JP4186581B2 - Manufacturing method of semiconductor laser device - Google Patents

Manufacturing method of semiconductor laser device Download PDF

Info

Publication number
JP4186581B2
JP4186581B2 JP2002300157A JP2002300157A JP4186581B2 JP 4186581 B2 JP4186581 B2 JP 4186581B2 JP 2002300157 A JP2002300157 A JP 2002300157A JP 2002300157 A JP2002300157 A JP 2002300157A JP 4186581 B2 JP4186581 B2 JP 4186581B2
Authority
JP
Japan
Prior art keywords
insulating film
cleavage
semiconductor laser
semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300157A
Other languages
Japanese (ja)
Other versions
JP2004134701A (en
Inventor
淑之 植田
恭宏 國次
民雄 佐藤
俊憲 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002300157A priority Critical patent/JP4186581B2/en
Publication of JP2004134701A publication Critical patent/JP2004134701A/en
Application granted granted Critical
Publication of JP4186581B2 publication Critical patent/JP4186581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハからへき開により半導体レーザ素子を分割する半導体レーザ素子の製造方法に関するものである。
【0002】
【従来の技術】
従来の半導体ウエハからチップを分割する方法は、最初にウエハ上面の縁にダイヤモンドスクライビング装置で結晶のへき開面に沿うような傷を設けた後、このウエハ下面を保持テープに貼り付けるとともにウエハ上面を弾力性を有する支持テープに押付け、その後、前記ウエハの傷に対応するウエハの縁をカッターの刃で突き、前記傷部分からウエハのへき開を行う方法である(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平7−201783号公報(第1頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の化合物半導体の分割方法においては、へき開線が曲がり、チップが破損して歩留りが低下するという課題があった。
【0005】
本発明は、かかる課題を解決するためになされたものであり、へき開線の曲がりが防止され、歩留りが向上した半導体レーザ素子の製造方法を得ることを目的とする。
【0006】
本発明に係る半導体レーザ素子の製造方法は、半導体ウエハに半導体層を積層し、この半導体層に絶縁膜を介して電極層を設け、上記半導体ウエハの結晶方向にへき開して、複数の半導体レーザ素子に分割する半導体レーザ素子の製造方法において、上記半導体レーザ素子の発光面を形成するへき開におけるへき開領域の上記半導体レーザ素子の半導体層の上に絶縁膜を設けると共に、上記へき開領域の絶縁膜に、上記領域以外の絶縁膜の膜厚より薄い領域を設けて上記絶縁膜を成膜し、上記電極層を上記へき開領域の上記半導体レーザ素子の半導体層絶縁膜上に設け、上記半導体ウエハの端にスクライブラインを入れた後に上記スクライブラインに応力をかけることで上記半導体ウエハをへき開して、発光面端部まで絶縁膜を介して電極と半導体層とが延した半導体レーザ素子に分割する方法である。
【0007】
【発明の実施の形態】
実施の形態1.
図1は本発明の第1の実施の形態の半導体レーザ素子の製造方法を工程順に示すフローチャートで、特に、実装時ワイヤボンド接合される半導体レーザ素子を製造する場合に適用される方法であり、図2は、図1において、絶縁膜の少なくとも一部を除去処理する工程において、絶縁膜をエッチング処理した状態の半導体ウエハを模式的に示す平面図である。
即ち、本発明は、半導体ウエハの、へき開部となる領域の絶縁膜に、その膜厚が上記領域以外の絶縁膜より薄い領域を設けることにより、へき開の進展に対して抵抗力を低下させるものであるが、本実施の形態においては、半導体ウエハ全面に均一に成膜した絶縁膜の、上記へき開領域となる絶縁膜の少なくとも一部を除去処理することにより、上記薄い絶縁膜領域を得る方法について説明する。
