JP2002246027A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2002246027A
JP2002246027A JP2001376813A JP2001376813A JP2002246027A JP 2002246027 A JP2002246027 A JP 2002246027A JP 2001376813 A JP2001376813 A JP 2001376813A JP 2001376813 A JP2001376813 A JP 2001376813A JP 2002246027 A JP2002246027 A JP 2002246027A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
lithium
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001376813A
Other languages
Japanese (ja)
Other versions
JP4188591B2 (en
Inventor
Shin Nagayama
森 長山
Atsuko Kosuda
小須田  敦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001376813A priority Critical patent/JP4188591B2/en
Publication of JP2002246027A publication Critical patent/JP2002246027A/en
Application granted granted Critical
Publication of JP4188591B2 publication Critical patent/JP4188591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery showing high discharge capacity, even at a low temperatures, and without swelling during storage. SOLUTION: The lithium secondary battery uses a lithium contained composite oxide, consisting of lithium cobaltate and a 0001-2 atom.% auxiliary element M (a transition or typical metal element other than Li, Co), based on cobalt of the lithium cobaltate, as a positive electrode active material and contains 60-95 vol.% γ-butyrolactone as the solvent for an electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、より詳しくは電極と非水溶媒を用いる電解液の
改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement in an electrolyte using an electrode and a non-aqueous solvent.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、電池も
小型で軽量のものが求められるようになってきている。
こうした中、リチウム二次電池はこれらの要請を満足し
うる電池の一つとして、最も盛んに研究開発が行なわれ
ている。また、最近では、より高容量化を計るため、外
装体に柔軟なアルミラミネートフィルムを使用した電池
も登場するようになってきた。
2. Description of the Related Art In recent years, with the miniaturization of electronic devices, there has been a demand for smaller and lighter batteries.
Under these circumstances, lithium secondary batteries are being actively researched and developed as one of the batteries that can satisfy these requirements. In recent years, batteries using a flexible aluminum laminate film for an outer package have come to appear in order to achieve higher capacity.

【0003】アルミラミネートフィルムの問題点として
は、電池を作成した後、電池内部からガスが発生する
と、電池が膨れてしまうという点が挙げられる。この問
題に関しては、例えば特開2000−236868号公
報に示されるように、γ−ブチロラクトンを電解液に使
用することによって解決することが可能である。
[0003] One problem with the aluminum laminate film is that if gas is generated from inside the battery after the battery has been produced, the battery will swell. This problem can be solved by using γ-butyrolactone as the electrolyte, as shown in, for example, JP-A-2000-236868.

【0004】一方、リチウム二次電池の問題点として
は、低温での容量が不足するという点が挙げられる。こ
れに対しては、例えば特開平6−290809号公報、
特開平8−138738号公報等に示されているよう
に、様々な解決方法が提示されている。しかし、これら
は主として電解液の組成改善であり、膨れを抑えるγ−
ブチロラクトンを使用するという前提ではよりいっそう
低温特性の改善は困難であった。
On the other hand, a problem with lithium secondary batteries is that the capacity at low temperatures is insufficient. On the other hand, for example, JP-A-6-290809,
Various solutions have been proposed as disclosed in Japanese Patent Application Laid-Open No. 8-13838. However, these are mainly for improving the composition of the electrolytic solution, and the γ-
On the premise of using butyrolactone, it was more difficult to improve low-temperature properties.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、正極
活物質に添加元素を加えた電池において、高温で保存し
た際に電池電極から発生するガスを抑えることによっ
て、低温特性が良好で薄型のリチウム二次電池を提供す
ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery in which an additive element is added to a positive electrode active material, by suppressing the gas generated from the battery electrode when stored at a high temperature, thereby achieving a good low-temperature characteristic and a low profile. Is to provide a lithium secondary battery.

【0006】[0006]

【課題を解決するための手段】すなわち、上記目的は以
下の本発明の構成により達成される。 (1) 外装体内に正極と、負極と、電解質とが装填さ
れ、正極活物質として、コバルト酸リチウムと、このコ
バルト酸リチウムのコバルトに対して0.001〜2原
子%の副成分元素M(Li,Coを除く遷移金属および
典型金属元素)とを有するリチウム含有複合酸化物を有
し、電解質の溶媒としてγ−ブチロラクトンを60〜9
5体積%含有し、前記外装体の厚さが0.3mm以下であ
るリチウム二次電池。 (2) 前記副成分元素がTi,Nb,SnおよびMg
のいずれか1種または2種以上である上記(1)のリチ
ウム二次電池。
That is, the above object is achieved by the following constitution of the present invention. (1) A positive electrode, a negative electrode, and an electrolyte are loaded in an outer package. As a positive electrode active material, lithium cobalt oxide and a subcomponent element M (0.001 to 2 atomic% with respect to cobalt of the lithium cobalt oxide) A transition metal and a typical metal element excluding Li and Co) and γ-butyrolactone as a solvent for the electrolyte.
A lithium secondary battery containing 5% by volume and having a thickness of the outer package of 0.3 mm or less. (2) The subcomponent elements are Ti, Nb, Sn and Mg
The lithium secondary battery according to the above (1), wherein the lithium secondary battery is any one or two or more types of

【0007】[0007]

【発明の実施の形態】本発明のリチウム二次電池は、外
装体内に正極と、負極と、電解質とが装填され、正極活
物質として、コバルト酸リチウムと、このコバルト酸リ
チウムのコバルトに対して0.001〜2原子%の副成
分元素M(Li,Coを除く遷移金属および典型金属元
素)とを有するリチウム含有複合酸化物を有し、電解質
の溶媒としてγ−ブチロラクトンを60〜95体積%含
有し、厚さ0.3mm以下の外装体を有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION A lithium secondary battery according to the present invention is provided with a positive electrode, a negative electrode, and an electrolyte loaded in an outer package, and as a positive electrode active material, lithium cobaltate and cobalt of the lithium cobaltate are used. A lithium-containing composite oxide containing 0.001-2 atomic% of a sub-component element M (transition metal and typical metal element except Li and Co), and γ-butyrolactone as a solvent for the electrolyte in an amount of 60 to 95% by volume. It has an outer package having a thickness of 0.3 mm or less.

【0008】このような構成により、低温特性が良好で
高温時にもガス発生のないリチウム二次電池が提供で
き、薄いフィルム状の外装体を用いた場合でも、外装体
の膨れを防止できる。
With such a configuration, it is possible to provide a lithium secondary battery having good low-temperature characteristics and no gas generation even at high temperatures, and it is possible to prevent swelling of the outer package even when a thin film-shaped package is used.

【0009】本発明のリチウム二次電池の正極は、正極
活物質と、黒鉛のような導電助剤と、ポリフッ化ビニリ
デンのような結着剤とを含む混合物より作製される。
The positive electrode of the lithium secondary battery of the present invention is made of a mixture containing a positive electrode active material, a conductive auxiliary such as graphite, and a binder such as polyvinylidene fluoride.

【0010】正極活物質としては、リチウムコバルト酸
化物(LiCoO2 )に若干の副成分元素を加えたもの
を用いる。副成分元素は典型金属、遷移金属いずれでも
よいが、好ましくはTi,Nb,SnおよびMg、さら
にTi,Nbのいずれか1種または2種以上であり、温
度特性の向上が確認されている元素である。
[0010] As the positive electrode active material, a material obtained by adding some subcomponent elements to lithium cobalt oxide (LiCoO 2 ) is used. The subcomponent element may be a typical metal or a transition metal, but is preferably one or more of Ti, Nb, Sn, and Mg, and furthermore, one or more of Ti and Nb, and has been confirmed to have improved temperature characteristics. It is.

【0011】リチウムコバルト酸化物中のCoに対する
副成分元素Mの含有量は、総計0.001〜2原子%、
特に0.01〜1原子%、さらには0.01〜0.1原
子%が好ましい。副成分の含有量が前記範囲を超えると
容量が低下してしまい、少なすぎると、低温特性の改善
効果が得られ難くなってくる。
The content of the subcomponent element M with respect to Co in the lithium cobalt oxide is 0.001-2 atomic% in total,
In particular, it is preferably 0.01 to 1 atomic%, more preferably 0.01 to 0.1 atomic%. When the content of the subcomponent exceeds the above range, the capacity is reduced. When the content is too small, the effect of improving the low-temperature characteristics is hardly obtained.

【0012】また、副成分はCoに対して置換していて
もよく、好ましくは正極活物質は下記組成式で表される
ものである。 LiCo1-xx2 (x=0.00001〜0.02、M:Li,Coを除
く遷移金属元素、または典型金属元素)
The subcomponent may be substituted for Co. Preferably, the positive electrode active material is represented by the following composition formula. LiCo 1-x M x O 2 (x = 0.00001 to 0.02, M: transition metal element excluding Li and Co, or typical metal element)

【0013】置換元素Mとしては、特にTi,Nb,S
n,Mg、さらにTi,Nbが好ましい。これらは単独
で用いてもよく、2種以上が置換していてもよい。2種
以上用いる場合には、その組み合わせは自由であり、置
換量の総計が上記値となっていればよい。
[0013] As the substitution element M, in particular, Ti, Nb, S
n, Mg, and more preferably Ti, Nb. These may be used alone or two or more of them may be substituted. When two or more types are used, the combination is free and the total amount of replacement may be the above value.

【0014】導電助剤としては、好ましくは黒鉛、カー
ボンブラック、炭素繊維や、ニッケル、アルミニウム、
銅、銀等の金属が挙げられ、特に黒鉛、カーボンブラッ
クが好ましい。
As the conductive auxiliary, graphite, carbon black, carbon fiber, nickel, aluminum,
Examples thereof include metals such as copper and silver, and graphite and carbon black are particularly preferable.

【0015】結着剤としては、例えばポリテトラフルオ
ロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、
エチレン−プロピレン−ジェン共重合体(EPDM)、スチ
レン−ブタジェンゴム(SBR)等を用いることができ
る。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF),
Ethylene-propylene-gen copolymer (EPDM), styrene-butadiene rubber (SBR) and the like can be used.

【0016】負極は通常、炭素質材料、導電助剤および
結者剤を有する。
The negative electrode usually has a carbonaceous material, a conductive additive and a binder.

【0017】炭素質材料としては、例えば人造黒鉛、天
然黒鉛、熱分解炭素、コークス、樹脂焼成体、メソフェ
ーズ小球体、メソフェーズ系ピッチ等を用いることがで
きる。
As the carbonaceous material, for example, artificial graphite, natural graphite, pyrolytic carbon, coke, resin fired body, mesophase sphere, mesophase pitch, etc. can be used.

【0018】導電助剤としては、例えばアセチレンブラ
ック、カーボンブラック等を用いることができる。
As the conductive additive, for example, acetylene black, carbon black, or the like can be used.

【0019】結着剤としては、例えばスチレン・ブタジ
ェンラテックス(SBR)、カルボキシメチルセルロース
(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリ
フツ化ビニリデン(PVDF)、エチレン−プロピレン−ジ
ェン共重合体(EPDM)、ニトリル−ブタジエンゴム(NB
R)、フッ化ビニリデン−ヘキサフルオロプロピレン共
重合体、フッ化ビニリデン−ヘキサフルオロプロピレン
−テトラフルオロエチレン3元系共重合体、ポリトリフ
ルオロエチレン(PTrFE)、フッ化ビニリデン−トリフ
ルオロエチレン共重合体、フッ化ビニリデン−テトラフ
ルオロエチレン共重合体等を用いることができる。
Examples of the binder include styrene-butadiene latex (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene-propylene-gen copolymer (EPDM). ), Nitrile-butadiene rubber (NB
R), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, polytrifluoroethylene (PTrFE), vinylidene fluoride-trifluoroethylene copolymer , Vinylidene fluoride-tetrafluoroethylene copolymer and the like can be used.

【0020】電極の製造は、まず、活物質と必要に応じ
て導電助剤を、結着剤溶液に分散し、塗布液を調製す
る。
In manufacturing an electrode, first, an active material and, if necessary, a conductive auxiliary are dispersed in a binder solution to prepare a coating solution.

【0021】そして、この電極塗布液を集電体に塗布す
る。塗布する手段は特に限定されず、集電体の材質や形
状などに応じて適宜決定すればよい。一般に、メタルマ
スク印刷法、静電塗装法、ディップコート法、スプレー
コート法、ロールコート法、ドクターブレード法、グラ
ビアコート法、スクリーン印刷法等が使用されている。
その後、必要に応じて、平板プレス、カレンダーロール
等により圧延処理を行う。
Then, the electrode coating solution is applied to a current collector. The means for applying is not particularly limited, and may be determined as appropriate according to the material and shape of the current collector. Generally, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and the like are used.
Thereafter, if necessary, a rolling treatment is performed by a flat plate press, a calender roll, or the like.

【0022】集電体は、電池を使用するデバイスの形状
やケース内への集電体の配置方法などに応じて、適宜通
常の集電体から選択すればよい。一般に、正極にはアル
ミニウム等が、負極には銅、ニッケル等が使用される。
なお、集電体は、通常、金属箔、金属メッシュなどが使
用される。金属箔よりも金属メッシュの方が電極との接
触抵抗が小さくなるが、金属箔でも十分小さな接触抵抗
が得られる。
The current collector may be appropriately selected from ordinary current collectors according to the shape of the device using the battery and the method of arranging the current collector in the case. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode.
Note that a metal foil, a metal mesh, or the like is generally used as the current collector. Although the metal mesh has lower contact resistance with the electrode than the metal foil, a sufficiently low contact resistance can be obtained even with the metal foil.

【0023】そして、溶媒を蒸発させ、電極を作製す
る。塗布厚は、50〜400μm 程度とすることが好ま
しい。
Then, the solvent is evaporated to produce an electrode. The coating thickness is preferably about 50 to 400 μm.

【0024】本発明における非水電解液は、溶媒成分
中、γ−ブチロラクトン(γ−BL)60〜95体積%、
好ましくは70〜90体積%、特に75〜85体積%を
主成分とし、鎖状カーボネート、環状カーボネート、鎖
状エステル等の一種以上の溶媒との混合溶媒からなる非
水溶媒により電解質を溶解した組成を有する.混合する
溶媒は、γ−ブチロラクトンの組成比が60〜95体積
%をはずれた場合、初回の充電時に電極を構成する炭素
材料表面の被膜形成が不十分になって、電池容量が低下
する。
The non-aqueous electrolytic solution according to the present invention contains 60 to 95% by volume of γ-butyrolactone (γ-BL) in the solvent component,
A composition containing preferably 70 to 90% by volume, particularly 75 to 85% by volume as a main component, and an electrolyte dissolved in a non-aqueous solvent comprising a mixed solvent with one or more solvents such as a chain carbonate, a cyclic carbonate, and a chain ester. Has. If the composition ratio of γ-butyrolactone deviates from 60 to 95% by volume in the solvent to be mixed, formation of a film on the surface of the carbon material constituting the electrode at the time of the first charge becomes insufficient, and the battery capacity is reduced.

【0025】セパレータには電解質を有機溶媒で溶解し
た非水電解液が含浸保持されている。また、セパレータ
は、固体電解質で置き換えてもよい。
The separator is impregnated with a non-aqueous electrolyte in which an electrolyte is dissolved in an organic solvent. Further, the separator may be replaced with a solid electrolyte.

【0026】セパレータを形成するセパレータシート
は、その構成材料がポリエチレン、ポリプロピレンなど
のポリオレフイン類の一種又は二種以上(二種以上の場
合、二層以上のフィルムの張り合わせ物などがある)、
ポリエチレンテレフターレートのようなポリエステル
類、エチレン−テトラフルオロエチレン共重合体のよう
な熱可塑性フッ素樹脂類、セルロース類などである。シ
ートの形態はJIS−P8117に規定する方法で測定した通気
度が5〜2000秒/100cc程度、厚さが5〜100
μm 程度の微多孔膜フィルム、織布、不織布などがあ
る。
The separator sheet forming the separator may be made of one or more of polyolefins such as polyethylene and polypropylene (in the case of two or more, there are two or more films bonded together).
Examples include polyesters such as polyethylene terephthalate, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses. The form of the sheet is such that the air permeability measured by the method specified in JIS-P8117 is about 5 to 2000 seconds / 100 cc, and the thickness is 5 to 100.
There is a microporous membrane film of about μm, woven fabric, non-woven fabric, etc.

【0027】また、ゲル型高分子を用いてもよい。例え
ば、(1)ポリエチレンオキサイド(PEO)、ポリプロ
ピレンオキサイド等のポリアルキレンオキサイド、
(2)エチレンオキサイドとアクリレートの共重合体、
(3)エチレンオキサイドとグリシルエーテルの共重合
体、(4)エチレンオキサイドとグリシルエーテルとア
リルグリシルエーテルとの共重合体、(5)ポリアクリ
レート (6)ポリアクリロニトリル(PAN) (7)ポリフッ化ビニリデン、フッ化ビニリデン−ヘキ
サフルオロプロピレン共重合体、フッ化ビニリデン−塩
化3フッ化エチレン共重合体、フッ化ビニリデン−ヘキ
サフルオロプロビレンフッ素ゴム、フッ化ビニリデン
“テトラフルオロエチレン−ヘキサフルオロプロピレン
フッ素ゴム等のフッ素系高分子等が挙げられる。
Further, a gel type polymer may be used. For example, (1) polyethylene oxide (PEO), polyalkylene oxide such as polypropylene oxide,
(2) a copolymer of ethylene oxide and acrylate,
(3) a copolymer of ethylene oxide and glycyl ether, (4) a copolymer of ethylene oxide, glycyl ether and allyl glycyl ether, (5) polyacrylate (6) polyacrylonitrile (PAN) (7) polyvinylidene fluoride , Vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene chloride trifluoride copolymer, vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride "tetrafluoroethylene-hexafluoropropylene fluororubber, etc. And the like.

【0028】ゲル高分子は電解液と混ぜてもよく、また
セパレータや電極に塗布をしてもよい。さらに、開始剤
を入れることにより、紫外線、EB、熱等でゲル高分子
を架橋させてもよい。
The gel polymer may be mixed with an electrolytic solution, or may be applied to a separator or an electrode. Further, by adding an initiator, the gel polymer may be cross-linked by ultraviolet rays, EB, heat or the like.

【0029】本発明における電池の外装体は、0.3mm
厚以下、特に0.15mm以下のシート状フィルムを用い
る。この外装体内に正極、負極、セパレータが収納・配
置され、装填されている。なお、外装体の厚みの下限と
しては、特に規制されるものではないが、通常0.03
mm程度である。この電池は密封され、真空シールされた
状態になっている。
The outer package of the battery according to the present invention has a thickness of 0.3 mm.
A sheet film having a thickness of not more than 0.15 mm is used. A positive electrode, a negative electrode, and a separator are housed, arranged, and loaded in the outer package. The lower limit of the thickness of the exterior body is not particularly limited, but is usually 0.03.
mm. The battery is sealed and vacuum sealed.

【0030】本発明における外装体は、柔軟なフィルム
により横成される。柔軟なフィルムを使い電池内部を真
空にすることによって、フィルムが電池電極に密著し、
より薄く小型の電池を作成できる。フィルムの構造は特
に決まったものではないが、樹脂層を上下に挟んだアル
ミのラミネートフィルムが好ましい。
The outer package of the present invention is made of a flexible film. By using a flexible film and evacuating the inside of the battery, the film closely adheres to the battery electrode,
A thinner and smaller battery can be created. Although the structure of the film is not particularly limited, an aluminum laminate film having a resin layer sandwiched between upper and lower portions is preferable.

【0031】外装袋は、例えばアルミニウム等の金属層
の両面に、熱接着性樹脂層としてのポリプロピレン、ポ
リエチレン等のポリオレフィン樹脂層や耐熱性のポリエ
ステル樹脂層が積層されたラミネートフィルムから構成
されている。外装袋は、予め2枚のラミネートフィルム
をそれらの3辺の端面の熱接着性樹脂層相互を熱接着し
て第1のシール部を形成し、1辺が開口した袋状に形成
される。あるいは、一枚のラミネートフィルムを折り返
して両辺の端面を熱接着してシール部を形成して袋状と
してもよい。
The outer bag is composed of a laminate film in which a polyolefin resin layer such as polypropylene or polyethylene or a heat-resistant polyester resin layer as a heat-adhesive resin layer is laminated on both sides of a metal layer such as aluminum. . The outer bag is formed in a bag shape with one side opened by previously bonding two laminated films to each other by thermally bonding the heat-adhesive resin layers on the three end surfaces thereof to each other. Alternatively, a single laminated film may be folded back and the both end faces may be thermally bonded to form a seal portion to form a bag.

【0032】ラミネートフィルムとしては、ラミネート
フィルムを構成する金属箔と導出端子間の絶縁を確保す
るため、内装側から熱接着性樹脂層/ポリエステル樹脂
層/金属箔/ポリエステル樹脂層の積層構造を有するラ
ミネートフィルムを用いることが好ましい。このような
ラミネートフィルムを用いることにより、熱接着時に高
融点のポリエステル樹脂層が溶けずに残るため、導出端
子と外装袋の金属箔との離間距離を確保し、絶縁を確保
することができる。そのため、ラミネートフィルムのポ
リエステル樹脂層の厚さは、5〜100μm 程度とする
ことが好ましい。
The laminated film has a laminated structure of a heat-adhesive resin layer / polyester resin layer / metal foil / polyester resin layer from the interior side in order to ensure insulation between the metal foil constituting the laminated film and the lead terminals. It is preferable to use a laminate film. By using such a laminated film, the high melting point polyester resin layer remains without melting at the time of thermal bonding, so that a separation distance between the lead terminal and the metal foil of the outer package can be ensured, and insulation can be ensured. Therefore, the thickness of the polyester resin layer of the laminate film is preferably about 5 to 100 μm.

【0033】ここで、柔軟なフィルムを使用する外装体
は電池の厚みを薄くできる為、電池の小型化には有利で
あるが、柔らかいために電池から僅かのガスが生じても
電池が膨張してしまうという欠点がある。
Here, an outer package using a flexible film can reduce the thickness of the battery, which is advantageous for miniaturization of the battery. However, since the battery is soft, the battery expands even if a small amount of gas is generated from the battery. There is a disadvantage that it will.

【0034】本発明の正極は、通常のリチウムコバルト
酸化物に比べ、低温特性では優れているものの、反面電
極表面の活性が高く、電池を満充電で高温保存した場合
などは、電解液と反応してガスを生じるという問題があ
った。
Although the positive electrode of the present invention is excellent in low-temperature characteristics as compared with ordinary lithium cobalt oxide, it has a high activity on the surface of the electrode, and reacts with the electrolytic solution when the battery is fully charged and stored at a high temperature. Gas is generated.

【0035】このため、小さく薄い電池の場合、より高
性能な活物質を使用できないという欠点があった。本発
明で使用したγ−ブチロラクトンは、通常外装缶を使用
したリチウム二次電池でよく用いられる、ジメチルカー
ボネート(DMC)、メチルエチルカーボネート(MEC)、
ジエチルカーボネート(DEC)と比べ、酸化されにくく
満充電の高温保存時にガスを生じにくい。このため、比
較的堅く変形しにくい外装缶に比べ、薄く柔らかいフィ
ルムを外装体に用いた電池でも、より高性能な活物質を
使用することができ、小型高性能電池を作成することが
可能となる。
Therefore, in the case of a small and thin battery, there is a drawback that a higher-performance active material cannot be used. The γ-butyrolactone used in the present invention is dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), which is commonly used in lithium secondary batteries that usually use an outer can.
Compared with diethyl carbonate (DEC), it is hardly oxidized and hardly generates gas during high temperature storage at full charge. For this reason, compared to an outer can that is relatively hard and hard to deform, even a battery that uses a thin and soft film for the outer body can use a higher-performance active material, making it possible to create a small high-performance battery. Become.

【0036】[0036]

【実施例】以下に本発明の具体的な実施例を示す。 <実施例1> 高分子物質:PVDF[Kynar 761A (エルフ・アトケ
ム社製)]、電解液:エチレンカーボネート:γ−ブチ
ロラクトン=2:8(体積比)である混合溶媒にLiBF4
を2Mの濃度で溶解したもの、溶媒:アセトンを重量比
で、高分子物質:電解液:溶媒=3:7:20となるよ
うに混合して、第1の溶液を調製した。
EXAMPLES Specific examples of the present invention will be described below. Example 1 Polymer substance: PVDF [Kynar 761A (manufactured by Elf Atochem)], electrolyte solution: ethylene carbonate: γ-butyrolactone = 2: 8 (volume ratio) LiBF 4 in a mixed solvent
Was dissolved at a concentration of 2M, and a solvent: acetone was mixed at a weight ratio of polymer substance: electrolyte solution: solvent = 3: 7: 20 to prepare a first solution.

【0037】この第1の溶液に、正極活物質:LiCo
0.999Nb0.0012 、導電助剤:アセチレンブラックを
重量比で、第1の溶液:活物質:導電助剤=2:7.
5:1.2となるように加えて分散させ、正極用スラリ
ーを得た。
In the first solution, a positive electrode active material: LiCo
0.999 Nb 0.001 O 2 , conductive auxiliary agent: acetylene black in a weight ratio of the first solution: active material: conductive auxiliary agent = 2: 7.
5: 1.2, and dispersed to obtain a positive electrode slurry.

【0038】また、高分子物質:電解液:溶媒=3:
7:5としたほかは上記第1の溶液と同様にして調整し
た第2の溶液に、負極活物質として黒鉛を重量比で、第
2の溶液:活物質=2:1となるように加えて分散さ
せ、負極用スラリーを得た。
Further, polymer substance: electrolyte solution: solvent = 3:
A graphite was added as a negative electrode active material to the second solution prepared in the same manner as the first solution except that the ratio was 7: 5, so that the second solution: active material = 2: 1. And dispersed to obtain a negative electrode slurry.

【0039】上記第1の溶液、正極用スラリーおよび負
極用スラリーを使用して、正極−ゲル化固体電解質−負
極−ゲル化固体電解質−正極・・・積層体からなる電極
群を作製し、これをシート状の外装体(アルミラミネー
トパック、厚み100μm )に入れ、シーラーにより封
口した。また、電極のサイズは30mm×40mmとした。
Using the first solution, the slurry for the positive electrode, and the slurry for the negative electrode, an electrode group consisting of a positive electrode, a gelled solid electrolyte, a negative electrode, a gelled solid electrolyte, a positive electrode, and a laminate was prepared. Was placed in a sheet-like exterior body (aluminum laminate pack, thickness: 100 μm) and sealed with a sealer. The size of the electrode was 30 mm × 40 mm.

【0040】この方法によって作成された電池を、25
℃においてカットオフ4.2〜3.0V、1.0Cで充放
電を行ない容量を測定した後、−20℃での比容量を測
定した。また、4.2V満充電状態とし、90℃オープ
ンに投入して電池厚みの変化を測定した。
The battery produced by this method is
After charging / discharging was performed at a cutoff of 4.2 to 3.0 V and 1.0 C at ℃ and the capacity was measured, the specific capacity at -20 ℃ was measured. Further, the battery was put into a 4.2 V fully charged state, and the battery was put in an open state at 90 ° C., and the change in the battery thickness was measured.

【0041】<実施例2>正極活物質をLiCo0.999
Ti0.0012 とした他は実施例1と同様に電池を組み
立て、充放電を行なった後、満充電状態とし、オーブン
に投入して電池厚みの変化を測定した。
Example 2 The positive electrode active material was LiCo 0.999
A battery was assembled and charged and discharged in the same manner as in Example 1, except that Ti 0.001 O 2 was used.

【0042】<実施例3>正極活物質をLiCo0.999
Sn0.0012 とした他は実施例1と同様に電池を組み
立て、充放電を行なった後、満充電状態とし、オーブン
に投入して電池厚みの変化を測定した。
Example 3 The positive electrode active material was LiCo 0.999
A battery was assembled and charged / discharged in the same manner as in Example 1 except that Sn 0.001 O 2 was used. Then, the battery was charged to a full charge, put into an oven, and a change in battery thickness was measured.

【0043】<実施例4>正極活物質をLiCo0.999
Mg0.0012 とした他は実施例1と同様に電池を組み
立て、充放電を行なった後、満充電状態とし、オーブン
に投入して電池厚みの変化を測定した。
Example 4 The positive electrode active material was LiCo 0.999
A battery was assembled and charged and discharged in the same manner as in Example 1 except that Mg 0.001 O 2 was used. Then, the battery was fully charged, put into an oven, and a change in battery thickness was measured.

【0044】<実施例5>正極活物質をLiCo
0.99999Nb0.000012 とした他は実施例1と同様に電
池を組み立て、充放電を行なった後、満充電状態とし、
オーブンに投入して電池厚みの変化を測定した。
Example 5 The positive electrode active material was LiCo
A battery was assembled and charged and discharged in the same manner as in Example 1 except that 0.99999 Nb 0.00001 O 2 was used.
It was put into an oven and the change in battery thickness was measured.

【0045】<実施例6>正極活物質をLiCo0.9999
Nb0.00012 とした他は実施例1と同様に電池を組み
立て、充放電を行なった後、満充電状態とし、オーブン
に投入して電池厚みの変化を測定した。
Example 6 The positive electrode active material was LiCo 0.9999
A battery was assembled and charged and discharged in the same manner as in Example 1 except that Nb was set to 0.0001 O 2 , charged to a fully charged state, put into an oven, and measured for changes in battery thickness.

【0046】<実施例7>正極活物質をLiCo0.99
0.012 とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Example 7 The positive electrode active material was LiCo 0.99 N
A battery was assembled and charged and discharged in the same manner as in Example 1 except that b was changed to 0.01 O 2 , charged to a fully charged state, put into an oven, and measured for changes in battery thickness.

【0047】<実施例8>正極活物質をLiCo0.98
0.022 とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Example 8 The positive electrode active material was LiCo 0.98 N
A battery was assembled and charged / discharged in the same manner as in Example 1 except that b was changed to 0.02 O 2. The battery was charged to a fully charged state, put into an oven, and a change in battery thickness was measured.

【0048】<実施例9>電解液の組成を、エチレンカ
ーボネート(EC):γ−ブチロラクトン=4:6(体
積比)とした他は実施例1と同様に電池を組み立て、充
放電を行なった後、満充電状態とし、オーブンに投入し
て電池厚みの変化を測定した。
Example 9 A battery was assembled and charged and discharged in the same manner as in Example 1 except that the composition of the electrolytic solution was changed to ethylene carbonate (EC): γ-butyrolactone = 4: 6 (volume ratio). Thereafter, the battery was fully charged, put into an oven, and the change in battery thickness was measured.

【0049】<実施例10>電解液の組成を、エチレン
カーボネート(EC):γ−ブチロラクトン=5:95
(体積比)とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Example 10 The composition of the electrolytic solution was changed to ethylene carbonate (EC): γ-butyrolactone = 5: 95.
A battery was assembled and charged and discharged in the same manner as in Example 1, except that the volume ratio was changed.

【0050】<比較例1>正極活物質をLiCo0.9999
Nb0.00012 とした他は実施例1と同様に電池を組み
立て、充放電を行なった後、満充電状態とし、オーブン
に投入して電池厚みの変化を測定した。
Comparative Example 1 The positive electrode active material was LiCo 0.9999
A battery was assembled and charged and discharged in the same manner as in Example 1 except that Nb was set to 0.0001 O 2 , charged to a fully charged state, put into an oven, and measured for changes in battery thickness.

【0051】<比較例2>正極活物質をLiCo0.9
0.12 とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Comparative Example 2 The positive electrode active material was LiCo 0.9 N
A battery was assembled and charged / discharged in the same manner as in Example 1 except that b 0.1 O 2 was used.

【0052】<比較例3>電解液の組成を、エチレンカ
ーボネート(EC):γ−ブチロラクトン=5:5(体
積比)とした他は実施例1と同様に電池を組み立て、充
放電を行なった後、満充電状態とし、オーブンに投入し
て電池厚みの変化を測定した。
Comparative Example 3 A battery was assembled and charged and discharged in the same manner as in Example 1 except that the composition of the electrolytic solution was changed to ethylene carbonate (EC): γ-butyrolactone = 5: 5 (volume ratio). Thereafter, the battery was fully charged, put into an oven, and the change in battery thickness was measured.

【0053】<比較例4>電解液の組成を、γ−ブチロ
ラクトン=100(体積比)とした他は実施例1と同様
に電池を組み立て、充放電を行なった後、満充電状態と
し、オーブンに投入して電池厚みの変化を測定した。
Comparative Example 4 A battery was assembled and charged and discharged in the same manner as in Example 1 except that the composition of the electrolytic solution was changed to γ-butyrolactone = 100 (volume ratio). And the change in battery thickness was measured.

【0054】<比較例5>電解液の組成を、エチレンカ
ーボネート(EC):ジエチルカーボネート(DEC)
=2:8(体積比)とした他は実施例1と同様に電池を
組み立て、充放電を行なった後、満充電状態とし、オー
ブンに投入して電池厚みの変化を測定した。
<Comparative Example 5> The composition of the electrolyte was changed to ethylene carbonate (EC): diethyl carbonate (DEC).
= 2: 8 (volume ratio), except that the battery was assembled and charged / discharged in the same manner as in Example 1. The battery was charged to a full charge, placed in an oven, and the change in battery thickness was measured.

【0055】<比較例6>電解液の組成を、エチレンカ
ーボネート(EC):メチルエチルカーボネート(ME
C)=2:8(体積比)とした他は実施例1と同様に電
池を組み立て、充放電を行なった後、満充電状態とし、
オーブンに投入して電池厚みの変化を測定した。
<Comparative Example 6> The composition of the electrolyte was changed to ethylene carbonate (EC): methyl ethyl carbonate (ME
A battery was assembled and charged and discharged in the same manner as in Example 1 except that C) = 2: 8 (volume ratio), and then the battery was fully charged.
It was put into an oven and the change in battery thickness was measured.

【0056】<比較例7>正極活物質をLiCo0.999
Ti0.0012 とし、電解液の組成を、エチレンカーボ
ネート(EC):メチルエチルカーボネート=2:8
(体積比)とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Comparative Example 7 The positive electrode active material was LiCo 0.999
Ti 0.001 O 2, and the composition of the electrolytic solution was ethylene carbonate (EC): methyl ethyl carbonate = 2: 8
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the volume ratio was changed.

【0057】<比較例8>正極活物質をLiCo0.999
Sn0.0012 とし、電解液の組成を、エチレンカーボ
ネート(EC):メチルエチルカーボネート=2:8
(体積比)とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Comparative Example 8 The positive electrode active material was LiCo 0.999
The composition of the electrolytic solution was set to Sn 0.001 O 2 and ethylene carbonate (EC): methyl ethyl carbonate = 2: 8
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the volume ratio was changed.

【0058】<比較例9>正極活物質をLiCo0.999
Mg0.0012 とし、電解液の組成を、エチレンカーボ
ネート(EC):メチルエチルカーボネート=2:8
(体積比)とした他は実施例1と同様に電池を組み立
て、充放電を行なった後、満充電状態とし、オーブンに
投入して電池厚みの変化を測定した。
Comparative Example 9 The positive electrode active material was LiCo 0.999
Mg 0.001 O 2, and the composition of the electrolytic solution was ethylene carbonate (EC): methyl ethyl carbonate = 2: 8
A battery was assembled and charged and discharged in the same manner as in Example 1 except that the volume ratio was changed.

【0059】<比較例10>正極活物質をLiCoO2
とし、電解液の組成を、エチレンカーボネート(E
C):γ−ブチロラクトン=2:8(体積比)とした他
は実施例1と同様に電池を組み立て、充放電を行なった
後、満充電状態とし、オーブンに投入して電池厚みの変
化を測定した。
Comparative Example 10 The positive electrode active material was LiCoO 2
And the composition of the electrolytic solution is ethylene carbonate (E
C): A battery was assembled and charged and discharged in the same manner as in Example 1 except that γ-butyrolactone was set to 2: 8 (volume ratio). It was measured.

【0060】以上の結果を表1に示す。表中、EC:エ
チレンカーボネート、γBL:γブチロラクトン、ME
C:メチルエチルカーボネート、DEC:ジエチルカー
ボネートをそれぞれ表す。
Table 1 shows the above results. In the table, EC: ethylene carbonate, γBL: γ-butyrolactone, ME
C: represents methyl ethyl carbonate, DEC: represents diethyl carbonate.

【0061】[0061]

【表1】 [Table 1]

【0062】上記表1から実施例1〜4,比較例5〜9
により、通常ガスを生じるような添加元素を加えた正極
活物質であっても、γ−ブチロラクトンの使用によりガ
ス発生を抑えることができ、薄い外装体を使用すること
によって、より小型の電池を作成できることがわかる。
なお、厚みの変化量は0.2mm以内であれば許容範囲で
ある。
From Table 1 above, Examples 1-4 and Comparative Examples 5-9
By using γ-butyrolactone, gas generation can be suppressed even with a positive electrode active material to which an additive element that normally generates a gas is added, and a smaller battery is created by using a thin exterior body. We can see that we can do it.
The change in thickness is within an allowable range if it is within 0.2 mm.

【0063】実施例1〜10、比較例1,10から、添
加元素により、低温特性が向上したことがわかる。な
お、−20℃での比容量は、10%以上を許容値とし
た。
From Examples 1 to 10 and Comparative Examples 1 and 10, it can be seen that the low-temperature characteristics were improved by the added elements. The specific capacity at −20 ° C. was 10% or more as an allowable value.

【0064】実施例1,5,6,7、比較例1,2,1
0から、添加元素の原子比が2%を越えると、容量低下
を引き起こし高容量の電池には向かないことがわかる。
なお、1C容量は、本実施例では550mAh 以上のもの
を許容範囲とした。一方、添加元素の原子比が0.00
1%未満では低温での比容量が低下し、低温動作に問題
が生じることがわかる。
Examples 1, 5, 6, 7 and Comparative Examples 1, 2, 1
From 0, it can be seen that when the atomic ratio of the added element exceeds 2%, the capacity is reduced and the battery is not suitable for a high capacity battery.
In this example, the allowable capacity of the 1C capacity was 550 mAh or more. On the other hand, if the atomic ratio of the additional element is 0.00
If it is less than 1%, the specific capacity at a low temperature is reduced, and a problem occurs at a low temperature operation.

【0065】また、γ−ブチロラクトンの添加量は実施
例1,9,10、比較例3,4から60〜95体積%が
適当であることがわかる。
The addition amount of γ-butyrolactone according to Examples 1, 9, and 10 and Comparative Examples 3 and 4 shows that 60 to 95% by volume is appropriate.

【0066】このことから、本発明の二次電池は、高温
で膨れることなく、また低温特性もより改善された電池
であることがわかる。
This indicates that the secondary battery of the present invention does not swell at high temperatures and has improved low-temperature characteristics.

【0067】[0067]

【発明の効果】以上のように、本発明によれば低温でも
高い放電容量を示し、保存時にも膨れることのないリチ
ウム二次電池を提供できる。
As described above, according to the present invention, it is possible to provide a lithium secondary battery that exhibits a high discharge capacity even at a low temperature and does not swell during storage.

フロントページの続き Fターム(参考) 5H011 CC10 KK01 5H029 AJ02 AJ07 AK03 AL06 AL07 AM00 AM03 AM16 BJ04 DJ02 DJ08 EJ01 EJ12 HJ01 5H050 AA06 AA13 BA17 CA08 CB07 CB08 DA02 DA09 EA02 HA01Continued on the front page F term (reference) 5H011 CC10 KK01 5H029 AJ02 AJ07 AK03 AL06 AL07 AM00 AM03 AM16 BJ04 DJ02 DJ08 EJ01 EJ12 HJ01 5H050 AA06 AA13 BA17 CA08 CB07 CB08 DA02 DA09 EA02 HA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外装体内に正極と、負極と、電解質とが
装填され、 正極活物質として、コバルト酸リチウムと、このコバル
ト酸リチウムのコバルトに対して0.001〜2原子%
の副成分元素M(Li,Coを除く遷移金属および典型
金属元素)とを有するリチウム含有複合酸化物を有し、 電解質の溶媒としてγ−ブチロラクトンを60〜95体
積%含有し、 前記外装体の厚さが0.3mm以下であるリチウム二次電
池。
A positive electrode, a negative electrode, and an electrolyte are loaded in an exterior body, and lithium cobalt oxide is used as a positive electrode active material, and 0.001 to 2 atomic% based on the cobalt of the lithium cobalt oxide.
A lithium-containing composite oxide having a sub-component element M (transition metal and typical metal element except for Li and Co), containing 60 to 95% by volume of γ-butyrolactone as a solvent for the electrolyte. A lithium secondary battery having a thickness of 0.3 mm or less.
【請求項2】 前記副成分元素がTi,Nb,Snおよ
びMgのいずれか1種または2種以上である請求項1の
リチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the subcomponent element is one or more of Ti, Nb, Sn and Mg.
JP2001376813A 2000-12-13 2001-12-11 Lithium secondary battery Expired - Fee Related JP4188591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376813A JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-379034 2000-12-13
JP2000379034 2000-12-13
JP2001376813A JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002246027A true JP2002246027A (en) 2002-08-30
JP4188591B2 JP4188591B2 (en) 2008-11-26

Family

ID=26605760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376813A Expired - Fee Related JP4188591B2 (en) 2000-12-13 2001-12-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4188591B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038931A1 (en) * 2001-10-29 2003-05-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2004228045A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Battery pack
WO2005018027A1 (en) * 2003-08-19 2005-02-24 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary cell and process for producing the same
JP2010067614A (en) * 2004-04-30 2010-03-25 Agc Seimi Chemical Co Ltd Manufacturing method of lithium-containing complex oxide for lithium secondary battery cathode
JP5280684B2 (en) * 2005-08-01 2013-09-04 株式会社三徳 Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2016111014A (en) * 2014-11-27 2016-06-20 株式会社半導体エネルギー研究所 Storage battery having flexibility and electronic apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150940B2 (en) 2001-10-29 2006-12-19 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2003038931A1 (en) * 2001-10-29 2003-05-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP4601903B2 (en) * 2003-01-27 2010-12-22 パナソニック株式会社 Battery pack
JP2004228045A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Battery pack
WO2005018027A1 (en) * 2003-08-19 2005-02-24 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary cell and process for producing the same
CN100401562C (en) * 2003-08-19 2008-07-09 清美化学股份有限公司 Positive electrode material for lithium secondary cell and process for producing the same
US7615315B2 (en) 2003-08-19 2009-11-10 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary cell and process for producing the same
JP2010067614A (en) * 2004-04-30 2010-03-25 Agc Seimi Chemical Co Ltd Manufacturing method of lithium-containing complex oxide for lithium secondary battery cathode
JP5280684B2 (en) * 2005-08-01 2013-09-04 株式会社三徳 Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
US9337473B2 (en) 2005-08-01 2016-05-10 Santoku Corporation Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2016111014A (en) * 2014-11-27 2016-06-20 株式会社半導体エネルギー研究所 Storage battery having flexibility and electronic apparatus
US10608290B2 (en) 2014-11-27 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Flexible battery and electronic device
US10886572B2 (en) 2014-11-27 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Flexible battery and electronic device
US11670807B2 (en) 2014-11-27 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Flexible battery and electronic device

Also Published As

Publication number Publication date
JP4188591B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
WO2015111710A1 (en) Non-aqueous secondary battery
US20100196750A1 (en) Separator and battery
KR20080107286A (en) Anode and battery
KR20060106622A (en) Negative electrode for non-aqueous secondary battery
JP2013149477A (en) Manufacturing method of nonaqueous secondary battery
JP6596826B2 (en) Electrode and non-aqueous electrolyte secondary battery
US11398660B2 (en) Flame retardant separator having asymmetric structure for secondary batteries
US20210043941A1 (en) Battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2019164965A (en) Lithium ion secondary battery
US20020192549A1 (en) Electrode composition, and lithium secondary battery
JP4188591B2 (en) Lithium secondary battery
WO2020059806A1 (en) Secondary battery
JP2003297354A (en) Lithium secondary battery
JP4682464B2 (en) Non-aqueous electrolyte battery
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP2006228602A (en) Battery
JP2001023643A (en) Polymer lithium secondary battery
WO2020059802A1 (en) Secondary battery
JP2010146887A (en) Electrode for nonaqueous secondary battery and method of manufacturing the same, and nonaqueous secondary battery
WO2015037522A1 (en) Nonaqueous secondary battery
JP2000348705A (en) Nonaqueous electrolyte secondary battery
JPWO2006088001A1 (en) Electrolyte and battery
JP2003173818A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4188591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees