JP4188591B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4188591B2
JP4188591B2 JP2001376813A JP2001376813A JP4188591B2 JP 4188591 B2 JP4188591 B2 JP 4188591B2 JP 2001376813 A JP2001376813 A JP 2001376813A JP 2001376813 A JP2001376813 A JP 2001376813A JP 4188591 B2 JP4188591 B2 JP 4188591B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
thickness
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001376813A
Other languages
Japanese (ja)
Other versions
JP2002246027A (en
Inventor
森 長山
小須田  敦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001376813A priority Critical patent/JP4188591B2/en
Publication of JP2002246027A publication Critical patent/JP2002246027A/en
Application granted granted Critical
Publication of JP4188591B2 publication Critical patent/JP4188591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に関し、より詳しくは電極と非水溶媒を用いる電解液の改善に関する。
【0002】
【従来の技術】
近年、電子機器の小型化に伴い、電池も小型で軽量のものが求められるようになってきている。こうした中、リチウム二次電池はこれらの要請を満足しうる電池の一つとして、最も盛んに研究開発が行なわれている。また、最近では、より高容量化を計るため、外装体に柔軟なアルミラミネートフィルムを使用した電池も登場するようになってきた。
【0003】
アルミラミネートフィルムの問題点としては、電池を作成した後、電池内部からガスが発生すると、電池が膨れてしまうという点が挙げられる。この問題に関しては、例えば特開2000−236868号公報に示されるように、γ−ブチロラクトンを電解液に使用することによって解決することが可能である。
【0004】
一方、リチウム二次電池の問題点としては、低温での容量が不足するという点が挙げられる。これに対しては、例えば特開平6−290809号公報、特開平8−138738号公報等に示されているように、様々な解決方法が提示されている。しかし、これらは主として電解液の組成改善であり、膨れを抑えるγ−ブチロラクトンを使用するという前提ではよりいっそう低温特性の改善は困難であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、正極活物質に添加元素を加えた電池において、高温で保存した際に電池電極から発生するガスを抑えることによって、低温特性が良好で薄型のリチウム二次電池を提供することである。
【0006】
【課題を解決するための手段】
すなわち、上記目的は以下の本発明の構成により達成される。
装体内に正極と、負極と、電解質とが装填され、
正極活物質として、式LiCo 1−x Nb (X=0.00001〜0.02)で表わされるリチウム含有複合酸化物を有し、
電解質の溶媒としてγ−ブチロラクトンを60〜95体積%含有し、
前記外装体の厚さが0.3mm以下であるリチウム二次電池
【0007】
【発明の実施の形態】
本発明のリチウム二次電池は、外装体内に正極と、負極と、電解質とが装填され、正極活物質として、コバルト酸リチウムと、このコバルト酸リチウムのコバルトに対して0.001〜2原子%の副成分元素M(Li,Coを除く遷移金属および典型金属元素)とを有するリチウム含有複合酸化物を有し、電解質の溶媒としてγ−ブチロラクトンを60〜95体積%含有し、厚さ0.3mm以下の外装体を有するものである。
【0008】
このような構成により、低温特性が良好で高温時にもガス発生のないリチウム二次電池が提供でき、薄いフィルム状の外装体を用いた場合でも、外装体の膨れを防止できる。
【0009】
本発明のリチウム二次電池の正極は、正極活物質と、黒鉛のような導電助剤と、ポリフッ化ビニリデンのような結着剤とを含む混合物より作製される。
【0010】
正極活物質としては、リチウムコバルト酸化物(LiCoO2 )に若干の副成分元素を加えたものを用いる。副成分元素は典型金属、遷移金属いずれでもよいが、好ましくはTi,Nb,SnおよびMg、さらにTi,Nbのいずれか1種または2種以上であり、温度特性の向上が確認されている元素である。
【0011】
リチウムコバルト酸化物中のCoに対する副成分元素Mの含有量は、総計0.001〜2原子%、特に0.01〜1原子%、さらには0.01〜0.1原子%が好ましい。副成分の含有量が前記範囲を超えると容量が低下してしまい、少なすぎると、低温特性の改善効果が得られ難くなってくる。
【0012】
また、副成分はCoに対して置換していてもよく、好ましくは正極活物質は下記組成式で表されるものである。
LiCo1-xx2
(x=0.00001〜0.02、M:Li,Coを除く遷移金属元素、または典型金属元素)
【0013】
置換元素Mとしては、特にTi,Nb,Sn,Mg、さらにTi,Nbが好ましい。これらは単独で用いてもよく、2種以上が置換していてもよい。2種以上用いる場合には、その組み合わせは自由であり、置換量の総計が上記値となっていればよい。
【0014】
導電助剤としては、好ましくは黒鉛、カーボンブラック、炭素繊維や、ニッケル、アルミニウム、銅、銀等の金属が挙げられ、特に黒鉛、カーボンブラックが好ましい。
【0015】
結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン−プロピレン−ジェン共重合体(EPDM)、スチレン−ブタジェンゴム(SBR)等を用いることができる。
【0016】
負極は通常、炭素質材料、導電助剤および結者剤を有する。
【0017】
炭素質材料としては、例えば人造黒鉛、天然黒鉛、熱分解炭素、コークス、樹脂焼成体、メソフェーズ小球体、メソフェーズ系ピッチ等を用いることができる。
【0018】
導電助剤としては、例えばアセチレンブラック、カーボンブラック等を用いることができる。
【0019】
結着剤としては、例えばスチレン・ブタジェンラテックス(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリフツ化ビニリデン(PVDF)、エチレン−プロピレン−ジェン共重合体(EPDM)、ニトリル−ブタジエンゴム(NBR)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン3元系共重合体、ポリトリフルオロエチレン(PTrFE)、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体等を用いることができる。
【0020】
電極の製造は、まず、活物質と必要に応じて導電助剤を、結着剤溶液に分散し、塗布液を調製する。
【0021】
そして、この電極塗布液を集電体に塗布する。塗布する手段は特に限定されず、集電体の材質や形状などに応じて適宜決定すればよい。一般に、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。その後、必要に応じて、平板プレス、カレンダーロール等により圧延処理を行う。
【0022】
集電体は、電池を使用するデバイスの形状やケース内への集電体の配置方法などに応じて、適宜通常の集電体から選択すればよい。一般に、正極にはアルミニウム等が、負極には銅、ニッケル等が使用される。なお、集電体は、通常、金属箔、金属メッシュなどが使用される。金属箔よりも金属メッシュの方が電極との接触抵抗が小さくなるが、金属箔でも十分小さな接触抵抗が得られる。
【0023】
そして、溶媒を蒸発させ、電極を作製する。塗布厚は、50〜400μm 程度とすることが好ましい。
【0024】
本発明における非水電解液は、溶媒成分中、γ−ブチロラクトン(γ−BL)60〜95体積%、好ましくは70〜90体積%、特に75〜85体積%を主成分とし、鎖状カーボネート、環状カーボネート、鎖状エステル等の一種以上の溶媒との混合溶媒からなる非水溶媒により電解質を溶解した組成を有する.混合する溶媒は、γ−ブチロラクトンの組成比が60〜95体積%をはずれた場合、初回の充電時に電極を構成する炭素材料表面の被膜形成が不十分になって、電池容量が低下する。
【0025】
セパレータには電解質を有機溶媒で溶解した非水電解液が含浸保持されている。また、セパレータは、固体電解質で置き換えてもよい。
【0026】
セパレータを形成するセパレータシートは、その構成材料がポリエチレン、ポリプロピレンなどのポリオレフイン類の一種又は二種以上(二種以上の場合、二層以上のフィルムの張り合わせ物などがある)、ポリエチレンテレフターレートのようなポリエステル類、エチレン−テトラフルオロエチレン共重合体のような熱可塑性フッ素樹脂類、セルロース類などである。シートの形態はJIS−P8117に規定する方法で測定した通気度が5〜2000秒/100cc程度、厚さが5〜100μm 程度の微多孔膜フィルム、織布、不織布などがある。
【0027】
また、ゲル型高分子を用いてもよい。例えば、
(1)ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド等のポリアルキレンオキサイド、
(2)エチレンオキサイドとアクリレートの共重合体、
(3)エチレンオキサイドとグリシルエーテルの共重合体、
(4)エチレンオキサイドとグリシルエーテルとアリルグリシルエーテルとの共重合体、
(5)ポリアクリレート
(6)ポリアクリロニトリル(PAN)
(7)ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−塩化3フッ化エチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロビレンフッ素ゴム、フッ化ビニリデン“テトラフルオロエチレン−ヘキサフルオロプロピレンフッ素ゴム等のフッ素系高分子等が挙げられる。
【0028】
ゲル高分子は電解液と混ぜてもよく、またセパレータや電極に塗布をしてもよい。さらに、開始剤を入れることにより、紫外線、EB、熱等でゲル高分子を架橋させてもよい。
【0029】
本発明における電池の外装体は、0.3mm厚以下、特に0.15mm以下のシート状フィルムを用いる。この外装体内に正極、負極、セパレータが収納・配置され、装填されている。なお、外装体の厚みの下限としては、特に規制されるものではないが、通常0.03mm程度である。この電池は密封され、真空シールされた状態になっている。
【0030】
本発明における外装体は、柔軟なフィルムにより横成される。柔軟なフィルムを使い電池内部を真空にすることによって、フィルムが電池電極に密著し、より薄く小型の電池を作成できる。フィルムの構造は特に決まったものではないが、樹脂層を上下に挟んだアルミのラミネートフィルムが好ましい。
【0031】
外装袋は、例えばアルミニウム等の金属層の両面に、熱接着性樹脂層としてのポリプロピレン、ポリエチレン等のポリオレフィン樹脂層や耐熱性のポリエステル樹脂層が積層されたラミネートフィルムから構成されている。外装袋は、予め2枚のラミネートフィルムをそれらの3辺の端面の熱接着性樹脂層相互を熱接着して第1のシール部を形成し、1辺が開口した袋状に形成される。あるいは、一枚のラミネートフィルムを折り返して両辺の端面を熱接着してシール部を形成して袋状としてもよい。
【0032】
ラミネートフィルムとしては、ラミネートフィルムを構成する金属箔と導出端子間の絶縁を確保するため、内装側から熱接着性樹脂層/ポリエステル樹脂層/金属箔/ポリエステル樹脂層の積層構造を有するラミネートフィルムを用いることが好ましい。このようなラミネートフィルムを用いることにより、熱接着時に高融点のポリエステル樹脂層が溶けずに残るため、導出端子と外装袋の金属箔との離間距離を確保し、絶縁を確保することができる。そのため、ラミネートフィルムのポリエステル樹脂層の厚さは、5〜100μm 程度とすることが好ましい。
【0033】
ここで、柔軟なフィルムを使用する外装体は電池の厚みを薄くできる為、電池の小型化には有利であるが、柔らかいために電池から僅かのガスが生じても電池が膨張してしまうという欠点がある。
【0034】
本発明の正極は、通常のリチウムコバルト酸化物に比べ、低温特性では優れているものの、反面電極表面の活性が高く、電池を満充電で高温保存した場合などは、電解液と反応してガスを生じるという問題があった。
【0035】
このため、小さく薄い電池の場合、より高性能な活物質を使用できないという欠点があった。本発明で使用したγ−ブチロラクトンは、通常外装缶を使用したリチウム二次電池でよく用いられる、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)と比べ、酸化されにくく満充電の高温保存時にガスを生じにくい。このため、比較的堅く変形しにくい外装缶に比べ、薄く柔らかいフィルムを外装体に用いた電池でも、より高性能な活物質を使用することができ、小型高性能電池を作成することが可能となる。
【0036】
【実施例】
以下に本発明の具体的な実施例を示す。
<実施例1>
高分子物質:PVDF[Kynar 761A (エルフ・アトケム社製)]、電解液:エチレンカーボネート:γ−ブチロラクトン=2:8(体積比)である混合溶媒にLiBF4を2Mの濃度で溶解したもの、溶媒:アセトンを重量比で、高分子物質:電解液:溶媒=3:7:20となるように混合して、第1の溶液を調製した。
【0037】
この第1の溶液に、正極活物質:LiCo0.999Nb0.0012 、導電助剤:アセチレンブラックを重量比で、第1の溶液:活物質:導電助剤=2:7.5:1.2となるように加えて分散させ、正極用スラリーを得た。
【0038】
また、高分子物質:電解液:溶媒=3:7:5としたほかは上記第1の溶液と同様にして調整した第2の溶液に、負極活物質として黒鉛を重量比で、第2の溶液:活物質=2:1となるように加えて分散させ、負極用スラリーを得た。
【0039】
上記第1の溶液、正極用スラリーおよび負極用スラリーを使用して、正極−ゲル化固体電解質−負極−ゲル化固体電解質−正極・・・積層体からなる電極群を作製し、これをシート状の外装体(アルミラミネートパック、厚み100μm )に入れ、シーラーにより封口した。また、電極のサイズは30mm×40mmとした。
【0040】
この方法によって作成された電池を、25℃においてカットオフ4.2〜3.0V、1.0Cで充放電を行ない容量を測定した後、−20℃での比容量を測定した。また、4.2V満充電状態とし、90℃オープンに投入して電池厚みの変化を測定した。
【0041】
参考例2>
正極活物質をLiCo0.999Ti0.001とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0042】
参考例3>
正極活物質をLiCo0.999Sn0.001とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0043】
参考例4>
正極活物質をLiCo0.999Mg0.001とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0044】
<実施例5>
正極活物質をLiCo0.99999Nb0.000012 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0045】
<実施例6>
正極活物質をLiCo0.9999Nb0.00012 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0046】
<実施例7>
正極活物質をLiCo0.99Nb0.012 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0047】
<実施例8>
正極活物質をLiCo0.98Nb0.022 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0048】
<実施例9>
電解液の組成を、エチレンカーボネート(EC):γ−ブチロラクトン=4:6(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0049】
<実施例10>
電解液の組成を、エチレンカーボネート(EC):γ−ブチロラクトン=5:95(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0050】
<比較例1>
正極活物質をLiCo 0.999999 Nb 0.000001 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0051】
<比較例2>
正極活物質をLiCo0.9Nb0.12 とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0052】
<比較例3>
電解液の組成を、エチレンカーボネート(EC):γ−ブチロラクトン=5:5(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0053】
<比較例4>
電解液の組成を、γ−ブチロラクトン=100(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0054】
<比較例5>
電解液の組成を、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0055】
<比較例6>
電解液の組成を、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0056】
<比較例7>
正極活物質をLiCo0.999Ti0.0012 とし、電解液の組成を、エチレンカーボネート(EC):メチルエチルカーボネート=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0057】
<比較例8>
正極活物質をLiCo0.999Sn0.0012 とし、電解液の組成を、エチレンカーボネート(EC):メチルエチルカーボネート=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0058】
<比較例9>
正極活物質をLiCo0.999Mg0.0012 とし、電解液の組成を、エチレンカーボネート(EC):メチルエチルカーボネート=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0059】
<比較例10>
正極活物質をLiCoO2 とし、電解液の組成を、エチレンカーボネート(EC):γ−ブチロラクトン=2:8(体積比)とした他は実施例1と同様に電池を組み立て、充放電を行なった後、満充電状態とし、オーブンに投入して電池厚みの変化を測定した。
【0060】
以上の結果を表1に示す。表中、EC:エチレンカーボネート、γBL:γブチロラクトン、MEC:メチルエチルカーボネート、DEC:ジエチルカーボネートをそれぞれ表す。
【0061】
【表1】

Figure 0004188591
【0062】
上記表1から実施例1〜4,比較例5〜9により、通常ガスを生じるような添加元素を加えた正極活物質であっても、γ−ブチロラクトンの使用によりガス発生を抑えることができ、薄い外装体を使用することによって、より小型の電池を作成できることがわかる。なお、厚みの変化量は0.2mm以内であれば許容範囲である。
【0063】
実施例1〜10、比較例1,10から、添加元素により、低温特性が向上したことがわかる。なお、−20℃での比容量は、10%以上を許容値とした。
【0064】
実施例1,5,6,7、比較例1,2,10から、添加元素の原子比が2%を越えると、容量低下を引き起こし高容量の電池には向かないことがわかる。なお、1C容量は、本実施例では550mAh 以上のものを許容範囲とした。一方、添加元素の原子比が0.001%未満では低温での比容量が低下し、低温動作に問題が生じることがわかる。
【0065】
また、γ−ブチロラクトンの添加量は実施例1,9,10、比較例3,4から60〜95体積%が適当であることがわかる。
【0066】
このことから、本発明の二次電池は、高温で膨れることなく、また低温特性もより改善された電池であることがわかる。
【0067】
【発明の効果】
以上のように、本発明によれば低温でも高い放電容量を示し、保存時にも膨れることのないリチウム二次電池を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to improvement of an electrolytic solution using an electrode and a nonaqueous solvent.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic devices, batteries are also required to be small and light. Under such circumstances, lithium secondary batteries are most actively researched and developed as one of the batteries that can satisfy these requirements. Recently, in order to achieve higher capacity, a battery using a flexible aluminum laminate film as an exterior body has also appeared.
[0003]
A problem with the aluminum laminate film is that the battery swells when a gas is generated from the inside of the battery after the battery is formed. This problem can be solved by using γ-butyrolactone as an electrolyte solution as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-236868.
[0004]
On the other hand, a problem with lithium secondary batteries is that capacity at low temperatures is insufficient. In response to this, various solutions have been proposed as disclosed in, for example, JP-A-6-290809 and JP-A-8-138738. However, these are mainly improvements in the composition of the electrolytic solution, and it has been more difficult to improve the low-temperature characteristics on the premise that γ-butyrolactone that suppresses swelling is used.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a thin lithium secondary battery having good low temperature characteristics and a low profile by suppressing gas generated from the battery electrode when stored at a high temperature in a battery in which an additive element is added to the positive electrode active material. It is.
[0006]
[Means for Solving the Problems]
That is, the above object is achieved by the following configuration of the present invention.
And the positive electrode to the armor body, a negative electrode, and an electrolyte is loaded,
As a positive electrode active material, it has a lithium-containing composite oxide represented by the formula LiCo 1-x Nb x O 2 (X = 0.00001 to 0.02) ,
Containing γ-butyrolactone in an amount of 60 to 95% by volume as an electrolyte solvent;
The lithium secondary battery whose thickness of the said exterior body is 0.3 mm or less .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the lithium secondary battery of the present invention, a positive electrode, a negative electrode, and an electrolyte are loaded in an outer package. As a positive electrode active material, lithium cobaltate and 0.001 to 2 atomic% with respect to cobalt of the lithium cobaltate. And a lithium-containing composite oxide having an auxiliary component element M (transition metals and typical metal elements excluding Li and Co), 60 to 95% by volume of γ-butyrolactone as a solvent for the electrolyte, and a thickness of 0. It has an outer package of 3 mm or less.
[0008]
With such a configuration, a lithium secondary battery with good low-temperature characteristics and no gas generation even at high temperatures can be provided, and even when a thin film-like exterior body is used, the exterior body can be prevented from swelling.
[0009]
The positive electrode of the lithium secondary battery of the present invention is produced from a mixture containing a positive electrode active material, a conductive additive such as graphite, and a binder such as polyvinylidene fluoride.
[0010]
As the positive electrode active material, a material obtained by adding some subcomponent elements to lithium cobalt oxide (LiCoO 2 ) is used. The sub-component element may be either a typical metal or a transition metal, but is preferably Ti, Nb, Sn, and Mg, or any one or more of Ti and Nb, and an element that has been confirmed to improve temperature characteristics. It is.
[0011]
The content of the subcomponent element M with respect to Co in the lithium cobalt oxide is preferably 0.001 to 2 atomic%, particularly 0.01 to 1 atomic%, more preferably 0.01 to 0.1 atomic%. When the content of the subcomponent exceeds the above range, the capacity decreases, and when the content is too small, it is difficult to obtain the effect of improving the low temperature characteristics.
[0012]
The subcomponent may be substituted for Co. Preferably, the positive electrode active material is represented by the following composition formula.
LiCo 1-x M x O 2
(X = 0.00001 to 0.02, M: transition metal element excluding Li, Co, or typical metal element)
[0013]
As the substitution element M, Ti, Nb, Sn, Mg, and further Ti and Nb are particularly preferable. These may be used alone or two or more of them may be substituted. When two or more types are used, the combination is free, and the total amount of substitution only needs to be the above value.
[0014]
Preferred examples of the conductive assistant include graphite, carbon black, carbon fiber, and metals such as nickel, aluminum, copper, and silver, and graphite and carbon black are particularly preferable.
[0015]
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-gen copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
[0016]
The negative electrode usually has a carbonaceous material, a conductive aid and a binder.
[0017]
As the carbonaceous material, for example, artificial graphite, natural graphite, pyrolytic carbon, coke, resin fired body, mesophase microsphere, mesophase pitch, and the like can be used.
[0018]
As the conductive assistant, for example, acetylene black, carbon black, or the like can be used.
[0019]
Examples of the binder include styrene / butadiene latex (SBR), carboxymethylcellulose (CMC), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-gen copolymer (EPDM), and nitrile. -Butadiene rubber (NBR), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, polytrifluoroethylene (PTrFE), vinylidene fluoride-trifluoro An ethylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, or the like can be used.
[0020]
In producing the electrode, first, an active material and, if necessary, a conductive additive are dispersed in a binder solution to prepare a coating solution.
[0021]
And this electrode coating liquid is apply | coated to a collector. The means for applying is not particularly limited, and may be appropriately determined according to the material and shape of the current collector. In general, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used. Then, if necessary, a rolling process is performed using a flat plate press, a calendar roll, or the like.
[0022]
The current collector may be appropriately selected from ordinary current collectors according to the shape of the device using the battery, the method of arranging the current collector in the case, and the like. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode. In addition, a metal foil, a metal mesh, etc. are normally used for a collector. The metal mesh has a smaller contact resistance with the electrode than the metal foil, but a sufficiently small contact resistance can be obtained even with the metal foil.
[0023]
Then, the solvent is evaporated to produce an electrode. The coating thickness is preferably about 50 to 400 μm.
[0024]
The non-aqueous electrolyte in the present invention is composed of 60 to 95% by volume, preferably 70 to 90% by volume, particularly 75 to 85% by volume of γ-butyrolactone (γ-BL) in the solvent component, It has a composition in which the electrolyte is dissolved in a non-aqueous solvent composed of a mixed solvent with one or more solvents such as cyclic carbonate and chain ester. When the composition ratio of γ-butyrolactone deviates from 60 to 95% by volume, the solvent to be mixed results in insufficient film formation on the surface of the carbon material constituting the electrode during the first charge, and the battery capacity decreases.
[0025]
The separator is impregnated and held with a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent. The separator may be replaced with a solid electrolyte.
[0026]
The separator sheet forming the separator is composed of one or more of polyolefins such as polyethylene and polypropylene (in the case of two or more, there is a laminate of two or more films), polyethylene terephthalate Such polyesters, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses. The form of the sheet includes a microporous membrane film, a woven fabric, a non-woven fabric, etc. having an air permeability measured by the method specified in JIS-P8117 of about 5 to 2000 seconds / 100 cc and a thickness of about 5 to 100 μm.
[0027]
Further, a gel type polymer may be used. For example,
(1) Polyalkylene oxides such as polyethylene oxide (PEO) and polypropylene oxide,
(2) a copolymer of ethylene oxide and acrylate,
(3) a copolymer of ethylene oxide and glycyl ether,
(4) a copolymer of ethylene oxide, glycyl ether and allyl glycyl ether,
(5) Polyacrylate (6) Polyacrylonitrile (PAN)
(7) Polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride “tetrafluoroethylene- Fluoropolymers such as hexafluoropropylene fluororubber can be used.
[0028]
The gel polymer may be mixed with an electrolytic solution, or may be applied to a separator or an electrode. Furthermore, the gel polymer may be cross-linked by ultraviolet rays, EB, heat or the like by adding an initiator.
[0029]
For the battery outer body in the present invention, a sheet-like film having a thickness of 0.3 mm or less, particularly 0.15 mm or less is used. A positive electrode, a negative electrode, and a separator are accommodated and placed in the exterior body. The lower limit of the thickness of the exterior body is not particularly limited, but is usually about 0.03 mm. The battery is sealed and vacuum sealed.
[0030]
The exterior body in the present invention is laid on a flexible film. By using a flexible film and evacuating the inside of the battery, the film is densely attached to the battery electrode, and a thinner and smaller battery can be created. The structure of the film is not particularly defined, but an aluminum laminate film having a resin layer sandwiched between the upper and lower sides is preferable.
[0031]
The exterior bag is composed of a laminated film in which a polyolefin resin layer such as polypropylene or polyethylene as a heat-adhesive resin layer or a heat-resistant polyester resin layer is laminated on both surfaces of a metal layer such as aluminum. The exterior bag is formed in a bag shape in which two laminated films are bonded in advance to each other by thermally bonding the heat-adhesive resin layers on the end surfaces of the three sides to form a first seal portion. Alternatively, a single laminate film may be folded and the end faces of both sides may be thermally bonded to form a seal portion to form a bag.
[0032]
As a laminate film, a laminate film having a laminated structure of a heat-adhesive resin layer / polyester resin layer / metal foil / polyester resin layer from the interior side is used to ensure insulation between the metal foil constituting the laminate film and the lead-out terminal. It is preferable to use it. By using such a laminate film, the polyester resin layer having a high melting point remains undissolved at the time of thermal bonding, so that a separation distance between the lead-out terminal and the metal foil of the outer bag can be secured and insulation can be secured. Therefore, the thickness of the polyester resin layer of the laminate film is preferably about 5 to 100 μm.
[0033]
Here, the exterior body using a flexible film can reduce the thickness of the battery, which is advantageous for downsizing of the battery. However, since it is soft, the battery expands even if a small amount of gas is generated from the battery. There are drawbacks.
[0034]
The positive electrode of the present invention is superior in low-temperature characteristics compared to ordinary lithium cobalt oxide, but on the other hand, the electrode surface has high activity, and when the battery is fully charged and stored at high temperature, it reacts with the electrolyte solution to react with the gas. There was a problem that caused.
[0035]
For this reason, in the case of a small and thin battery, there was a drawback that a higher performance active material could not be used. The γ-butyrolactone used in the present invention is less susceptible to oxidation than dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), which are often used in lithium secondary batteries that normally use an outer can. It is difficult to generate gas during high-temperature storage of charging. For this reason, it is possible to use a high-performance active material even in a battery using a thin and soft film for the outer casing, compared to an outer can that is relatively hard and difficult to deform, and it is possible to create a small high-performance battery. Become.
[0036]
【Example】
Specific examples of the present invention are shown below.
<Example 1>
Polymer substance: PVDF [Kynar 761A (manufactured by Elf Atchem)], electrolyte: ethylene carbonate: γ-butyrolactone = 2: 8 (volume ratio), a solution obtained by dissolving LiBF4 at a concentration of 2M, solvent Acetone was mixed in a weight ratio such that polymer substance: electrolyte solution: solvent = 3: 7: 20 to prepare a first solution.
[0037]
In this first solution, the positive electrode active material: LiCo 0.999 Nb 0.001 O 2 , conductive auxiliary agent: acetylene black in a weight ratio, the first solution: active material: conductive auxiliary agent = 2: 7.5: 1.2 Then, a positive electrode slurry was obtained.
[0038]
In addition, a second solution prepared in the same manner as the first solution except that the polymer material: electrolyte solution: solvent = 3: 7: 5 was used, and graphite was added as a negative electrode active material in a weight ratio. A solution: active material = 2: 1 was added and dispersed to obtain a negative electrode slurry.
[0039]
Using the first solution, the positive electrode slurry, and the negative electrode slurry, a positive electrode-gelled solid electrolyte-negative electrode-gelled solid electrolyte-positive electrode: an electrode group composed of a laminate is produced, and this is formed into a sheet. The outer package (aluminum laminate pack, thickness 100 μm) was sealed with a sealer. The size of the electrode was 30 mm × 40 mm.
[0040]
The battery prepared by this method was charged and discharged at 25 ° C. at a cutoff of 4.2 to 3.0 V and 1.0 C, and the capacity was measured. Then, the specific capacity at −20 ° C. was measured. Moreover, it was set as the 4.2V full charge state, and it injected | thrown-in to 90 degreeC open, and measured the change of battery thickness.
[0041]
< Reference Example 2>
The battery was assembled and charged / discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Ti 0.001 O 2. After charging and discharging, the battery was fully charged and placed in an oven to change the battery thickness. It was measured.
[0042]
< Reference Example 3>
The battery was assembled in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Sn 0.001 O 2 , charged and discharged, then fully charged, and put into an oven to change the battery thickness. It was measured.
[0043]
< Reference Example 4>
The battery was assembled and charged / discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Mg 0.001 O 2. After charging and discharging, the battery was fully charged and placed in an oven to change the battery thickness. It was measured.
[0044]
<Example 5>
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.99999 Nb 0.00001 O 2. After charging and discharging, the battery was fully charged and placed in an oven to measure changes in battery thickness.
[0045]
<Example 6>
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.9999 Nb 0.0001 O 2. After charging and discharging, the battery was fully charged and placed in an oven to measure changes in battery thickness.
[0046]
<Example 7>
A battery was assembled and charged / discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.99 Nb 0.01 O 2, and then fully charged, put into an oven, and the change in battery thickness was measured.
[0047]
<Example 8>
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.98 Nb 0.02 O 2. After charging and discharging, the battery was fully charged and placed in an oven to measure changes in battery thickness.
[0048]
<Example 9>
The battery was assembled in the same manner as in Example 1 except that the composition of the electrolytic solution was ethylene carbonate (EC): γ-butyrolactone = 4: 6 (volume ratio), charged and discharged, and then fully charged. The change in battery thickness was measured.
[0049]
<Example 10>
A battery was assembled in the same manner as in Example 1 except that the composition of the electrolytic solution was ethylene carbonate (EC): γ-butyrolactone = 5: 95 (volume ratio), charged and discharged, and then fully charged. The change in battery thickness was measured.
[0050]
<Comparative Example 1>
The battery was assembled and charged / discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999999 Nb 0.000001 O 2. After charging and discharging, the battery was fully charged and placed in an oven to change the battery thickness. It was measured.
[0051]
<Comparative example 2>
A battery was assembled and charged / discharged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.9 Nb 0.1 O 2. The battery was fully charged, put in an oven, and the change in battery thickness was measured.
[0052]
<Comparative Example 3>
The battery was assembled in the same manner as in Example 1 except that the composition of the electrolytic solution was ethylene carbonate (EC): γ-butyrolactone = 5: 5 (volume ratio). After charging and discharging, the battery was fully charged. The change in battery thickness was measured.
[0053]
<Comparative example 4>
The battery was assembled in the same manner as in Example 1 except that the composition of the electrolyte was γ-butyrolactone = 100 (volume ratio). After charging and discharging, the battery was fully charged and placed in an oven to change the battery thickness. Was measured.
[0054]
<Comparative Example 5>
The battery was assembled in the same manner as in Example 1 except that the composition of the electrolytic solution was ethylene carbonate (EC): diethyl carbonate (DEC) = 2: 8 (volume ratio). After charging and discharging, the battery was fully charged. Then, it was put into an oven and the change in battery thickness was measured.
[0055]
<Comparative Example 6>
The battery was assembled and charged and discharged in the same manner as in Example 1 except that the composition of the electrolyte was ethylene carbonate (EC): methyl ethyl carbonate (MEC) = 2: 8 (volume ratio). And put into an oven to measure the change in battery thickness.
[0056]
<Comparative Example 7>
A battery was assembled and charged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Ti 0.001 O 2 and the electrolyte composition was ethylene carbonate (EC): methyl ethyl carbonate = 2: 8 (volume ratio). After discharging, the battery was fully charged, put into an oven, and the change in battery thickness was measured.
[0057]
<Comparative Example 8>
A battery was assembled and charged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Sn 0.001 O 2 and the electrolyte composition was ethylene carbonate (EC): methyl ethyl carbonate = 2: 8 (volume ratio). After discharging, the battery was fully charged, put into an oven, and the change in battery thickness was measured.
[0058]
<Comparative Example 9>
A battery was assembled and charged in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.999 Mg 0.001 O 2 and the electrolyte composition was ethylene carbonate (EC): methyl ethyl carbonate = 2: 8 (volume ratio). After discharging, the battery was fully charged, put into an oven, and the change in battery thickness was measured.
[0059]
<Comparative Example 10>
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the positive electrode active material was LiCoO 2 and the electrolyte composition was ethylene carbonate (EC): γ-butyrolactone = 2: 8 (volume ratio). Thereafter, the battery was fully charged, put in an oven, and the change in battery thickness was measured.
[0060]
The results are shown in Table 1. In the table, EC: ethylene carbonate, γBL: γ-butyrolactone, MEC: methyl ethyl carbonate, DEC: diethyl carbonate, respectively.
[0061]
[Table 1]
Figure 0004188591
[0062]
According to Examples 1 to 4 and Comparative Examples 5 to 9 from Table 1 above, even a positive electrode active material to which an additive element that normally generates gas can be added, gas generation can be suppressed by using γ-butyrolactone, It can be seen that a smaller battery can be produced by using a thin outer package. In addition, if the amount of change in thickness is within 0.2 mm, it is acceptable.
[0063]
It can be seen from Examples 1 to 10 and Comparative Examples 1 and 10 that the low temperature characteristics were improved by the additive element. The specific capacity at −20 ° C. was allowed to be 10% or more.
[0064]
From Examples 1, 5, 6, and 7 and Comparative Examples 1, 2, and 10 it can be seen that if the atomic ratio of the additive element exceeds 2%, the capacity is reduced and it is not suitable for a high-capacity battery. In this embodiment, the 1C capacity is 550 mAh or more as the allowable range. On the other hand, it can be seen that when the atomic ratio of the additive element is less than 0.001%, the specific capacity at a low temperature is lowered, causing a problem in low temperature operation.
[0065]
Moreover, it turns out that 60-95 volume% is suitable for the addition amount of (gamma) -butyrolactone from Example 1,9,10 and Comparative Examples 3,4.
[0066]
From this, it can be seen that the secondary battery of the present invention is a battery that does not swell at high temperatures and has improved low-temperature characteristics.
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a lithium secondary battery that exhibits a high discharge capacity even at a low temperature and does not swell during storage.

Claims (1)

外装体内に正極と、負極と、電解質とが装填され、
正極活物質として、式LiCo 1−x Nb (X=0.00001〜0.02)で表わされるリチウム含有複合酸化物を有し、
電解質の溶媒としてγ−ブチロラクトンを60〜95体積%含有し、
前記外装体の厚さが0.3mm以下であるリチウム二次電池。
The outer body is loaded with a positive electrode, a negative electrode, and an electrolyte,
As a positive electrode active material, it has a lithium-containing composite oxide represented by the formula LiCo 1-x Nb x O 2 (X = 0.00001 to 0.02) ,
Containing γ-butyrolactone in an amount of 60 to 95% by volume as an electrolyte solvent;
The lithium secondary battery whose thickness of the said exterior body is 0.3 mm or less.
JP2001376813A 2000-12-13 2001-12-11 Lithium secondary battery Expired - Fee Related JP4188591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376813A JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000379034 2000-12-13
JP2000-379034 2000-12-13
JP2001376813A JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002246027A JP2002246027A (en) 2002-08-30
JP4188591B2 true JP4188591B2 (en) 2008-11-26

Family

ID=26605760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376813A Expired - Fee Related JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4188591B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150940B2 (en) 2001-10-29 2006-12-19 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP4601903B2 (en) * 2003-01-27 2010-12-22 パナソニック株式会社 Battery pack
CN100401562C (en) * 2003-08-19 2008-07-09 清美化学股份有限公司 Positive electrode material for lithium secondary cell and process for producing the same
WO2005106993A1 (en) * 2004-04-30 2005-11-10 Seimi Chemical Co., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2007015473A1 (en) 2005-08-01 2007-02-08 Santoku Corporation Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US10608290B2 (en) 2014-11-27 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Flexible battery and electronic device

Also Published As

Publication number Publication date
JP2002246027A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP5338041B2 (en) Negative electrode for secondary battery and secondary battery
WO2015111710A1 (en) Non-aqueous secondary battery
JP5109359B2 (en) Nonaqueous electrolyte secondary battery
JP6596826B2 (en) Electrode and non-aqueous electrolyte secondary battery
JP2002343430A (en) Nonaqueous electrolyte secondary battery
JP5793411B2 (en) Lithium secondary battery
US20130071758A1 (en) Nonaqueous electrolyte for electrochemical device, and electrochemical device
JP4188591B2 (en) Lithium secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP2003297354A (en) Lithium secondary battery
JP2022547501A (en) Method for manufacturing secondary battery
US20020192549A1 (en) Electrode composition, and lithium secondary battery
JP2002237331A (en) Lithium secondary battery
JP2008305573A (en) Anode and battery
JP4682464B2 (en) Non-aqueous electrolyte battery
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP7309258B2 (en) Method for manufacturing secondary battery
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JP2001023643A (en) Polymer lithium secondary battery
WO2015037522A1 (en) Nonaqueous secondary battery
JP3778805B2 (en) Secondary battery
JP2003173818A (en) Nonaqueous electrolyte battery
JP2005019206A (en) Lithium secondary battery
JP4266279B2 (en) Electrode composition and lithium secondary battery
WO2020059802A1 (en) Secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4188591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees