JP4190653B2 - High heat resistance low dielectric constant thermosetting resin - Google Patents
High heat resistance low dielectric constant thermosetting resin Download PDFInfo
- Publication number
- JP4190653B2 JP4190653B2 JP12313499A JP12313499A JP4190653B2 JP 4190653 B2 JP4190653 B2 JP 4190653B2 JP 12313499 A JP12313499 A JP 12313499A JP 12313499 A JP12313499 A JP 12313499A JP 4190653 B2 JP4190653 B2 JP 4190653B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- group
- resin
- heat resistance
- thermosetting resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、優れた耐熱性と低誘電率特性とを有する熱硬化性樹脂に関するものである。
【0002】
【従来の技術】
熱硬化性樹脂は様々な用途に使用されている。その用途の一つとして積層板、半導体封止材料などの電子材料があるが、電子材料に求められる性能も年々厳しくなってきている。昨今の電子機器の高密度化を初め、高速信号伝達性、高周波対応などに伴い、従来からの耐熱性に加えて、特に低誘電率特性が要求されている。
【0003】
半導体封止材料に低誘電率特性を付与するためには、低誘電率の熱可塑性樹脂とのアロイ化も一つの方法であるが、熱可塑性樹脂は一般的に耐熱性が低いため、アロイ化による方法では所定の耐熱性を得るのが難しい。
【0004】
樹脂自体の誘電率を低下させる手段としては、樹脂中の極性基密度を小さくすることが有効なことが広く知られている。その目的で嵩高い非極性基を導入する手法があるが、低誘電率特性を獲得する一方で、セグメント間の相互作用が小さくなること、置換基自体が脱離し易くなることなどの理由で、耐熱性が低下するのが通例であり、耐熱性と低誘電率特性を両立させるのは困難であった。
【0005】
一方、近年、ジヒドロキシベンゾオキサジン樹脂が、耐熱性、低吸水性、低熱膨張性、低硬化収縮などの優れた特性を有することが報告されている(J.Polym.Sci.PartB,Vol.32,921-927(1994);ibid.,Vol.34,1019-1030(1996))。誘電特性についてはデータが示されていないが、硬化反応の温度よりはるかに高いガラス転移点を示すことが注目されている。
【0006】
【発明が解決しようとする課題】
本発明は、電子材料に対する昨今のこのような要求に応えるため、優れた耐熱性と低誘電率特性を両立させた熱硬化性樹脂を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
本発明者は、昨今の電子材料に対するこのような要求に鑑み鋭意検討の結果、ジヒドロキシベンゾオキサジン樹脂に、前記の樹脂中の極性基密度を小さくする手法を適用することにより、優れた耐熱性と低誘電率特性とを併せ持つ熱硬化性樹脂が得られることを見出し、さらに検討を進めて本発明を完成するに至ったものである。
【0008】
即ち本発明は、一般式(1)で示される構造の化合物、および/またはその開環重合体からなることを特徴とする熱硬化性樹脂である。
【0009】
【化1】
式中、R1はシクロヘキシリデン基を除く置換もしくは無置換の炭素数5個以上12個以下の脂環式炭化水素基、あるいは炭素数4個以上12個以下の直鎖もしくは分岐アルキリデン基であり、R2及びR3は炭素数10個以下の脂肪族基、フェニル基、またはt−ブチル基がオルト位もしくはパラ位に置換されたフェニル基で、互いに同じでも異なっていてもかまわない。
【0010】
【発明の実施の形態】
本発明における、一般式(1)で示される構造の化合物、および/またはその開環重合体、即ちジヒドロキシベンゾオキサジン樹脂は、フェノール性水酸基を有する化合物と、一級アミンおよびホルムアルデヒドとを反応させることによって得ることができる。反応生成物は一般的には、一般式(1)で示される構造の化合物の他に、2量体やより高次のオリゴマーを含む混合物となっているが、熱硬化性樹脂としては、混合物のまま使用して何ら差し支えはない。
【0011】
一般式(1)において、R1を構成する基は、シクロヘキシリデン基を除く置換もしくは無置換の炭素数5個以上12個以下の脂環式炭化水素基、あるいは炭素数4個以上12個以下の直鎖もしくは分岐アルキリデン基であり、より好ましくは4〜10個の範囲とするのが望ましい。炭素数がそれぞれの範囲の下限未満の場合は、樹脂中の極性基密度を小さくする効果が十分でないため、目標とする低誘電率特性が発現しない。一方、13個以上になると、樹脂のガラス転移点や熱分解温度が低下して、高耐熱性が失われてしまう。
【0012】
炭化水素基R1の炭素数が4〜12個の範囲で、本発明において使用される、フェノール性水酸基を有する化合物の例としては、4,4’−(1−メチルプロピリデン)ビスフェノール、4,4’−(2−メチルプロピリデン)ビスフェノール、4,4’−(1,3’−ジメチルブチリデン)ビスフェノール、4,4’−(2−エチルヘキシリデン)ビスフェノール、4,4’−ドデシリデンビスフェノール、4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−シクロペンチリデンビスフェノール、1,3−ビス(4−ヒドロキシフェニル)アダマンタン、1,6−ビス(4−ヒドロキシフェニル)ジアダマンタン、炭化水素変性フェノール樹脂などが挙げられる。
【0013】
一般式(1)において、R2およびR3を構成する基は、脂肪族基、フェニル基、またはt−ブチル基がオルト位もしくはパラ位に置換されたフェニル基であり、炭素数が10個以下とするのが好ましい。炭素数が11個以上になると、得られた樹脂のガラス転移点や熱分解温度が低下するので、本発明の目的には適さない。このような一級アミンの例としては、アニリン、メチルアミン、エチルアミン、n-プロピルアミン、i-プロピルアミン、シクロヘキシルアミン、2−t−ブチルアニリン、4−t−ブチルアニリンなどが挙げられる。
【0014】
また、ホルムアルデヒドとしては、ホルムアルデヒド水溶液であるホルマリン、あるいはその重合物であるパラホルムアルデヒドのいずれも使用することができる。
【0015】
反応溶媒としては、1−プロパノール、2−プロパノール、1−ブタノール、1,4−ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテルなどの、単独もしくは混合溶媒を使用することができる。
【0016】
フェノール性水酸基のすべてを反応せるため、フェノール性水酸基1モルに対して、一級アミン1モル、およびホルムアルデヒド2モル以上を用いるのが望ましい。反応温度は、100℃以上130℃以下で行なうのが望ましい。反応温度が100℃未満の場合は反応が進行せず、130℃を越える場合は、一旦生成したベンゾオキサジン環が開環し、別のフェノール性水酸基近辺との間で結合反応を生じて、オリゴマー化するという副反応が促進されるので好ましくない。反応時間は反応温度にもよるが、2時間から6時間で完結する。
【0017】
反応終了後、溶媒を留去した後、必要に応じてアルカリ洗浄操作を行ない、未反応のフェノール性水酸基を有する化合物、アミン類、およびホルムアルデヒドを除去することにより、ジヒドロキシベンゾオキサジン樹脂が得られる。一般式(1)の構造を有する化合物の開環重合体の分子量、あるいは混合物の平均分子量は、特に限定はしないが、400〜3000程度が望ましい。3000を越えると、熱溶融しにくくなり成形が困難になる。
【0018】
本発明の熱硬化性樹脂の硬化物は、優れた耐熱性と共に、3.0〜3.75の範囲の低い誘電率を示す。一般に、フェノール樹脂は耐熱性は優れているものの、誘電率が4.5〜5程度と大きいため、低誘電率特性が要求される電子材料には適用できない。これに対して、エポキシ樹脂は使用する硬化剤の種類にもよるが、誘電率は3.0〜4.2程度と低い値を示す反面、耐熱性がやゝ低い問題がある。本発明においては、ジヒドロキシベンゾオキサジン樹脂の構造中に、嵩高い非極性基を導入することにより、樹脂の優れた耐熱性を損なうことなく、低誘電率特性を実現し、電子材料への適用が可能になった。
【0019】
本発明による熱硬化性樹脂は、そのままでも加熱により硬化するが、実用的には、硬化促進剤を併用するのが好ましい。また、半導体封止材料や回路基板等に用いるには、必要に応じて、無機フィラー、有機フィラー、色素、離型剤など、当業者に公知の各種充填剤や添加剤を使用してもかまわない。
【0020】
【実施例】
以下に、実施例により本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。
【0021】
特性評価のため、合成した各試料について、熱分解温度、ガラス転移温度、および誘電率を測定したが、各特性の測定方法は下記の通りとし、測定結果はまとめて表1に示した。
【0022】
1.熱分解温度
大気存在下、10℃/分の速度で昇温し、重量が5%減少した時の温度を、熱分解温度とした。
【0023】
2.ガラス転移温度
幅2mm、厚さ1.2mmに加工した樹脂硬化物を、3℃/分の割合で昇温しながら、周波数11Hzの歪みを与えて動的粘弾性の測定を行ない、tanδのピーク値からガラス転移温度(Tg)を判定した。
【0024】
3.誘電率
厚さ2mm、6cm角に切断した樹脂硬化物の板を電極に挟み、JIS-K-6911に準じて測定を行なった。
【0025】
[実施例1]
フラスコに、1−プロパノール30重量部と37%ホルマリン26.9重量部を入れ、液温を5℃に保ち撹拌しながら、1−プロパノール20重量部とアニリン15.4部重量との混合液を、滴下して加えた。さらに、4,4’−(2−メチルプロピリデン)ビスフェノール20重量部を1−プロパノール100重量部に溶解した溶液を、同様に滴下して加え、滴下終了後、還流温度まで昇温しそのまま2時間反応を続けた。その後溶媒を留去し、目的のジヒドロキシベンゾオキサジン樹脂を得た。
得られた樹脂を加熱溶融し、脱泡処理した後、間隔を2mmに設定した2枚のガラス板の間に流し込んで、140℃3時間、160℃30分、180℃30分、200℃30分、230℃1.5時間と順次昇温しながら加熱硬化させた。この樹脂硬化物から、所定寸法の試験片を切り出し、熱分解温度、ガラス転移温度(動的粘弾性)、および誘電率の測定に供した。
【0028】
[実施例2]
フラスコに、1−プロパノール30重量部と37%ホルマリン33.5重量部を入れ、液温を5℃に保ち撹拌しながら、1−プロパノール25重量部とアニリン18.6重量部との混合液を、滴下して加えた。さらに、1,3−ビス(4−ヒドロキシフェニル)アダマンタン32.0重量部を1−プロパノール100部に溶解した溶液を、同様に滴下して加え、滴下終了後、還流温度まで昇温しそのまま2時間反応を続けた。その後溶媒を留去し、目的のジヒドロキシベンゾオキサジン樹脂を得た。この樹脂を、実施例1と同様にして加熱硬化させ、評価用の試験片を作成した。
【0030】
[比較例1]
ノボラック型フェノール樹脂(住友ベークライト社製 A−1084)100重量部に、ヘキサメチレンテトラミン15重量部をミキサーで混合した。この樹脂組成物を熱板上で溶融混合し冷却した後、150℃15分プレス成形し、さらに150℃で、4時間後硬化を行なった。得られた樹脂硬化物から、所定寸法の試験片を切り出し、熱分解温度、ガラス転移温度(動的粘弾性)、および誘電率の測定に供した。
【0031】
[比較例2]
エポキシ樹脂(油化シェルエポキシ社製 エピコート828)100重量部、ノボラック型フェノール樹脂(住友ベークライト社製 PR−51470)56重量部、および2−エチル−4−メチルイミダゾール0.5重量部を溶融混合し、脱泡処理を行なった後、間隔を2mmに設定した2枚のガラス板の間に流し込んで、140℃3時間、80℃4時間、120℃1時間、150℃1時間、180℃4時間と順次昇温しながら加熱硬化させた。得られた硬化物から、実施例1と同様にして試験片を切り出し、測定に供した。
【0032】
【表1】
【0033】
表1に示した結果から明らかなように、本発明の熱硬化性樹脂は、耐熱性(熱分解温度およびガラス転移温度)の点では、従来の熱硬化性樹脂とほゞ同程度以上の値であるが、誘電率では、従来の高耐熱性熱硬化性樹脂では達成出来ないレベルの特性を示し、優れた耐熱性と低誘電率特性とを両立させたものと言える。
【0034】
【発明の効果】
本発明の熱硬化性樹脂は、従来の熱硬化性樹脂では実現出来なかった、優れた耐熱性と低誘電率特性を両立させたもので、電子材料用の樹脂として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting resin having excellent heat resistance and low dielectric constant characteristics.
[0002]
[Prior art]
Thermosetting resins are used in various applications. One of the applications is electronic materials such as laminates and semiconductor encapsulating materials, but the performance required for electronic materials is becoming stricter year by year. Along with the recent increase in density of electronic devices, high-speed signal transmission, high frequency response, etc., in addition to conventional heat resistance, particularly low dielectric constant characteristics are required.
[0003]
In order to impart low dielectric constant characteristics to semiconductor encapsulation materials, alloying with a low dielectric constant thermoplastic resin is also one method, but since thermoplastic resins generally have low heat resistance, they are alloyed. It is difficult to obtain a predetermined heat resistance by the method according to 1.
[0004]
As means for reducing the dielectric constant of the resin itself, it is widely known that it is effective to reduce the density of polar groups in the resin. For that purpose, there is a method of introducing a bulky nonpolar group, but while obtaining low dielectric constant characteristics, the interaction between segments is reduced, the substituent itself is easily detached, etc. The heat resistance is usually lowered, and it has been difficult to achieve both heat resistance and low dielectric constant characteristics.
[0005]
On the other hand, it has recently been reported that dihydroxybenzoxazine resin has excellent properties such as heat resistance, low water absorption, low thermal expansion, and low curing shrinkage (J. Polym. Sci. Part B, Vol. 32, 921- 927 (1994); ibid., Vol. 34, 1019-1030 (1996)). Although no data is shown on the dielectric properties, it is noted that it exhibits a glass transition point much higher than the temperature of the curing reaction.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a thermosetting resin having both excellent heat resistance and low dielectric constant characteristics in order to meet the recent demands for electronic materials.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of such demands on electronic materials in recent years, the present inventor has achieved excellent heat resistance by applying a technique for reducing the polar group density in the resin to dihydroxybenzoxazine resin. The present inventors have found that a thermosetting resin having low dielectric constant characteristics can be obtained, and have further studied and completed the present invention.
[0008]
That is, the present invention is a thermosetting resin characterized by comprising a compound having a structure represented by the general formula (1) and / or a ring-opening polymer thereof.
[0009]
[Chemical 1]
In the formula, R 1 is a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 12 carbon atoms , excluding cyclohexylidene group, or a linear or branched alkylidene group having 4 to 12 carbon atoms. R 2 and R 3 are an aliphatic group having 10 or less carbon atoms, a phenyl group, or a phenyl group in which a t-butyl group is substituted in the ortho or para position, and may be the same or different from each other.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the compound having the structure represented by the general formula (1) and / or the ring-opening polymer thereof, that is, the dihydroxybenzoxazine resin is obtained by reacting a compound having a phenolic hydroxyl group with a primary amine and formaldehyde. Obtainable. In general, the reaction product is a mixture containing a dimer or a higher-order oligomer in addition to the compound having the structure represented by the general formula (1). There is no problem using it as it is.
[0011]
In the general formula (1), the group constituting R 1 is a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 12 carbon atoms excluding the cyclohexylidene group, or 4 to 12 carbon atoms. The following linear or branched alkylidene groups are preferable , and the range of 4 to 10 is more preferable. When the number of carbon atoms is less than the lower limit of each range, the effect of reducing the density of polar groups in the resin is not sufficient, and the target low dielectric constant characteristics are not exhibited. On the other hand, when it is 13 or more, the glass transition point and the thermal decomposition temperature of the resin are lowered, and high heat resistance is lost.
[0012]
In the carbon number range of the hydrocarbon group R 1 is 4 to 12, are used in the present invention, examples of the compound having a phenolic hydroxyl group, 4, 4 '- (1-methyl propylidene) bisphenol, 4 , 4 ′-(2-methylpropylidene) bisphenol, 4,4 ′-(1,3′-dimethylbutylidene) bisphenol, 4,4 ′-(2-ethylhexylidene) bisphenol, 4,4′- dodecylate bisphenols, 4 '- [1,4-phenylene bis (1-methylethylidene)] bisphenol, 4,4'-cyclopentylidene bisphenol, 1, 3- bis (4-hydroxyphenyl) adamantane, 1,6 -Bis (4-hydroxyphenyl) diadamantane, hydrocarbon-modified phenol resin and the like.
[0013]
In the general formula (1), the group constituting R 2 and R 3 is an aliphatic group, a phenyl group, or a phenyl group in which a t-butyl group is substituted at the ortho or para position, and has 10 carbon atoms. The following is preferable. When the number of carbon atoms is 11 or more, the glass transition point and the thermal decomposition temperature of the obtained resin are lowered, so that it is not suitable for the purpose of the present invention. Examples of such primary amines include aniline, methylamine, ethylamine, n-propylamine, i-propylamine, cyclohexylamine, 2-t-butylaniline, 4-t-butylaniline and the like.
[0014]
As formaldehyde, either formalin which is an aqueous formaldehyde solution or paraformaldehyde which is a polymer thereof can be used.
[0015]
As the reaction solvent, it is possible to use a single solvent or a mixed solvent such as 1-propanol, 2-propanol, 1-butanol, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether. it can.
[0016]
In order to react all phenolic hydroxyl groups, it is desirable to use 1 mol of primary amine and 2 mol or more of formaldehyde with respect to 1 mol of phenolic hydroxyl group. The reaction temperature is desirably 100 ° C. or higher and 130 ° C. or lower. When the reaction temperature is less than 100 ° C, the reaction does not proceed. When the reaction temperature exceeds 130 ° C, the once formed benzoxazine ring is opened, and a bonding reaction occurs with another phenolic hydroxyl group, resulting in an oligomer. This is not preferable because it promotes a side reaction of conversion. Although the reaction time depends on the reaction temperature, it is completed in 2 to 6 hours.
[0017]
After completion of the reaction, after distilling off the solvent, an alkali washing operation is performed as necessary to remove the unreacted phenolic hydroxyl group-containing compound, amines, and formaldehyde, thereby obtaining a dihydroxybenzoxazine resin. The molecular weight of the ring-opening polymer of the compound having the structure of the general formula (1) or the average molecular weight of the mixture is not particularly limited, but is preferably about 400 to 3000. If it exceeds 3000, it will be difficult to heat melt and molding will be difficult.
[0018]
The cured product of the thermosetting resin of the present invention exhibits a low dielectric constant in the range of 3.0 to 3.75 together with excellent heat resistance. In general, phenol resin is excellent in heat resistance, but has a large dielectric constant of about 4.5 to 5, and therefore cannot be applied to electronic materials that require low dielectric constant characteristics. On the other hand, although the epoxy resin depends on the type of curing agent used, the dielectric constant shows a low value of about 3.0 to 4.2, but there is a problem that the heat resistance is slightly low. In the present invention, by introducing a bulky nonpolar group into the structure of the dihydroxybenzoxazine resin, low dielectric constant characteristics are realized without impairing the excellent heat resistance of the resin, and it can be applied to electronic materials. It became possible.
[0019]
Although the thermosetting resin according to the present invention is cured by heating as it is, it is practically preferable to use a curing accelerator in combination. For use in semiconductor sealing materials and circuit boards, various fillers and additives known to those skilled in the art, such as inorganic fillers, organic fillers, dyes, and release agents, may be used as necessary. Absent.
[0020]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
[0021]
The thermal decomposition temperature, glass transition temperature, and dielectric constant were measured for each of the synthesized samples for characteristic evaluation. The measurement method for each characteristic was as follows, and the measurement results are collectively shown in Table 1.
[0022]
1. Thermal decomposition temperature In the presence of air, the temperature was increased at a rate of 10 ° C./min, and the temperature when the weight decreased by 5% was defined as the thermal decomposition temperature.
[0023]
2. Measures the dynamic viscoelasticity of a cured resin cured to a glass transition temperature width of 2mm and a thickness of 1.2mm at a rate of 3 ° C / min while applying a strain of a frequency of 11Hz. The glass transition temperature (Tg) was determined from the value.
[0024]
3. A plate of cured resin cut into a dielectric constant thickness of 2 mm and 6 cm square was sandwiched between electrodes, and measurement was performed according to JIS-K-6911.
[0025]
[Example 1]
30 parts by weight of 1-propanol and 26.9 parts by weight of 37% formalin are placed in a flask, and a mixed solution of 20 parts by weight of 1-propanol and 15.4 parts by weight of aniline is stirred while maintaining the liquid temperature at 5 ° C. Added dropwise. Further, a solution prepared by dissolving 20 parts by weight of 4,4 ′-(2-methylpropylidene) bisphenol in 100 parts by weight of 1-propanol was added dropwise in the same manner. The reaction continued for hours. Thereafter, the solvent was distilled off to obtain the desired dihydroxybenzoxazine resin.
After the obtained resin was melted by heating and defoamed, it was poured between two glass plates set at an interval of 2 mm, 140 ° C. for 3 hours, 160 ° C. for 30 minutes, 180 ° C. for 30 minutes, 200 ° C. for 30 minutes, It was heat-cured while sequentially heating up at 230 ° C. for 1.5 hours. A test piece having a predetermined size was cut out from the cured resin and subjected to measurement of thermal decomposition temperature, glass transition temperature (dynamic viscoelasticity), and dielectric constant.
[0028]
[Example 2 ]
Into the flask, 30 parts by weight of 1-propanol and 33.5 parts by weight of 37% formalin were added, and a liquid mixture of 25 parts by weight of 1-propanol and 18.6 parts by weight of aniline was stirred while maintaining the liquid temperature at 5 ° C. Added dropwise. Further, a solution prepared by dissolving 32.0 parts by weight of 1,3-bis (4-hydroxyphenyl) adamantane in 100 parts of 1-propanol was added dropwise in the same manner. The reaction continued for hours. Thereafter, the solvent was distilled off to obtain the desired dihydroxybenzoxazine resin. This resin was heat-cured in the same manner as in Example 1 to prepare a test piece for evaluation.
[0030]
[Comparative Example 1]
15 parts by weight of hexamethylenetetramine was mixed with 100 parts by weight of a novolac type phenolic resin (A-1084, manufactured by Sumitomo Bakelite Co., Ltd.) with a mixer. This resin composition was melted and mixed on a hot plate and cooled, then press molded at 150 ° C. for 15 minutes, and further post-cured at 150 ° C. for 4 hours. A test piece having a predetermined size was cut out from the obtained cured resin and subjected to measurement of thermal decomposition temperature, glass transition temperature (dynamic viscoelasticity), and dielectric constant.
[0031]
[Comparative Example 2]
100 parts by weight of an epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.), 56 parts by weight of a novolak type phenol resin (PR-51470 manufactured by Sumitomo Bakelite Co., Ltd.) and 0.5 parts by weight of 2-ethyl-4-methylimidazole are melt mixed. Then, after defoaming treatment, it was poured between two glass plates set at intervals of 2 mm, 140 ° C. for 3 hours, 80 ° C. for 4 hours, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 4 hours. Heat curing was carried out while heating up sequentially. A test piece was cut out from the obtained cured product in the same manner as in Example 1 and subjected to measurement.
[0032]
[Table 1]
[0033]
As is apparent from the results shown in Table 1, the thermosetting resin of the present invention has a value approximately equal to or higher than that of conventional thermosetting resins in terms of heat resistance (thermal decomposition temperature and glass transition temperature). However, the dielectric constant exhibits characteristics that cannot be achieved by conventional high heat-resistant thermosetting resins, and it can be said that both excellent heat resistance and low dielectric constant characteristics are achieved.
[0034]
【The invention's effect】
The thermosetting resin of the present invention has both excellent heat resistance and low dielectric constant characteristics that cannot be realized by conventional thermosetting resins, and is useful as a resin for electronic materials.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12313499A JP4190653B2 (en) | 1998-09-17 | 1999-04-28 | High heat resistance low dielectric constant thermosetting resin |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-263664 | 1998-09-17 | ||
JP26366498 | 1998-09-17 | ||
JP12313499A JP4190653B2 (en) | 1998-09-17 | 1999-04-28 | High heat resistance low dielectric constant thermosetting resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000154225A JP2000154225A (en) | 2000-06-06 |
JP4190653B2 true JP4190653B2 (en) | 2008-12-03 |
Family
ID=26460133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12313499A Expired - Fee Related JP4190653B2 (en) | 1998-09-17 | 1999-04-28 | High heat resistance low dielectric constant thermosetting resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4190653B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001146545A (en) * | 1999-11-19 | 2001-05-29 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition |
TW584644B (en) | 2001-03-12 | 2004-04-21 | Hitachi Chemical Co Ltd | Process for producing benzoxazine resin |
JP2006227538A (en) * | 2005-02-21 | 2006-08-31 | Sumitomo Bakelite Co Ltd | Photopolymer composite and solder resist |
JP5096668B2 (en) * | 2005-06-29 | 2012-12-12 | ナガセケムテックス株式会社 | Thermosetting resin composition |
TWI321139B (en) | 2005-08-05 | 2010-03-01 | Sekisui Chemical Co Ltd | Thermosetting compound, composition containing the same and molded product |
US20090054614A1 (en) | 2006-02-20 | 2009-02-26 | Sekisui Chemical Co., Ltd. | Method for producing thermosetting resin, thermosetting resin, thermosetting composition containing same, molded body, cured body, and electronic device containing those |
WO2008146759A1 (en) * | 2007-05-25 | 2008-12-04 | Kaneka Corporation | Curable composition and cured product thereof |
WO2009008468A1 (en) * | 2007-07-10 | 2009-01-15 | Sekisui Chemical Co., Ltd. | Thermosetting resin having benzoxazine structure and method for producing the same |
JP7384559B2 (en) * | 2019-01-31 | 2023-11-21 | 京セラ株式会社 | High frequency encapsulant resin composition and semiconductor device |
TWI798102B (en) * | 2021-12-16 | 2023-04-01 | 元鴻應用材料股份有限公司 | A kind of benzoxazine resin, its composition and copper foil substrate made of it |
-
1999
- 1999-04-28 JP JP12313499A patent/JP4190653B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000154225A (en) | 2000-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100950398B1 (en) | Thermosetting resin, thermosetting composition containing same, and molded body obtained from same | |
JP3487083B2 (en) | Thermosetting resin composition and cured product thereof | |
JP4190653B2 (en) | High heat resistance low dielectric constant thermosetting resin | |
JP6515255B1 (en) | Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate | |
KR20130118319A (en) | High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin | |
JP3926045B2 (en) | Thermosetting resin composition | |
JP2002138096A (en) | Phenol compound including phosphorus, manufacturing method therefor, and epoxy resin composition using the same | |
JP2001089654A (en) | Molding material for sealing and electronic member device | |
JP5214235B2 (en) | Novel bismaleimides having phenolic hydroxyl groups, thermosetting resin compositions containing them as essential components, and cured products thereof | |
EP1475398A1 (en) | Indole resins, epoxy resins and resin compositions containing the same | |
JP3196141B2 (en) | Epoxy resin composition | |
JP2004010839A (en) | Thermosetting resin having benzoxazine structure, resin composition and cured material | |
JP2007231041A (en) | Curable resin composition | |
JP3944627B2 (en) | Phenolic resin composition | |
JP4599869B2 (en) | Thermosetting resin composition | |
JP3318870B2 (en) | Epoxy resin composition | |
JP4749625B2 (en) | Thermosetting resin composition | |
JP2003041001A (en) | Thermosetting resin having dihydrobenzoxazine ring structure, resin composition and cured product | |
JP6274747B2 (en) | Curable resin composition and sealing material | |
JP3442240B2 (en) | Thermosetting resin composition and prepreg and laminate using the same | |
JPH09118738A (en) | Low-stress resin composition | |
JPH1160677A (en) | Epoxy resin composition for printed wiring board, and prepreg and metal-clad laminate prepared by using the same | |
JP2002161188A (en) | Thermosetting resin composition and its hardened matter | |
JPH08157560A (en) | Semiconductor-sealing epoxy resin composition | |
JP2001146545A (en) | Thermosetting resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |