JP4190417B2 - 無試薬全血ブドウ糖計 - Google Patents

無試薬全血ブドウ糖計 Download PDF

Info

Publication number
JP4190417B2
JP4190417B2 JP2003541459A JP2003541459A JP4190417B2 JP 4190417 B2 JP4190417 B2 JP 4190417B2 JP 2003541459 A JP2003541459 A JP 2003541459A JP 2003541459 A JP2003541459 A JP 2003541459A JP 4190417 B2 JP4190417 B2 JP 4190417B2
Authority
JP
Japan
Prior art keywords
sample
radiation
whole blood
detector
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003541459A
Other languages
English (en)
Other versions
JP2005508007A (ja
JP2005508007A5 (ja
Inventor
スターリング,バーンハード・ビー
ハートスタイン,フイリツプ・シー
リ,ケネス・アイ
アゴステイノ,マーク・デイ
ロノフ,デイビツド・シー
ガフニー,ロバート・デイ
ツエング,ペング
ゲイブル,ジエニフアー・エイチ
ウイツト,ケネス・ジー
スミス,ハイデイ・エム
シエイル,ジエーン・ジエイ
マンロー,マイク・エイ
ホール,ダブリユー・デイル
ゴールドバーガー,ダニエル・エス
フエネル,マーテイン・ジエイ
コーテラ,ジユリアン・エム
ブレイグ,ジエイムズ・アール
ルール,ピーター
Original Assignee
オプテイスカン・バイオメデイカル・コーポレーシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/055,875 external-priority patent/US6958809B2/en
Application filed by オプテイスカン・バイオメデイカル・コーポレーシヨン filed Critical オプテイスカン・バイオメデイカル・コーポレーシヨン
Publication of JP2005508007A publication Critical patent/JP2005508007A/ja
Publication of JP2005508007A5 publication Critical patent/JP2005508007A5/ja
Application granted granted Critical
Publication of JP4190417B2 publication Critical patent/JP4190417B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150213Venting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150442Blade-like piercing elements, e.g. blades, cutters, knives, for cutting the skin
    • A61B5/150458Specific blade design, e.g. for improved cutting and penetration characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150755Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150847Communication to or from blood sampling device
    • A61B5/15087Communication to or from blood sampling device short range, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Description

本発明は一般的に物質サンプル(material samples)内の被検体濃度の決定に関する。
数百万の糖尿病患者が彼らの血流中のブドウ糖レベルをモニターするために毎日ベースで血液の様な体液のサンプルを抜き取っている。この慣行は自己モニタリングと呼ばれ、多数の試薬ベースの(reagent−based)ブドウ糖モニターの1つを使って普通行われる。これらのモニターは試薬と、該流体サンプル中のブドウ糖との間の化学反応の或る側面を観察することによりブドウ糖濃度を測定する。該試薬は予測可能な仕方でブドウ糖と反応すると知られる化合物であり、該モニターが該サンプル内のブドウ糖濃度を決定することを可能にする。例えば、該モニターは該ブドウ糖と該試薬の間の反応により発生する電圧又は電流を測定するよう構成される。該試薬を保持し、該ブドウ糖と該試薬の間の反応をホスト(host)するため小さな試験ストリップ(test strip)が使われることが多い。試薬ベースのモニターと試験ストリップは種々の問題をこうむり、又限定された性能を有する。
試薬に係わる問題とコストは製造中、出荷時、貯蔵中、そして該試薬含有試験ストリップの使用時に起こる。該ストリップが究極的に適切に機能することを保証するために、コストが掛かり、努力を要する品質管理戦略が該試験ストリップ製造過程に組み入れられねばならない。例えば、該ストリップが消費者販売用にレリース(released)され得る前に、血液試験又は等価の試験により製造ロットに特定の校正コードが決定されねばならない。該モニターが該ストリップ上に置かれたサンプル内のブドウ糖濃度を精密に読むことを保証するために、該試薬ベースのモニターを使う糖尿病患者はこの校正コードを該モニター内に入れねばならないことが多い。当然、この要求は該校正コードを読むことと入れることによりエラーをもたらし、それは該モニターにブドウ糖濃度の危険な不精確読みを行わせ得る。
また、試薬ベースのモニターの試験ストリップは該試薬の水和を防止するために出荷時及び貯蔵時特殊な梱包を要求する。早すぎた水和は該試薬がブドウ糖と反応する仕方に影響し、誤った読みを引き起こし得る。一旦該試験ストリップが出荷されると、それらはベンダー及びユーザーにより制御された貯蔵温度範囲内で貯蔵されねばならない。不幸にして、多数のユーザーはこれらのプロトコルに従うことが出来ないことが多い。試験ストリップとそれらの試薬が不適切に取り扱われたり、貯蔵されたりすると、誤ったモニター読み出しが起こり得る。例え、全ての必要な過程、梱包、そして貯蔵の制御が守られても、該ストリップ上の試薬は経時的に劣化し、かくして該試験ストリップは限定された貯蔵寿命しか持たない。全てのこれらの要因が試薬ベースのモニターと試験ストリップを高価で厄介であると消費者に見なさせるようにした。実際、試薬ベースの試験片は、もしそれらがより簡単で、完全にフエイルセーフであるよう設計されるならば、遙かにもっと高価となるであろう。
試薬ベースのブドウ糖モニターの性能は試薬に関係する多くの面で限定される。上記で論じた様に、この様なモニターの精度は該試薬の感受性により限定され、かくして製造、梱包、貯蔵、そして使用に関する厳密なプロトコルの何等かの違反は該モニターの精度を減じる。該ブドウ糖と該試薬の間で反応が起こる時間は該ストリップ上の試薬の量により限定される。従って、該サンプル内のブドウ糖濃度を測定する時間も同様に限定される。試薬ベースの血液ブドウ糖モニター出力の信頼性はより多くの流体サンプルを取り、追加的測定を行うことによってのみ高めることが出来る。これは痛い流体の取り出しの量を2倍又は3倍にするので望ましくない。同時に、試薬ベースのモニターの性能は該反応速度が個別測定値を得ることのできる速度を限定することで限定される。該反応時間は大抵のユーザーには余りに長いと見なされている。
一般に、試薬ベースのモニターは大抵のユーザー用には余りに複雑で、限定された性能を有する。加えて、この様なモニターはユーザーが、注意して廃棄せねばならぬ鋭いランセット(lances)を使って、1日に多数回流体を抜き取ることを要求する。
米国特許第6、198、949号明細書、SOLID−STATE NON−INVASIVE INFRARED ABSORPTION SPECTROMETER FOR THE GENERATION AND CAPTURE OF THERMAL GRADIENT SPECTRA FROM LIVING TISSUE、2001年3月6日発行 米国特許第6、161、028号明細書、METHOD FOR DETERMINING ANALYTE CONCENTRATION USING PERIODIC TEMPERATURE MODULATION AND PHASE DETECTION、2000年12月12日発行 米国特許第5、877、500号明細書、MULTICHANNEL INFRARED DETECTOR WITH OPTICAL CONCENTRATORS FOR EACH CHANNNEL、1999年3月2日発行 米国特許出願公開第09/538,164号明細書、METHOD AND APPARATUS FOR DETERMINING ANALYTE CONCENTRATION USING PHASE AND MAGNITUDE DETECTION OF A RADIATION TRANSFER FUNCTION、2000年3月30日出願 国際公開第WO01/30236号パンフレット(米国特許出願公開第09/427、178号明細書に対応)、SOLID−STATE NON−INVASIVE THERMAL CYCLING SPECTROMETER、2001年3月3日刊行 米国仮特許出願公開第60/336、404号明細書、WINDOW ASSEMBLY、2001年10月29日出願 米国仮特許出願公開第60/340,794号明細書、REAGENT−LESS WHOLE−BLOOD GLUCOSE METER、2001年12月11日出願 米国仮特許出願公開第60/340,435号明細書、CONTORL SYSTEM FOR BLOOD CONSTITUENT MONITOR、2001年12月12日出願 米国仮特許出願公開第60/340,654号明細書、SYSTEM AND METHOD FOR CONDUCTING AND DETECTING INFRARED RADIATON、2001年12月12日出願 米国仮特許出願公開第60/340,773号明細書、METHOD FOR TRANSFORMING PHASE SPECTRA TO ABSORPTION SPECTRA、2001年12月11日 米国仮特許出願公開第60/332,322号明細書、METHOD FOR ADJUSTING SIGNAL VARIATION OF AN ELECTRONICALLY CONTROLLED INFRARED TRANSMISSIVE WINDOW、2001年11月21日出願 米国仮特許出願公開第60/332,093号明細書、METHOD FOR IMPROVING THE ACCURACY OF AN ALTERNATE SITE BLOOD GLUCOSE MEASUREMENT、2001年11月21日出願 米国仮特許出願公開第60/332,125号明細書、METHOD FOR ADJUSTING A BLOOD ANALYTE MEASUREMENT、2001年11月21日出願 米国仮特許出願公開第60/341,435号明細書、PATHLENGTH−INDEPENDENT METHODS FOR OTICALLY DETERMINING MATERIAL COMPOSITION、2001年12月14日 米国仮特許出願公開第60/339,120号明細書、QUADRATURE DEMODULATION AND KALMAN FILTERING IN A BIOLOGICAL CONSITUENT MONITOR、2001年12月7日出願 米国仮特許出願公開第60/339、044号明細書、FAST SIGNAL DEMODULATION WITH MODIFIED PHASE−LOCKED LOOP TECHNIQUES、2001年11月12日出願 米国仮特許出願公開第60/336,294号明細書、METHOD AND DEVICE FOR INCREASING ACCURACY OF BLOOD CONSITUENT MEASUREMENT、2001年12月29日出願 米国仮特許出願公開第60/338,992号明細書、SITE SELECTION FOR DETERMINING ANALYTE CONCENTRATION IN LIVING TISSUE、2001年11月13日 米国仮特許出願公開第60/339,116号明細書、METHOD AND APPARATUS FOR IMPROVING CLINICALLY SIGNIFICANT ACCURACY OF ANALYTE MEASUREMENT、2001年11月7日出願 米国特許第5、908、416号明細書、LASER DERMAL PERFORATOR、1999年6月1日発行 米国特許第6、207、400号明細書、NON− OR MINIMALLY INVASIVE MONITORING METHOD USING PARTICLE DELIVERY METHODS、2001年3月27日発行 米国特許第6、298、254号明細書、DEVICE FOR SAMPLING SUBSTANCES USING ALTERNATING POLARITY OF IONTOPHORETIC CURRENT、2001年10月2日 James T.Daly et al.Tunable Narrow−Band Filter for LWIR Hyperspectral Imging
一つの実施態様では、本発明は患者近傍で展開され得る(capable of being deployed near a patient)無試薬全血被検体検出システム(reagentless whole−blood analyte detection system)である。該全血システムはスペクトルバンドを有する放射のビームを放射出来る源と、該ビームの光路内の検出器と、を有する。又該全血システムは該源と該検出器とを収容するよう構成されたハウジングを有する。又該全血システムは該ビームの該光路内に位置するサンプル要素(sample element)を有する。該サンプル要素はサンプルセル(sample cell)と、該スペクトルバンド内の該放射のビームの透過率を低減しないサンプルセル壁と、を有する。
もう一つの実施態様では、本発明は無試薬全血被検体検出システムを含む。該全血システムは、約4.2μmと約12.2μmの間の少なくとも1つのスペクトルバンド内で電磁放射を一緒に発生する、放射源及びフイルターを含む放射発生システムを有する。又該全血システムは該スペクトルバンドの放射の光路内に位置付けられ、信号を発生するよう該スペクトルバンドの放射に応答する、光学的検出器を有する。また、該全血システムは該信号を受信し、処理するシグナルプロセッサーを有する。該シグナルプロセッサーは又出力を発生する。また、該全血システムはデイスプレーとサンプル抽出器(sample extractor)も有する。携帯型ハウジングが、該放射発生システムと、該光学的検出器と、該シグナルプロセッサーと、そして該サンプル抽出器との少なくとも1つを少なくとも部分的に収容するよう構成されている。該ハウジングは少なくとも1つの光学的に透過性の部分を有するサンプル要素を収容するよう適合されている。
なおもう一つの実施態様では、本発明は無試薬全血被検体検出システムを含む。該全血システムは源と、光学的検出器と、そしてサンプル要素とを有する。該源は電磁放射を放射するよう構成される。該光学的検出器は該放射の該光路内に位置付けられる。該サンプル要素は該放射の該光路内に位置付けられる。該全血システムは、該全血の少なくとも1つの特性を評価するために該全血のサンプルについて光学的分析を行う。
もう一つの実施態様では、全血のサンプルを分析するための無試薬全血被検体検出システムは光学的校正(optical calibration)システムと光学的分析システムとを有する。該光学的校正システムは該光学的分析システムが該全血のサンプルを分析すると概略同時に該全血システムを校正するよう適合される。
もう一つの実施態様では、全血被検体検出を行うための方法が提供される。患者近傍で展開され得る無試薬全血被検体検出システムは光学的校正システムと、光学的分析システムと、を具備し、そしてサンプルセルが提供される。該サンプルセルの実質的部分はサンプルで充たされる。該サンプルセルの第一の校正測定が行われる。該サンプルセル内の全血のサンプルの分析的測定が行われる。
もう一つの実施態様では、本発明は無試薬全血被検体検出用の方法を含む。源と、該源の光路内の検出器と、該源及び該検出器を収容するよう構成された携帯型ハウジングと、そしてサンプルセルを有するサンプル要素とが、提供される。流体サンプルが組織の部分から抜き取られる。サンプル要素の開口部(opening)が、該流体が該サンプル要素内に抜き取られるように該流体のサンプルに隣接して位置付けられる。該サンプル要素は該サンプルセルが該源の光路内にあるように該ハウジング内に位置付けられる。少なくとも1つのスペクトルバンドを有して放射される放射ビームは該源から該サンプル要素のサンプルセルへ放射される。該サンプル要素を出る放射を含む透過された放射ビームは該検出器により検出される。
もう一つの実施態様では、本発明は患者近傍で行われ得る無試薬全血被検体検出用の方法を含む。電磁放射を放射するよう構成された源と、該放射の光路内に位置付けられた光学的検出器と、が提供される。又、該源と該光学的検出器とサンプル要素とを少なくとも部分的に収容するよう構成された携帯型ハウジングが提供される。該サンプル要素は該放射の光路内で該ハウジング内に位置付けられ、全血のサンプルを含む。電磁放射の放射されるビームが該源から放射される。該全血のサンプルを通るよう透過される放射の透過されたビームは該全血のサンプルの少なくとも1つの特性を評価するために検出される。
もう一つの実施態様では、本発明は患者近傍で展開され得る無試薬全血検出システムを操作する方法を含む。該検出システムは光学的校正システムと光学的分析システムとを有する。校正部分と、全血のサンプルを有する分析部分と、を備えるサンプル要素が該全血分析システム内へ進められる。該全血のサンプルと該サンプル要素との光学的特性を決定するため電磁放射の第一のビームが該サンプル要素の分析部分を通して透過される。
もう一つの実施態様では、自動無試薬全血被検体検出システムは、源と、光学的検出器と、サンプル抽出器と、サンプルセルと、そしてシグナルプロセッサーとを有する。該源は電磁放射の少なくとも1つの波長を有する放射を発生出来る。該光学的検出器は該放射の光路内に位置付けられる。該光学的検出器は少なくとも1つの信号を発生することにより該放射に応答する。該サンプル抽出器は組織の部分から流体をサンプリングするように構成される。該サンプルセルは該放射の光路内に位置し、流体のサンプルを受けるよう構成される。該シグナルプロセッサーは該信号を処理する。該試験システムは流体のサンプルを抜き取り、該流体のサンプルを受け、該放射を発生し、該放射を検出し、そして患者からの何等かの介入無しに該信号を処理する、よう構成される。
もう一つの実施態様では、サンプル要素形成物質を有するサンプル要素を製造する方法が提供される。第一のモールデイングインサートを受け、第二のモールデイングインサートを受けるモールデイング室が提供される。該第一のモールデイングインサートは概ね平板状の形と、第一のモールデイングインサート縦軸とを有する。該第二のモールデイングインサートは第二のモールデイングインサート縦軸を有する。該モールデイング室内のモールデイング条件が選択される。該第一のモールデイングインサートが該モールデイング室内に位置付けられる。該第二のモールデイングインサートは、該第二のモールデイングインサート縦軸が該第一のモールデイングインサート縦軸と或る角度を形成するよう、該モールデイング室内に位置付けられる。該サンプル要素形成材料は該モールデイング室内に流れる。該第一のモールデイングインサートと第二のモールデイングインサートは該モールデイング室から除去される。
もう一つの実施態様では、サンプル要素は穿孔可能部分と、サンプルセルと、サンプル供給通路と、そしてサンプル抽出器とを有する。該サンプルセルは第一の窓と第二の窓により規定される。該サンプル供給通路は該サンプルセルと穿孔可能部分の間に延びる。
もう一つの実施態様では、サンプル要素は開口部と第一のサンプルセル壁とを有する。第一のサンプルセル壁は第一の内部側部(inner side)と第一の外部側部(outer side)とを有する。サンプルセルは少なくとも部分的に該第一のサンプルセル壁により規定される。サンプル供給通路は該開口部と該サンプルセルの間に延びている。
もう一つの実施態様では、サンプル要素取り扱いシステム(sample element handling system)は少なくとも2つのサンプル要素と、使用済みサンプル要素部分と、そして未使用サンプル要素部分とを含む。該使用済みサンプル要素部分は該未使用サンプル要素部分に結合される。該サンプル要素取り扱いシステムの展開の前に、該サンプル要素の各々は該未使用サンプル要素部分内に収容される。該サンプル要素取り扱いシステムは該サンプル要素を該未使用サンプル要素部分から該使用済みサンプル要素部分へ進める。
もう一つの実施態様では、サンプル要素をサンプルで充たす方法が提供される。少なくとも2つのサンプル要素を有するサンプル要素ハンドラー(handler)が提供される。該サンプル要素ハンドラーは未使用サンプル要素部分と、該未使用サンプル要素部分に結合された使用済みサンプル要素部分と、を有する。第一のサンプル要素は該未使用部分からサンプル把持位置へ進められる。サンプルは該サンプル要素を少なくとも部分的に充たすよう把持される。該第一のサンプル要素は該サンプル把持位置から該使用済みサンプル要素部分へ進められる。該サンプル要素ハンドラーは該充たされたサンプル要素がエネルギー源へ供されるように全血システム内へ挿入可能に構成される。
もう一つの実施態様では、サンプル要素カートリッジが第一のサンプル要素と、該第一のサンプル要素に取り外し可能に取り付けられた第二のサンプル要素と、そしてサンプル要素ハンドラーとを有する。該サンプル要素ハンドラーは貯蔵サンプル要素部分と、展開済みサンプル要素部分と、そしてサンプル要素アドバンサー(advancer)とを有する。該サンプル要素アドバンサーは該第一のサンプル要素を該貯蔵サンプル要素部分から該展開済みサンプル要素部分へ転送する。該サンプル要素アドバンサーは該第二のサンプル要素を該貯蔵サンプル要素部分から該展開済みサンプル要素部分へ転送する。該第一のサンプル要素はそれが該展開済みサンプル要素部分へ転送された後該第二のサンプル要素から取り外されるよう構成される。
もう一つの実施態様では、サンプル要素は校正部分とサンプル部分とを有する。
もう一つの実施態様では、サンプル要素を取り扱う方法が提供される。校正部分とサンプル部分とを有するサンプル要素が提供される。サンプル部分の少なくとも一部分はサンプルで充たされる。該サンプル要素は全血分析システム内へ挿入される。該サンプル部分と該校正部分の少なくとも1つ内で光学的分析が行われる。該サンプル要素は該全血分析システムから除去される。
もう一つの実施態様では、ユーザーの外肢(appendage)の裂傷(laceration)からサンプルを集めるためのサンプル要素組立体(assembly)が提供される。該サンプル要素組立体はサンプルセルと、開口部と、そしてサンプル供給通路とを有するサンプル要素を備える。該サンプル供給通路は該開口部と該サンプルセルとの間の流体流通を提供する。又サンプル要素組立体は単一運動(single motion)サンプル抽出器を有する。サンプルセル組立体(sample cell assembly)の単一運動は外肢の裂傷を創り、そして又該サンプルが該サンプル要素内に抜き取られるように該裂傷に該開口部を置く。
<好ましい態様の詳細な記述>
或る好ましい実施態様及び実施例が下記で開示されるが、本発明は、特定の開示される実施態様を超えて、他の代替しうる実施態様及び/又は本発明の使用及びその明らかな変型と均等物まで及ぶことは当業者により理解されるであろう。かくして、ここに開示された本発明の範囲は下記説明の特定の開示された実施態様により限定されるべきでないものと意図されている。
I.被検体検出システムの大要
本明細書で被検体検出システムが開示されるが、該システムは、主として下記パートAで論じられる非侵襲正システムと、主として下記パートBで論じられる全血システムと、を含んでいる。また、材料サンプル内の被検体の濃度を検出する方法を含む種々の方法が開示される。該非侵襲性システム/方法と該全血システム/方法はそれらが共に光学的測定を使うことで関連付けられる。測定の装置と方法を参照して本明細書で使われる時、「光学的」は広い用語であり、その普通の意味で使われ、限定が無い場合は、化学反応を起こす必要無しに物質サンプル内の被検体の存在又は濃度の識別を意味する。下記でより詳細に論じる時、該2つの取り組みは材料サンプルの光学的分析を行うため各々独立に動作することが出来る。また、該2つの取り組み1つの装置内で組み合わされることも可能であり、該2つの取り組みは方法の種々の過程を行うために一緒に使われることも可能である。
一つの実施態様では、該2つの取り組みは装置、例えば非侵襲性の取り組みを使う装置、の校正を行うため組み合わされる。もう一つの実施態様では、2つの取り組みの有利な組み合わせが、より高い精度を達成するための非侵襲性測定と、患者への不快感を最小化する全血測定と、を行う。例えば、その日の或る時刻、例えば食事が消費された後又は薬が投与された後の或る時刻には、該全血技術は該非侵襲性の技術より精密であるかも知れない。
しかしながら、開示されるデバイスの何れも何等かの適当な検出方法論に依り動作すること、そして何れの開示される方法も何等かの適当なデバイスの動作で使われることは理解されるべきである。更に、該開示されるデバイスと方法は、従来の、非侵襲性の、間歇的又は連続的測定、皮下埋め込み、着用型検出システム、又はそれらの何等かの組み合わせを含み、そしてそれらに限定されない、広い種類の状況又は動作モードで応用可能である。
ここに説明され、図解される何れの方法も説明される動作の正確なシーケンスに限定されず、表明される動作の全ての実行に必ずしも限定されもしない。問題の方法(複数を含む)を実行するのにイベント又は動作の他のシーケンス、又は該イベントの全てより少ないもの、又は該イベントの同時発生が利用されてもよい。
A.非侵襲性システム
1.モニター構造体
図1は現在の好ましい実施態様の非侵襲性光学的検出システム{以下「非侵襲性システム」と記す}10を描いている。該描かれた非侵襲性システム10は、下記で更に詳細に論じる様に、サンプルにより放射される赤外線エネルギーを観察することにより、材料サンプルS内の被検体の濃度を非侵襲的に検出するために特に好適である。
ここで使用される時、用語「非侵襲性」は広い用語であり、その普通の意味で使用され、限定無き場合は、生体内組織サンプル又は身体流体の中の被検体の濃度を決定する能力を有する被検体検出のデバイス及び方法を称する。しかしながら、ここで開示される該非侵襲性システム10は、該非侵襲性システム10が非侵襲的に又は侵襲的に得られた体外の流体又は組織のサンプルを分析するため使われる時は、非侵襲性の使用に限定されないことは理解されるべきである。ここで使用される時、用語「侵襲性」は広い用語であり、その普通の意味で使用され、限定無き場合は、皮膚を通した流体サンプルの除去を含む被検体検出方法を称する。ここで使用される時、用語「物質サンプル」は広い用語であり、その普通の意味で使用され、限定無き場合は、該非侵襲性システム10による分析用に好適な材料の何等かの集まりを称する。例えば、材料サンプルSは該非侵襲性システム10に対して置かれた、人間の前腕の様な、組織サンプルを含んでもよい。該材料サンプルSはまた、全血、血液成分(複数を含む)、侵襲的に得られた間隙性流体(interstitial fluid)又は細胞間流体(intercellular fluid)、又は非侵襲的に得られた唾液又は尿、又は有機的又は無機的材料の何等かの集まり、の様な或る容積の身体流体を含む。ここで使用される時、用語「被検体」は広い用語であり、その普通の意味で使用され、限定無き場合は、その存在又は濃度が該材料サンプルS内で該非侵襲性システム10により探される何等かの化学的種を称する。例えば、該非侵襲性システム10により検出されてもよい該被検体(複数を含む)は、ブドウ糖、エタノール、インスリン、水、二酸化炭素、血液酸素、コレステロール、ビリルビン、ケトン、脂肪酸、リポ蛋白、アルブミン、尿素、クレアチニン、白血球、赤血球、ヘモグロビン、酸化されたヘモグロビン、カルボキシヘモグロビン、有機分子、無機分子、調合薬、シトクロム、種々の蛋白及び発色団、微少石灰化物(microcalcifications)、電解質、ナトリウム、カリウム、塩素、重炭酸塩、そしてホルモン、を含み、かつ、それらに限定されない。
幾つかの実施態様では窓組立体12が省略されてもよいが、該非侵襲性システム10は好ましくは窓組立体12を有するのがよい。該窓組立体12の1つの機能は、サンプルが該窓組立体12の上面12aに対するよう置かれた時、赤外線エネルギーEが該サンプルSから該非侵襲性システム10に入ることを可能にすることである。該窓組立体12はヒーター層(下記の論述参照)を有し、該ヒーター層は該材料サンプルSを加熱し、それから赤外線エネルギーの放射を誘起するため使われる。好ましくはペルチエ型熱電デバイスを有するのがよい、冷却システム14が該窓組立体12と熱伝導関係にあるので、該窓組立体12と該材料サンプルSの温度は下記で詳細に論ずる検出方法論により扱われ得る。該冷却システム14は、コールドリザーバー16及び窓組立体12と熱伝導関係にある冷たい面14aと、ヒートシンク18と熱伝導関係にある熱い面14bと、を有する。
該赤外線エネルギーEが該非侵襲性システム10に入ると、それは最初に該窓組立体12を、次いで光学的ミキサー20、そして次いでコリメーター22を通過する。該光学的ミキサー20は、該赤外線エネルギーがそれを通過し、該ミキサー壁で反射する時、該赤外線エネルギーEの方向性をランダム化する高反射性内面を有する光パイプを備えるのが好ましい。又該コリメーター22も高反射性内壁を有する光パイプを備えるが、該壁はそれらが該ミキサー20から離れるよう延びる時発散する。該発散性壁は、該赤外線エネルギーEに、該コリメーター壁で反射する時の赤外線エネルギーの入射角により、該赤外線エネルギーが該コリメーター22の広い端部の方へ進む時真っ直ぐになる傾向を持たせる。
該コリメーター22から、該赤外線エネルギーEはフイルター24の配列を通過するが、該フイルターの各々は選択された波長又は波長のバンドだけを通過可能にする。これらの波長/バンドは、下記で詳細に論じる検出方法論で、関心のある被検体の吸収効果を強調又は分離するよう選択される。各フイルター24は集中器(concentrator)26そして赤外線検出器28と光学的に連通しているのが好ましい。該集中器26は、該赤外線エネルギーが該検出器28に向かって進む時該赤外線エネルギーを集中させる高反射性で、収斂性の内壁を有し、該検出器28上に入射するエネルギーの密度を高める。
該検出器28は制御システム30と電気的に通信し、該制御システムは該検出器28から電気信号を受信し、該サンプルS内の該被検体の濃度を計算する。又該制御システム30は、該窓12及び/又は冷却システム14の温度をモニターし、該窓12と冷却システム14への電力の発送を制御するよう、該窓12と冷却システム14と電気的に通信する。
a.窓組立体
窓組立体12の好ましい外形はその下側から見た時の斜視図として図2に示されている。該窓組立体12は一般に、高い赤外線透過性の材料から形成される主層(main layer)32と該主層32の下側に固定されたヒーター層34とを有する。該主層32は約0.25mmの好ましい厚さの、好ましくはダイヤモンドから、最も好ましくは化学蒸着された{”シーブイデー(CVD)”}ダイヤモンドから形成されるのがよい。他の実施態様では、シリコン又はゲルマニウムの様な、高赤外線透過性である、代わりの材料が該主層32の形成で使用されてもよい。
該ヒーター層34はヒーター素子38の配列の相対する端部に配置されたブスバー(bus bars)36を有するのが好ましい。該ブスバー36は該素子38と電気的に連通しているので該ブスバー36を適当な電力源(示されてない)へ接続時、該窓組立体12内に熱を発生するために電流が該素子38を通過する。又該ヒーター層34は、該窓組立体12の温度を測定し、該制御システム30への温度フイードバックを提供するために(図1参照)、サーミスター又は抵抗温度デバイス{アールテーデーエス(RTDs)}の様な、1つ以上の温度センサーを有する。
なお図2を参照すると、該ヒーター層34は好ましくは合金層の上に蒸着された金又は白金の第一の接着層{この後「金」層と称される}を有するのがよく、該接着層は該主層32に塗られる(applied to the main layer 32)。該合金層は、例によると、10/90チタン/タングステン、チタン/白金、ニッケル/クロミウム、又は他の同様な材料、の様なヒーター層34の実施に好適な材料を有する。該金層は好ましくは約4000オングストロームの厚さ、該合金層は好ましくは約300オングストロームと500オングストロームの間に及ぶ厚さを有するのがよい。該金層及び/又は該合金層は、蒸着、リキッドデポジション(liquid deposition)、鍍金(plating)、積層(laminating)、鋳造(casting)、シンタリング(sintering)、又は当業者に公知の他の形成又は堆積方法論を含むが、それらの限定されない、化学蒸着により、該主層32上に堆積されてもよい。もし望むなら、該ヒーター層34は、該主層32への接着をも高める電気絶縁コーテイングでカバーされてもよい。1つの好ましいコーテイング材料は酸化アルミニウムである。他の受け入れ可能な材料は、二酸化チタン又はセレン化亜鉛を含むがそれらに限定されない。
該ヒーター層34は該層34全体に亘り、一定電力密度を保持し、均一な温度を促進するために隣接ヒーター素子38の中心線間に可変ピッチ間隔を組み入れてもよい。一定ピッチ間隔が使われる場合、好ましい間隔は少なくとも約50−100マイクロメートルである。該ヒーター素子38は一般に約25マイクロメートルの好ましい幅を有するが、それらの幅は上述と同じ理由で必要な様に変えられてもよい。
該ヒーター層34として使用に好適な代わりの構造は、熱電ヒーター、無線周波数{アールエフ(RF)}ヒーター、赤外線放射ヒーター、光学的ヒーター、熱交換器、電気抵抗加熱格子、ワイヤブリッジ加熱格子、又はレーザーヒーターを含むが、それらに限定されない。どの種類のヒーター層が使われようと、該ヒーター層が該窓組立体12の10%以下しか見えにくくしないことが好ましい。
現在の好ましい実施態様では、該窓組立体12は実質的に該主層32と該ヒーター層34のみを有する。かくして、図1に示す該非侵襲性システム10の様な光学的検出システム内に設置された時、該窓組立体12は、該窓組立体12の(好ましくは平坦な)上面12aと該非侵襲性システム10の赤外線検出器28の間に最小に妨げの少ない光路を実現出来る。該好ましい非侵襲性システム10の光路は、該窓組立体12の該主層32及びヒーター層34だけ(それに付けられ又はその中に置かれた何等かの反射防止、屈折率整合、電気的絶縁又は保護の、コーテイングを含め)を通り、該光学的ミキサー20及びコリメーター22を通りそして該検出器28まで進む。
図3は、図2で示す構成の代わりに使用されてもよい、窓組立体12用の代わりの構成の組立分解側面図を描く。図3に描かれる窓組立体12は高度に赤外線透過性で、熱伝導性のスプレッダー層(spreader layer)42を含む。該スプレッダー層42の下にヒーター層44がある。酸化アルミニウム、二酸化チタン又はセレン化亜鉛の層の様な、薄い電気絶縁層(示されてない)が該ヒーター層44と該スプレッダー層42の間に配置されてもよい。(酸化アルミニウム層は又該スプレッダー層42への該ヒーター層44の接着を高める。)該ヒーター層44に隣接して熱絶縁及びインピーダンスマッチング層(impedance matching layer)46がある。該熱絶縁層46に隣接して熱伝導性内側層48がある。該スプレッダー層42はその頂部面上を保護コーテイング50の薄い層でコートされている。該内側層48の底部面は薄いオーバーコート層52でコートされている。好ましくは、該保護コーテイング50と該オーバーコート層52は反射防止性を有するのがよい。
該スプレッダー層42は、該窓組立体12に対して置かれた時該ヒーター層44から該材料サンプルS内へ均一な熱伝達を実現するのに充分な高熱伝導率を有する高い赤外線透過性材料で形成されるのが好ましい。他の有効な材料は、シーブイデーダイヤモンド(CVD diamond)、ダイヤモンド状カーボン(diamondlike carbon)、ヒ化ガリウム、ゲルマニウム、そして充分高い熱伝導率を有する他の赤外線透過性材料を含むが、それらに限定されない。該スプレッダー層42用の好ましい寸法は直径約25.4mm(約1インチ)と約0.254mm(約0.010インチ)の厚さである。図3に示す様に、該スプレッダー層42の好ましい実施態様はベベルされたエッジ(beveled edge)を組み入れている。必要ではないが、約45度のベベルが好ましい。
該保護層50は該スプレッダー層42の頂面を破損から保護するよう意図されている。理想的には、該保護層は高度に赤外線透過性で、スクラッチングや摩滅の様な機械的破損に対し高度に抵抗性があるのがよい。又該保護層50と該オーバーコート層52は高い熱伝導性と反射防止性及び/又は屈折率整合性の性質を有することが好ましい。該保護層50及びオーバーコート層52としての使用に満足な材料はミズーリ州、セントチャールスのデポジションリサーチラボラトリー社(Deposition Research Laboratories, Inc. of St. Charles, Missouri)により製造される多層ブロードバンドアンチレフレクチブコーテイング(multi−layer Broad Band Anti−Reflective Coating)である。又ダイヤモンド状カーボンのコーテイングも好適である。
下記で注意されるものを除けば、該ヒーター層44は図2に示す窓組立体で使われる該ヒーター層34と概ね同様である。代わりに、該ヒーター層44はより高い及びより低い抵抗率の領域を有する、ドープされたシリコン層の様な、ドープされた赤外線透過性材料を含んでもよい。該ヒーター層44は好ましくは約2オームの抵抗を有するのがよく、そして約1,500オングストロームの好ましい厚さを有するのがよい。該ヒーター層44を形成するための好ましい材料は金合金であるが、他の受け入れ可能な材料は白金、チタン、銅そしてニッケルを含み、かつ、それらに限定されない。
該熱絶縁層46は該ヒーター素子44からの熱の放散を防止する、一方該冷却システム14が該材料サンプルSを有効に冷却することを可能にする(図1参照)。この層46は熱絶縁性(例えば、該スプレッダー層42より低い熱伝導率)で赤外線透過性の性質を有する材料を備える。好ましい材料は、テキサス州、ガーランドのアモルフアスマテリアル社(Amorphous Materials, Inc. of Garland, Texas)により作られるエイエムテーアイアール−1(AMTIR−1)として公知のカルコゲナイドガラス系統のゲルマニウム−ヒ素−セレン化合物である。該描かれた実施態様は約21.59mm(約0.85インチ)の直径と約0.127から約0.254mm(約0.005から約0.01インチ)の範囲の好ましい厚さとを有する。該ヒーター層44により発生された熱が該スプレッダー層42を通り該材料サンプルSに入る時、該熱絶縁層46はこの熱を絶縁する。
該内側層48は熱伝導材料、好ましくは従来のフロートゾーン結晶成長法(floatzone crystal growth method)を用いて形成された結晶性シリコンで形成されるのがよい。該内側層48の目的は該成層された窓組立体全体用の冷たい伝導性の機械的ベースとして役立つことである。
図3に示す該窓組立体12の全体の光学的透過性は好ましくは少なくとも70%であるのがよい。図3の該窓組立体12は好ましくは一緒に保持され、保持用ブラケット(示されてない)により該非侵襲性システム10に取り付けられるのがよい。該ブラケットは好ましくはガラス充填プラスチック、例えば、ジェネラルエレクトリック(General Electric)により製造されるウルテム2300(Ultem 2300)で形成されるのがよい。ウルテム2300は低熱伝導性を有し、それは該成層化された窓組立体12からの熱伝達を防止する。
b.冷却システム
該冷却システム14(図1参照)は好ましくはペルチエ型熱電デバイス(Peltier−type thermoelectric device)を有するのがよい。かくして、該好ましい冷却システム14への電流の印加は該冷たい面14aを冷えさせそしてその相対する熱い面14bを暖まらせる。該冷却システム14は該冷却システム14の冷たい面14aと熱伝導関係にある該窓組立体12の状況を介して該窓組立体12を冷却する。好ましくは、該コールドリザーバー(cold reservoir)16が該冷却システム14と該窓組立体12の間に位置付けられ、該システム14と該窓組立体12の間の熱伝導体として機能するのがよい。該コールドリザーバー16は適当な熱伝導性材料、好ましくは黄銅から形成されるのがよい。代わりに、該窓組立体12は該冷却システム14の冷たい面14aと直接接触して位置付けられることも出来る。
別の実施態様では、該冷却システム14は空気、窒素又は冷水(chilled water)の様な冷却剤が通るようポンプ作用される熱交換器、又はヒートシンクの様な受動的伝導クーラー(passive conduction cooler)を有してもよい。更に進んだ代替えとして、窒素の様なガス冷却剤が、該窓組立体12の下側と接触し(図1参照)、それから熱を伝導するよう、非侵襲性システム10の内部を通って循環してもよい。
図4は(図2で示す種類の)該窓組立体12と該コールドリザーバー16との好ましい配置の平面図の略図であり、図5は該窓組立体12が該冷却システム14に直接接触する代わりの配置の平面図の略図である。該コールドリザーバー16/冷却システム14は好ましくは該ヒーター層34の両側上で、その相対するエッジに沿い該窓組立体12の下側に接触するのがよい。該窓組立体12と該冷却システム14の間にこの様に確立された熱伝導性を用いて、該非侵襲性システム10の動作中該窓組立体は必要な時冷却され得る。該窓組立体12の上面上で実質的に均一な、又は等温の温度プロフアイルを助長するために、該窓組立体12と該コールドリザーバー16/冷却システム14の間の接触領域(複数を含む)の近くで、隣接ヒーター素子38の中心線間のピッチ間隔がより小さくされ(それによりヒーター素子38の密度を増加して)、そして/又は該ヒーター素子がより幅広くされてもよい。ここで使われる時、「等温の」は広い用語であり、その普通の意味で使用され、限定無き場合は、与えられた時点で、該窓組立体12又は他の構造体の温度が、該材料サンプルSと熱伝導関係に置くよう意図された面を横切って実質的に均一である条件を称する。かくして、該構造体又は面の温度が時間に亘っては動揺するが、それにも係わらず何等かの与えられた時点では該構造体又は面は等温である。
ヒートシンク18は該冷却システム16の熱い面14bから廃棄熱()をドレーン()し、該非侵襲性システム10の動作温度を安定化する。好ましいヒートシンク18(図6参照)は黄銅又は、比較的高い比熱と高い熱伝導率とを有する何等かの他の適当な材料から形成される中空構造体を有する。該ヒートシンク18は、該ヒートシンク18が該非侵襲性システム10内に設置された時、該冷却システム14の熱い面14bと熱伝導関係にある伝導面18aを有する(図1参照)。空洞(cavity)54が該ヒートシンク18内に形成され、好ましくは該シンク18の容量を増加させるために相変化材料(phase−change material)(示されてない)を含むのがよい。好ましい相変化材料は、イリノイ州、ネイパービルのピーシーエムサーマルソリューションズ社(PCM Thermal Solutions, Inc., of Naperville, Illinois)からテーエイチ29(TH29)の名前で入手可能な塩化カルシウム六水和物の様な水和物塩である。代替え物として、ソリッドなユニット型マス(solid, unitary mass)を含むヒートシンク18を創るために該空洞54は省略されてもよい。又該ヒートシンク18は、該シンク18から周囲空気への熱の伝導を更に増加するために、多数のフイン56を形成してもよい。
代わりに、該ヒートシンク18は、黄銅又はアルミニウムの様な堅い熱伝導性材料のユニット型マスとして、該光学的ミキサー20及び/又はコリメーター22と一体に形成されてもよい。この様なヒートシンクでは、該ミキサー20及び/又はコリメーター22は該ヒートシンク18を通って軸方向に延び、該ヒートシンクは該ミキサー20及び/又はコリメーター22の内壁を規定する。これらの内壁は、下記で更に説明される様に、赤外線の波長で適当な反射率と非吸光度を持つようコートされそして/又はポリッシ(polished)される。この様なユニット型のヒートシンク−ミキサー−コリメーターが使われる場合、該検出器配列を該ヒートシンクから熱的に絶縁することが望ましい。
適度な加熱及び/又は冷却が該材料サンプルSに与えられる限り、上記で開示した該窓組立体12/冷却システム14の代わりに、又はそれに加えて、どんな適当な構造体が該材料サンプルSを加熱及び/又は冷却するために使われてもよいことは理解されるべきである。加えて、光、放射、化学的に誘起される熱、摩擦そして振動の様な、しかしそれらに限定されない、他の形のエネルギーが該材料サンプルSを加熱するために使われてもよい。
c.光学素子
図1に示す様に、該光学的ミキサー20は、赤外線波長で高度に反射性でそして最小の吸収性の内面コーテイング、好ましくはポリッシされた金のコーテイング、を有するライトパイプを備える。該パイプ自身は、該内面が高度に反射性であるようコートされるか又は他の仕方で処理される限り、アルミニウム又はステンレス鋼の様なもう1つの堅い材料で作られてもよい。他の多角形の形状又は円形又は楕円形の形状の様な、他の断面形状も代わりの実施態様で使われてもよいが、好ましくは該光学的ミキサー20は長方形の断面を有するのがよい(該ミキサー20とコリメーター22の縦軸線A−Aに対し直交して取られる時)。該光学的ミキサー20の内壁は該ミキサー20と該コリメーター22の縦軸線A−Aに実質的に平行である。該ミキサー20の高度に反射性で実質的に平行な内壁は該赤外線エネルギーEが該ミキサー220の該壁間で反射される回数を最大化し、それが該ミキサー20を通って伝播する時該赤外線エネルギーEを徹底して混合する。現在の好ましい実施態様では、該ミキサー20は長さが約30.48mm(約1.2インチ)から60.96mm(約2.4インチ)であり、その断面は約10.16mm(約0.4インチ)×15.24mm(約0.6インチ)の長方形である。勿論、該ミキサー20を作る際他の寸法が使われてもよい。
なお図1を参照すると、該コリメーター22は、赤外線波長で高度に反射性でそして最小の吸収性であり、好ましくはポリッシされた金のコーテイングがよい、内面コーテイングを有するチューブを備える。該チューブ自身は、該内面が高度に反射性であるようコートされるか又は他の仕方で処理される限り、アルミニウム、ニッケル又はステンレス鋼の様なもう1つの堅い材料で作られてもよい。他の多角形の形状又は円形、放物線形又は楕円形の形状の様な、他の断面形状も代わりの実施態様で使われてもよいが、好ましくは該コリメーター22は長方形の断面を有するのがよい。該コリメーター22の内壁はそれらが該ミキサー20から離れるよう延びる時発散する。好ましくは該コリメーター22の内壁は実質的に直線的で、該縦軸線A−Aに対し約7度の角度を形成するのがよい。該コリメーター22は、該赤外線エネルギーEが出来るだけ90度に近い角度で該フイルター24の面を叩くように、該ミキサー22と該コリメーター22の縦軸線A−Aに概ね平行な方向に伝播するよう該赤外線エネルギーEを整合させる。
現在の好ましい実施態様では、該コリメーターは長さが約190.5mm(約7.5インチ)である。その狭い端部22aでは、該コリメーター22の断面は約10.16mm(約0.4インチ)×約15.24mm(約0.6インチ)の長方形である。その広い端部22bでは、該コリメーター22は約45.72mm(約1.8インチ)×約66.04mm(約2.6インチ)の長方形の断面を有する。好ましくは、該コリメーター22は、該エネルギーEが該フイルター24に突き当たる前に約0−15度の入射角(縦軸線A−Aに対して)へ該赤外線エネルギーEを整合させるのがよい。勿論、他の寸法又は入射角が該コリメーター22を作り、動作させる際使われてもよい。
更に図1と6Aを参照すると、各集中器26は、その広い端部26aが対応するフイルター24を出る赤外線エネルギーを受けるよう適合されるように、そしてその狭い端部26bが対応する検出器26と隣接するように、配向されたテーパー付き面を有する。該集中器26の内方へ面する面は赤外線波長で、高度に反射性で、最小の吸収性であり、好ましくはポリッシされた金のコーテイングがよい、内面コーテイングを有する。該集中器26自身は、それらの内面が高度に反射性であるようコートされるか、又は他の仕方で処理されている限り、アルミニウム、ニッケル又はステンレス鋼の様なもう1つの堅い材料から作られてもよい。
他の多角形の形状又は円形、放物線形又は楕円形の形状の様な、他の断面形状も別の実施態様で使われてもよいが、好ましくは該集中器26は長方形の断面を有するのがよい(縦軸線A−Aに対し直交的であると取られる時)。該集中器の内壁はそれらが該狭い端部26bの方へ延びる時収斂する。好ましくは該集中器26の内壁は実質的に直線的で、該縦軸線A−Aに対し約8度の角度を形成するのがよい。この様な構成は、赤外線エネルギーが該検出器28に到達する前に、該広い端部26aから該狭い端部26bまで該集中器26を通過する時赤外線エネルギーを集中するよう適合される。
現在の好ましい実施態様では、各集中器26は長さが約38.1mm(約1.5インチ)である。該広い端部26aで、各集中器26の断面は約15.24mm(約0.6インチ)×約14.478mm(約0.57インチ)の長方形である。その狭い端部26bで、各集中器26は約4.496mm(約0.177インチ)×約4.496mm(約0.177インチ)の長方形断面を有する。勿論、該集中器26の製作で他の寸法又は入射角が使われてもよい。
d.フイルター
フイルター24は、カリフオルニア州、サンタローザ(Santa Rosa, CA)のオプチカルコテイングラボラトリー社(Optical Coating Laboratory, Inc.){”オーシーエルアイ(OCLI)”}の様な製造者から広く入手可能な、標準的干渉型赤外線フイルターを含む。図1に図解する実施態様では、フイルター24の3×4配列が検出器28と集中器26の3×4配列の上に位置付けられる。この実施態様で使われる時、該フイルター24は同じ波長感度を有する3つのフイルターの4つのグループで配置される。これら4つのグループはそれぞれ、7.15μm±0.03μm、8.40μm±0.03μm、9.48μm±0.04μm、そして11.10μm±0.04μmのバンドパス中心波長を有するが、該波長は水及びブドウ糖が付近で電磁放射を吸収する波長に対応する。これらのフイルター用の典型的バンド幅は0.20μmから0.50μmに及ぶ。
代わりの実施態様では、波長特定的フイルター24の配列は1つのフアブリーペロー干渉計(Fabry^Perot inteferometer)で置き換えられてもよく、該干渉計は赤外線エネルギーのサンプルが該物質サンプルSから取られる時変化する波長感度を提供出来る。かくして、この実施態様は、時間に亘りその出力信号が特定波長で変わる、唯1つの検出器28の使用を可能にする。該物質サンプルSにより放射される赤外線エネルギーの多数波長プロフアイルを提供するために、該出力信号は該フアブリーペロー干渉計により誘起される波長感度に基づきデマルチプレクス(de−multiplexed)されることが可能である。この実施態様では、唯1つの検出器28が使われる必要があるだけなので、該光学的ミキサー20は省略されてもよい。
なお他の実施態様では、フイルター24の配列は1つの検出器28上で変化する波長感度を有する種々のフイルターを回転させるフイルターホイール(filter wheel)を含んでもよい。代わりに、検出過程中変化する波長感度を提供するために、上記で論じたフアブリーペロー干渉計と同様な仕方で電子的に同調可能な赤外線フイルターが使われてもよい。これらの実施態様の何れでも、唯1つの検出器28が使われる必要があるのみなので、該光学的ミキサー20は省略されてもよい。
e.検出器
検出器28は、好ましくは中央部赤外線波長(mid−infrared wavelengths)の、赤外線エネルギーを検出用に好適な何れかの検出器の種類を具備するのがよい。例えば、該検出器28は水銀−カドミウム−テルル化物(mercury−cadmium−telluride){エムシーテー(MCT)}検出器を具備するのがよい。ピーブイエイ481−1前置増幅器(PVA481−1 preamplifier)を有するフアーミオニクス(Fermionics){シミバレー、カリフオルニア(Simi Valley, Calif)}モデルピーブイ−9.1(model PV−9.1)の様な検出器が採用可能である。グレーズビー(Graseby){タンパ、フロリダ州(Tampa,Fla)}の様な他の製造者からの同様なユニットが交換され得る。該検出器28としての使用のための他の適当な部品はパイロ電気的検出器(pyroelectric detectors)、サーモパイル(thermopiles)、ボロメーター(bolometers)、シリコンマイクロボロメーター(silicon microbolometers)そしてレッドソールトフオーカルプレーンアレー(lead−salt focal plane arrays)を含む。
f.制御システム
図7は制御システムと該非侵襲性システムの他の関係部分との間の相互接続のみならずより詳細な制御システム30を描く。該制御システムは温度制御サブシステムとデータ取得サブシステムを含む。
温度制御サブシステムでは、該窓組立体12内に配置された温度センサー{アールテーデーエス(RTDs)及び/又はサーミスターの様な}が窓温度信号を同期A−D変換システム70及び非同期A−D変換システム72に提供する。該エイ/デーシステム70,72は今度はデジタル窓温度信号をデジタルシグナルプロセッサー(デーエスピー)74に提供する。該プロセサー74は該窓温度信号に含まれた情報に基づき、窓温度制御アルゴリズムを実行し、該窓組立体12のヒーター層34用及び/又は該冷却システム14用の適当な制御入力を決定する。該プロセサー74は1つ以上のデジタル制御信号をD−A変換システム76へ出力するが、該変換システムは今度は1つ以上のアナログ制御信号を電流ドライバー78に提供する。該制御信号(複数を含む)に応答して、該電流ドライバー78は該ヒーター層34へ及び/又は該冷却システム14へ供給される電力を調整する。1実施態様では、該プロセサー74はデジタルアイ/オー(I/O)デバイス77を通して制御信号をパルス幅変調器(pulse−width modulator){ピーダブリューエム(PWM)}制御部(contorl)80へ供給し、該制御部は該電流ドライバー78の動作を制御する信号を提供する。代わりに、該ピーダブリューエムの出力部(output)のローパスフイルター(示されてない)は該電流ドライバー78の連続動作を提供する。
もう1つの実施態様では、温度センサーが該冷却システム14に配置され、同様に該冷却システムの閉ループ制御を提供するために該エイ/デーシステム(複数を含む)とプロセサーに適当に接続されてもよい。
なおもう1つの実施態様では、検出器冷却システム82が1つ以上の該検出器28と熱伝導関係にあるよう配置される。該検出器冷却システム82は該冷却システム14を含む時上記開示されたデバイスの何れを含んでもよく、好ましくはペルチエ型熱電デバイスを含むのがよい。又該温度制御サブシステムは該検出器冷却システム82内又はそれに隣接して配置された、アールテーデーエス及び/又はサーミスターの様な温度センサーと、これら温度センサーと該非同期エイ/デーシステム72の間の電気接続と、を含んでもよい。該検出器冷却システム82の温度センサーは検出器温度信号を該プロセサー74へ提供する。一つの実施態様では該検出器冷却システム82は該窓温度制御システムから独立に動作し、該検出器冷却システム温度信号は該非同期エイ/デーシステム72を使ってサンプルされる。該温度制御アルゴリズムに依り、該プロセサー74は該検出器温度信号に含まれた情報に基づき、該検出器制御システム82用の適当な制御入力を決定する。該プロセサー74はデジタル制御信号を該デー/エイシステム76へ出力し、該デー/エイシステムは今度はアナログ制御信号を該電流ドライバー78へ提供する。該制御信号に応答して、該電流ドライバー78は該検出器冷却システム14へ供給される電力を調整する。一つの実施態様では、又該プロセサー74は、該電流ドライバー78により該検出器冷却システム82の動作を制御するために、該デジタルアイ/オーデバイス77とピーダブリューエム制御部80を通して制御信号を提供する。代わりに、該ピーダブリューエムの出力部のローパスフイルター(示されてない)は該電流ドライバー78の連続動作を提供する。
該データ取得サブシステムでは、該検出器28は、前置増幅器84へ1つ以上のアナログデータ信号を送ることによりその上に入射する赤外線エネルギーEに応答する。該前置増幅器84は検出器信号を増幅し、それらを該非同期エイ/デーシステム70へ送るが、該エイ/デーシステムは該検出器信号をデジタル形式に変換し、それらを該プロセサー74へ送る。該プロセサー74は、該検出器信号と、メモリーモジュール88内に記憶された濃度−分析アルゴリズム及び/又は位相/濃度回帰モデル(phase/concentration regression model)と、に基づき、関心のある被検体(複数を含む)の濃度を決定する。該濃度−分析アルゴリズム及び/又は位相/濃度回帰モデルはここで論じられる分析方法論の何れかに依り開発されてもよい。該プロセサーは該濃度結果及び/又は他の情報をデイスプレー制御器86へ通信し、該制御器は該情報をユーザーへ提示するために液晶(LCD)デイスプレーの様な、デイスプレー(示されてない)を動作させる。
ウオッチドッグ(watchdog)タイマー94が該プロセサー74が正しく動作していることを保証するために使われてもよい。もし該ウオッチドッグタイマー94が指定時間内に該プロセサー74から信号を受信しないなら、該ウオッチドッグタイマー94はプロセサー74をリセットする。又該制御システムは該非侵襲性システム10の試験を可能にするジェイテーエイジー(JTAG)インターフエース96を含んでもよい。
一つの実施態様では、該同期エイ/デーシステム70は20ビット、14チャンネルシステムを有し、該非同期エイ/デーシステム72は16ビット、16チャンネルシステムを有する。該前置増幅器は12の検出器28の配列に対応する12チャンネルの前置増幅器を含む。
また、該制御システムはパーソナルコンピュータ92への接続を可能とするために直列ポート90又は他の従来のデータポートを有してもよい。該パーソナルコンピュータは該メモリーモジュール88内に記憶された該アルゴリズム(複数を含む)及び/又は位相/濃度回帰モデル(複数を含む)をアップデートするため、又は該非侵襲性システムからの被検体−濃度データのコンパイレーション(compilation)をダウンロードするため使うことが出来る。ユーザーに望ましい何等かの時間従属の計算(time−dependent calculations)を行うために実時間のクロック(real−time clock)又は他のタイミングデバイスが該プロセサー74によりアクセス可能である。
2.分析方法論
該非侵襲性システム10の検出器(複数を含む)28は種々の望ましい波長で材料サンプルSにより放射される赤外線エネルギーを検出するため使用される。各測定される波長で、該材料サンプルSは時間に亘り変化する強度で赤外線エネルギーを放射する。該時間変化する強度は、該材料サンプルS内に熱的勾配を誘起するよう該窓組立体12(そのヒーター層34を含めて)及び該冷却システム14の使用に応答して主に起こる。ここで使用される時、「熱的勾配」は広い用語であり、その普通の意味で使用され、限定無き場合は、材料サンプルの、異なる深さの様な、異なる位置間の温度差を称する。下記で詳細に論じられる様に、材料サンプルS内の(ブドウ糖の様な)関心のある被検体の濃度は、種々の測定された波長の時間変化する強度プロフアイルを比較することにより、該非侵襲性システム10の様なデバイスで決定出来る。
分析方法論はここでは、大きい比率の水を含む、組織サンプルの様な、材料サンプル内のブドウ糖濃度を検出する背景で論じられる。しかしながら、これらの方法論がこの背景に限定されず、広い種類のサンプル種類内の広い種類の被検体の検出に適用されてもよいことは明らかであろう。他の適当な分析方法論及び開示される方法論を適当に変型したものが該非侵襲性システム10の様な、被検体検出システムの操作に使われてもよいことも理解されるべきである。
図8に示す様に、第一の基準信号(first reference signal)Pが第一の基準波長(first reference wavelength)で測定される。該第一の基準信号Pは水が強く吸収する波長(例えば、2.9μm又は6.1μm)で測定される。水はこれらの波長で放射を強く吸収するので、該検出器信号強度はそれらの波長で減じられる。更に、これらの波長で水は該サンプルの深い内部から発せられる光子放射を吸収する。正味の結果は該サンプルの深い内部からこれらの波長で放射される信号は容易には検出されない。かくして該第一の基準信号Pは該サンプル表面の近くの熱的勾配効果のよいインデイケータであり、表面基準信号として知られてもよい。この信号は、該サンプルに印加される加熱又は冷却のないところで、ベースライン値1へ校正され、正規化される。より高い精度用に、1つより多い第一の基準波長が測定されてもよい。例えば、第一の基準波長として2.9μmと6.1μmが選ばれてもよい。
図8に更に示す様に、又第二の基準信号Rが測定される。該第二の信号Rは水が非常に低い吸収を有する波長(例えば、3.6μm又は4.2μm)で測定される。この第二の基準信号Rはかくして分析者に該サンプルのより深い領域に関する情報を提供するが、該第一の信号Pは該サンプル表面に関する情報を提供する。又この信号は、該サンプルに印加される加熱又は冷却の無いところで、ベースライン値1へ校正され、正規化される。該第一の(表面)基準信号Pに於ける様に、1つより多い第二の(深い)基準信号Rを使うことによりより高い精度が得られる。
被検体濃度を決定するために、又第三の(分析用)信号Qが測定される。この信号は選択された被検体のアイアール吸光度ピークで測定される。ブドウ糖用該アイアール吸光度ピークは約6.5μmから11.0μmの範囲内にある。又この検出器信号も該材料サンプルSへの印加される加熱又は冷却のないところで、ベースライン値1に校正され、正規化される。該基準信号P、Rに於ける様に、該分析用信号Qも1つより多い吸光度ピークで測定されてもよい。
オプションとして、又は追加的に、基準信号は該被検体吸光度ピークを同等に扱う(bracket)波長で測定されてもよい。これらの信号は該被検体吸光度ピークと重ならない基準波長で有利にモニターされる。更に、該サンプル内に含まれる他の起こり得る構成要素の吸光度ピークと重なり合わない吸光度ピークの波長を測定するのは有利である。
a.基本の熱的勾配
図8に更に示す様に、信号強度P、Q、Rは初期に正規化されたベースライン信号強度1で示される。これは勿論印加される加熱又は冷却の無い場合の試験サンプルのベースライン放射動作を反映する。時刻tで、該サンプルの表面は該サンプル内に熱的勾配を誘起する温度イベントに供される。該勾配は該サンプル表面を加熱又は冷却することにより誘起される。図8に示す例は、例えば10℃冷却イベントを使用して、冷却を使用する。該冷却イベントに応答して、検出器信号の強度P、Q、Rは時間上で減少する。
サンプルの冷却は均一でもなく瞬間的でもないので、該表面は該サンプルの依り深い領域が冷える前に冷える。該信号P、Q、Rの各々が強度が下がると、パターンは合流する。信号強度は期待される様に低下するが、該信号P、Q、Rが与えられた振幅値(又は振幅値のシリーズ:150,152,154,156,158)に達すると、或る時間的効果(temporal effects)が気付かれる。該冷却イベントがtで誘起された後、該第一の(表面)基準信号Pは最も急激に振幅が低下し、時刻tで、最初にチェック点150に達する。これは、該第一の基準信号Pが該サンプルの表面に近い該サンプルの放射特性を反映する事実に依る。該サンプル表面は下にある領域の前に冷えるので、該表面(第一の)基準信号Pの強度は最初に下がる。
同時に、第二の基準信号Rがモニターされる。該第二の基準信号Rは、該表面程急激に冷えない該サンプルのより深い領域の放射特性に対応するので(表面の冷却が該サンプルのより深い領域内へ伝播するに必要な時間のために)、信号Rの強度は僅かに後まで低下しない。結果として、信号Rは或る後れた時刻tまで大きさ150に達しない。換言すれば、第一の基準信号Pの振幅が該チェック点150に達する時刻tと、第二の基準信号Rが同じチェック点150に達する時刻tと、の間に時間後れがある。この時間後れは位相差Φ(λ)と表される。加えて、分析信号Qと、基準信号P、Rの何れか又は両者と、の間に位相差が測定される。
被検体の濃度が増加すると、該分析波長での吸光度の量は増加する。これは濃度依存的様式で該分析信号Qの強度を減じる。結果として、該分析信号Qは或る中間的時刻tに強度150に達する。被検体の濃度が高い程、該分析信号Qは図8でより左へシフトする。結果として、増加する被検体濃度で、位相差は該Φ(λ)は該第一の(表面)基準信号Pに対し減じ、第二の(深い組織)基準信号Rに対し増加する。該位相差(複数を含む)Φ(λ)被検体濃度に直接関係し、被検体濃度の精密な決定を行うため使用出来る。
第一の(表面)基準信号Pと分析信号Qの間の位相差Φ(λ)は下式で表される。
Φ(λ)=|t−t
この位相差の大きさは増加する被検体濃度と共に減少する。
第二の(深い組織)基準信号Rと分析信号Qの間の位相差Φ(λ)は下式で表される。
Φ(λ)=|t−t
この位相差の大きさは増加する被検体濃度と共に増加する。
精度は幾つかのチェック点、例えば、150,152,154,156,そして158
を選ぶこと、そして各チェック点で観察される位相差を平均化すること、により高められる。この方法の精度は更に試験時間全体上で連続的に該位相差(複数を含む)を積分することにより高められる。この例では唯1つの温度イベント(ここでは、冷却イベント)が誘起されたので、該サンプルは新しいより低い平衡温度に達し、信号は新しい一定レベルIで安定する。勿論、該方法は、加熱により、或いは、それらに限定されないが、光、放射、化学的に誘起された熱、摩擦そして振動の様な他の形式のエネルギーの印加、又は導入により、誘起される熱的勾配でも等しく良く動作する。
この方法論は位相差の決定に限定されない。どんな与えられた時刻に於いても(例えば、時刻tに於いても)、分析信号Qの振幅は基準信号P、Rの何れか又は両者の振幅と比較されてよい。振幅の差は観察され、被検体濃度を決定するため処理される。
この方法、ここで開示された変型品、そして該方法(複数を含む)の適用のために好適であるとして開示された装置は、生体内(in−vivo)ブドウ糖濃度の検出に限定されない。該方法及び開示された変型品と装置は、人間に、動物に、又は植物対象にさえも、或いは非医学的設定の有機又は無機配合物について使用されてよい。該方法は事実上どんな種類の生体内又は生体外のサンプルの測定を行うため使用されてよい。該方法は、他の化学的化合物のみならず、ブドウ糖、エタノール、インスリン、水、二酸化炭素、血液酸素、コレステロール、ビリルビン、ケトン、脂肪酸、リポ蛋白、アルブミン、尿素、クレアチニン、白血球、赤血球、ヘモグロビン、酸化されたヘモグロビン、カルボキシヘモグロビン、有機分子、無機分子、調合薬、シトクロム、種々の蛋白及び発色団、微少石灰化物、ホルモン、を含み、かつ、それらに限定されない、広い範囲の追加の化学的被検体の濃度の測定用に有用である。与えられた被検体を検出するために、適当な分析的でかつ基準になる波長を選択するだけでよい。
該方法は、一旦それらが患者から抽出されたら身体流体(例えば、血液、尿又は唾液)のサンプル内の化学的濃度を決定するために好適であり、使用されてよい。事実、該方法は事実上どんな種類の自然界のサンプルの測定用にも使用されてよい。
b.変調された熱的勾配
上記説明の方法論の変型では、被検体濃度の精密な決定を行うため周期的に変調された熱的勾配が使われ得る。
前に図8で示した様に、一旦サンプルに熱的勾配が導入されると、基準及び分析信号P、Q、Rは相互に対し位相外れとなる。この位相差Φ(λ)は、該熱的勾配が加熱に依って誘起されても、或いは冷却に依って誘起されても、存在する。代わりに、試験サンプルを加熱する、冷却する、又は交互に加熱、冷却する、サイクリックなパターンに供することにより、延ばされた時間の間振動する熱的勾配がサンプル内に誘起される。
振動する熱的勾配は正弦波状に変調された勾配を使って図解される。図9は試験サンプルから発せられる検出器信号を描く。図8に示す方法論に於ける様に、1つ以上の基準信号J、Lが測定される。又1つ以上の分析信号Kもモニターされる。これらの信号は、該サンプルに印加される加熱又は冷却のないところで、ベースライン値1に校正され、正規化される。図9は正規化後の信号を示す。或る時刻tに、該サンプル表面で温度イベント(例えば、冷却)が誘起される。これは検出器信号の低下を引き起こす。図8に示す様に、該信号(P、Q、R)は該熱的勾配が消えるまで低下し、新しい平衡検出器信号Iに達する。図9に示す方法では、該勾配は信号強度160で消え始める時、時刻tで、サンプル表面に加熱イベントが誘起される。結果として、検出器出力信号J、K、Lは、該サンプル温度が上昇すると、上昇する。或る後れた時刻tC2で、もう1つの冷却イベントが誘起され、該温度及び検出器信号を低下させる。冷却及び加熱のこのサイクルは任意の長さの時間に亘り繰り返される。更に、もし冷却及び加熱イベントが適当にタイミングが取られるなら、周期的に変調された熱的勾配が該試験サンプル内に誘起される。
図8に関する論議で前に説明された様に、位相差Φ(λ)が測定され、被検体濃度を決定するため使用される。図9は該第一の(表面)基準信号Jが最初に強度が低下し、上昇することを示す。第二の(深い組織)基準信号Lは該第一の基準信号Jに対し時間遅延した仕方で低下し、上昇する。分析信号Kは該被検体濃度に左右される時間/位相後れを示す。増加した濃度では、該分析信号Kは図9内で左へシフトする。図8に於ける様に、位相差Φ(λ)は測定されてもよい。例えば、第二の基準信号Lと該分析信号Kの間の位相差Φ(λ)は図9に示す様に設定振幅162で測定される。再び、位相信号の大きさはサンプルの被検体濃度を反映する。
ここに開示された方法論の何れかによりコンパイルされた位相差情報は、サンプル内の被検体濃度を決定するために、制御システム30(図1参照)により、前に決定された位相差情報と相関を取られる。この相関は、該サンプルの分析から受信された位相差情報を、種々の標準の既知被検体濃度の分析から観察された位相差プロフアイルを含むデータセットと、比較することを含む。一つの実施態様では、既知の被検体濃度の標準で観察された位相差データのセットに回帰技術を適用することにより位相/濃度曲線又は回帰モデルが確立される。この曲線は該サンプルから受信された位相差情報に基づき被検体濃度を見積もるため使用される。
有利なことは、該位相差Φ(λ)は試験期間を通して連続的に測定されてもよいことである。該位相差測定値は位相差Φ(λ)の極端に精密な測定用に試験期間全体に亘り積分されてもよい。又精度は1つより多い基準信号及び/又は1つより多い分析信号を使用することにより改良されてもよい。
加えて、これらの方法は1つ以上の被検体の濃度を同時に測定するよう有利に使われてもよい。重なり合わない基準及び被検体波長を選ぶことにより、被検体濃度を決定するために位相差が同時に測定され、処理されることが可能である。図9は正弦波状に変調された熱的勾配を関連して使用される方法を図解するが、該原理は何等かの周期的関数に適合する熱的勾配で成立する。より複雑な場合には、フーリエ変換又は他の技術での信号処理を使用する分析が位相差Φ(λ)と被検体濃度の精密な決定を可能にする。
図10に示す様に、位相差の大きさは基準信号J、Lと分析信号Kの振幅ピーク(又は谷)間の時間間隔を測定することにより決定されてもよい。代わりに、該”ゼロとの交叉(zero crossings)”(信号振幅が正から負へ、又は負から正へ変化する点)間の時間間隔が該分析信号Kと該基準信号J、Lの間の位相差を決定するため使用されてもよい。この情報は次に処理され、次いで被検体濃度の決定が行われる。この特定の方法は正規化された信号を要しない利点を有する。
更に進んだ代替えとして、該サンプル内の選択された深さでの被検体濃度を決定するために2つ以上の周波数が使われてもよい。ゆっくりした(例えば、1Hz)駆動周波数は早い(例えば、3Hz)駆動周波数により創られる勾配より深く該サンプル内に貫入する熱的勾配を創る。これは駆動周波数がより低い場合個別加熱及び/又は冷却イベントが期間がより長いからである。かくして、ゆっくり駆動する周波数の使用は速い駆動周波数の使用がもたらすよりも深くのサンプルの”スライス”からの被検体濃度情報を提供する。
人間の皮膚のサンプルを分析する時、10℃の温度イベントは、約500msの露出の後、約150μmの深さまで貫入する熱的勾配を創る。結果として、1Hzの冷却/加熱サイクル又は駆動周波数は約150μmの深さまでの情報を提供する。又約167msの間の10℃の温度イベントへの露出は約50μmの深さまで貫入する熱的勾配を提供することが決定された。従って、3Hzの冷却/加熱サイクルは約50μmの深さまでの情報を提供する。1Hzの駆動周波数で測定された検出器信号情報から3Hz駆動周波数で測定された検出器信号情報を引き算することにより、50と150μmの間の皮膚の領域での被検体濃度(複数を含む)を決定出来る。勿論、同様の取り組みは何等かの適当な種類のサンプル内の何等かの望ましい深さの範囲に於ける被検体濃度を決定するため使用出来る。
図11に示す様に、交互に深く及び浅くなる熱的勾配は交互のゆっくりした及び速い駆動周波数により誘起される。上記説明の方法に於ける様に、この変型した方法も又基準信号G、G’と分析信号H、H’の間の位相差Φ(λ)の検出及び測定を含む。速い(例えば3Hz)及びゆっくりした(例えば、1Hz)両駆動周波数で位相差が測定される。該ゆっくりした駆動周波数は任意に選ばれたサイクル数(領域SLで)、例えば、完全な2サイクル間続く。次いで、該速い駆動周波数が選択した持続時間、領域Fで、使われる。位相差データは上記説明と同じ仕方でコンパイルされる。加えて、該速い駆動周波数に付随する勾配貫入深さと該ゆっくりした駆動周波数に付随したそれとの間の該サンプルの領域内の被検体濃度の精密な決定を提供するために、該速い周波数(浅いサンプル)位相差データが該ゆっくりした周波数(深いサンプル)データから引かれる。
該駆動周波数(例えば、1Hz及び3Hz)は図12に示す様に多重化されることが可能である。該速い(3Hz)及びゆっくりした(1Hz)駆動周波数はシーケンシャルに実施されるよりむしろ重ね合わされることが可能である。分析中、該データは周波数により分離されることが出来て(フーリエ変換又は他の技術を使って)、駆動周波数の各々での位相後れの独立な測定値が計算されてもよい。一旦解かれると、該2セットの位相後れデータは吸光度と被検体濃度を決定するため処理される。
ここで繰り返す必要のない追加的詳細が、特許文献1から特許文献19で見出される。上記特許、特許出願及び刊行物の全ての全開示事項はここに引用により組み入れられ、本明細書の1部をなすものである。
B.全血検出システム
図13は現在の好ましい構成の無試薬全血被検体検出システム200{以下「全血システム」}の略図である。該全血システム200は放射源20と、フイルター230と、サンプルセル242を有するキュベット240と、そして放射検出器250とを備える。又該全血システム200は好ましくはシグナルプロセッサー260とデイスプレー270を有するのがよい。キュベット240がここで示されるが、下記で説明する様に、他のサンプル要素も又該システム200で使用出来る。又該全血システム200はサンプル抽出器280を有するが、それは指290の様な、外肢(appendage)からの体液にアクセスするため使用出来る。
ここで使用される時、用語「全血被検体検出システム」及び「全血システム」は広い用語であり、それらの普通の意味で使用され、限定無き場合は、該サンプルに電磁放射を通過させ、該サンプルによる放射の吸光度を検出することにより、材料サンプル内の被検体の濃度を決定出来る、被検体検出デバイスを称する。ここで使用される時、用語「全血」は広い用語であり、その普通の意味で使用され、限定無き場合は、患者から抜き取られたが、他の仕方で処理されてない、例えば、該患者から取り除かれた後、溶血されたり、凍結乾燥されたり、遠心分離されたり、何等かの他の仕方で分離されたり、してない血液を称する。全血は、抜き取り過程中に該サンプルに入る、又は血液中に本来ある、間隙性流体又は細胞間流体の様な、他の流体の或る量を含んでもよい。しかしながら、該全血システム10が、唾液、尿、汗、又は何等かの他の有機又は無機材料の様な、他の物質を分析するよう使われてもよい様に、ここに開示される該全血システム20は全血の分析に限定されないことは理解されるべきである。
該全血システム200は患者に患者近傍型試験システムを含む。ここで使用される時、「患者近傍型試験システム」は、その普通の意味で使用され、限定無き場合は、排他的に実験室内でよりもむしろ、患者がいる所で使用されるよう構成された試験システム、例えば、患者の家庭、クリニック内、病院内、或いは移動環境内でも、使用出来るシステム、を含む。患者近傍型試験システムのユーザーは患者、患者の家族メンバー、臨床医、看護士、又は医者を含む。「患者近傍型試験システム」は又「ポイントオブケア(point−of−care)」システムを含むことも出来る。
該全血システム200は、一つの実施態様では、患者又はユーザーにより容易に操作されるよう構成される。この様であるから、該システム200は好ましくは携帯型デバイスであるのがよい。ここで使われる時、「携帯型」はその普通の意味で使用され、限定無き場合は、該システム200が患者により容易に搬送され得て、便利な所で使用されることを意味する。例えば、該システム200は有利な様に小型である。1つの好ましい実施態様では、該システム200はパース(purse)又はバックパック内に適合するに充分な程小型である。もう1つの実施態様では、該システム200はパンツのポケット内に適合するよう充分小型である。なおもう1つの実施態様では、該システム200はユーザーの手の手掌内に保持されるよう充分小型である。
ここに説明される実施態様の幾つかは生物学的流体のサンプルの様な、材料サンプルを保持するためサンプル要素を使う。ここで使われる時、「サンプル要素」は広い用語であり、その普通の意味で使われ、限定無き場合は、サンプルセルと少なくとも1つのサンプルセル壁とを有する構造体を含むが、もっと一般的に、材料サンプルを保持し、支持し又は含有することが出来て、そして電磁放射がそれにより保持され、支持され又は含有されるサンプルを通過することを可能にする多数の構造体の何れか、例えば、キュベット、試験ストリップ、等を含む。ここで使用される時、サンプル要素の様な部品に適用された時の、用語「使い捨て」は広い用語であり、その普通の意味で使用され、限定無き場合は、問題の部品が有限回数使用され、次いで捨てられることを意味する。或る使い捨て部品は唯1回しか使われず、次いで捨てられる。他の使い捨て部品は1回より多く使われ、次いで捨てられる。
該全血システム200の放射源220は、多数のスペクトル範囲、例えば、赤外線波長内;中部赤外線(mid−infrared)波長内;約0.8μmを上回る;約5.0μmと約20.0μmの間;及び/又は約5.25μm及び約12.0μmの間、の何れかで電磁放射を放射する。しかしながら、他の実施態様では、該全血システム200は、可視スペクトルからマイクロ波スペクトルまでのどこか、例えば、約0.4μmから約100μmより大きいものまでのどこか、にある波長で放射する放射源220を使ってもよい。なお更に進んだ実施態様では、該放射源は、約3.5μmと14μmの間、又は約0.8μmと約2.5μmの間、又は約2.5μmと約20μmの間、又は約20μmと約100μmの間、又は約6.85μmと約10.10μmの間、の波長の電磁放射を放射する。
該源220から放射される放射は、一つの実施態様では、約0.5ヘルツと約10ヘルツの間、もう一つの実施態様では約2.5ヘルツと約7.5ヘルツの間、そしてなおもう一つの実施態様では約5ヘルツ、の周波数で変調される。変調された放射源とは、フリッカーする蛍光ランプの様な周囲光源は、該検出器250へ入射する放射を分析する時、より容易に識別され、拒絶され得る。この応用に好適な1つの源はイオンオプチックス社(ION OPTICS, INC)により作られ、部品番号エヌエル5エヌシー(NL5NC)で販売されている。
フイルター230は選択された波長の電磁放射が通過し、キュベット/サンプル要素240上に突き当たることを可能にする。好ましくは、該フイルター230は少なくとも凡そ下記波長、すなわち、4.2μm,5.25μm,6.12μm,7.4μm,8.0μm,8.45μm,9.25μm,9.65μm,10.4μm,12.2μm、の放射が該キュベット/サンプル要素へ通過可能にするのがよい。もう一つの実施態様では、該フイルター230は少なくとも凡そ下記波長、すなわち、5.25μm,6.12μm,6.8μm,8.03μm,8.45μm,9.25μm、9.65μm,10.4μm,12μm、の放射が該キュベット/サンプル要素へ通過可能にする。なおもう1つの実施態様では、該フイルター230は少なくとも凡そ下記波長、すなわち、6.85μm,6.97μm,7.39μm,8.23μm,8.62μm,9.02μm,9.22μm,9.43μm,9.62μm,10.10μm,の放射が該キュベット/サンプル要素へ通過可能にする。上記詳述した波長のセットは本開示の範囲内の特定の実施態様に対応する。他の波長のセットは生産のコストと、開発時間と、入手可能性と、そして選択された波長を発生するため使用されるフイルターのコスト、製造可能性、及び市販までの時間に関係する他の要因と、に基づいてこの開示の範囲内で選択されることが可能である。
一つの実施態様では、該フイルター230は種々の狭いスペクトルバンドの中又は種々の選択された波長の中をその通過バンドをサイクルさせることが出来る。かくして該フイルター230はイオンオプチックス社から入手可能なそれの様な、固体同調可能な赤外線フイルターを含んでいる。又該フイルター230は、該源220により放射される放射の方向に概ね直角に、ホイール上に設置された複数の固定通過バンドフイルターを有するフイルターホイールとして実施されることも出来る。該フイルターホイールの回転は交番式に、放射が検出器250の視野を通過する時該フイルターにより変わる波長の放射を通過させるフイルターを提供する。
検出器250は長さ3mm、幅3mmのパイロ電気検出器(pyroelectric detector)を含む。適当な例はドイツ、ドレスデンのデーアイエイエスアンゲバンデゼンソリクゲーエムベーハー(DIAS Angewandte Sensorik GmbH of Dresden, Germany)により、又は{そのテージーエスモデル(TGS model)検出器の様な}ビーエイイーシステムズ(BAE systems)により作られる。該検出器250は代わりに熱電対列(thermopile)、ボロメーター、シリコンマイクロボロメーター、レッドソールトフオーカルプレーン配列又は水銀−カドミウム−テルル化物(エムシーテー)検出器を含むことが出来る。該検出器250としてどの構造体が使用されても、それが、その入射放射に対応する電気信号を作るためにその活性面254上に入射する放射に応答するよう構成されるのが望ましい。
一つの実施態様では、該サンプル要素はキュベット240を有し、該キュベットは今度は、そのサンプルセル内に患者からの(全血、血液成分、間隙性流体、細胞間流体、唾液、尿、汗及び/又は他の有機又は無機材料の様な)組織及び/又は流体のサンプルを保持するよう構成されたサンプルセル242を有する。該キュベット240は、放射源220と検出器250との間の光路243内に少なくとも部分的に配置されたサンプルセル242と共に該全血システム200内に設置される。かくして、放射が該源220から該フイルター230と該キュベット240のサンプルセル242とを通して放射されると、該検出器250は関心のある波長(複数を含む)の該放射信号強さを検出する。この信号強さに基づいて、シグナルプロセッサー260は該セル242内のサンプルが該検出された波長(複数を含む)で放射を吸収する程度を決定する。関心のある被検体の濃度は次いで何等かの適当な分光技術を介して該吸収データから決定される。
図13に示される様に、該全血システム200は又サンプル抽出器280を含むことが出来る。ここで使用される時、用語「サンプル抽出器」は広い用語であり、その普通の意味で使用され、限定無き場合は、患者の皮膚を通しての全血又は他の身体流体の様な組織からの流体のサンプルを抜き取るのに好適な何等かのデバイスを称する。種々の実施態様では、該サンプル抽出器はランス(lance)、レーザーランス(laser lance)、電離療法サンプラー(iontophoretic sampler)、ガス−ジェット(gas−jet)、流体−ジェット(fluid−jet)又は粒子−ジェット(particle−jet)のパーフオレーター(particle−jet perforator)、又は何等かの他の適当なデバイスを含んでもよい。
図13に示す様に、該サンプル抽出器280は全血を該キュベット240へ入手可能にするために、指290の様な、外肢に開口部を形成することが出来る。それに限定されないが前腕を含め他の外肢が該サンプルを抜き取るために使用され得ることは理解されるべきである。該サンプル抽出器280の或る実施態様を用いて、ユーザーは皮膚を通る微少な孔又はスライスを形成し、それを通して全血の様な身体流体が流れる。該サンプル抽出器280がランスを含む場合(図14参照)、該サンプル抽出器280は金属又は他の堅い材料製の鋭い刃具を含んでもよい。1つの適当なレーザーランスはニューメキシコ州、アルブクエルクのセルロボチックスインターナショナル社(Cell Robotics International, Inc. of Albuquerque, New Mexico)により作られるラセットプラスアール{Lasette Plus (R)}である。もしレーザーランス、電離療法サンプラー、ガス−ジェット又は流体−ジェットパーフオレーターが該サンプル抽出器280として使用されるなら、それは該全血システム200(図13参照)内に組み込まれることが出来るほか、それは別デバイスとすることも出来る。
レーザーランスに関する追加的情報は、特許文献20で見出すことが出来るが、この特許の全体は引用によりここに組み入れられ、本明細書の1部をなすものである。1つの適当なガス−ジェット、流体−ジェット又は粒子−ジェットパーフオレーターが特許文献21で開示されており、この特許の全体は引用によりここに組み入れられ、本明細書の1部をなすものである。1つの適当な電離療法サンプラーが特許文献22に開示されており、この特許の全体は引用によりここに組み入れられ、本明細書の1部をなすものである。
図14はキュベット240の形のサンプル要素の一つの実施態様をより詳細に示す。該キュベット240は更にサンプル供給通路248と、穿孔可能な部分249と、第一の窓244と、そして第二の窓246とを有し、該サンプルセル242は該窓244,246の間に延びている。一つの実施態様では、該キュベット240は第二の窓46を有しない。該第一の窓(又は第二の窓246)はサンプルセル壁の1つの形であり、ここで開示される該サンプル要素及びキュベットの他の実施態様では、生物学的流体サンプルの様な材料サンプルを少なくとも部分的に含むか、保持するか又は支持して、そして電磁放射の少なくとも或るバンドに透過性であり、しかし可視範囲の電磁放射に透過性である必要でない、様などんなサンプルセル壁が使用されてもよい。該穿孔可能な部分249はサンプル抽出器280の適当な実施態様により穿孔され得るサンプル供給通路248の範囲である。該外肢290に傷を創り、該傷からの血液又は他の流体が該キュベット240に入る入り口を提供するために、該サンプル抽出器280の適当な実施態様は該部分249と外肢290とを穿孔することが出来る。
該窓244,246は該源220により放射される、又は該フイルター230を通過することが許される電磁放射の範囲で光学的に透過性であるのが好ましい。一つの実施態様では、該窓244,246を構成する材料は完全に透過性であり、すなわち、それはそれに入射する該源220又は該フイルター230からの電磁放射の何れをも吸収しない。もう一つの実施態様では、該窓244,246の材料は関心のある電磁的範囲で幾らか吸収を有するが、その吸収は無視出来る。なおもう一つの実施態様では、該窓244,246の材料の吸収は無視出来る程でないが、それは既知でありそして比較的長い時間の間安定している。もう一つの実施態様では、該窓244,246の吸収は比較的短い時間しか安定でないが、該全血システム200が該材料の吸収を観察し、該材料特性が測定可能に変化出来る前にそれを被検体測定から除くよう構成されている。
該窓244,246は一つの実施態様ではポリプロピレン製である。もう一つの実施態様では、窓244,246はポリエチレン製である。ポリエチレンとポリプロピレンは当該技術で公知の様に取り扱い及び製造用に特に有利な特性を有する材料である。又、ポリプロピレンは、該サンプル要素内のサンプルの流れ性能を高める多数の構造に、例えば、アイソタクチック、アタクチックそしてシンジオタクチックに配置され得る。好ましくは、該窓244,246が、上記のポリプロピレン又はポリエチレン、又はシリコン又は何等かの他の適当な材料の様な耐久性があり、容易に製造可能な材料で作られるのがよい。該窓244,246は構造でアイソタクチック、アタクチック又はシンジオタクチックであるどんな適当なポリマーで作られることも可能である。
窓244,246間の距離は光路長を含み、約1μmと約100μmの間にすることが出来る。一つの実施態様では、該光路長は約10μmと約40μmの間でる。なおもう一つの実施態様では、該光路長は約25μmである。該窓244,246の各々の横断寸法は好ましくは該検出器250の寸法と概略等しいのがよい。一つの実施態様では、該窓は約3mmの直径を有して円形である。該光路長が約25μmであるこの実施態様では、該サンプルセル242の容積は約0.177μLである。一つの実施態様では、サンプル供給通路248の長さは約6mm、該サンプル供給通路248の高さは約1mm、そして該サンプル供給通路248の厚さは該サンプルセルの厚さ、例えば、25μm、に概略等しい。該サンプル供給通路の容積は約0.150μLである。かくして、一つの実施態様での該キュベット240の全容積は約0.327μLである。勿論、該キュベット240/サンプルセル242/他の容積は、該検出器250の寸法と感度、該源220により放射される放射の強度、サンプルの期待される流れ特性、そして該キュベット240内に流れエンハンサー(下記で論じられる)が組み込まれるかどうかの様な多くの変数により変化し得る。該サンプルセル242への流体の輸送は好ましくはキャピラリー作用を通して達成されるのがよいが、また吐き出し(wicking)、または吐き出しとキャピラリー作用の組み合わせを通して達成されてもよい。
図15−17は該全血システム200と結合して使用出来るキュベット305のもう1つの実施態様を描いている。該キュベット305はサンプルセル310,サンプル供給通路315,空気ベント通路320,そしてベント325を有する。図16,16Aそして17で最も良く見られる様に、該キュベットも又、内方側部332を有する第一のサンプルセル窓330、及び内方側部337を有する第二のサンプルセル窓335を備える。上記議論の様に、或る実施態様の該窓(複数を含む)330/335は又サンプルセル壁(複数を含む)を有する。又該キュベット305は該サンプルセル310の反対の該サンプル供給通路315の端部に開口部317を有する。該キュベット305は好ましくは約6.35mm(約4分の1インチ)−3.175mm(約8分の1インチ)の幅と約19.05mm(約4分の3インチ)の長さを有するのがよいが、しかしながら該キュベット305の利点をなお達成しながら、他の寸法も可能である。
該サンプルセル310は該第一のサンプルセル窓330の該内方側部332と該第二のサンプルセル窓335の該内方側部337の間で規定される。該2つの内方側部332,337の間の直角な間隔Tは約1μmと約1.22μmの間にある光路長を含む。該光路長は代わりに約1μmと100μmの間であることも出来る。該光路長はなお代わりに約80μmであることも出来るが、好ましくは約10μmと50μmの間にあるのがよい。もう一つの実施態様では、該光路長は約25μmである。該窓330,335は好ましくは充分な放射透過性を保有する上記で論じられた材料の何れで作られてもよい。各窓の厚さは好ましくは該サンプルセル310又はキュベット305を過度に弱くすることが無ければ出来るだけ薄いのがよい。
一旦外肢290に傷が作られると、該キュベット305のサンプル供給通路315の開口部317は該傷から流れる流体と接触して置かれる。もう一つの実施態様では、サンプルは、例えば、唾液サンプルで行われる様に、傷を創ることなく得られる。その場合、該キュベット305のサンプル供給通路315の該開口部317は傷を創ることなく得られた流体と接触して置かれる。該流体は次いで該サンプル供給通路315を通してそしてキャピラリー作用を介して該サンプルセル310内へ輸送される。空気ベント通路320は、該キュベット内に空気圧の形成を防止し、該血液が中へ流れる時該血液が該空気を変位させることを可能にする、ことにより該キャピラリー作用を改善する。
該サンプルセル310へ該サンプルを輸送するために他の機構が使われてもよい。例えば、該サンプル供給通路315の少なくとも1部分内に吐き出し材料を提供することにより吐き出し作用(wicking)が使用されることが可能である。もう一つの変型では、該サンプルをサンプルセル310へ輸送するために吐き出し作用とキャピラリー作用が一緒に使用され得る。又、該全血システム100により行われる光学的測定を複雑化する成分を同時に濾し出しながら、血液を動かすために膜が該サンプル供給通路315内に位置付けられることも出来る。
図16及び16Aは該キュベット305を作る一つの取り組みを描く。この取り組みでは、該キュベット305は第一の層350,第二の層355,そして第3層360を有する。第二の層355は前記第一の層350と第3層360の間に位置付けられる。第一の層350は第一のサンプルセル窓330とベント325を形成する。上記で述べた様に、該ベント325は該サンプルセル310内にある空気用の逃げを提供する。該ベント325は第一の層350上に示されるが、それは又第3層360上に位置付けられるか、又は該第二の層内のカットアウトとすることも出来て、その時該第一の層350と第3層360の間に配置されるであろう。該第3層360は該第二のサンプルセル窓335を形成する。
該第二の層355は該第一の及び三の層350、360を接合する接着材で全体を形成されてもよい。他の実施態様では、第二の層は、該第一の及び第三の層と同様な材料、或いは何等かの他の適当な材料で形成されてもよい。又該第二の層355はその両側上に堆積された接着材を有する担体(carrier)として形成されてもよい。該第二の層355はサンプル供給通路315,空気ベント通路320,そしてサンプルセル310を形成する。該第二の層の厚さは約1μmと約1.22μmの間とすることが出来る。この厚さは代わりに約1μmと約100μmの間とすることも出来る。この厚さは代わりに約80μmとすることが出来るが、好ましくは約10μmと約50μmの間にあるのがよい。もう一つの実施態様では、該第二の層厚さは約25μmである。
他の実施態様では、該第二の層355は、通路315,320を規定するカットアウト部分を有する接着剤フイルムとして、或いは接着材により囲まれたカットアウトとして作られることが出来る。
II.無試薬全血被検体検出システム
A.検出システム
図18は、下記で詳述されることを除くと、全血システム200と同様である無試薬全血被検体検出システム400の略図を示す。該全血システム400は患者近傍で使用されるよう構成され得る。患者近傍で使用されるよう構成された一つの実施態様は患者近傍型、又はポイントオブケア試験システムである。この様なシステムは、患者又は医者への便利さ、使用の容易さ、そして行われる分析の比較的低いコストを含めて、より複雑な実験室システムに優る幾つかの利点を提供する。
該全血システム400はハウジング402,通信ポート405,そして該全血システム400を外部デバイス420に接続する通信ライン410を有する。一つのこの様な外部デバイス420はもう一つの被検体検出システム、例えば非侵襲性システム10、である。該通信ポート405とライン410は、好ましくは、一様で、確実で、組織されているのがよい仕方で、データを外部デバイス420へ伝送するよう該全血システム400を接続する。例えば、該データは、該全血システム400の第一のユーザーに対応するデータが他のユーザーに対応するデータから分離されるような組織された仕方で該通信ポート405とライン410を経由して通信される。これはユーザーによる介入無しに行われるのが好ましい。この仕方でなら、該第一のユーザーのデータは該全血システム400の他のユーザーに誤適用されないであろう。他の外部デバイス420は、例えば、該モニターにより作られたデータを更に処理するため、又は該データをインターネットの様なネットワークへ利用可能にするため、使用されてもよい。これは該全血システム400の出力を、公知の様に、遠隔に配置された職業的健康管理者(health−care professinals)に利用可能にする。該デバイス420は「外部」デバイスとラベル付けされているが、該デバイス420と該全血システム400は或る実施態様では恒久的に結合されていてもよい。
該全血システム400は患者又はユーザーにより容易に操作されるよう構成される。この様であるから、該全血システム400は好ましくは携帯型デバイスであるのがよい。ここで使用される時、「携帯型」は該全血システム400が該患者により容易に運ばれ、便利な所で使われ得ることを意味する。例えば、該源220と該検出器250の少なくとも1部分を収容するよう構成された該ハウジング402は小さい。一つの好ましい実施態様では、該全血システム400の該ハウジング402はパース又はバックパック内に適合する程充分に小さい。もう一つの実施態様では、該全血システム400の該ハウジング402はパンツポケット内に適合する程充分に小さい。なおもう一つの実施態様では、該全血システム400の該ハウジング402はユーザーの手の手掌内に保持される程充分に小さい。寸法がコンパクトであることに加えて、該全血システム400は該患者又は末端ユーザーがそれを使うことを容易にする他の特徴を有する。この様な特徴は、患者、臨床家、看護士、医療実務者又は医者により容易に充たされそして該サンプルの処理に介入することなく該全血システム400に挿入され得る、ここで論じられた種々のサンプル要素を含む。図18は、一旦サンプル要素、例えば、示された該キュベット、が患者又はユーザーにより充たされると、それは被検体検出用に該全血システム400のハウジング402内に挿入され得ることを示す。又、該全血システム400を含む、ここに説明された全血システムは、それらが耐久性があるように設計され、例えば、非常に少ない可動部品を有することで、患者使用向けに構成されている。
該全血システム400の1実施態様では、該放射源220は約3.5μmと約14μmの間の波長の電磁放射を放射する。そのスペクトルバンドは関心のある分子の第一の次振動に対応する波長の多くを含む。もう一つの実施態様では、該放射源220は約0.8μmと約2.5μmの間の波長の電磁放射を放射する。もう一つの実施態様では、該放射源220は約2.5μmと約20μmの間の波長の電磁放射を放射する。もう一つの実施態様では、該放射源220は約20μmと約100μmの間の波長の電磁放射を放射する。もう一つの実施態様では、該放射源220は約5.25μmと約12.0μmの間の放射を放射する。なおもう一つの実施態様では、該放射源220は約6.85μmと約10.10μmの間の赤外線放射を放射する。
上記で論じられた様に、該放射源220は1実施態様では約0.5Hzと約10Hzの間で変調される。もう一つの実施態様では、該源220は約2.5Hzと約7.5Hzの間で変調される。もう一つの実施態様では、該源220は約5Hzで変調される。もう一つの変型では、該放射源200は放射を一定強度、すなわち直流源の様に、放射出来る。
該サンプルセル242へのサンプルの輸送は好ましくはキャピラリー作用で達成されるのがよいが、また、吐き出し作用又は吐き出し作用とキャピラリー作用の組み合わせで達成されてもよい。下記で論じられる様に、該サンプルセル242内への血液の流れを改善するために1つ以上の流れエンハンサーが該キュベット240の様な、該サンプルセル内に組み込まれてもよい。流れエンハンサーは該サンプルセル242内へのサンプル流れを助ける多数の物理的処理、化学的処理、又は該サンプル供給通路の1つ以上の面上の何等かのトポロジー的特徴(topological features)の何れかである。流れエンハンサーの一つの実施態様では、該サンプル供給通路248は、1つの非常にスムーズな表面と、小さな微少孔(pores)又はデインプル(dimples)を有する反対表面と、を備えるようにされる。この様な特徴は粒状洗剤(granulated detergent)が1つの表面に播かれる過程により形成出来る。次いで該洗剤は該微少孔又はデインプルを創るために洗い去られる。流れエンハンサーは下記でより詳細に論じられる。1つ以上の流れエンハンサーを該キュベット240内に組み込むことにより、該サンプル供給通路248の容積は減じられ、該キュベット240の充填時間は減じられ得るか、又は該キュベット240の容積と充填時間の両者が減じられ得る。
該フイルター230が電子的に同調可能なフイルターを含む場合、イオンオプチックス社により作られるもの様な、固体同調可能赤外線フイルターが使用されてもよい。該イオンオプチックス社のデバイスは非特許文献1の論文で説明されたデバイスの商業的適合品である。この論文の全内容は引用によりここに組み入れられ本明細書の1部をなすものである。電子的に同調可能なフイルターの使用は比較的小さな空間的容積内で多数の波長をモニターすることを可能化して有利である。
上記で論じた様に、該フイルター230は又図19で示すフイルターホイール530として実施することも出来る。フイルター230に於ける様に、該フイルターホイール530は該源220と該キュベット240の間に位置付けられる。該フイルターホイール530は同様に何等かの他のサンプル要素と連係して使用され得ることは理解されるべきである。該フイルターホイール530は軸線Aの周りに回転可能な概ね平板状構造体540を含む。少なくとも第一のフイルター550Aは該平板状構造体540上に設置され、従って回転可能でもある。該フイルターホイール530と該フイルター550Aは、該フイルターホイール530が回転する時、該フイルター550Aが該源220により放射される放射の光路内へサイクリックに回転されるように、該源220と該キュベット240に対して位置付けられる。かくして該フイルター550Aは指定された波長の放射が該キュベット240に突き当たることをサイクリックに可能にする。図19に図解される一つの実施態様では、該フイルターホイール530は又該源220により放射される放射の光路内で同様にサイクリックに回転させられる第二のフイルター550Bを有する。図19は更に該フイルターホイール530が必要なだけ多くのフイルターを備えて作られる得ることを示す(すなわち、第nフイルター、550Nまで)。
上記で論じられた様に、該フイルター230,530は選択された波長の電磁放射が通過し該キュベット240に突き当たることを可能にする。好ましくは、該フイルター230,530は少なくとも凡そ下記波長、すなわち、4.2μm,5.25μm,6.12μm,7.4μm,8.0μm,8.45μm,9.25μm,9.65μm,10.4μm,12.2μm、の放射が該キュベットを通過出来るようにする。もう一つの実施態様では、該フイルター230,530は少なくとも凡そ下記波長、すなわち、5.25μm,6.12μm,6.8μm,8.03μm,8.45μm,9.25μm,9.65μm,10.4μm、12μm、の放射が該キュベットを通過出来るようにする。なおもう1つの実施態様では、該フイルター230,530は少なくとも凡そ下記波長、すなわち、6.85μm,6.97μm,7.39μm,8.23μm、8.62μm,9.02μm,9.22μm,9.43μm、9.62μm,そして10.10μm、の放射が該キュベットを通過出来るようにする。上記詳述された波長のセットはこの開示の範囲内の特定の実施態様に対応する。波長の他のセットが、生産コストと、開発時間と、入手可能性と、そして選択された波長を発生するために使用されるフイルターのコスト、製造可能性、そして市販までの時間に関する他の要因と、に基づきこの開示の範囲内で選択され得る。
また、全血システム400は該検出器250と電気的に接続されたシグナルプロセッサー260を含む。上記で論じられた様に、該検出器250は、放射スペクトルを分析するために扱われ得る電気信号を発生することにより活性面254に入射する放射に応答する。一つの実施態様では、上記説明の様に、該全血システム400は変調される源220とフイルターホイール530を有する。その実施態様では、該シグナルプロセッサー260は該検出器250により発生される電気信号を処理するために同期復調回路を有する。該検出器250の信号を処理後、該シグナルプロセッサー260は該デイスプレー448に出力信号を提供する。
全血システム400の一つの実施態様では、該デイスプレー448は図13に図解される様なデジタルデイスプレーである。もう一つの実施態様では、該デイスプレー448は可聴式デイスプレー(audible display)である。この種のデイスプレーは限られた視力、移動性を有するユーザー又は盲目のユーザー用に特に有利である。もう一つの実施態様では、該デイスプレー448は該全血システム400の1部ではなく、別のデバイスである。別のデバイスとして、該デイスプレーは該全血システム448に恒久的に接続されているか、又は1時的に接続可能である。一つの実施態様では、該デイスプレーは、名称パームパイロット(PalmPilot)、パーム3(PalmIII)、パームブイ(PalmV)そしてパーム7(PalmVII)で、パーム社(PALM, INC.)により作られるものの様な、パーソナルデータアシスタント{「ピーデーエイ(PDA)」}として普通知られる、携帯型計算デバイスである。
図18Aは、少なくとも部分的に、無試薬全血被検体検出サブシステム456(「全血サブシステム」)と非侵襲性サブシステム460を囲むハウジング452を有する無試薬検出システム450{「無試薬システム」}の略図である。上記で論じた様に、該全血サブシステム456は全血のサンプルを得るよう構成される。これは図13に関連して上記で論じられたサンプル抽出器280を使用して行い得る。上記で論じられた様に、他の生物学的流体のサンプルも該全血システム450と関連して使用され得る。一旦抽出されると、該サンプルは上記で論じられた様にサンプルセル242内に位置付けられる。次いで、該サンプルの光学的分析が行われる。該非侵襲性サブシステム460は図1−12と関連して上記で説明された様に機能するよう構成される。1つの動作モードでは、該無試薬システム450は該全血サブシステム456又は非侵襲性サブシステム460の何れかを別々に使うよう操作される。該無試薬システム450は、環境、例えば、ユーザーが最近食事したかどうか、極端に精密な試験が望まれるかどうか、他、により1つのサブシステムかもう1つかを選択するよう構成される。もう1つの動作モードでは、該無試薬システム450は該全血サブシステム456と該非侵襲性サブシステム460を協調した仕方で動作させることが出来る。例えば、一つの実施態様では、該無試薬システム450は校正が必要な時該サブシステム456,460の使用を協調させる。もう一つの実施態様では、該無試薬システム450は、サンプルが得られた後、サンプルを、第一の選択可能なサンプル供給通路を通して該全血サブシステム456へか、又は第二の選択可能なサンプル供給通路を通して該非侵襲性サブシステム460へか、何れかを辿らせるよう構成される。該サブシステム460は測定用窓上に該全血サンプルを位置付けるアダプターを有するよう構成されてもよい。
図20A−20Cは該全血システム200で使用するためにキュベット605を作るもう1つの取り組みを図解する。この実施態様では、第一の部分655はインジェクションモールデイング過程を使って形成される。該第一の部分655はサンプルセル610,サンプル供給通路615,空気ベント通路620,そして第二のサンプルセル窓335を有する。また、該キュベット605は少なくとも該サンプルセル610と該サンプル供給通路615を囲むために該第一の部分655に取り付けられるよう構成された第二の部分660を有する。該第二の部分660は第一のサンプルセル窓330を有し、また、好ましくは該空気ベント通路620の少なくとも1部分を囲むのがよい。第一の部分655と第二の部分660は好ましくは溶接ジョイント665で溶接過程により一緒に接合されるのがよい。4つの溶接ジョイント665が示されるが、4つより少ない又は多い溶接ジョイントが使われ得ることは理解されるべきである。理解される様に、該部分655と660を取り付けるために他の技術が使われることも可能である。
該キュベット240の製作へのなおもう1つの取り組みはウエーハ製作過程(wafer fabrication process)を使用してそれを作ることである。図21はウエーハ製作技術の様な微少電気機械的システム加工技術(microelectromechanical system machining techniques)を使ってキュベット755を作る過程の一つの実施態様を図解する。過程710で、上記で論じられた様に、受け入れ可能な電磁放射透過特性を有する材料製のウエーハが提供される。該ウエーハは好ましくはシリコン又はゲルマニウムで作られるのがよい。好ましくは、次の過程720で、受け入れ可能な電磁放射透過特性を有する材料製の第二のウエーハが提供されるのがよい。該第二のウエーハは選択された材料の簡単な平板状部分であってもよい。好ましくは、次の過程730で、各部分組立体がサンプル供給通路と、空気ベント通路と、そしてサンプルセルとを有する、多数のキュベット部分組立体を創るためにエッチング過程が使用されるのがよい。図20Cで示す第一の部分655と同様な外観を有する個別エッチング部分組立体を備えるこれらの構造体を該ウエーハ内でエッチするために従来のエッチング過程が使われてもよい。好ましくは、次の過程740で、該サンプル供給通路、サンプルセルの各々と、該空気ベント通路を囲むウエーハ組立体を創るために該第二のウエーハは該第一のウエーハに取り付けられ、結合され、そしてシールされるのがよい。この過程は相互に連結された多数のキュベットを創る。好ましくは、次の過程750で、該ウエーハ組立体は、該多数のキュベットを個別キュベット755に分離するために、処理、例えば、機械加工、ダイス、スライス、又はソーされる。過程710−750は特定の順序で表明されているが、該過程は該方法の範囲内で他の順序で行われてもよいことは理解されるべきである。
一つの実施態様では、図21の過程により作られた該キュベット755は比較的小さい。もう1つの実施態様では、該キュベット755はキュベット305の寸法付近である。もし該キュベット755が小さいなら、それらは、図22に示す使い捨てサンプル要素ハンドラー780内にそれらを組み込むことによりより使い易くされ得る。該使い捨てサンプル要素ハンドラー780は未使用サンプル要素部分785と使用済みサンプル要素部分790とを有する。新しい時、該未使用キュベット部分785は何等かの数のサンプル要素757を含む。該サンプル要素ハンドラー780のユーザーによる初めての使用のために、第一のサンプル要素757Aがサンプル取り込み位置(sample taking location)795へ進まされる。次いでユーザーは上記で説明された仕方でサンプルを取る。該システム200の様な全血システムを使って光学的測定が行われる。一旦測定が完了すると、次のサンプル要素757Bが該サンプル取り込み位置795へ進めまされる時、該使用済みサンプル要素757Aは該使い捨てサンプル要素ハンドラー780の使用済みサンプル要素部分790の方へ進まされる。一旦最後のサンプル要素757Nが使用されると、該使い捨てサンプル要素ハンドラー780は捨てられ、バイオハザード物質は使用済みサンプル要素部分790内に含められる。もう一つの実施態様では、一旦該サンプルが取り込まれると、該サンプル要素757Aは試験システム400のハウジング402内へ進められる。或る実施態様では、該サンプル要素ハンドラー780は該サンプル取り込み位置795へ自動的に進められ、次いで該ハウジング402内へ自動的に進められる。
図15−17に関連して上記で論じられた様に、空気ベント325はキュベット305内の空気が逃げることを可能にし、それにより外肢290からサンプルセル310内へのサンプルの流れを高める。ここで「流れエンハンサー」と称される、他の構造体も該サンプルセル310内へのサンプルの流れを高めるため使用され得る。図23Aは流れエンハンサーを有するキュベット805の1実施態様を図解する。該キュベット805はサンプルセル810,サンプル供給通路815,そしてシール820を有する。サンプル抽出器880は該キュベット805内に組み込まれることも、それから分離されることも出来る。
該キュベット850のシール820は該サンプルセル810と該サンプル供給通路815との中の真空を保持する。また、該シール820は汚染物が該キュベット805に入るのを防止するが、サンプル抽出器880により貫入されるバリヤを提供する。該シール820は関係のないサンプル消失及び他の生物学的汚染を取り除くために組織と該キュベット805の間の結合を創るので有利である。該シール820を用意するために多くの異なる材料が使われ得るが、使い得る1つの特定材料はデユポンのテーワイブイイーケー(Dupont’s TYVEK)材料である。該キュベット805はサンプル流れを高めるのみならず、その集合流れを誘起するようベントに依存するキャピラリー収集システムで見出されるサンプル零れの問題をも取り除く。該キュベット805に適用された流れ向上の取り組みは他のサンプル要素にも適用出来る。
図23Bは下記で説明される点を除けば図23Aで示すそれと同様なキュベット885の略図解である。該キュベット885は該キュベット885の内部から周囲雰囲気への空気の通過を可能にする1つ又は多数の小さな微少孔を含む。これらの微少孔はベント325と同様に機能するが、サンプル(例えば、全血)の該キュベット885からのこぼれを防止するに充分な程小さい。該キュベット885は更に機械的中間血液取得システム(mechanical intervention blood acquisition system)890を具備しており、該システムは外部真空源(すなわち、ポンプ)、ダイアフラム、プランジャー、又は該キュベット885内のサンプル流れを改善する他の機械的手段を含んでいる。該システム890は該小さな微少孔と接触して置かれ、該キュベット885内部の空気を該キュベット885から抜き取る。該システム890は又該キュベット885内へ血液を抜き取る傾向がある。該キュベット885に適用された流れ向上技術は他のサンプル要素にも同様に適用出来る。
流れエンハンサーのもう一つの実施態様が図24Aと24Bに示されている。キュベット905はキュベット305と同様であり、サンプルセル310と窓330,335を含む。上記で論じられた様に、該窓はサンプルセル壁を含むことが出来る。また、該キュベットは該キュベット905の外方エッジの第一の開口部917と該キュベット905のサンプルセル310の所の第二の開口部919の間に延びるサンプル供給通路915を含んでいる。図24Bに示す様に、該サンプル供給通路915は該サンプル供給通路915の頂部と底部上に形成された1つ以上の峰部940を含む。一つの変型では、該峰部940は該サンプル供給通路915の頂部上のみ、又は底部上のみに形成される。該峰部940のうねる形状は該キュベット905の該サンプル供給通路915内へのサンプルの流れを有利に向上させ、また、該サンプルを該サンプルセル310内へ流れるよう有利に促す。
該流れエンハンサーの他の変型も考えられる。例えば、流れエンハンサーの種々の実施態様は通路表面を刻み目付け(scoring)様な、物理的変型を含む。もう一つの変型では、その通路内へ抜き取られるサンプルの表面張力を減じるために、化学的処理、例えば、表面活性化学処理(surface−active chemical treatment)、が該サンプル供給通路の1つ以上の面に適用されてもよい。上記で論じられた様に、ここで開示された流れエンハンサーはここで説明された種々のキュベット以外の他のサンプル要素に適用出来る。
上記で論じられた様に、該全血システム200により使われるスペクトル範囲で或る電磁放射吸収を有する材料がキュベット240の部分を作るために使われ得る。図25は、下記で詳述されることを除けば、上記で論じた全血システム200と同様であってもよい全血被検体検出システム1000を示す。該全血システム1000はキュベット1040の様なサンプル要素を作るために使われた材料により吸収量を決定するよう構成されている。これを達成するために、該全血システム1000は光学的校正システム1002と光学的分析システム1004とを具備する。示されている様に、該全血システム1000は全血システム200のそれと同様な源220を有する。又該全血システム1000はフイルター230と同様なフイルター1030を有する。該フイルター1030も又放射を2つの平行ビームに分け、すなわちスプリットビーム1025を創る。該スプリットビーム1025は校正ビーム1027と被検体透過ビーム1029とを有する。もう一つの変型品では、2つの源220が2つの平行ビームを創るため使用されるか、又は別のビームスプリッターが該源220と該フイルター1030の間に位置付けられてもよい。又ビームスプリッターは該フイルター1030の下流であるが、該キュベット1040の前に位置付けられることも出来る。上記変型の何れでも、該校正ビーム1027は該キュベット1040の校正部分1042を通るよう導かれ、そして被検体透過ビーム1029は該キュベット1040のサンプルセル1044を通るよう導かれる。
図25の実施態様では、該校正ビーム1027は該キュベット1040の校正部分1042を通過し、検出器1052の活性面(active surface)1053に入射する。該被検体透過ビーム1029は該キュベット1040のサンプルセル1044を通過し、検出器1054の活性面1055に入射する。該検出器1052,1054は同じ種類であってもよく、上記で論じた検出技術の何れを使用してもよい。上記説明の様に、該検出器1052,1054はそれらの活性面1053,1055に入射する放射に応答して電気信号を発生する。発生した信号はデジタルシグナルプロセッサー1060に送られ、該プロセサーは該キュベット1040の放射吸収を確かめるために両信号を処理し、該キュベット1040の吸収を除くよう該検出器1054からの電気信号を修正し、そして結果をデイスプレー484に提供する。1実施態様では、該光学的校正システム1002は該校正ビーム1027と該検出器1052を含み、該光学的分析システム1004は該被検体透過ビーム1029と該検出器1054とを含む。もう1つの実施態様では、該光学的校正システム1002も又該キュベット1040の校正部分1042を含み、該光沢的分析システム1004も又該キュベット1040の分析部分1044を含む。
図26は無試薬全血被検体検出システム1100(「全血システム」)のもう一つの実施態様の略図解である。図26は同様な校正手順が1つの検出器250を用いて行われ得ることを示す。この実施態様では、図13に関連して上記で説明された様に、源220とフイルター230が一緒にビーム1125を発生する。該ビーム1125の光路内に光学的ルーター(optical router)1170が提供される。該ルーター1170は該ビーム1125を交互に、校正ビーム1127として、そして被検体透過ビーム1129として、導く。該校正ビーム1127はルーター1170により該キュベット1040の校正部分1042を通るよう導かれる。図26の実施態様では、該校正ビーム1127はその後第一の校正ビーム光学的デイレクター1180と第二の校正ビーム光学的デイレクター1190により検出器250の活性面254へ導かれる。一つの実施態様では該光学的デイレクター1180,1190は反射面である。もう1つの変型では、該光学的デイレクター1180,1190はコレクションレンズ(collection lenses)である。勿論、他の数の光学的デイレクターが該ビームを該活性面254上へ導くために使用され得る。
上記で論じられた様に、該被検体透過ビーム1129は該キュベット1040の該サンプルセル1044内へ導かれ、該サンプルを透過し、そして該検出器250の活性面254に入射する。シグナルプロセッサー1160は、校正ビーム1127が該活性面254に入射した時と、該被検体透過ビーム1129が該活性面に入射した時の該検出器250により発生される信号を比較する。この比較は該シグナルプロセッサー1160に、該サンプルセル1044内のサンプルの吸収(absorption)のみを表す信号、すなわち該キュベット1040の吸収寄与を除いて、発生させる。この信号は上記で説明された仕方でデイスプレー484に提供される。かくして、該キュベット1040自身の吸光度は、該ビーム1029が該サンプルセルを通過し、該検出器250で検出された時観察された該キュベット−プラス−サンプルの吸光度から除去され得る。図25に関連して論じられた様に、該全血システム1100は光学的校正システム1196と光学的分析システム1198とを具備する。該光学的校正システム1196はルーター1170、光学的デイレクター1180,1190そして検出器250を含む。該光学的分析システム1198は該ルーター1170と該検出器250を含む。もう1つの実施態様では、該光学的分析システム1198も又該キュベット1040の分析部分1044を含み、該光学的校正システム1198も又該キュベット1040の校正部分1042を含む。該キュベット1040は図25と26のシステムと関連して使われ得るサンプル要素の単なる1つの形である。
図27は全血システム1000,1100で使用されるよう構成されたキュベット1205の略図解である。校正部分1242は全血システム1000,1100が反射又は回折無しに窓330,335のみの吸収を見積もることを可能にするよう構成されている。該キュベット1205は構成部分1242と、第一のサンプルセル窓330及び第二のサンプルセル窓335を有するサンプルセル1244と、を備える。校正部分1242は窓330と同じ電磁透過特性を有する窓1250と、窓335と同じ電磁透過特性を有する窓1255と、を備える。上記で論じた様に、窓1250と1255はサンプルセル壁の形であり、或る実施態様では2つの窓が存在する必要ない。一つの実施態様では、該校正部分1242は、窓1250,1255の内面の間隔が窓330の内面332と窓335の該面337の間隔(すなわち、図17に示す寸法T)より可成り小さいように、該サンプルセル1244から狭まっている(necked−down)。校正部分1242は狭められるが、窓1250,1255の厚さは好ましくは窓330,335と同じであるのがよい。
校正部分1242で窓1250,1255の間隔を減じることにより、サンプルセル1240の窓330,335による吸収の寄与の見積もりの誤差は減じられる。この様な誤差は、例えば、放射が該校正部分1242を通過する時該窓1250,1255の間に位置する分子による該ビーム1027とビーム1127の電磁放射の散乱(scattering)により引き起こされ得る。この様な散乱は該窓1250、1255による吸収として該シグナルプロセッサー1060,1160により解釈され得る。
もう一つの変型では、窓1250,1255の間の空間は完全に除かれ得る。なおもう一つの変型では、該シグナルプロセッサー1060,1160は該窓1250,1255間の空間を有することにより誘起される何等かの誤差を見積もるよう構成されたモジュールを有することが出来る。その場合、該校正部分1242は狭められる必要はなく、窓1250,1255のみならず該キュベット1240もそれらの長さに沿って概ね一定の厚さを有することが出来る。
図28は単一運動ランス(single motion lance)1310とサンプル供給通路1315とを有するキュベット1305の一つの実施態様の平面図である。該ランス1310は金属ランス、鋭利なプラスチック、又は何等かの他の適当な堅い材料で作られたランスとすることが出来る。該ランス1310は、指、前腕又は上記で論じられた何等かの他の外肢の様な外肢内に、非常に小さく出来るスライス又は微少裂傷を創るために小型剃刀刃の様に働く。該ランス1310は、外肢内にスライスを創るよう使用される単一運動が該傷の所にサンプル供給通路1315の開口部1317を置くように、該キュベット1305内に位置付けられる。これは該サンプル供給通路1315の開口部1317を該傷に整合させる過程を除く。これは全てのユーザーに有利であり、何故ならば該キュベット1305はサンプルの非常に少しの容積を受けるよう構成され、該ランス1310が非常に小さいスライスを創るよう構成されているからである。結果として該開口部1317と、該スライスから現れる全血のサンプルと、を別々に整合することは難しい。これは、高齢のユーザー又は筋肉の疾病を病む人々の様な限られた精密動作制御(limited fine motor control)しか有しないユーザー用には特に真実である。
図28Aは単一運動ランス1360,サンプル供給通路1315,そして開口部1317を有するキュベット1355のもう一つの実施態様の平面図である。上記で論じた様に、該単一運動ランス1360は金属ランス、鋭利なプラスチック、又は何等かの他の適当な堅い材料で作られたランスとすることが出来る。ランス1310に於ける様に、該ランス1360は、外肢内に非常に小さいスライス又は微少裂傷を創るために小型剃刀刃の様に働く。また、該単一運動ランス1360は遠位の端部1375で収斂する第一のカット用用具1365と第二のカット用用具1370を有する外肢穿孔用端部(appendage piercing end)を備える。該遠位の端部1375と該入り口1317の間に、発散部(divergence)1380が形成される。該単一運動ランス1360は、単一運動が外肢内にスライスを創り、傷の所に該サンプル供給通路1315の開口部1317を置くように、該キュベット1305内に位置付けられる。該発散部1380は、ユーザーが受ける苦痛を最小化するのに充分な程小さいが、該キュベット1355を充分に充たす程充分な全血を生み出す程充分に大きい、傷を創るよう構成される。キュベット1305に関連して上記で論じられた様に、該キュベット1355はスライスを創り、該キュベット1355の開口部1317を整合させる別々な動作の必要を取り除く。
図29は上記で論じられた様に何等かの適当な仕方で作られた単一運動ランス1410を有するキュベット1405のもう一つの実施態様の平面図である。この実施態様では、該単一運動ランス1410は該サンプル供給通路1415に隣接して位置付けられる。該サンプル供給通路1415の開口部1417は該キュベット1405は外肢に隣接して置かれ、該外肢内にスライスを創るよう横に動かされ、そして整合されるよう、配置される。見られるように、該ランス1410の幅は該サンプル供給通路1415の幅に比較して小さい。これは該外肢内にスライスを創るキュベット1405の運動がまた、該サンプル供給通路1415の開口部1417を傷の所に位置付けることを保証する。キュベット1305に関連して上記で論じられた様に、該キュベット1405はスライスを創り、キュベット1405の開口部1417を整合させる別々の動作の必要を取り除く。
B.利点と他の使用法
本明細書で説明された該全血システムは既に上記で論じられたものに加えて、幾つかの利点と使用法を有する。ここで説明された該全血システムは、それらが関心のある被検体を光学的に測定するので、非常に精密である。又、該全血システムの精度は多数の血液サンプルを抜き取る必要無しに更に改善出来る。試薬ベースの技術では、血液サンプルは試験ストリップ上の試薬に接触するようもたらされ、指示された化学反応が起こり、そしてその反応の或る側面が観察される。該反応をホストする試験ストリップは限られた量の試薬を有するのみで、限られた量の血液に適応するのみである。結果として、試薬ベースの分析技術は1つの測定に対応する試験ストリップ当たり1つの反応のみを観察する。試薬ベースの技術の精度を改良する第二の対策を行うために、第二の試験ストリップが用意されねばならず、それは患者から血液の第二の抜き取りを要する。対照的に、ここに説明された全血システムはサンプルの入射放射に対する応答を光学的に観察する。この観察は患者から抜き取られた各血液サンプルについて多数回行い得る。
ここで論じられた全血システムでは、被検体の光学的測定値は多数の測定値に亘り積分され得て、被検体濃度のより精密な見積もりを可能にする。図30はX軸上の測定時間に対するy軸上のmg/dLでの2乗平均誤差(RMS Error)を示す。測定時間がx軸上に示されるが、より多くの時間はより多く取られた測定を表す。図30はより多くの測定が行われた時3つの異なるサンプルについて2乗平均誤差グラフを示す。下記サンプルの各々を表すラインを示すが、ファントム、すなわち、既知被検体濃度を有するサンプル、ブドウ糖及び水の組み合わせ、そして人間のサンプル、である。図30のグラフ上のラインの各々はより多くの測定が行われると(より多くの測定時間に対応する)、向上した精度(低下した誤差)の傾向を示す。
向上した精度に加えて、ここに開示した該全血システムは又より低い製造コストを有する。例えば、該全血システムに使用されたサンプル要素はより低い製造コストで作られ得る。試薬を要するシステムと異なり、ここに開示した全血システムのサンプル要素は限定された在庫寿命の制限を受けない。又、試薬ベースのシステムと異なり、該サンプル要素は試薬の水和を防止するよう梱包される必要がない。試薬の能力を保存するよう設計された多くの他の高価な品質保証対策を要しない。要するに、ここに開示された全血システムの部品は作り易く、試薬ベースの部品より低いコストで作られ得る。
また、該全血システム、それらが又比較的急速な被検体検出が出来るので使用するのにより便利である。結果として、ユーザーは結果を求めて長い期間待つことを要求されない。該全血システムの精度は更に進んだ便利さを付加するようユーザーのニーヅ又は環境へと誂えられ得る。一つの実施態様では、全血システムはもたらされた測定の数(及びそれら測定値の積分)に基づいて報告される被検体濃度値の精度の進行中の見積もり(running estimate)を計算し表示する。一つの実施態様では、ユーザーはユーザーが精度が充分であると結論付けると該測定を終了出来る。一つの実施態様では、該全血システムは該被検体濃度測定を行い、それに「信頼」水準を適用出来る。該信頼の読み値(confidence reading)はパーセンテージ、プラス又はマイナスシリース、又はより多くの測定が行われると増加する何等かの他の適当な測定、の形であってもよい。一つの実施態様では、該全血システムは、精度を改善するためにもっと測定値が取られるべきかどうかを決定するよう、そして見積もられた必要測定時間をユーザーに自動的に知らせるよう構成される。又上述の様に、該全血システムの精度はユーザーからのサンプルの多数の抜き取り無しに改善され得る。
上記説明のサンプル要素のコストは少なくとも試薬を使わないから低い。各使用についてのユーザーへのコストは、或る実施態様では、それが別のサンプル抽出器のニーヅを除いてくれる、サンプル抽出器組み込みにより更に減じられる。上記で論じられたサンプル要素のもう一つの利点はサンプル要素内へサンプルを抜き取るサンプル供給通路の開口部が該サンプル抽出器により創られる傷のサイトに予め配置され得ることである。かくして該サンプル供給通路を該傷上に位置付けるため該サンプル要素を動かす作用は除かれる。上記で説明されたサンプル要素の更に進んだコスト減小は該サンプルセル壁(複数を含む)の光学的校正を使うことにより達成出来る。
上記説明の様に、ここで説明される全血システムにより行われる測定は、化学反応が起こる必要がないので速く行われる。もしユーザー又は全血システムが簡単に、該測定中により多くの積分を可能にするなら、もっと精密な結果が達成され得る。電子的に同調可能なフイルターを組み込むことにより器具のコストと寸法は低下出来る。該全血システムは、前腕の様な、より低く灌流されるサイトでの測定を可能にする非常に少量の血液を以て適切に機能出来る。
一つの実施態様では、無試薬全血システムは自動的に動作するよう構成される。この実施態様では、ここで開示された全血システムの何れか、例えば、図13の全血システム200は自動無試薬全血システムとして構成される。該自動システムは、患者近傍型試験システムでの場合に於ける様に、患者近傍で展開され得る。この実施態様では、該自動システムは図13に関連して説明された様に、源20,光学的検出器250,サンプル抽出器280、サンプルセル254,そしてシグナルプロセッサー260を有する。一つの実施態様では、該自動試験システムはユーザー又は患者からの最小の介入で動作するよう構成される。例えば、一つの実施態様では、ユーザー又は患者はサンプルセル254を該自動試験システムに挿入し、試験を始動するだけである。該自動試験システムは、スライスを形成し、該スライスからサンプルを受け、放射を発生し、放射を検出し、そして患者の介入無しに信号を処理するよう構成される。もう一つの実施態様では、ユーザーからの介入はない。これが達成される一つの方法は図22に関連して上記で論じられた様に、サンプル要素ハンドラーを提供することに依っており、そこではサンプル要素は源220からの放射の光路内へ自動的に進められ得る。もう一つの実施態様では、該全血システムはユーザー又は患者の介入無しに間歇的又は連続モニタリングを提供するよう構成される。
非侵襲性光学的検出システムの略図である。 該非侵襲性検出システムで使用するための窓組立体の斜視図である。 該非侵襲性検出システムで使用するための代わりの窓組立体の組立分解略図である。 冷却システムに結合された窓組立体の平面図である。 コールドリザーバーに結合された窓組立体の平面図である。 非侵襲性検出システムで使用するためのヒートシンクの切り欠き図である。 図1の非侵襲性検出システムの下部の切り欠き斜視図である。 非侵襲性光学的検出システムで使用するための制御システムの略図である。 関心のある被検体の濃度を決定するための第一の方法論を描く。 関心のある被検体の濃度を決定するための第二の方法論を描く。 関心のある被検体の濃度を決定するための第3の方法論を描く。 関心のある被検体の濃度を決定するための第4方法論を描く。 関心のある被検体の濃度を決定するための第5の方法論を描く。 無試薬全血検出システムの略図である。 無試薬全血検出システムで使用するためのキュベットの一つの実施態様の斜視図である。 無試薬全血検出システムで使用するためのキュベットのもう一つの実施態様の平面図である。 図15で示すキュベットの分解された平面図である。 図15のキュベット組立分解斜視図である。 図15のキュベットの側面図である。 そのシステムを他のデバイス又はネットワークへ接続するための通信ポートを有する無試薬全血検出システムの略図である。 非侵襲性サブシステムと全血サブシステムとを有する無試薬全血検出システムの略図である。 図13の全血システムの一つの実施態様内に組み込まれたフイルターホイールの略図である。 全血ストリップキュベットのもう一つの実施態様の平面図である。 図20Aの全血ストリップキュベットの側面図である。 図20Aの全血ストリップキュベットの実施態様の組立分解図である。 全血ストリップキュベットのもう一つの実施態様を作る方法を図解する過程のフローチャートである。 図13のシステム用に図21の過程により作られる全血ストリップキュベットを梱包するためのキュベットハンドラーの略図解である。 1種の流れエンハンサーを有する全血ストリップキュベットの略図解である。 もう1つの種類の流れエンハンサーを有する全血ストリップキュベットの略図解である。 もう1つの種類の流れエンハンサーを有する全血ストリップキュベットの側面図である。 1種の流れエンハンサーの構造を示す図24Aの全血ストリップキュベットの断面図である。 無試薬全血検出システムのもう一つの実施態様の略図解である。 無試薬全血検出システムのもう一つの実施態様の略図解である。 校正用に構成されたキュベットの略図解である。 一体化されたランスを有するキュベットの一つの実施態様の平面図である。 一体化されたランスを有するキュベットのもう一つの実施態様の平面図である。 一体化されたランスを有するキュベットのもう一つの実施態様の平面図である。 測定時間に対する該全血被検体検出システムの測定精度のグラフである。

Claims (17)

  1. 放射のビームを放つことが出来る変調された源;
    該ビームの光路内の検出器;
    該検出器と連絡している同期復調器;
    源と該検出器を収納するように、大きさが作られ且つ構成された、ハウジング;
    サンプル要素が容器中に置かれた時に該サンプル要素の少なくとも一部が光路中に置かれるように大きさが作られ且つ構成された、該サンプル要素を手動で受け入れるためにハジング内に形成された容器;および
    該ハウジングの該容器中で取りはずし可能に置かれており、且つ少なくとも一部は該放射が通過できる材料から作られている、使い捨てできるサンプル要素、ここで該サンプル要素は、
    無視できないスペクトルバンドの吸収を有するサンプルセル壁;および
    光学測定を複雑化し得る血液成分が分離された血液サンプルで少なくとも一部は満たされるように構成されたサンプルセル;
    を含んで成り;
    更に、放射の該スペクトルバンドを透過するよう構成されている、該ビームの該光路内のフィルタリングシステムを含んでおり;
    ここで、該フィルタリングするシステムは以下の中心波長:約5.25μm、約6.12μm、約7.4μm、約8.0μm、約8.45μm、約9.25μm、約9.65μm、10.4μm、約12.2μm、の少なくとも1つにおいて放射を透過するよう構成されている、
    患者近傍で展開され得る、無試薬グルコース検出システム。
  2. フィルタリングシステムが、複数のスペクトルバンドおよび複数の波長から成る群から選択される一方を透過するように作られている、請求項1に記載の検出システム。
  3. フィルタリングシステムが軸線の周りを回転可能である、請求項1に記載の検出システム。
  4. サンプル要素が、更に開口部とサンプル供給通路を含んで成り、該サンプル供給通路が該開口部と該サンプルセルの間に延びている、請求項1に記載の検出システム。
  5. ハウジングが、患者の手のひらまたはポケットに収まるに十分小さいように大きさが作られ且つ構成された、請求項1に記載の検出システム。
  6. 放射が通過できる材料が、ポリエチレンおよびポリプロピレンから成る群から選択される、請求項1に記載の検出システム。
  7. サンプルセルが変調された源から放たれた放射のビームの光路に置かれた時に、サンプル要素の少なくとも一部がハウジングから延びる、請求項1に記載の検出システム。
  8. 変調された源が第一及び第二の放射のビームを放つことができ、サンプルセルが第一のビームの光路に置かれ、サンプル要素の第二の部分が第二のビームの光路に置かれている、請求項1に記載の検出システム。
  9. サンプル要素の第二の部分が、ポリエチレンおよびポリプロピレンから成る群から選択される材料から作られている校正部分である、請求項8に記載の検出システム。
  10. (i)中心波長を有するスペクトルバンドを含む放射の被検体ビーム、および(ii)放射の校正ビーム、を放つことができる変調された源;
    被検体ビームの光路にある検出器;
    検出器と連絡した同期非変調器;
    被検体ビームと校正ビームに対応するシグナルを比較するように構成された、検出器と連絡したプロセッサー;
    源および検出器を収容するように作られたハウジング;
    光学測定を複雑化し得る血液成分が分離された血液サンプルで満たされるように作られ、
    スペクトルバンドの放射の無視できない吸収を有するサンプルセル壁;および
    サンプルセル;
    を含む、被検体ビームの光路および校正ビームの光路に置かれた使い捨てできるサンプル要素;
    および
    以下の中心波長:約5.25μm、約6.12μm、約7.4μm、約8.0μm、約8.45μm、約9.25μm、約9.65μm、約10.4μm、約12.2μm、の少なくとも1つの放射を透過するように構成された、被検体ビームの光路のフィルタリングシステム、
    を含んで成る、患者近傍で展開され得る無試薬被検体検出システム。
  11. フィルタリングシステムが、複数のスペクトルバンドおよび複数の波長から成る群から選択される一方を透過するように作られている、請求項10に記載の無試薬被検体検出システム。
  12. 放射の被検体ビームの光路が、放射の校正ビームの光路から間隔をおいてある、請求項10に記載の無試薬被検体検出システム。
  13. サンプルセルが校正部分を含んでなり、校正部分が校正ビームの光路に沿って置かれる時にサンプルセルが被検体ビームの光路に沿って置かれるように大きさが作られ且つ構成されている、請求項10に記載の無試薬被検体検出システム。
  14. 校正部分が第一の材料から作られた校正部分壁を含んでなり、そしてサンプルセル壁が第二の材料から作られている、請求項13に記載の無試薬被検体検出システム。
  15. 校正部分壁の厚さとサンプルセル壁の厚さがほぼ同じであり、第一の材料と第二の材料がほぼ同じ透過特性を有する、請求項14に記載の無試薬被検体検出システム。
  16. 校正部分が校正窓を含んでなり、サンプルセル壁が複数のサンプル窓をふくんでなる、請求項14に記載の無試薬被検体検出システム。
  17. サンプル要素が更にサンプルセルから延びる通路を含んでなり、該通路が流体をサンプルセルに運ぶのに適合されている、請求項10に記載の無試薬被検体検出システム。
JP2003541459A 2001-11-08 2002-11-06 無試薬全血ブドウ糖計 Expired - Fee Related JP4190417B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34638301P 2001-11-08 2001-11-08
US34079401P 2001-12-11 2001-12-11
US10/055,875 US6958809B2 (en) 2001-11-08 2002-01-21 Reagent-less whole-blood glucose meter
US10/200,384 US7050157B2 (en) 2001-11-08 2002-07-19 Reagent-less whole-blood glucose meter
PCT/US2002/035707 WO2003039362A1 (en) 2001-11-08 2002-11-06 Reagent-less whole-blood glucose meter

Publications (3)

Publication Number Publication Date
JP2005508007A JP2005508007A (ja) 2005-03-24
JP2005508007A5 JP2005508007A5 (ja) 2006-01-05
JP4190417B2 true JP4190417B2 (ja) 2008-12-03

Family

ID=27489759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003541459A Expired - Fee Related JP4190417B2 (ja) 2001-11-08 2002-11-06 無試薬全血ブドウ糖計

Country Status (8)

Country Link
US (1) US7050157B2 (ja)
EP (1) EP1450677B1 (ja)
JP (1) JP4190417B2 (ja)
AT (1) ATE315907T1 (ja)
AU (1) AU2002356913B2 (ja)
CA (1) CA2465889C (ja)
DE (1) DE60208825T2 (ja)
WO (1) WO2003039362A1 (ja)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468242B2 (en) 2001-11-05 2008-12-23 Medgenics, Inc. Dermal micro organs, methods and apparatuses for producing and using the same
US6958809B2 (en) 2001-11-08 2005-10-25 Optiscan Biomedical Corporation Reagent-less whole-blood glucose meter
US7050157B2 (en) 2001-11-08 2006-05-23 Optiscan Biomedical Corp. Reagent-less whole-blood glucose meter
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US7061593B2 (en) * 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US7646484B2 (en) * 2002-10-07 2010-01-12 Intellidx, Inc. Method and apparatus for performing optical measurements of a material
US20040132171A1 (en) * 2003-01-06 2004-07-08 Peter Rule Wearable device for measuring analyte concentration
US20050037384A1 (en) * 2003-04-15 2005-02-17 Braig James R. Analyte detection system
US7271912B2 (en) * 2003-04-15 2007-09-18 Optiscan Biomedical Corporation Method of determining analyte concentration in a sample using infrared transmission data
US20050038674A1 (en) * 2003-04-15 2005-02-17 Braig James R. System and method for managing a chronic medical condition
US20050106749A1 (en) * 2003-04-15 2005-05-19 Braig James R. Sample element for use in material analysis
US20060009727A1 (en) * 2004-04-08 2006-01-12 Chf Solutions Inc. Method and apparatus for an extracorporeal control of blood glucose
US20050264815A1 (en) * 2004-05-07 2005-12-01 Mark Wechsler Sample element with fringing-reduction capabilities
US20060030790A1 (en) * 2004-08-06 2006-02-09 Braig James R Sample element with barrier material and vacuum
JP2008518205A (ja) * 2004-10-21 2008-05-29 オプテイスカン・バイオメデイカル・コーポレーシヨン インターフェレントを有するサンプル内の被検体濃度を決定する方法と装置
US7722537B2 (en) * 2005-02-14 2010-05-25 Optiscan Biomedical Corp. Method and apparatus for detection of multiple analytes
US20070081626A1 (en) 2005-02-14 2007-04-12 Peter Rule Method and apparatus for enhancing accuracy of an analyte detection system
US8251907B2 (en) 2005-02-14 2012-08-28 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
US8936755B2 (en) 2005-03-02 2015-01-20 Optiscan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
US20060235348A1 (en) 2005-02-14 2006-10-19 Callicoat David N Method of extracting and analyzing the composition of bodily fluids
US20090048576A1 (en) * 2007-08-13 2009-02-19 Mark Ries Robinson Managing Cross-contamination in Blood Samples Withdrawn from a Multilumen Catheter
US20090054754A1 (en) * 2007-08-21 2009-02-26 Mcmahon Dave Clinician-controlled semi-automated medication management
US20100094114A1 (en) * 2008-10-09 2010-04-15 Mark Ries Robinson Use of multiple calibration solutions with an analyte sensor with use in an automated blood access system
US20100168535A1 (en) * 2006-04-12 2010-07-01 Mark Ries Robinson Methods and apparatuses related to blood analyte measurement system
US20090088615A1 (en) * 2007-10-01 2009-04-02 Mark Ries Robinson Indwelling Fiber Optic Probe for Blood Glucose Measurements
US20090156975A1 (en) * 2007-11-30 2009-06-18 Mark Ries Robinson Robust System and Methods for Blood Access
US8323194B2 (en) * 2009-12-18 2012-12-04 Inlight Solutions, Inc. Detection of bubbles during hemodynamic monitoring when performing automated measurement of blood constituents
US8597208B2 (en) * 2005-09-06 2013-12-03 Covidien Lp Method and apparatus for measuring analytes
WO2007028233A1 (en) 2005-09-06 2007-03-15 Nir Diagnostics Inc. Method and apparatus for measuring analytes
US9561001B2 (en) 2005-10-06 2017-02-07 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
CA2630094A1 (en) * 2005-11-15 2007-05-24 Luminous Medical, Inc. Blood analyte determinations
CA2630539A1 (en) * 2005-11-21 2007-05-24 Nir Diagnostics Inc. Modified method and apparatus for measuring analytes
EP1793228A1 (de) 2005-12-05 2007-06-06 F. Hoffmann-La Roche AG Verfahren zum akustischen Ausgeben einer Information in einem Analysesystem
US20070179436A1 (en) * 2005-12-21 2007-08-02 Braig James R Analyte detection system with periodic sample draw and laboratory-grade analyzer
US20070258083A1 (en) * 2006-04-11 2007-11-08 Optiscan Biomedical Corporation Noise reduction for analyte detection systems
DK1882446T3 (da) * 2006-07-24 2009-01-12 Eyesense Ag Anordning til måling af en analyt i en öjenvæske
US7802467B2 (en) 2006-12-22 2010-09-28 Abbott Diabetes Care Inc. Analyte sensors and methods of use
WO2008144575A2 (en) 2007-05-18 2008-11-27 Optiscan Biomedical Corporation Fluid injection and safety system
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US7972296B2 (en) 2007-10-10 2011-07-05 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8412293B2 (en) * 2007-07-16 2013-04-02 Optiscan Biomedical Corporation Systems and methods for determining physiological parameters using measured analyte values
US8597190B2 (en) 2007-05-18 2013-12-03 Optiscan Biomedical Corporation Monitoring systems and methods with fast initialization
CA2702113A1 (en) * 2007-10-11 2009-04-16 Optiscan Biomedical Corporation Synchronization and configuration of patient monitoring devices
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US7896498B2 (en) * 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
US9091676B2 (en) 2010-06-09 2015-07-28 Optiscan Biomedical Corp. Systems and methods for measuring multiple analytes in a sample
EP2456355B1 (en) 2009-07-20 2016-09-14 Optiscan Biomedical Corporation Adjustable connector and dead space reduction
US8731639B2 (en) 2009-07-20 2014-05-20 Optiscan Biomedical Corporation Adjustable connector, improved fluid flow and reduced clotting risk
US10475529B2 (en) 2011-07-19 2019-11-12 Optiscan Biomedical Corporation Method and apparatus for analyte measurements using calibration sets
US9554742B2 (en) 2009-07-20 2017-01-31 Optiscan Biomedical Corporation Fluid analysis system
US8790269B2 (en) 2011-05-09 2014-07-29 Xerox Corporation Monitoring respiration with a thermal imaging system
WO2013006716A1 (en) 2011-07-06 2013-01-10 Optiscan Biomedical Corporation Sample cell for fluid analysis system
US20150044098A1 (en) * 2012-01-30 2015-02-12 Scanadu Incorporated Hyperspectral imaging systems, units, and methods
DE102012007468A1 (de) * 2012-04-13 2013-10-17 Forschungszentrum Jülich GmbH Probenhalter zum Aufheizen einer Probe durch Strahlung aus einer Strahlungsquelle
US9301710B2 (en) 2012-06-01 2016-04-05 Xerox Corporation Processing a video for respiration rate estimation
US8971985B2 (en) 2012-06-01 2015-03-03 Xerox Corporation Minute ventilation estimation based on depth maps
US9226691B2 (en) 2012-06-01 2016-01-05 Xerox Corporation Processing a video for tidal chest volume estimation
US9107567B2 (en) 2012-12-27 2015-08-18 Christie Digital Systems Usa, Inc. Spectral imaging with a color wheel
WO2015095239A1 (en) 2013-12-18 2015-06-25 Optiscan Biomedical Corporation Systems and methods for detecting leaks
US9514537B2 (en) 2013-12-27 2016-12-06 Xerox Corporation System and method for adaptive depth map reconstruction
GB2523989B (en) 2014-01-30 2020-07-29 Insulet Netherlands B V Therapeutic product delivery system and method of pairing
WO2016134137A1 (en) 2015-02-18 2016-08-25 Insulet Corporation Fluid delivery and infusion devices, and methods of use thereof
US10275573B2 (en) 2016-01-13 2019-04-30 Bigfoot Biomedical, Inc. User interface for diabetes management system
CN112933333B (zh) 2016-01-14 2023-03-28 比格福特生物医药公司 调整胰岛素输送速率
WO2018058041A1 (en) 2016-09-23 2018-03-29 Insulet Corporation Fluid delivery device with sensor
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
AU2019263490A1 (en) 2018-05-04 2020-11-26 Insulet Corporation Safety constraints for a control algorithm-based drug delivery system
AU2019347755B2 (en) 2018-09-28 2023-02-02 Insulet Corporation Activity mode for artificial pancreas system
US11565039B2 (en) 2018-10-11 2023-01-31 Insulet Corporation Event detection for drug delivery system
US11801344B2 (en) 2019-09-13 2023-10-31 Insulet Corporation Blood glucose rate of change modulation of meal and correction insulin bolus quantity
US11935637B2 (en) 2019-09-27 2024-03-19 Insulet Corporation Onboarding and total daily insulin adaptivity
WO2021113647A1 (en) 2019-12-06 2021-06-10 Insulet Corporation Techniques and devices providing adaptivity and personalization in diabetes treatment
US11833329B2 (en) 2019-12-20 2023-12-05 Insulet Corporation Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns
US11551802B2 (en) 2020-02-11 2023-01-10 Insulet Corporation Early meal detection and calorie intake detection
US11547800B2 (en) 2020-02-12 2023-01-10 Insulet Corporation User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system
US11324889B2 (en) 2020-02-14 2022-05-10 Insulet Corporation Compensation for missing readings from a glucose monitor in an automated insulin delivery system
US11607493B2 (en) 2020-04-06 2023-03-21 Insulet Corporation Initial total daily insulin setting for user onboarding
US11684716B2 (en) 2020-07-31 2023-06-27 Insulet Corporation Techniques to reduce risk of occlusions in drug delivery systems
US11904140B2 (en) 2021-03-10 2024-02-20 Insulet Corporation Adaptable asymmetric medicament cost component in a control system for medicament delivery
WO2023049900A1 (en) 2021-09-27 2023-03-30 Insulet Corporation Techniques enabling adaptation of parameters in aid systems by user input
US11439754B1 (en) 2021-12-01 2022-09-13 Insulet Corporation Optimizing embedded formulations for drug delivery

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787124A (en) 1972-09-21 1974-01-22 Baxter Laboratories Inc Dual wavelength photometer for absorbance difference measurements
US3972614A (en) 1974-07-10 1976-08-03 Radiometer A/S Method and apparatus for measuring one or more constituents of a blood sample
US4305659A (en) 1980-03-06 1981-12-15 Baxter Travenol Laboratories, Inc. Photometric apparatus and method
US4342516A (en) 1980-03-07 1982-08-03 The Perkin-Elmer Corporation Filter indexing for spectrophotometer system
US4350441A (en) 1980-06-30 1982-09-21 Baxter Travenol Laboratories, Inc. Photometric apparatus and method
US4477190A (en) 1981-07-20 1984-10-16 American Hospital Supply Corporation Multichannel spectrophotometer
US4464051A (en) 1982-03-02 1984-08-07 The Perkin-Elmer Corporation Spectrophotometer
DE3224736A1 (de) 1982-07-02 1984-01-05 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Gitterspektrometer
JPS5982290A (ja) * 1982-11-01 1984-05-12 株式会社日立製作所 クレ−ンの吊具傾転装置
US4569589A (en) 1983-05-25 1986-02-11 University Of Pennsylvania Lung water computer system
JPS61103778A (ja) * 1984-10-26 1986-05-22 Tohoku Kako Kk 研磨砥石
US4948961A (en) 1985-08-05 1990-08-14 Biotrack, Inc. Capillary flow device
US4704029A (en) 1985-12-26 1987-11-03 Research Corporation Blood glucose monitor
US4873993A (en) 1986-07-22 1989-10-17 Personal Diagnostics, Inc. Cuvette
US4849340A (en) 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US4882492A (en) 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US6262798B1 (en) 1992-09-29 2001-07-17 Board Of Regents, The University Of Texas System Method and apparatus for direct spectrophotometric measurements in unaltered whole blood
US5286454A (en) 1989-04-26 1994-02-15 Nilsson Sven Erik Cuvette
US5036198A (en) 1989-06-30 1991-07-30 Bodenseewerk Perkin-Elmer Gmbh (Bsw) Multicomponent photometer
US5066859A (en) 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
US5249584A (en) 1990-05-18 1993-10-05 Karkar Maurice N Syringe for hematocrit and oxygen saturation blood analyzer
ATE111706T1 (de) * 1990-06-06 1994-10-15 Novo Nordisk As Verfahren und gerät zur messung des blut-glukose- gehaltes in vivo.
US5209231A (en) 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
US5371020A (en) 1991-09-19 1994-12-06 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample
DK203191D0 (da) 1991-12-19 1991-12-19 Novo Nordisk As Fremgangsmaade og apparat til bestemmelse af relevante blodparametre
US5452716A (en) 1992-02-25 1995-09-26 Novo Nordisk A/S Method and device for in vivo measuring the concentration of a substance in the blood
US5430542A (en) 1992-04-10 1995-07-04 Avox Systems, Inc. Disposable optical cuvette
US5377674A (en) 1992-05-08 1995-01-03 Kuestner; J. Todd Method for non-invasive and in-vitro hemoglobin concentration measurement
US5434412A (en) 1992-07-15 1995-07-18 Myron J. Block Non-spectrophotometric measurement of analyte concentrations and optical properties of objects
US5515847A (en) * 1993-01-28 1996-05-14 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer
DK88893D0 (da) 1993-07-30 1993-07-30 Radiometer As A method and an apparatus for determining the content of a constituent of blood of an individual
US5435309A (en) 1993-08-10 1995-07-25 Thomas; Edward V. Systematic wavelength selection for improved multivariate spectral analysis
AU7828694A (en) 1993-08-24 1995-03-22 Mark R. Robinson A robust accurate non-invasive analyte monitor
US5453716A (en) * 1993-11-22 1995-09-26 Chrysler Corporation Adjustable clip detection system
JPH07284490A (ja) * 1994-02-22 1995-10-31 Minolta Co Ltd グルコース濃度測定装置
US5728352A (en) 1994-11-14 1998-03-17 Advanced Care Products Disposable electronic diagnostic instrument
JP3476958B2 (ja) * 1995-04-12 2003-12-10 アークレイ株式会社 分光測定におけるスペクトルの安定化法
SE504193C2 (sv) 1995-04-21 1996-12-02 Hemocue Ab Kapillär mikrokyvett
US5606164A (en) 1996-01-16 1997-02-25 Boehringer Mannheim Corporation Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection
JPH11511658A (ja) * 1995-08-16 1999-10-12 パーカー,ダウッド 非侵襲性血液分析物センサ
DE19535046C2 (de) 1995-09-21 1998-04-16 Eppendorf Geraetebau Netheler Handgerät zum Pipettieren und photometrischen Messen von Proben
US6072180A (en) 1995-10-17 2000-06-06 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for the generation and capture of thermal gradient spectra from living tissue
US6040578A (en) 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
JPH09218149A (ja) 1996-02-15 1997-08-19 Shimadzu Corp 検出計セルおよび光学測定装置
US5703364A (en) * 1996-02-15 1997-12-30 Futrex, Inc. Method and apparatus for near-infrared quantitative analysis
US5801057A (en) 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
AT404513B (de) 1996-07-12 1998-12-28 Avl Verbrennungskraft Messtech Verfahren und messanordnung zur optischen bestimmung der totalen hämoglobinkonzentration
US5871442A (en) 1996-09-10 1999-02-16 International Diagnostics Technologies, Inc. Photonic molecular probe
JPH10108857A (ja) * 1996-10-04 1998-04-28 Hitachi Ltd 生化学計測装置
JP2001513675A (ja) 1997-02-27 2001-09-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー 血液のパラメタを測定するためのカセット
US5900632A (en) 1997-03-12 1999-05-04 Optiscan Biomedical Corporation Subsurface thermal gradient spectrometry
JP4472794B2 (ja) * 1997-03-25 2010-06-02 パナソニック電工株式会社 グルコース濃度の定量装置
US6285448B1 (en) 1997-05-05 2001-09-04 J. Todd Kuenstner Clinical analyte determination by infrared spectroscopy
AU8472698A (en) 1997-06-25 1999-01-04 Waters Instruments, Inc. Means and method for measuring absorption of radiation-scattering samples
US5944660A (en) 1997-07-08 1999-08-31 Optical Sensors Incorporated Disposable cartridge assembly with optional integrated temperature control system, and systems containing same
US5941821A (en) 1997-11-25 1999-08-24 Trw Inc. Method and apparatus for noninvasive measurement of blood glucose by photoacoustics
US6119026A (en) 1997-12-04 2000-09-12 Hewlett-Packard Company Radiation apparatus and method for analysis of analytes in sample
US5971941A (en) 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US6049762A (en) 1997-12-18 2000-04-11 Perkin Elmer Llc Standardizing a spectrometric instrument
US6505059B1 (en) 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
JPH11352057A (ja) 1998-04-27 1999-12-24 Perkin Elmer Corp:The スペクトルメ―タ装置および集積スペクトルメ―タ装置
US6084661A (en) * 1998-05-07 2000-07-04 Worcestor Polytechnic Institute Optical method and apparatus for measuring carbon monoxide in non-hemolyzed blood
US6312888B1 (en) 1998-06-10 2001-11-06 Abbott Laboratories Diagnostic assay for a sample of biological fluid
US6261519B1 (en) 1998-07-20 2001-07-17 Lifescan, Inc. Medical diagnostic device with enough-sample indicator
US6084660A (en) 1998-07-20 2000-07-04 Lifescan, Inc. Initiation of an analytical measurement in blood
US6087182A (en) 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
US6157041A (en) * 1998-10-13 2000-12-05 Rio Grande Medical Technologies, Inc. Methods and apparatus for tailoring spectroscopic calibration models
JP3898399B2 (ja) * 1999-07-07 2007-03-28 テルモ株式会社 ランセット及び体液成分検出部を備えた組立体
US6198949B1 (en) 1999-03-10 2001-03-06 Optiscan Biomedical Corporation Solid-state non-invasive infrared absorption spectrometer for the generation and capture of thermal gradient spectra from living tissue
US6633771B1 (en) * 1999-03-10 2003-10-14 Optiscan Biomedical Corporation Solid-state non-invasive thermal cycling spectrometer
DE19943914A1 (de) * 1999-09-14 2001-03-15 Volkswagen Ag Vorrichtung und Verfahren zum Betreiben einer Brennkraftmaschine mit Drosselklappe im Schubbetrieb
JP3742741B2 (ja) * 1999-12-16 2006-02-08 テルモ株式会社 体液検査装置
EP1255978A1 (en) 2000-01-18 2002-11-13 Radiometer Medical A/S Apparatus, sample cuvette and method for optical measurements
US6591124B2 (en) * 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
CA2457753A1 (en) 2001-08-14 2003-02-27 Purdue Research Foundation Measuring a substance in a biological sample
US6836332B2 (en) * 2001-09-25 2004-12-28 Tennessee Scientific, Inc. Instrument and method for testing fluid characteristics
US7050157B2 (en) 2001-11-08 2006-05-23 Optiscan Biomedical Corp. Reagent-less whole-blood glucose meter
US6958809B2 (en) 2001-11-08 2005-10-25 Optiscan Biomedical Corporation Reagent-less whole-blood glucose meter
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US7061593B2 (en) 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US7009180B2 (en) 2001-12-14 2006-03-07 Optiscan Biomedical Corp. Pathlength-independent methods for optically determining material composition
US6862534B2 (en) 2001-12-14 2005-03-01 Optiscan Biomedical Corporation Method of determining an analyte concentration in a sample from an absorption spectrum
US20040132167A1 (en) 2003-01-06 2004-07-08 Peter Rule Cartridge lance
US20040132168A1 (en) 2003-01-06 2004-07-08 Peter Rule Sample element for reagentless whole blood glucose meter
US6983177B2 (en) 2003-01-06 2006-01-03 Optiscan Biomedical Corporation Layered spectroscopic sample element with microporous membrane

Also Published As

Publication number Publication date
ATE315907T1 (de) 2006-02-15
EP1450677A1 (en) 2004-09-01
DE60208825T2 (de) 2006-09-14
JP2005508007A (ja) 2005-03-24
AU2002356913B2 (en) 2006-09-28
CA2465889C (en) 2009-06-02
CA2465889A1 (en) 2003-05-15
WO2003039362A1 (en) 2003-05-15
US7050157B2 (en) 2006-05-23
US20030086073A1 (en) 2003-05-08
DE60208825D1 (de) 2006-04-06
EP1450677B1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4190417B2 (ja) 無試薬全血ブドウ糖計
US10499841B2 (en) Analyte monitoring systems and methods
US7061593B2 (en) Device and method for in vitro determination of analyte concentrations within body fluids
US6958809B2 (en) Reagent-less whole-blood glucose meter
US20040132167A1 (en) Cartridge lance
AU2002356913A1 (en) Reagent-less whole-blood glucose meter
US20030060694A1 (en) Sample adapter
JP2005535411A (ja) 体液中の分析物濃度の体外決定用のデバイスと方法
AU2003268090A1 (en) Device and method for in vitro determination of analyte concentrations within body fluids

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees