, powder-like, and pulp-like organic polymers necessary to increase the binding force between fibers, and hydro-entanglement. Organic fibers having high flexibility for activating the polymer, and other conductive materials, heat-resistant materials, and corrosion-resistant materials.

【0012】本発明の不織布においては、図1のように
水流交絡により炭素繊維同士が強く結着している。水流
交絡により炭素繊維同士が強く結着したウェブはプレス
やドライヤーなどにより乾燥状態にされて不織布として
完成する。あるいはまた、この不織布中の結着剤などの
混合物質を焼成処理などにより、減少させ、または除去
したものや、結着剤等をさら付着させたものも不織布で
あり、本発明に含まれる。本明細書中、後者の不織布を
「後処理された不織布」と呼び、単に「不織布」という
場合は、前者を指す。
In the nonwoven fabric of the present invention, as shown in FIG. 1, the carbon fibers are strongly bound to each other by hydroentanglement. The web in which the carbon fibers are strongly bound to each other by the hydroentanglement is dried by a press, a drier, or the like, and is completed as a nonwoven fabric. Alternatively, a mixed material such as a binder in the non-woven fabric is reduced or removed by a baking treatment or the like, or a non-woven fabric to which a binder or the like is further adhered is also a non-woven fabric and is included in the present invention. In the present specification, the latter nonwoven fabric is referred to as “post-treated nonwoven fabric”, and simply referred to as “nonwoven fabric” refers to the former.

【0013】水流交絡処理されていない従来の炭素繊維
紙は、ウエット時の強度が弱く、結着剤を多く必要とす
るため好ましくなく、焼成処理した場合も炭素繊維の欠
落が見られたり、脆いものになるので好ましくない。
The conventional carbon fiber paper not subjected to the hydroentanglement treatment is not preferable because it has a low wet strength and requires a large amount of a binder. It is not preferable because it becomes something.

【0014】本発明の不織布中、ポリアクリロニトリル
系炭素短繊維およびポリアクリロニトリル系耐炎化短繊
維があわせて90質量%以上であることが好ましく、ポ
リアクリロニトリル系炭素短繊維およびポリアクリロニ
トリル系耐炎化短繊維のみで構成されているものがさら
に好ましい。ポリアクリロニトリル系耐炎化繊維は、炭
素繊維よりも柔軟性があるため、水流交絡に適してお
り、ポリアクリロニトリル系耐炎化短繊維を水流交絡さ
せた不織布は一般に使用されている。ポリアクリロニト
リル系耐炎化短繊維をポリアクリロニトリル系炭素短繊
維に混合すると水圧が弱くても強く交絡することがで
き、ウェット強度が強くなる。このため、抄紙スピード
を上げることができ、生産性向上にもつながる。また、
1000℃以上の温度で焼成処理した場合でも、耐炎化
繊維は、一般的な結着剤よりはるかに、導電性・熱伝導
性・耐熱性・耐腐食性に優れたものとして残る点からも
良い。
In the nonwoven fabric of the present invention, the total content of the polyacrylonitrile-based carbon short fibers and the polyacrylonitrile-based flame-retardant staple fibers is preferably 90% by mass or more. It is more preferable to use only one. Since the polyacrylonitrile-based flame-resistant fiber is more flexible than the carbon fiber, it is suitable for hydroentanglement, and a nonwoven fabric obtained by hydroentanglement of the polyacrylonitrile-based flameproof staple fiber is generally used. When polyacrylonitrile-based flame-retardant short fibers are mixed with polyacrylonitrile-based short carbon fibers, strong entanglement can be achieved even when the water pressure is low, and the wet strength is increased. For this reason, the papermaking speed can be increased, which leads to an improvement in productivity. Also,
Even when fired at a temperature of 1000 ° C. or more, the flame-resistant fiber is good in that it remains much more excellent in conductivity, heat conductivity, heat resistance, and corrosion resistance than a general binder. .

【0015】本発明に使用する耐炎化繊維の繊維長は炭
素繊維より長いことが曲げ強度・引張強度等強度保持の
観点から好ましい。具体的には、耐炎化繊維の平均繊維
長は、炭素繊維の平均繊維長より、1〜15mm長いこ
とが好ましく、3〜10mm長いことがより好ましい。
The fiber length of the oxidized fiber used in the present invention is preferably longer than that of carbon fiber from the viewpoint of maintaining strength such as bending strength and tensile strength. Specifically, the average fiber length of the oxidized fiber is preferably 1 to 15 mm longer than the average fiber length of the carbon fiber, and more preferably 3 to 10 mm.

【0016】ポリアクリロニトリル系炭素短繊維は、繊
維径5μm以下、かつ繊維長15mm以下、より好まし
くは6mm以下のポリアクリロニトリル系炭素短繊維を
含むことが好ましく、このような炭素繊維を50質量%
以上含んでいることがさらに好ましい。繊維径が太い、
あるいは長いと水流交絡処理に相対的に強い圧力が必要
となり、これにより繊維が突起する可能性が増大すると
いう点で不利である。特に、繊維長が長いものは、分散
性が低下するという観点からも不利である。ポリアクリ
ロニトリル系炭素短繊維の全繊維としては、8μm以下
かつ15mm以下であることが好ましい。
The polyacrylonitrile-based short carbon fiber preferably contains a polyacrylonitrile-based short carbon fiber having a fiber diameter of 5 μm or less and a fiber length of 15 mm or less, more preferably 6 mm or less.
It is more preferable to include the above. Large fiber diameter,
On the other hand, if the length is long, relatively high pressure is required for the hydroentanglement treatment, which is disadvantageous in that the possibility that the fiber is projected increases. In particular, those having a long fiber length are disadvantageous from the viewpoint that the dispersibility is reduced. The total length of the polyacrylonitrile-based carbon short fibers is preferably 8 μm or less and 15 mm or less.

【0017】ポリアクリロニトリル系炭素短繊維の繊維
径・繊維長の下限は、特に限定されないが、細いと欠落
した短繊維が人体に被害を及ぼす可能性が高くなるとい
う点で不利であり、短かいと水流交絡による強化の度合
いが小さくなるという点で不利である。このような観点
から、好ましい下限値は、繊維径3μm、繊維長2mm
である。
The lower limit of the fiber diameter and the fiber length of the polyacrylonitrile-based carbon short fiber is not particularly limited, but it is disadvantageous in that the short fiber which is missing increases the possibility of causing damage to the human body. This is disadvantageous in that the degree of reinforcement by water confounding is reduced. From such a viewpoint, a preferable lower limit is a fiber diameter of 3 μm and a fiber length of 2 mm.
It is.

【0018】本発明の不織布中、バインダーすなわち結
着剤として使用される有機高分子化合物の比率は、5質
量%以下(0質量%を含む)であることが不織布の導電
性を良好に保つ観点から好ましい。ここでの有機高分子
化合物の比率は、不織布中の質量比率であり、不織布を
製造する際に原料として混入する比率ではない。例え
ば、一般的な結着剤としてポリビニルアルコール(PV
A)を原料中10%使用して抄紙した場合、PVAが水
に溶けて失われるのを考慮すると、得られる不織布中の
結着剤の比率は7〜8wt%程度となるが、このような
不織布の導電性は炭素材料のみで形成される物質の10
分の1以下になるため、機能が低下する。これは、電極
基材として使用する場合等、抄紙に使用可能な結着剤と
しては炭素繊維よりも導電性に優れた物質がほとんどな
いためである。
In the nonwoven fabric of the present invention, the ratio of the organic polymer compound used as a binder, that is, a binder, is preferably 5% by mass or less (including 0% by mass) from the viewpoint of maintaining good conductivity of the nonwoven fabric. Is preferred. Here, the ratio of the organic polymer compound is a mass ratio in the nonwoven fabric, and is not a ratio mixed as a raw material when manufacturing the nonwoven fabric. For example, as a general binder, polyvinyl alcohol (PV
When papermaking is performed using 10% of A) in the raw material, the ratio of the binder in the obtained nonwoven fabric is about 7 to 8 wt% in consideration of the fact that PVA dissolves in water and is lost. The conductivity of the non-woven fabric is 10
Since it is less than one-tenth, the function is reduced. This is because there is almost no substance having higher conductivity than carbon fiber as a binder that can be used in papermaking, such as when used as an electrode substrate.

【0019】結着剤として使用できる有機高分子化合物
としては、ポリビニルアルコール(PVA)、ポリ酢酸
ビニル、ポリアクリロニトリル、ポリエチレン、ポリウ
レタン、セルロースパルプなどが挙げられる。炭素繊維
よりも導電性・熱伝導性・耐熱性・耐腐食性に優れた結
着剤は存在しても高価であり、一般的には使用できな
い。また、水流交絡処理しない場合は結着剤が少ないと
形状を保持することが困難であるが、水流交絡処理によ
り、結着剤が5質量%以下でも十分強い不織布を得るこ
とができる。
Examples of the organic polymer compound usable as the binder include polyvinyl alcohol (PVA), polyvinyl acetate, polyacrylonitrile, polyethylene, polyurethane, cellulose pulp and the like. Even if a binder having better conductivity, heat conductivity, heat resistance and corrosion resistance than carbon fiber is present, it is expensive and cannot be generally used. When the hydroentanglement process is not performed, it is difficult to maintain the shape if the amount of the binder is small. However, the hydroentanglement process can obtain a sufficiently strong nonwoven fabric even when the binder is 5% by mass or less.

【0020】本発明においては、水流交絡により平均孔
径が50〜500μmの孔が形成されることが不織布の
強度の観点から好ましい。基本的に孔径が大きいものほ
ど強く交絡される傾向があり、平均孔径が50μm以下
の場合、水流交絡による効果が低下するという点で不利
である。一方、平均孔径が500μmを越えるとシート
が網状になり、かえって繊維同士の結着力が弱くなると
いう点で不利である。また、開口することにより、ガス
透過性が向上するだけでなく、普通に抄紙した場合より
も長手方向の強度が上昇する。なお、水流噴射によって
も炭素繊維紙の目付は変化しないため、不織布の導電性
低下には結びつかない。
In the present invention, it is preferable from the viewpoint of the strength of the nonwoven fabric that pores having an average pore diameter of 50 to 500 μm are formed by hydroentanglement. Basically, larger pores tend to be entangled more strongly, and when the average pore diameter is 50 μm or less, it is disadvantageous in that the effect of hydroentanglement is reduced. On the other hand, if the average pore diameter exceeds 500 μm, the sheet is reticulated, which is disadvantageous in that the binding force between the fibers becomes weaker. The opening not only improves the gas permeability, but also increases the strength in the longitudinal direction as compared with the case of ordinary papermaking. In addition, since the basis weight of carbon fiber paper does not change even by water jet, it does not lead to a decrease in the conductivity of the nonwoven fabric.

【0021】水流交絡により形成される孔の平均孔径は
次のようにして求める。すなわち、炭素繊維不織布を約
0.2g精秤しディラトメーターに入れる。次に水銀注
入装置を用いて容器内を真空(7Pa以下)にし、その
後水銀を充填する。そして、ポロシメーターを用いて測
定を行う。水銀圧入量より細孔容積を求める。続いて、
各圧力における孔半径を下式から求め、次に、水流交絡
により形成される細孔のみ選出し、各圧力における細孔
容積と細孔半径の孔径分布を求め、50%の細孔容積を
示すときの半径を水流交絡により形成される孔の平均半
径とする。なお、単なる抄紙では50〜500μmの孔
は形成されないため、50〜500μmの孔はすべて水
流交絡により形成される細孔と判断できる。
The average pore diameter of the pores formed by the hydroentanglement is determined as follows. That is, about 0.2 g of the carbon fiber nonwoven fabric is precisely weighed and put into a dilatometer. Next, the inside of the container is evacuated (7 Pa or less) using a mercury injection device, and then filled with mercury. Then, the measurement is performed using a porosimeter. The pore volume is determined from the mercury intrusion amount. continue,
The pore radius at each pressure is determined from the following formula, and then only the pores formed by the hydroentanglement are selected, and the pore volume and the pore diameter distribution of the pore radius at each pressure are determined, indicating a pore volume of 50%. The radius at this time is defined as the average radius of the holes formed by the hydroentanglement. Since mere papermaking does not form pores of 50 to 500 μm, all pores of 50 to 500 μm can be determined to be pores formed by hydroentanglement.

【0022】[0022]

【数1】 (Equation 1)

【0023】σ:水銀の表面張力(0.48N/m) θ:接触角 p:圧力 なお、水銀ポロシメーターはQuantachrome
社製、PoreMaster−60を用いた。
Σ: surface tension of mercury (0.48 N / m) θ: contact angle p: pressure The mercury porosimeter is Quantachrome.
Company, PoleMaster-60 was used.

【0024】本発明の炭素繊維不織布の製造方法は、少
なくとも炭素繊維を含む炭素繊維不織布の製造方法にお
いて、少なくともポリアクリロニトリル系炭素短繊維を
含むスラリーを、不織布中の該炭素短繊維の含有量が7
0質量%以上となるように調製し、該スラリーを連続抄
紙法により抄紙して得られるウェブに柱状高圧水流を当
てて該炭素短繊維を交絡させることを特徴とする炭素繊
維不織布の製造方法である。上記炭素短繊維の含有量
は、スラリー中の含有量でも、ウェブ中の含有量でもな
く、得られる不織布中の含有量である。
The method for producing a carbon fiber nonwoven fabric according to the present invention is the method for producing a carbon fiber nonwoven fabric containing at least carbon fibers, wherein the slurry containing at least the polyacrylonitrile-based carbon short fibers is mixed with the carbon short fibers in the nonwoven fabric. 7
0 mass% or more, and a method for producing a carbon fiber nonwoven fabric, comprising tangling the carbon short fibers by applying a columnar high-pressure water stream to a web obtained by making the slurry by a continuous papermaking method. is there. The content of the short carbon fiber is not the content in the slurry nor the content in the web, but the content in the obtained nonwoven fabric.

【0025】スラリー調製に用いる媒体としては特に限
定されないが、入手容易性の観点から水が好ましい。ポ
リアクリロニトリル系炭素短繊維その他の成分を、媒体
に分散させてスラリーを得ることができる。
The medium used for preparing the slurry is not particularly limited, but water is preferable from the viewpoint of availability. Slurry can be obtained by dispersing polyacrylonitrile-based carbon short fibers and other components in a medium.

【0026】連続抄紙法としては、繊維を連続的に抄造
する方法であればよく、例えば円網式、長網式、短網
式、傾斜金網式などがあげられるが、長網式または短網
式、傾斜金網式が好ましい。炭素繊維同士の弱い結着力
に起因することだが、長網式または短網式、傾斜金網式
で連続抄紙する場合、円網式の場合と比較して結着剤の
量を抑えることができるからである。さらに、手漉き抄
紙のものは連続抄紙のものと比較して、異方性を抑える
ことができるが、機械的強度が弱く、水流交絡処理をす
るのが困難であるため好ましくない。
As the continuous papermaking method, any method can be used as long as it is a method of continuously producing fibers, and examples thereof include a circular net type, a long net type, a short net type, and an inclined wire net type. Type and inclined wire mesh type are preferred. This is due to the weak binding force between carbon fibers, but when continuous papermaking is performed using the long net or short net type, or the inclined wire netting type, the amount of binder can be suppressed as compared with the case of the circular net type. It is. Further, handmade papermaking can suppress anisotropy as compared with continuous papermaking, but is not preferred because of its low mechanical strength and difficulty in hydroentanglement.

【0027】水流交絡はウェブに柱状高圧水流をあてる
ことで行うことができ、柱状高圧水流はノズルから水を
柱状に噴出することにより形成できる。柱状高圧水流の
水圧は、0.5MPa未満では、水流交絡することが難
しくなる傾向があるという点で不利であり、逆に水圧が
10MPaより大きい場合、ウェブがダメージを受け、
切断される傾向があるという点で不利なため、0.5〜
10MPaであることが好ましい。
The water entanglement can be performed by applying a columnar high-pressure water stream to the web, and the columnar high-pressure water stream can be formed by jetting water from a nozzle in a columnar manner. If the water pressure of the columnar high-pressure water flow is less than 0.5 MPa, it is disadvantageous in that it tends to be difficult to entangle the water flow. Conversely, if the water pressure is higher than 10 MPa, the web is damaged,
It is disadvantageous in that it tends to be cut, so 0.5 to
It is preferably 10 MPa.

【0028】柱状高圧水流を発生させるノズルの孔径
は、0.05mm未満では水流交絡が認められなくなる
傾向があるという点で不利であり、逆に孔径が0.15
mmより大きい場合、ウェブがダメージを受け、切断さ
れる傾向があるという点で不利なため、0.05〜0.
15mmが好ましく、ノズルのスパンも、3mmより広
い場合では、水流交絡が認められなくなる傾向があると
いう点で不利であり、逆に孔径が0.3より狭い場合、
ウェブがダメージを受け、切断される傾向があるという
点で不利なため、0.3〜3mmであることが好まし
い。
When the hole diameter of the nozzle for generating the columnar high-pressure water flow is less than 0.05 mm, it is disadvantageous in that the water entanglement tends not to be recognized.
If it is larger than 0.05 mm, it is disadvantageous in that the web tends to be damaged and cut.
15 mm is preferable, and when the span of the nozzle is also wider than 3 mm, it is disadvantageous in that the hydroentanglement tends to be not recognized. Conversely, when the hole diameter is smaller than 0.3,
It is preferably 0.3 to 3 mm because it is disadvantageous in that the web tends to be damaged and cut.

【0029】柱状高圧水流を発生させるノズルの本数
は、あまり多いとウェブの含水率が増加し、機械的強度
が弱くなるという点で不利なため、1〜3本であること
が好ましい。
If the number of nozzles for generating the columnar high-pressure water flow is too large, it is disadvantageous in that the water content of the web increases and the mechanical strength becomes weak.

【0030】[0030]

【実施例】以下、本発明を実施例に基づいてより詳細に
説明するが、本発明は本発明の実施例に限定されるもの
ではない。なお、実施例及び比較例における成分比率、
引張強度、破断伸度、気体透過係数、厚み方向の面積抵
抗は、以下の試験方法で行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments, but the present invention is not limited to the embodiments of the present invention. In addition, the component ratio in Examples and Comparative Examples,
The tensile strength, elongation at break, gas permeability coefficient, and sheet resistance in the thickness direction were determined by the following test methods.

【0031】1)成分比率 得られた炭素繊維不織布を窒素雰囲気下、1200℃で
焼成し、その質量減少量をPVAの成分質量として算出
した。
1) Component Ratio The obtained carbon fiber nonwoven fabric was fired at 1200 ° C. in a nitrogen atmosphere, and the weight loss was calculated as the PVA component weight.

【0032】ここでいう成分比率は、不織布中、あるい
は後処理された不織布中の各成分の質量比率である。
The component ratio referred to here is a mass ratio of each component in the nonwoven fabric or the post-treated nonwoven fabric.

【0033】2)引張強度 JIS−P8113に準拠し、炭素繊維不織布を縦方向
及び横方向について幅15mm、長さ25cmに裁断
し、テンシロン測定装置を用いて破断時の荷重を測定
し、引張強度とした。なお、サンプルがチャックにより
損傷するのを防ぐため、サンプルの上下2.5cmに厚
紙を両面に貼ってチャックした。
2) Tensile strength According to JIS-P8113, a carbon fiber nonwoven fabric was cut into a width of 15 mm and a length of 25 cm in the longitudinal and transverse directions, and the load at break was measured using a tensilon measuring device. And In order to prevent the sample from being damaged by the chuck, a thick paper was stuck on both sides 2.5 cm above and below the sample and chucked.

【0034】3)破断伸度 JIS−P8132に準拠し、上記同様、テンシロン測
定装置を用いて破断するまでに示した最大引っ張りひず
み率を測定し、破断伸度とした。
3) Elongation at break In accordance with JIS-P8132, the maximum tensile strain rate shown before the fracture was measured using a Tensilon measuring device in the same manner as described above, and was defined as the elongation at break.

【0035】4)気体透過係数 JIS−P8117に準拠し、ガーレー式デンソメータ
ーを使用し、200cm3の気体が通過する時間を測定
し、算出した。
4) Gas Permeability Coefficient According to JIS-P8117, the time required for a 200 cm 3 gas to pass was measured and calculated using a Gurley-type densometer.

【0036】5)厚み方向の面積抵抗の測定 電極基材の「厚さ方向の比抵抗」は試料を銅板にはさ
み、銅板の上下から1MPaで加圧し、10mA/cm
2の電流密度で電流を流したときの抵抗値を測定し、次
式より求めた。
5) Measurement of Area Resistance in Thickness Direction The "specific resistance in the thickness direction" of the electrode substrate is obtained by inserting a sample between copper plates, applying a pressure of 1 MPa from above and below the copper plate, and applying 10 mA / cm.
The resistance value when a current was passed at a current density of 2 was measured, and the resistance was determined by the following equation.

【0037】[0037]

【数2】 (Equation 2)

【0038】なお、実施例、比較例における不織布の組
成・性能については表1及び表2にまとめて記載した。
The compositions and performances of the nonwoven fabrics in Examples and Comparative Examples are summarized in Tables 1 and 2.

【0039】〔実施例1〕平均繊維径が4μmのポリア
クリロニトリル(PAN)系炭素繊維の繊維束を切断
し、平均繊維長が3mmの短繊維を得た。連続抄紙装置
のパルパーにこの炭素短繊維および結着剤であるポリビ
ニルアルコール(PVA)短繊維(平均繊維長=3m
m)を炭素短繊維/PVA質量比が85/15になるよ
うに加えて、水中で解繊し、十分に混合し、スラリーを
調製した。このスラリーをタンクから送り出し、抄紙し
てウェブを形成し、ウェブが網板を通るところで孔径1
00μm、スパン1mmのノズルを使用し、1.0MP
aの水圧で高圧水流を噴射して、孔を有し交絡されたウ
ェブを形成し、ドライヤー乾燥して、炭素繊維不織布を
得た。なお、得られた炭素繊維紙は単位面積当たりの質
量が30g/m2に調節した。
Example 1 A fiber bundle of polyacrylonitrile (PAN) -based carbon fibers having an average fiber diameter of 4 μm was cut to obtain short fibers having an average fiber length of 3 mm. This carbon short fiber and polyvinyl alcohol (PVA) short fiber as a binder (average fiber length = 3 m) are added to a pulper of a continuous papermaking apparatus.
m) was added so that the mass ratio of short carbon fibers / PVA was 85/15, and the mixture was defibrated in water and mixed well to prepare a slurry. The slurry is sent out of the tank and paper is formed to form a web.
Use a nozzle of 00 μm, span 1 mm, 1.0MP
A high-pressure water stream was jetted at a water pressure of a to form an entangled web having holes and dried by a dryer to obtain a carbon fiber nonwoven fabric. In addition, the mass per unit area of the obtained carbon fiber paper was adjusted to 30 g / m 2 .

【0040】このとき、得られた不織布の引張強度・破
断伸度・気体透過係数・面積抵抗・熱伝導率を測定した
ところ、良好な値が得られた。
At this time, when the tensile strength, elongation at break, gas permeability coefficient, area resistance and thermal conductivity of the obtained nonwoven fabric were measured, good values were obtained.

【0041】〔実施例2〕スラリー中の炭素短繊維/P
VA質量比が95/5になるようにPVAを加えた以外
は実施例1と同様にして連続的に炭素繊維不織布を作製
した。実施例1と比較して、PVAを減らしても大きな
引張り強度の低下・繊維の欠落が見られない上、面積抵
抗を大幅に減少させることができた。
Example 2 Short Carbon Fiber / P in Slurry
A carbon fiber nonwoven fabric was continuously produced in the same manner as in Example 1 except that PVA was added so that the VA mass ratio became 95/5. Compared with Example 1, even when the PVA was reduced, a large decrease in tensile strength and lack of fibers were not observed, and the sheet resistance was significantly reduced.

【0042】〔実施例3〕水流交絡処理の水圧を3.0
MPaで行った以外は実施例2と同様にして連続的に炭
素繊維不織布を作製した。実施例2と比較して表面が粗
くなるが、気体透過性・強度は向上した。
Example 3 The water pressure of the water entanglement treatment was 3.0.
A carbon fiber nonwoven fabric was continuously produced in the same manner as in Example 2 except that the measurement was performed at MPa. Although the surface was rougher than in Example 2, the gas permeability and strength were improved.

【0043】〔実施例4〕実施例3で得た不織布を窒素
ガス雰囲気中にて2000℃の焼成炉において10分間
加熱し、PVAを除去し、後処理された炭素繊維不織布
とした。十分に形状保持できる程度の強度があり、バイ
ンダーがないため、導電性・熱伝導性に非常に優れた炭
素繊維不織布が得られた。
Example 4 The nonwoven fabric obtained in Example 3 was heated in a baking oven at 2000 ° C. for 10 minutes in a nitrogen gas atmosphere to remove PVA, thereby obtaining a post-treated carbon fiber nonwoven fabric. A carbon fiber nonwoven fabric having excellent conductivity and heat conductivity was obtained because it had sufficient strength to hold the shape sufficiently and had no binder.

【0044】〔実施例5〕平均繊維径が4μmの炭素繊
維の半分を平均繊維径7μm、繊維長6mmに変えて使
用した。すなわち、4μmの炭素繊維/7μmの炭素繊
維が質量比で50/50である以外は、実施例3と同様
にして連続的に炭素繊維不織布を作製した。実施例3と
比較して、繊維径が太いために水流交絡処理効果が弱い
と考えられるが、繊維長が長いため強度はそれほど小さ
くならなかった。
Example 5 Half of the carbon fiber having an average fiber diameter of 4 μm was changed to an average fiber diameter of 7 μm and a fiber length of 6 mm. That is, a carbon fiber nonwoven fabric was continuously produced in the same manner as in Example 3, except that the mass ratio of 4 μm carbon fiber / 7 μm carbon fiber was 50/50. Compared with Example 3, it is considered that the hydroentanglement effect is weak because the fiber diameter is large, but the strength was not so small because the fiber length was long.

【0045】〔比較例1〕実施例1と同様にしてスラリ
ーを調製した後、標準角形シートマシンを用いてJIS
P−8209法に準拠してバッチ抄紙法により抄紙を
行い、炭素繊維不織布を得た。なお、得られた炭素繊維
不織布の単位面積当たりの質量が30g/m2になるよ
うに調節した。この場合繊維の欠落が多く形状を保持す
るのが困難となった。
[Comparative Example 1] A slurry was prepared in the same manner as in Example 1, and then JIS was performed using a standard square sheet machine.
Papermaking was performed by a batch papermaking method in accordance with the P-8209 method to obtain a carbon fiber nonwoven fabric. In addition, it adjusted so that the mass per unit area of the obtained carbon fiber nonwoven fabric might be set to 30 g / m < 2 >. In this case, many fibers were missing and it was difficult to maintain the shape.

【0046】〔比較例2〕スラリー中の炭素短繊維/P
VA質量比が65/35となるように調節した以外は、
比較例1と同様の方法で炭素繊維不織布を得た。この場
合、繊維の欠落はほとんどないが、導電性が非常に小さ
くなり、炭素繊維の特性が失われた。
Comparative Example 2 Short carbon fiber / P in slurry
Except that the VA mass ratio was adjusted to be 65/35,
A carbon fiber nonwoven fabric was obtained in the same manner as in Comparative Example 1. In this case, there was almost no loss of the fiber, but the conductivity was very small, and the properties of the carbon fiber were lost.

【0047】〔比較例3〕比較例2で得た不織布を窒素
ガス雰囲気中にて2000℃の焼成炉において10分間
加熱し、PVAを除去し、後処理された炭素繊維不織布
とした。導電性は非常に高くなったが、形状がほとんど
保持できなかった。
Comparative Example 3 The nonwoven fabric obtained in Comparative Example 2 was heated in a baking furnace at 2000 ° C. for 10 minutes in a nitrogen gas atmosphere to remove PVA, thereby obtaining a post-treated carbon fiber nonwoven fabric. The conductivity was very high, but the shape could hardly be maintained.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明において、炭素繊維同士が互いに
水流交絡させることでバインダーの量が少なくても互い
の結着力が強く、形状を維持できる炭素繊維不織布及び
その製造法を提供され、導電性、熱伝導性、耐熱性、耐
腐食性など炭素繊維の特性を生かした高性能の不織布を
提供できるようになった。
According to the present invention, there is provided a carbon fiber non-woven fabric capable of maintaining a shape even when the amount of a binder is small, and a shape of the carbon fiber non-woven fabric can be maintained. Thus, it has become possible to provide a high-performance nonwoven fabric utilizing the properties of carbon fibers such as thermal conductivity, heat resistance, and corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる炭素繊維不織布の電子顕微鏡写
真である。
FIG. 1 is an electron micrograph of a carbon fiber nonwoven fabric according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜田 光夫 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 濱 義紹 徳島県徳島市南矢三町3丁目10番18号 阿 波製紙株式会社内 (72)発明者 近藤 徹 徳島県徳島市南矢三町3丁目10番18号 阿 波製紙株式会社内 Fターム(参考) 4G066 AA05B AC12D AC17A BA03 BA17 BA20 BA23 DA01 FA18 FA22 FA25 FA37 4L047 AA03 AA16 AA28 AB02 BA04 BA21 CB05 CB10 CC14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuo Hamada 20-1 Miyukicho, Otake City, Hiroshima Prefecture Inside the Central Technology Research Laboratory, Mitsubishi Rayon Co., Ltd. No. 10-18, Awa Paper Co., Ltd. BA23 DA01 FA18 FA22 FA25 FA37 4L047 AA03 AA16 AA28 AB02 BA04 BA21 CB05 CB10 CC14

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ポリアクリロニトリル系炭素短繊維を7
0質量%以上含み、該炭素繊維同士が互いに水流交絡さ
れてなることを特徴とする炭素繊維不織布。
1. A polyacrylonitrile-based carbon short fiber comprising:
A carbon fiber nonwoven fabric containing 0% by mass or more, wherein the carbon fibers are hydroentangled with each other.
【請求項2】 該ポリアクリロニトリル系炭素短繊維と
ポリアクリロニトリル系耐炎化短繊維とをあわせて90
質量%以上含む請求項1記載の炭素繊維不織布。
2. A combination of the polyacrylonitrile-based short carbon fibers and the polyacrylonitrile-based flame-retardant short fibers in total of 90.
The carbon fiber nonwoven fabric according to claim 1, wherein the carbon fiber nonwoven fabric is contained in an amount of not less than mass%.
【請求項3】 該ポリアクリロニトリル系炭素短繊維の
一部または全部の繊維径が5μm以下であり、かつ繊維
長15mm以下である請求項1または2記載の炭素繊維
不織布。
3. The carbon fiber nonwoven fabric according to claim 1, wherein a part or all of the polyacrylonitrile-based carbon short fibers have a fiber diameter of 5 μm or less and a fiber length of 15 mm or less.
【請求項4】 結着剤として使用される有機高分子化合
物を含まないか、または5質量%以下含む請求項1〜3
いずれか1項記載の炭素繊維不織布。
4. The method according to claim 1, wherein the organic polymer compound used as a binder is not contained or contained in an amount of 5% by mass or less.
The carbon fiber nonwoven fabric according to any one of the preceding claims.
【請求項5】 平均孔径が50〜500μmの孔が水流
交絡により形成された請求項1〜4いずれか1項記載の
炭素繊維不織布。
5. The carbon fiber nonwoven fabric according to claim 1, wherein pores having an average pore diameter of 50 to 500 μm are formed by hydroentanglement.
【請求項6】 少なくとも炭素繊維を含む炭素繊維不織
布の製造方法において、少なくともポリアクリロニトリ
ル系炭素短繊維を含むスラリーを、不織布中の該炭素短
繊維の含有量が70質量%以上となるように調製し、該
スラリーを連続抄紙法により抄紙して得られるウェブに
柱状高圧水流を当てて該炭素短繊維を交絡させることを
特徴とする炭素繊維不織布の製造方法。
6. A method for producing a carbon fiber nonwoven fabric containing at least carbon fibers, wherein a slurry containing at least polyacrylonitrile-based carbon short fibers is prepared such that the content of the carbon short fibers in the nonwoven fabric is 70% by mass or more. A method for producing a carbon fiber nonwoven fabric, comprising applying a columnar high-pressure water stream to a web obtained by making the slurry by a continuous papermaking method to entangle the carbon short fibers.
【請求項7】 該柱状高圧水流の水圧が0.5〜10M
Paである請求項6記載の炭素繊維不織布の製造方法。
7. The water pressure of the columnar high-pressure water stream is 0.5 to 10M.
The method for producing a carbon fiber nonwoven fabric according to claim 6, which is Pa.
【請求項8】 該柱状高圧水流を発生させるノズルの孔
径が0.05〜0.15mmであり、該ノズルの隣接孔
のスパンが0.3〜3mmである請求項6または7記載
の炭素繊維不織布の製造方法。
8. The carbon fiber according to claim 6, wherein a hole diameter of the nozzle for generating the columnar high-pressure water flow is 0.05 to 0.15 mm, and a span of an adjacent hole of the nozzle is 0.3 to 3 mm. Manufacturing method of nonwoven fabric.
【請求項9】 該柱状高圧水流を発生させるノズルの本
数が1〜3本である請求項6〜8いずれか1項記載の炭
素繊維不織布の製造方法。
9. The method for producing a carbon fiber nonwoven fabric according to any one of claims 6 to 8, wherein the number of nozzles for generating the columnar high-pressure water flow is one to three.
JP2001064967A 2001-03-08 2001-03-08 Carbon fiber nonwoven fabric and method for producing the same Pending JP2002266217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064967A JP2002266217A (en) 2001-03-08 2001-03-08 Carbon fiber nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064967A JP2002266217A (en) 2001-03-08 2001-03-08 Carbon fiber nonwoven fabric and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002266217A true JP2002266217A (en) 2002-09-18

Family

ID=18923711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064967A Pending JP2002266217A (en) 2001-03-08 2001-03-08 Carbon fiber nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002266217A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031465A1 (en) * 2002-09-30 2004-04-15 Toray Industries, Inc. Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
WO2010073133A3 (en) * 2008-12-22 2010-09-02 Kimberly-Clark Worldwide, Inc. Conductive webs and process for making same
US8058194B2 (en) 2007-07-31 2011-11-15 Kimberly-Clark Worldwide, Inc. Conductive webs
JP2012162835A (en) * 2011-02-09 2012-08-30 Mitsubishi Rayon Co Ltd Method for producing carbon fiber-containing nonwoven fabric
US8334226B2 (en) 2008-05-29 2012-12-18 Kimberly-Clark Worldwide, Inc. Conductive webs containing electrical pathways and method for making same
JPWO2011065327A1 (en) * 2009-11-24 2013-04-11 三菱レイヨン株式会社 Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US8697934B2 (en) 2007-07-31 2014-04-15 Kimberly-Clark Worldwide, Inc. Sensor products using conductive webs
KR101392227B1 (en) 2013-03-21 2014-05-27 한국에너지기술연구원 Carbon fiber web comprising polymer nanofiber
WO2014156861A1 (en) 2013-03-25 2014-10-02 Art&Tech株式会社 Nonwoven fabric, sheet, film, multilayer sheet, molded article, and method for producing nonwoven fabric
JP2015118944A (en) * 2011-01-27 2015-06-25 三菱レイヨン株式会社 Porous electrode base material, method for manufacturing the same, precursor sheet, film-electrode assembly, and solid polymer fuel battery
WO2023136141A1 (en) * 2022-01-17 2023-07-20 東洋紡エムシー株式会社 Flame-resistant nonwoven fabric containing flame-resistant polyphenylene ether fiber and reinforcing fiber, flame-resistant molded body containing flame-resistant polyphenylene ether and reinforcing fiber, and methods for manufacturing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031465A1 (en) * 2002-09-30 2004-04-15 Toray Industries, Inc. Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
US8058194B2 (en) 2007-07-31 2011-11-15 Kimberly-Clark Worldwide, Inc. Conductive webs
US8697934B2 (en) 2007-07-31 2014-04-15 Kimberly-Clark Worldwide, Inc. Sensor products using conductive webs
US8334226B2 (en) 2008-05-29 2012-12-18 Kimberly-Clark Worldwide, Inc. Conductive webs containing electrical pathways and method for making same
WO2010073133A3 (en) * 2008-12-22 2010-09-02 Kimberly-Clark Worldwide, Inc. Conductive webs and process for making same
US8172982B2 (en) 2008-12-22 2012-05-08 Kimberly-Clark Worldwide, Inc. Conductive webs and process for making same
US9343751B2 (en) 2009-11-24 2016-05-17 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for producing the same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
JPWO2011065327A1 (en) * 2009-11-24 2013-04-11 三菱レイヨン株式会社 Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5561171B2 (en) * 2009-11-24 2014-07-30 三菱レイヨン株式会社 Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
KR101739254B1 (en) * 2009-11-24 2017-05-25 미쯔비시 케미컬 주식회사 Porous electrode base material, process for production thereof, precursor sheet, film-electrode assembly, and solid polymer fuel cell
US9705137B2 (en) 2011-01-27 2017-07-11 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
JP2015118944A (en) * 2011-01-27 2015-06-25 三菱レイヨン株式会社 Porous electrode base material, method for manufacturing the same, precursor sheet, film-electrode assembly, and solid polymer fuel battery
JP2012162835A (en) * 2011-02-09 2012-08-30 Mitsubishi Rayon Co Ltd Method for producing carbon fiber-containing nonwoven fabric
US9397350B2 (en) 2013-03-21 2016-07-19 Korea Institute Of Energy Research Carbon fiber web including polymer nanofibers
KR101392227B1 (en) 2013-03-21 2014-05-27 한국에너지기술연구원 Carbon fiber web comprising polymer nanofiber
WO2014156861A1 (en) 2013-03-25 2014-10-02 Art&Tech株式会社 Nonwoven fabric, sheet, film, multilayer sheet, molded article, and method for producing nonwoven fabric
WO2023136141A1 (en) * 2022-01-17 2023-07-20 東洋紡エムシー株式会社 Flame-resistant nonwoven fabric containing flame-resistant polyphenylene ether fiber and reinforcing fiber, flame-resistant molded body containing flame-resistant polyphenylene ether and reinforcing fiber, and methods for manufacturing same

Similar Documents

Publication Publication Date Title
KR101945585B1 (en) Carbon-fiber nonwoven cloth and gas diffusion electrode for polymer electrolyte fuel cell using same, polymer electrolyte fuel cell, method for manufacturing carbon-fiber nonwoven cloth, and composite sheet
JP7256502B2 (en) Sheet and its manufacturing method
JP2002266217A (en) Carbon fiber nonwoven fabric and method for producing the same
CN102597349B (en) Inorganic fiber molded body and manufacturing method therefor
KR101827617B1 (en) Separator for electric double layer capacitors, and electric double layer capacitor
JP4863443B2 (en) Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof
JPH03220353A (en) Carbon fiber structure and production thereof
JP2012127018A (en) Paper composed of polyphenylene sulfide fiber and method for producing the same
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP6187753B2 (en) Method for producing carbon fiber nonwoven fabric for heat insulating material precursor and method for producing heat insulating material
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP4098160B2 (en) Carbon fiber nonwoven fabric excellent in gas permeability and conductivity and method for producing the same
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
CN113614300B (en) Inorganic fiber molded article, mat for exhaust gas purification device, and exhaust gas purification device
JP3372317B2 (en) Method for producing non-woven fabric for alkaline battery separator
JP4138510B2 (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2002194650A (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP2009185411A (en) Heat insulator containing carbon fiber
JPH02191759A (en) High-tenacity sheet
JP4133700B2 (en) Conductive nonwoven fabric and conductive nonwoven fabric