【0008】
即ち、例えば厚さ600μm、大きさφ3インチのGaAsウエハ上にn型層、活性層およびp型層を順次結晶成長させて半導体層を積層する。
上記半導体層に絶縁膜3を設け、次にこの絶縁膜の少なくとも一部をドライエッチングまたはウエットエッチングして除去する{図1の(d)工程}が、この絶縁膜除去処理は、GaAsの結晶方向を考慮して、フォトリソグラフィー技術により、レジスト膜でマスクして、GaAsウエハをへき開して半導体レーザ素子2に分割する工程{図1の(h)工程}において、へき開部となる領域に施し、図2に示す絶縁膜除去処理領域1を形成する。
なお、絶縁膜3の種類としては、SiOやSiONでは耐湿性の面で問題があるので、均一性が良好でかつ緻密な膜質の例えばSiN等を熱CVD装置で成膜するのが好ましい。
また、SiNの除去方法としては、SFを使用したドライエッチングまたはBHFを使用したウエットエッチングがある。
次に、絶縁膜3上に金属を蒸着し、さらに金めっきして電極層を設け、研磨器により100μmの厚さに研磨して、裏面の電極を形成した後、上記半導体ウエハをGaAsの結晶方向にへき開して、複数の半導体レーザ素子2に分割する。
【0009】
以下、へき開工程を具体的に説明する。
予めディスコリングに粘着シートを貼り付けたものを用意し、上記半導体ウエハの、半導体層を結晶成長させた面の反対面を粘着面に固定し、ダイヤモンドカッターを備えたスクライバー装置の吸着テーブルにセットする。
次に、パターニングされた半導体レーザ素子2列に対して、ダイヤモンドカッターの移動方向が平行となるように回転ずれを補正し、20mm角程度になるようにGaAsの結晶方向にウエハの全長に渡って絶縁膜除去処理領域1内にスクライブラインを入れる。
スクライブラインを入れた後、テーブルより着脱し、スクライブラインを入れた面に保護シートを貼りつけ、スクライブラインに対して片側を全面支持して、スクライブライン側から力を加えるように折り曲げてへき開する。
この作業により、20mm角程度の図3に示す半導体ウエハに分割する。
【0010】
図3は、本実施の形態の半導体レーザ素子の製造方法に係わる、上記のようにして20mm角程度に分割された半導体ウエハを、一次へき開線5と二次へき開線51により半導体レーザ素子2に分割する工程における、へき開状態を模式的に示す半導体ウエハの平面図である。
【0011】
つまり、20mm角程度に分割したウエハをそれぞれ粘着シートに貼り替え、半導体ウエハの端において、半導体レーザ素子間の絶縁膜除去処理領域1のセンター位置に0.5mm〜1mmのスクライブラインを入れて、ウエハ端方向に向かって一次へき開線5を形成する。また、同様に二次へき開線51を形成する。
次に、スクライブラインを入れた面に保護シートを貼りつけ、三点曲げ等によりスクライブラインの反対面から力を加えてスクライブラインに応力集中させ、へき開を進展させる。
なお、本実施の形態においては、特に膜質が緻密である絶縁膜3のSiN膜の一部が除去されているので、へき開の進展に対して抵抗力が減少しておりへき開の曲りを抑制できる。
この結果、ウエハ長20mmに対してへき開曲り量が、絶縁膜を除去していない場合±20μmであったのを、±3μmに改善するという効果が得られた。
上記のようにして、図中、一次へき開線5と二次へき開線51で挟まれた領域として示される半導体レーザ素子2が製造されるが、本実施の形態の半導体レーザ素子の製造工程においては、へき開線が曲り半導体レーザ素子が破損することを防止でき、歩留りが向上した。
【0012】
なお、半導体レーザ素子である場合は、図に示すように、電極層12の下の絶縁層は、全て除去せず一部残存させておく必要がある。なぜなら、上記一次へき開5した面はレーザが発光する面であるので、発光面の電極12が半導体層と絶縁されている必要があるからである。
さらに、レーザが発光する面は鏡面である必要があるので、上記のように絶縁膜の一部を除去して薄くした領域1をへき開線とすることにより、へき開曲がりを防止するだけでなく、ミクロ的に見ればへき開面のずれも防止でき、へき開面に段差(筋)が発生するのを防止できる。
なお、本実施の形態においては、二次へき開線51上には、絶縁除去処理領域を設けていないが、上記二次へき開線51は、半導体レーザ素子2の側面に相当するので、上記へき開線の曲がりの特性へ影響は少なく、またへき開距離も短く曲がることが少ない。
【0013】
図4は、本実施の形態における、絶縁膜除去処理工程を施された後の残存絶縁膜厚と、上記へき開工程におけるへき開の曲り量のばらつきの変化を示す特性図である。
図からわかるように、絶縁膜の残存厚みが600Å以下であると、スクライブラインからのずれ量のばらつきが抑制されることが示される。
なお、除去処理領域以外の絶縁膜の厚みは1000Åあれば絶縁性に問題はない。
【0014】
実施の形態2.
図5は本発明の第2の実施の形態の半導体レーザ素子の製造方法を工程順に示すフローチャートで、特に、実装時はんだ接合される半導体レーザ素子を製造する場合に適用される方法である。
本実施の形態においては、半導体レーザ素子の実装方法として、半導体レーザ素子の電極をはんだ等により直接ダイボンドする場合、はんだの濡れ広がり過ぎによる非絶縁部の短絡を防止するために、図5において、絶縁膜形成工程{(d)工程}の前に、少なくとも、(f)工程において、絶縁膜を除去処理する領域の下の半導体層に、プロトン注入{(c)工程}し、電気抵抗を大きくする他は上記実施の形態1と同様にして半導体レーザ素子を製造する。
【0015】
図6は、上記のようにプロトン注入された半導体ウエハを、上記実施の形態1のように20mm角程度に分割したものを半導体レーザ素子に分割する工程における、へき開状態を模式的に示す半導体ウエハの平面図で、図7および図8は、図6のA−A線断面図およびB−B線断面図で、図中点線は一次へき開位置を示している。
つまり、半導体ウエハは、GaAsウエハ11上にn型層10、活性層9およびp型層8からなる半導体層の、絶縁膜除去処理領域1に相当する領域にはプロトン注入領域4が形成され、その上に絶縁膜3を介して電極層12と裏面電極13が設けられているものである。
【0016】
なお、上記プロトン注入は、絶縁膜3と一部重なるように施されることが望ましい。つまり、プロトン注入領域4は絶縁膜3の端面から少なくともプロトン注入領域4の拡散厚み分は絶縁膜3の下に拡散させると、プロトン注入領域4の中央部と同程度の電気抵抗値となり、はんだが濡れ広がり過ぎた場合でも漏電が防止できる。
以上のように、本実施の形態においても、へき開部となる領域の絶縁膜が除去処理されているので、実施の形態1と同様、へき開の進展に対して抵抗力が減少しておりへき開の曲りを抑制でき、歩留りが向上した。
なお、実施の形態1と同様に、一次へき開と二次へき開により得られる半導体レーザ素子の断面図は、図7中で、点線に挟まれた部分に相当するが、図に示す様に、両端部に絶縁膜が薄い箇所(図は全て除去)を有する形状のものである。
【0017】
実施の形態3.
本発明の第3の実施の形態の半導体レーザ素子の製造方法は、実施の形態2におけるように、絶縁膜の少なくとも一部を除去する工程において、へき開部となる領域の絶縁膜を全て除去処理の対象とする代わりに、図9に示すように、絶縁膜のへき開部となる領域に、上記除去処理を行う領域と、上記除去処理を行わずに絶縁膜を全て残す領域とを設ける他は実施の形態2と同様にして半導体レーザ素子を製造する。なお、少なくとも、上記除去処理を行った領域に相当する領域の半導体層にはプロトンが注入されているのは実施の形態2と同様である。
図9は、本実施の形態において、上記のように絶縁膜をエッチング処理した状態の半導体ウエハを模式的に示す平面図である。
【0018】
図10は、上記のようにへき開部となる領域の絶縁膜を、部分的に除去処理の対象とした半導体ウエハを、実施の形態1のように20mm角程度に分割したものを半導体レーザ素子に分割する状態において、半導体ウエハのへき開状態を模式的に示す半導体ウエハの平面図で、図11および図12は、図10のA−A線断面図およびB−B線断面図で、図中点線は一次へき開位置を示している。
本実施の形態においても、へき開部となる領域の絶縁膜を部分的に除去しているので、へき開の進展に対して抵抗力が低下し、実施の形態1と同様のへき開線の曲り防止の改善効果が得られた。
【0019】
なお、本実施の形態において、電流の漏れが特性に影響するため、一次へき開面5がレーザ発光面になることから、電極層の下の絶縁膜は、本実施の形態において、絶縁膜除去処理を行わない領域とする。
【0020】
実施の形態4.
本実施の形態の半導体レーザ素子の製造方法は、半導体ウエハの、へき開部となる領域の絶縁膜に、その膜厚が上記領域以外の絶縁膜より薄い領域を設けることにより、へき開の進展に対する抵抗を低下させるために、実施の形態1の絶縁膜の除去処理工程の代わりに、予め上記のように絶縁膜を成膜する他は実施の形態1と同様にして半導体レーザ素子を製造する。
即ち、実施の形態1における半導体レーザ素子の製造方法において、絶縁膜の成膜工程において、まず上記薄い絶縁膜となる領域にレジスト膜でマスクした後、適当な厚みの絶縁膜を形成し、次に上記レジスト膜を除去して全面に絶縁膜を積み足すことにより、本実施の形態に係わる上記絶縁膜を成膜する。
次に、実施の形態1における、絶縁膜の一部除去処理の工程を施さず、実施の形態1と同様に電極層を形成し、へき開して半導体レーザ素子を製造する。
なお、本実施の形態の半導体レーザ素子の製造方法においては、実施の形態1と同様、へき開線が曲り半導体レーザ素子が破損することを防止でき、歩留りが向上した。
【0021】
【発明の効果】
本発明の工程を施す方法は、半導体ウエハに半導体層を積層し、この半導体層に絶縁膜を介して電極層を設け、上記半導体ウエハの結晶方向にへき開して、複数の半導体レーザ素子に分割する半導体レーザ素子の製造方法において、上記半導体レーザ素子の発光面を形成するへき開におけるへき開領域の上記半導体レーザ素子の半導体層の上に絶縁膜を設けると共に、上記へき開領域の絶縁膜に、上記領域以外の絶縁膜の膜厚より薄い領域を設けて上記絶縁膜を成膜し、上記電極層を上記へき開領域の上記半導体レーザ素子の半導体層絶縁膜上に設け、上記半導体ウエハの端にスクライブラインを入れた後に上記スクライブラインに応力をかけることで上記半導体ウエハをへき開して、発光面端部まで絶縁膜を介して電極と半導体層とが延した半導体レーザ素子に分割する方法で、へき開線の曲がりが防止され、歩留りが向上するという効果がある。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の半導体レーザ素子の製造方法を工程順に示すフローチャートである。
【図2】 図1において、絶縁膜をエッチング処理した状態の半導体ウエハを模式的に示す平面図である。
【図3】 本発明の第1の実施の形態に係わる、半導体ウエハを半導体レーザ素子に分割する工程における、へき開状態を模式的に示す半導体ウエハの平面図である。
【図4】 本発明の第1の実施の形態に係わる、絶縁膜除去処理工程を施された後の残存絶縁膜厚と、へき開工程におけるへき開の曲り量のばらつきの変化を示す特性図である。
【図5】 本発明の第2の実施の形態の半導体レーザ素子の製造方法を工程順に示すフローチャートである。
【図6】 本発明の第2の実施の形態に係わる、半導体ウエハを半導体レーザ素子に分割する工程における、へき開状態を模式的に示す半導体ウエハの平面図である。
【図7】 図6のA−A線断面図である。
【図8】 図6のB−B線断面図である。
【図9】 本発明の第3の実施の形態において、絶縁膜をエッチング処理した状態の半導体ウエハを模式的に示す平面図である。
【図10】 本発明の第3の実施の形態に係わる、半導体ウエハを半導体レーザ素子に分割する工程において、へき開状態を模式的に示す半導体ウエハの平面図である。
【図11】 図10のA−A線断面図である。
【図12】 図10のB−B線断面図である。
【符号の説明】
1 絶縁膜除去処理領域、2 半導体レーザ素子、3 絶縁膜、4 プロトン注入領域、5 へき開線、8 p型層、9 活性層、10 n型層、11 半導体ウエハ、12 電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor laser device in which a semiconductor laser device is divided by cleavage from a semiconductor wafer.
[0002]
[Prior art]
In the conventional method of dividing a chip from a semiconductor wafer, a scratch is formed on the edge of the upper surface of the wafer along the cleaved surface of the crystal with a diamond scribing device, and then the lower surface of the wafer is attached to a holding tape and the upper surface of the wafer is removed. In this method, the wafer is pressed against an elastic support tape, and then the edge of the wafer corresponding to the scratch on the wafer is struck by a cutter blade, and the wafer is cleaved from the scratch (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-201783 (first page, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the conventional compound semiconductor dividing method has a problem that the cleavage line is bent, the chip is broken, and the yield is lowered.
[0005]
The present invention has been made to solve such a problem, and an object of the present invention is to obtain a method of manufacturing a semiconductor laser device in which the cleavage of the cleavage line is prevented and the yield is improved.
[0006]
Method of manufacturing a semi-conductor laser element engaging Ru in the present invention, a semiconductor layer laminated on the semiconductor wafer, an electrode layer provided via an insulating film on the semiconductor layer, and cleavage in the crystal direction of the semiconductor wafer, a plurality of In the method of manufacturing a semiconductor laser device divided into semiconductor laser devices, an insulating film is provided on the semiconductor layer of the semiconductor laser device in the cleavage region in the cleavage for forming the light emitting surface of the semiconductor laser device, and the cleavage region is insulated. film, provided with a thinner region thickness of the insulating film other than the region forming the above insulating film is provided with the electrode layer on the insulating film of the semiconductor layer of the semiconductor laser device of the cleavage region, the semiconductor after scribe line on the edge of the wafer by stressing to the scribe line by cleavage of the above semiconductor wafer, electrode through the insulating film to the light-emitting surface end And the semiconductor layer is a method of dividing the semiconductor laser device extends.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a flowchart showing a method of manufacturing a semiconductor laser device according to a first embodiment of the present invention in the order of steps. In particular, this is a method applied when manufacturing a semiconductor laser device that is bonded by wire bonding during mounting. FIG. 2 is a plan view schematically showing the semiconductor wafer in which the insulating film is etched in the step of removing at least a part of the insulating film in FIG.
That is, the present invention reduces the resistance to the progress of cleavage by providing a region in the insulating film in the region of the semiconductor wafer that becomes the cleavage portion that is thinner than the insulating film other than the above region. However, in the present embodiment, a method of obtaining the thin insulating film region by removing at least part of the insulating film to be the cleavage region of the insulating film uniformly formed on the entire surface of the semiconductor wafer. Will be described.
[0008]
That is, for example, an n-type layer, an active layer, and a p-type layer are successively grown on a GaAs wafer having a thickness of 600 μm and a size of φ3 inches to stack a semiconductor layer.
An insulating film 3 is provided on the semiconductor layer, and then at least a part of the insulating film is removed by dry etching or wet etching (step (d) in FIG. 1). In consideration of the direction, masking with a resist film by photolithography technique, cleaving the GaAs wafer and dividing it into semiconductor laser elements 2 (step (h) in FIG. 1) is performed on the region to be a cleavage portion. Then, the insulating film removal processing region 1 shown in FIG. 2 is formed.
As the type of the insulating film 3, since SiO 2 or SiON has a problem in terms of moisture resistance, it is preferable to form a film having a good uniformity and a dense film quality such as SiN with a thermal CVD apparatus.
As a method for removing SiN, there are dry etching using SF 6 or wet etching using BHF.
Next, a metal is vapor-deposited on the insulating film 3, further gold-plated to provide an electrode layer, polished to a thickness of 100 μm with a polishing machine to form an electrode on the back surface, and then the semiconductor wafer is crystallized with GaAs. Cleaving in the direction and dividing into a plurality of semiconductor laser elements 2.
[0009]
Hereinafter, the cleavage process will be specifically described.
Prepare a disco ring with an adhesive sheet in advance, and fix the surface of the semiconductor wafer opposite to the surface on which the semiconductor layer is crystal-grown to the adhesive surface, and set it on the suction table of a scriber device equipped with a diamond cutter. To do.
Next, with respect to the two rows of patterned semiconductor laser elements , the rotational deviation is corrected so that the moving direction of the diamond cutter is parallel, and the entire length of the wafer extends in the GaAs crystal direction so as to be about 20 mm square. A scribe line is placed in the insulating film removal processing region 1.
After inserting the scribe line, remove it from the table, attach a protective sheet to the surface where the scribe line is inserted, fully support one side of the scribe line, fold it to apply force from the scribe line side, and cleave it. .
By this operation, the wafer is divided into about 20 mm square semiconductor wafers shown in FIG.
[0010]
FIG. 3 shows the semiconductor wafer divided into about 20 mm square as described above, which is related to the method of manufacturing the semiconductor laser device of the present embodiment, to the semiconductor laser device 2 by the primary cleavage line 5 and the secondary cleavage line 51. It is a top view of the semiconductor wafer which shows typically a cleaved state in the process of dividing .
[0011]
In other words, each of the wafers divided into about 20 mm square is pasted on the adhesive sheet, and at the edge of the semiconductor wafer, a scribe line of 0.5 mm to 1 mm is put at the center position of the insulating film removal processing region 1 between the semiconductor laser elements , A primary cleavage line 5 is formed toward the wafer edge direction. Similarly, a secondary cleavage line 51 is formed.
Next, a protective sheet is affixed to the surface on which the scribe line is inserted, and stress is concentrated on the scribe line by applying a force from the opposite surface of the scribe line by three-point bending or the like, thereby promoting cleavage.
In this embodiment, since a part of the SiN film of the insulating film 3 having a dense film quality is removed in particular, the resistance to the progress of cleavage is reduced and the cleavage of cleavage can be suppressed. .
As a result, the effect of improving the cleave amount with respect to the wafer length of 20 mm from ± 20 μm when the insulating film was not removed to ± 3 μm was obtained.
As described above, the semiconductor laser element 2 shown as a region sandwiched between the primary cleavage line 5 and the secondary cleavage line 51 in the figure is manufactured. In the manufacturing process of the semiconductor laser element of the present embodiment, It was possible to prevent the cleavage line from being bent and the semiconductor laser element from being damaged, and the yield was improved.
[0012]
In the case of a semiconductor laser element, as shown in the drawing, it is necessary to leave a part of the insulating layer under the electrode layer 12 without removing it. This is because the primary cleavage surface 5 is a surface from which the laser beam is emitted, and thus the electrode 12 on the light emission surface needs to be insulated from the semiconductor layer.
Furthermore, since the surface from which the laser emits light needs to be a mirror surface, by making a region 1 that has been thinned by removing a part of the insulating film as described above, not only can cleavage be prevented, When viewed microscopically, it is possible to prevent the cleavage surface from being displaced, and to prevent a step (streaks) from being generated on the cleavage surface.
In the present embodiment, no insulation removal treatment region is provided on the secondary cleavage line 51. However, since the secondary cleavage line 51 corresponds to the side surface of the semiconductor laser element 2, the cleavage line is used. There is little influence on the characteristics of the bend, and the cleavage distance is short and the bend is rare.
[0013]
FIG. 4 is a characteristic diagram showing a change in the variation of the remaining insulating film thickness after the insulating film removal treatment process and the bending amount of cleavage in the cleavage process in the present embodiment.
As can be seen from the figure, when the remaining thickness of the insulating film is 600 mm or less, variation in the amount of deviation from the scribe line is suppressed.
If the thickness of the insulating film other than the removal treatment region is 1000 mm, there is no problem in insulation.
[0014]
Embodiment 2. FIG.
FIG. 5 is a flowchart showing the semiconductor laser device manufacturing method according to the second embodiment of the present invention in the order of steps, and is particularly a method applied when manufacturing a semiconductor laser device to be soldered during mounting.
In the present embodiment, as the mounting method of a semiconductor laser device, when the die-bonding directly electrode of the semiconductor laser element by soldering or the like, in order to prevent short-circuiting of the non-insulated portion due to spread too much solder wettability, in FIG. 5, Prior to the insulating film forming step {(d) step}, at least in step (f), proton implantation {(c) step} is performed in the semiconductor layer under the region where the insulating film is to be removed to increase the electrical resistance. Otherwise, the semiconductor laser device is manufactured in the same manner as in the first embodiment.
[0015]
FIG. 6 is a semiconductor wafer schematically showing a cleavage state in the step of dividing the semiconductor wafer into which protons are implanted as described above into about 20 mm square as in the first embodiment and dividing it into semiconductor laser elements. 7 and 8 are cross-sectional views taken along the lines AA and BB in FIG. 6, and the dotted line in the drawing indicates the primary cleavage position .
That is, in the semiconductor wafer, the proton injection region 4 is formed in the region corresponding to the insulating film removal processing region 1 of the semiconductor layer composed of the n-type layer 10, the active layer 9, and the p-type layer 8 on the GaAs wafer 11. On top of this, an electrode layer 12 and a back electrode 13 are provided via an insulating film 3.
[0016]
Incidentally, the proton implantation, Rukoto applied to earthenware pots by partially overlap with the insulating film 3 is desirable. That is, when the proton implantation region 4 is diffused from the end face of the insulating film 3 at least by the diffusion thickness of the proton implantation region 4 below the insulating film 3, the electric resistance value becomes the same as that of the central portion of the proton implantation region 4 and the solder Even when the water spreads too much, leakage can be prevented.
As described above, also in this embodiment, since the insulating film in the region to be the cleavage portion is removed, the resistance is reduced with respect to the progress of cleavage as in Embodiment 1, and the cleavage is not caused. Bending can be suppressed and yield is improved.
As in the first embodiment , the cross-sectional view of the semiconductor laser element obtained by the primary cleavage and the secondary cleavage corresponds to the portion sandwiched between the dotted lines in FIG. 7, but as shown in FIG. This is a shape having a portion where the insulating film is thin (all removed in the figure).
[0017]
Embodiment 3 FIG.
In the method of manufacturing a semiconductor laser device according to the third embodiment of the present invention, as in the second embodiment, in the step of removing at least a part of the insulating film, the entire insulating film in the region to be the cleavage portion is removed. As shown in FIG. 9, in addition to providing a region where the removal process is performed and a region where all the insulating film is left without performing the removal process, as shown in FIG. A semiconductor laser device is manufactured in the same manner as in the second embodiment. It is to be noted that, as in the second embodiment, protons are injected into at least the semiconductor layer in the region corresponding to the region subjected to the removal treatment.
FIG. 9 is a plan view schematically showing a semiconductor wafer in which the insulating film is etched as described above in the present embodiment.
[0018]
FIG. 10 shows a semiconductor laser device obtained by dividing a semiconductor wafer partially subject to the removal process of the insulating film in the region to be cleaved as described above into about 20 mm square as in the first embodiment. FIG. 11 and FIG. 12 are cross-sectional views taken along lines AA and BB in FIG. 10, and are dotted lines in the drawing, schematically showing a cleavage state of the semiconductor wafer in a divided state. Indicates the primary cleavage position .
Also in this embodiment, since the insulating film in the region to be a cleavage portion is partially removed, the resistance to the progress of cleavage is reduced, and the cleavage line is prevented from bending as in the first embodiment. Improvement effect was obtained.
[0019]
Incidentally, Te embodiment odor, since the leakage current affects the properties, since the primary cleavage plane 5 is a laser light-emitting surface, an insulating film under the electrode layer, in this embodiment, the insulating film is removed a realm that does not perform the processing.
[0020]
Embodiment 4 FIG.
In the semiconductor laser device manufacturing method of the present embodiment, the resistance to the progress of cleavage is provided by providing a region of the semiconductor wafer where the film thickness is thinner than the insulating film other than the above region in the insulating film in the region to be the cleavage portion. Therefore, a semiconductor laser device is manufactured in the same manner as in the first embodiment except that the insulating film is formed in advance as described above in place of the insulating film removing process in the first embodiment.
That is, in the method of manufacturing the semiconductor laser device in the first embodiment, in the insulating film forming step, first, the region to be the thin insulating film is masked with a resist film, and then an insulating film having an appropriate thickness is formed. Then, the insulating film according to this embodiment is formed by removing the resist film and adding an insulating film over the entire surface.
Next, without performing the process of partially removing the insulating film in the first embodiment, an electrode layer is formed and cleaved in the same manner as in the first embodiment to manufacture a semiconductor laser device .
In the method of manufacturing the semiconductor laser device according to the present embodiment, as in the first embodiment, the cleavage line can be prevented from being bent and the semiconductor laser device can be prevented from being damaged, and the yield has been improved.
[0021]
【The invention's effect】
Method of applying a more Engineering of the present invention, a semiconductor layer laminated on the semiconductor wafer, an electrode layer provided via an insulating film on the semiconductor layer, and cleavage in the crystal direction of the semiconductor wafer, the plurality of semiconductor laser elements In the method for manufacturing a semiconductor laser device to be divided, an insulating film is provided on the semiconductor layer of the semiconductor laser device in the cleavage region in the cleavage for forming the light emitting surface of the semiconductor laser device, and the insulating film in the cleavage region is provided with the insulating film in the cleavage region. A region thinner than the thickness of the insulating film other than the region is provided to form the insulating film, the electrode layer is provided on the insulating film of the semiconductor layer of the semiconductor laser element in the cleavage region, and the end of the semiconductor wafer is formed. by cleavage of the above semiconductor wafer by applying a stress to the scribe line after scribe line, and to the light-emitting surface end portion through the insulating film electrode and the semiconductor layer is extended In the method of dividing the semiconductor laser device, is prevented bending cleavage line, there is an effect that the yield is improved.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method of manufacturing a semiconductor laser device according to a first embodiment of the present invention in order of steps.
FIG. 2 is a plan view schematically showing a semiconductor wafer in which an insulating film is etched in FIG.
FIG. 3 is a plan view of the semiconductor wafer schematically showing a cleavage state in the step of dividing the semiconductor wafer into semiconductor laser elements according to the first embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a change in the variation of the remaining insulating film thickness after the insulating film removal treatment process and the amount of bending of the cleavage in the cleavage process according to the first embodiment of the present invention; .
FIG. 5 is a flowchart showing a semiconductor laser device manufacturing method according to a second embodiment of the present invention in the order of steps.
FIG. 6 is a plan view of a semiconductor wafer schematically showing a cleavage state in a step of dividing the semiconductor wafer into semiconductor laser elements according to the second embodiment of the present invention.
7 is a cross-sectional view taken along line AA in FIG.
8 is a cross-sectional view taken along line BB in FIG.
FIG. 9 is a plan view schematically showing a semiconductor wafer in a state where an insulating film is etched in a third embodiment of the present invention.
FIG. 10 is a plan view of a semiconductor wafer schematically showing a cleavage state in a step of dividing the semiconductor wafer into semiconductor laser elements according to the third embodiment of the present invention.
11 is a cross-sectional view taken along line AA in FIG.
12 is a cross-sectional view taken along line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating film removal process area | region, 2 semiconductor laser element , 3 insulating film, 4 proton implantation area | region, 5 cleavage line, 8 p-type layer, 9 active layer, 10 n-type layer, 11 semiconductor wafer, 12 electrode.

Claims (1)

半導体ウエハに半導体層を積層し、この半導体層に絶縁膜を介して電極層を設け、上記半導体ウエハの結晶方向にへき開して、複数の半導体レーザ素子に分割する半導体レーザ素子の製造方法において、上記半導体レーザ素子の発光面を形成するへき開におけるへき開領域の上記半導体レーザ素子の半導体層の上に絶縁膜を設けると共に、上記へき開領域の絶縁膜に、上記領域以外の絶縁膜の膜厚より薄い領域を設けて上記絶縁膜を成膜し、上記電極層を上記へき開領域の上記半導体レーザ素子の半導体層の絶縁膜上に設け、上記半導体ウエハの端にスクライブラインを入れた後に上記スクライブラインに応力をかけることで上記半導体ウエハをへき開して、発光面端部まで絶縁膜を介して電極と半導体層とが延した半導体レーザ素子に分割することを特徴とする半導体レーザ素子の製造方法。In a method for manufacturing a semiconductor laser device, a semiconductor layer is laminated on a semiconductor wafer, an electrode layer is provided on the semiconductor layer through an insulating film, and the semiconductor layer is cleaved in the crystal direction of the semiconductor wafer to be divided into a plurality of semiconductor laser devices An insulating film is provided on the semiconductor layer of the semiconductor laser element in the cleavage region in the cleavage for forming the light emitting surface of the semiconductor laser element, and the insulating film in the cleavage region is thinner than the thickness of the insulating film other than the region The insulating film is formed by providing a region, the electrode layer is provided on the insulating film of the semiconductor layer of the semiconductor laser element in the cleavage region, and a scribe line is inserted into an end of the semiconductor wafer, and then the scribe line is formed. stress cleaved the semiconductor wafer by applying a minute semiconductor laser device and to the light-emitting surface end portion through the insulating film electrode and the semiconductor layer is extended The method of manufacturing a semiconductor laser device which is characterized in that.
JP2002300157A 2002-10-15 2002-10-15 Manufacturing method of semiconductor laser device Expired - Fee Related JP4186581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300157A JP4186581B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300157A JP4186581B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2004134701A JP2004134701A (en) 2004-04-30
JP4186581B2 true JP4186581B2 (en) 2008-11-26

Family

ID=32289082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300157A Expired - Fee Related JP4186581B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4186581B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134717A1 (en) * 2005-06-16 2006-12-21 Sharp Kabushiki Kaisha Nitride semiconductor laser and method for fabricating same
JP2010225961A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP5998460B2 (en) * 2011-11-21 2016-09-28 三菱電機株式会社 Semiconductor laser diode and manufacturing method thereof
JP2013232672A (en) * 2013-07-08 2013-11-14 Mitsubishi Electric Corp Semiconductor element manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124492A (en) * 1986-11-13 1988-05-27 Fujitsu Ltd Manufacture of semiconductor laser
JP3227287B2 (en) * 1993-11-17 2001-11-12 日亜化学工業株式会社 Method of manufacturing gallium nitride-based compound semiconductor chip and gallium nitride-based compound semiconductor device
JP2000151021A (en) * 1998-09-07 2000-05-30 Mitsubishi Electric Corp Semiconductor element and manufacture of the same

Also Published As

Publication number Publication date
JP2004134701A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3230572B2 (en) Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device
JP3904585B2 (en) Manufacturing method of semiconductor device
US8148240B2 (en) Method of manufacturing semiconductor chips
JP2004031526A (en) Manufacturing method of group iii nitride compound semiconductor element
JP2005108863A (en) Vertical gallium nitride light emitting diode and its manufacturing method
JP2007511105A (en) Method for processing the back side of a semiconductor wafer having a light emitting device (LED) thereon, and an LED formed by the method
JP2006073619A (en) Nitride based compound semiconductor light emitting diode
JP2009164233A (en) Nitride semiconductor laser device and method of manufacturing the same
US20150349487A1 (en) Method For Producing Semiconductor Laser Elements And Semi-Conductor Laser Element
JP2861991B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP4639520B2 (en) Manufacturing method of nitride semiconductor chip
JP3395620B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2019047065A (en) Method for manufacturing quantum cascade laser light source
JP3227287B2 (en) Method of manufacturing gallium nitride-based compound semiconductor chip and gallium nitride-based compound semiconductor device
JP4186581B2 (en) Manufacturing method of semiconductor laser device
JP2000173952A (en) Semiconductor device and its manufacture
JP2013058707A (en) Semiconductor light-emitting element manufacturing method
KR20010088931A (en) Fabrication Method of GaN related LED using Substrate Remove Technology
JP2003282945A (en) Semiconductor light emitting device
JP2000049415A (en) Nitride semiconductor laser element
JP2016046461A (en) Semiconductor light-emitting element wafer, semiconductor light-emitting element and manufacturing method of semiconductor light-emitting element
KR20070043296A (en) Method of producing light emitting diode having vertical structure
JP2010028140A (en) Method of manufacturing nitride-based compound semiconductor light-emitting element
JP3987029B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
CN100433261C (en) Nitride semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R151 Written notification of patent or utility model registration

Ref document number: 4186581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees