JP4184536B2 - トランスポンダ素子及びトランスポンダ - Google Patents

トランスポンダ素子及びトランスポンダ Download PDF

Info

Publication number
JP4184536B2
JP4184536B2 JP11873699A JP11873699A JP4184536B2 JP 4184536 B2 JP4184536 B2 JP 4184536B2 JP 11873699 A JP11873699 A JP 11873699A JP 11873699 A JP11873699 A JP 11873699A JP 4184536 B2 JP4184536 B2 JP 4184536B2
Authority
JP
Japan
Prior art keywords
transponder
setting unit
information setting
transponder element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11873699A
Other languages
English (en)
Other versions
JP2000306188A (ja
Inventor
泰 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP11873699A priority Critical patent/JP4184536B2/ja
Publication of JP2000306188A publication Critical patent/JP2000306188A/ja
Application granted granted Critical
Publication of JP4184536B2 publication Critical patent/JP4184536B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、センサとして容易に用いることができるトランスポンダ素子及びトランスポンダに関するものである。
【0002】
【従来の技術】
本願出願人は、周知のトランスポンダとセンサとを接続或いは一体化し、測定地点或いは観測地点からセンサまでの配線を行うことなく計測の対象となる特定の物理量を測定或いは観測できるようにした。
【0003】
例えば、特願平10−250954号では、加硫モールド内に温度センサ或いは圧力センサを配置した場合、外部からセンサまでの配線が非常に困難である。また、加硫モールドは高温になるので、開放時においても作業員が近づいてモールド内のセンサを取り出すには危険が伴う。このため、トランスポンダとセンサを接続して、加硫モールドを開いたときに加硫処理中における温度や圧力の測定結果を、電磁波を用いてワイヤレスで得られるようにした。
【0004】
即ち、加硫中において温度或いは圧力センサから出力される温度或いは圧力に対応したアナログ信号をアナログ/ディジタル(A/D)変換器を用いてディジタルデータに変換すると共にこのデータをメモリに記憶し、この記憶データをモールド開放時に応答信号としてトランスポンダから送信する。これにより、高温の加硫モールドに近づくことなく、加硫処理中における温度や圧力の情報を得ることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の構成ではセンサとトランスポンダとは互いに独立した構成部分であり、これらを接続するためにセンサから出力されるアナログ信号をディジタルデータに変換するためのA/D変換器を用いなければならなかった。このため、このA/D変換器における電力消費量が大きくなり、トランスポンダとセンサを駆動するための電源容量を小さくするには限界があった。さらに、受信電波のエネルギーによってトランスポンダとセンサを駆動するときはトランスポンダの送信出力が小さくなり、また電源として電池を用いたときは装置全体の形状が大型になると共に電池寿命が短くなり且つ電池寿命が尽きたときに電池を交換する必要があった。
【0006】
本発明の目的は上記の問題点に鑑み、単独でもセンサとして使用可能なトランスポンダ素子及びA/D変換器を介在させずに計測対象の物理量を検出できるセンサ機能を持ったトランスポンダを提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記の目的を達成するために請求項1では、設定されている応答情報を二値化信号として出力する応答情報設定部と、質問信号を入力したときに前記応答情報設定部に設定されている応答情報を応答信号として送信する送受信手段とを備え、アンテナと接続することによってトランスポンダを構成するトランスポンダ素子において、外部から働く力によって変形する基板の表面に膜状に形成されたインピーダンス素子を有するとともに一対の入力端子と一対の出力端子とを有するブリッジ回路からなるセンサ部と、前記ブリッジ回路の対向する1対の入力端子に接続された電源とを備えると共に、前記応答情報設定部は、変化しない固定情報を記憶し、該記憶されている固定情報を二値化信号として出力する固定情報記憶部と、前記ブリッジ回路の出力端子に接続された2つの入力端子を有し、該入力端子の電気的状態に応じた二値化信号を入力端子毎に1ビットで出力する可変情報設定部とからなるトランスポンダ素子を提案する。
【0008】
該トランスポンダ素子によれば、前記基板に対して外力が加わると基板が歪み、これに伴って基板表面のインピーダンス素子の断面積及び長さが変化してそのインピーダンスが変化する。これにより、前記基板に外力が加わる前と比べて前記ブリッジ回路の出力端子に流れる電流値が変化し、前記可変情報設定部の入力端子における電気的状態が変わり、可変情報設定部の出力端子から出力される二値化信号の値が変化する。
【0009】
また、請求項2では、設定されている応答情報を二値化信号として出力する応答情報設定部と、質問信号を入力したときに前記応答情報設定部に設定されている応答情報を応答信号として送信する送受信手段とを備え、アンテナと接続することによってトランスポンダを構成するトランスポンダ素子において、外部から働く力によって変形する基板上に形成され且つ一端と他端を入力端子として該入力端子に電源が接続された電気的な抵抗膜と、前記抵抗膜の一端と他端との間の異なる位置に接続された2つ以上の出力端子とを有するセンサ部を備えると共に、前記応答情報設定部は、変化しない固定情報を記憶し、該記憶されている固定情報を二値化信号として出力する固定情報記憶部と、前記センサ部の出力端子に接続された2つ以上の入力端子を有し、該入力端子の電気的状態に応じた二値化信号を入力端子毎に1ビットで出力する可変情報設定部とからなるトランスポンダ素子を提案する。
【0010】
該トランスポンダ素子によれば、前記電源によって前記抵抗膜の一端から他端に向けて電流が流れると、前記可変情報設定部の入力端子には抵抗膜の一端及び他端との間の距離等に応じた電流が流れる或いは電圧が印加される。また、前記基板に対して外力が加わると基板が歪み、これに伴って前記抵抗膜の断面積及び長さが変化して、その抵抗値が変化する。これにより、前記基板に外力が加わる前と比べて前記可変情報設定部の入力端子に流れる電流値或いは印加される電圧値が変化し、前記可変情報設定部の入力端子における電気的状態が変わり、可変情報設定部の出力端子から出力される二値化信号の値が変化する。
【0011】
た、請求項3では、請求項1又は2に記載のトランスポンダ素子において、前記基板は部分的に異なった熱膨張率を有しているトランスポンダ素子を提案する。
【0012】
該トランスポンダ素子によれば、周囲の環境変化などによって前記基板の温度が変わると、基板が熱膨張或いは熱収縮する。さらに、前記基板の熱膨張率は部分的に異なっているので、熱膨張或いは熱収縮に伴って前記インピーダンス素子或いは抵抗膜の断面積及び長さが部分的に変化する。
【0013】
また、請求項4では、請求項1又は2に記載のトランスポンダ素子において、前記基板は熱膨張率の異なる少なくとも2つの層を有しているトランスポンダ素子を提案する。
【0014】
該トランスポンダ素子によれば、周囲の環境変化などによって前記基板の温度が変わると、基板が熱膨張或いは熱収縮する。さらに、前記基板は熱膨張率の異なる少なくとも2層を有しているので、熱膨張或いは熱収縮に伴って反りが生じ、前記インピーダンス素子或いは抵抗膜の断面積及び長さが変化する
【0015】
た、請求項5では、請求項1又は2に記載のトランスポンダ素子において、前記可変情報設定部が、ランダムアクセスメモリと、該ランダムアクセスメモリに対するデータ書き込み手段とデータ読み出し手段とを備えているトランスポンダ素子を提案する。
【0016】
該トランスポンダ素子によれば、可変情報設定部の入力端子における電気的状態が二値化信号としてランダムアクセスメモリに一時記憶されると共に応答情報に設定されるので、時々刻々と変化する環境状態などを検出するセンサとして使用する場合、環境状態に対応して変化するアナログ電気信号を二値化データとしてランダムアクセスメモリの任意アドレスに順次記憶することができ、必要に応じてデータ読み出し手段によって記憶データの読み出しを行うことができる。
【0017】
また、請求項6では、請求項1又は2に記載のトランスポンダ素子において、前記可変情報設定部が双安定回路から成るトランスポンダ素子を提案する。
【0018】
該トランスポンダ素子によれば、前記双安定回路の入力端子における電気的状態が二値化信号として双安定回路に一時的に蓄積され、該二値化信号が双安定回路から出力されて応答情報に設定される。
【0019】
また、請求項7では、請求項1又は2に記載のトランスポンダ素子において、前記送受信手段はセントラルプロセッシングユニットを有し、前記可変情報設定部が前記セントラルプロセッシングユニットの他のポートから独立して設けられている入力ポート端子から成るトランスポンダ素子を提案する。
【0020】
該トランスポンダ素子によれば、セントラルプロセッシングユニットの独立した入力ポート端子における電気的状態が二値化信号としてセントラルプロセッシングユニットに取り込まれ、該二値化信号が応答情報に設定される。
【0021】
また、請求項8では、請求項1又は2に記載のトランスポンダ素子において、前記可変情報設定部は、入力端子に接続されたシュミトトリガ回路を有し、該シュミットトリガ回路から二値化信号を出力するトランスポンダ素子を提案する
【0022】
また、請求項9では、請求項1又は2に記載のトランスポンダ素子において、前記固定情報がトランスポンダに固有の識別情報であるトランスポンダ素子を提案する。
【0023】
該トランスポンダ素子によれば、固定情報としてトランスポンダに固有の識別情報が送信され、該識別情報によってトランスポンダが特定される。
【0024】
また、請求項10では、請求項1又は2に記載のトランスポンダ素子において、各構成部分がチップ型のシリコン基板上に形成されているトランスポンダ素子を提案する。
【0025】
該トランスポンダ素子によれば、各構成部分がチップ型のシリコン基板上に形成され、形状が小型化される。
【0026】
また、請求項11では、前記請求項1乃至10の何れかに記載のトランスポンダ素子を備えているトランスポンダを提案する
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態を説明する。
【0028】
図1は、本発明の第1の実施形態におけるトランスポンダを示す外観斜視図、図2は本発明の第1の実施形態におけるトランスポンダ素子を示す外観斜視図、図3はトランスポンダ素子を示す平面図、図4は図3におけるA−A線矢視方向断面図である。
【0029】
図1において、10はトランスポンダで、トランスポンダ素子11とループ状のアンテナ線12を2枚のフィルム13,14で挟むことにより構成されている。
【0030】
フィルム13,14は、例えばポリイミドフィルムからなり、下側のフィルム13上にアンテナ線12が印刷形成されている。また、トランスポンダ素子11及び2枚のフィルム13,14間は樹脂によって接着されている。
【0031】
トランスポンダ素子11は、図2に示すように、トランスポンダ素子本体15とこの周囲を覆う直方体形状の樹脂製パッケージ16から成り、パッケージ16の一側面にはアンテナ接続端子16a,16bが設けられている。
【0032】
トランスポンダ素子本体15は、図3及び図4に示すように、主回路20とブリッジ回路27が矩形状のシリコン基板(以下、端に基板と称する)30上に形成された周知の半導体チップからなる。
【0033】
また、ブリッジ回路27は4つの抵抗膜R1〜R4から成り、トランスポンダ素子本体15を覆うパッケージ16には1つの抵抗膜R3の上部所定空間に空隙部16dが形成されると共にこの空隙部16dに対向する基板30の下面側に開口部16cが形成されている。さらに、基板30においてブリッジ回路27が形成されている部分には、熱膨張率が異なる第1の層31と第2の層32が形成されている。この第2の層32の上面に導電層33が形成され、この導電層33によって各抵抗膜R1〜R4が導電接続されている。
【0034】
ここで、第2の層32の熱膨張率は第1の層31の熱膨張率よりも大きく設定されている。例えば、第1の層31はシリコン(Si)層であり、第2の層32は拡散層である。
【0035】
また、この開口部16cを外部空間と連通するように下側のフィルム13にも同等形状の開口部13aが形成されている。
【0036】
図5は、上記トランスポンダ10の電気系回路を示すブロック図である。図において、20は主回路で、整流回路21、平滑・蓄電回路22、中央処理部23、高周波回路24、固定情報メモリ25、可変情報設定部26から構成されている。27はブリッジ回路で、4つの抵抗膜R1〜R4を接続した周知のブリッジ回路である。
【0037】
整流回路21は、その入力側がアンテナ接続端子16a,16bに接続され、アンテナ線12に発生した誘導起電力を整流して出力する。
【0038】
平滑・蓄電回路22は、整流回路21からの出力を平滑して直流電流にすると共にコンデンサに蓄電し、この電圧Vsを主回路20の各構成部及びブリッジ回路27に供給する。
【0039】
中央処理部23は、周知のCPUを主体として構成され、予め設定されたプログラムに基づいて動作し、高周波回路24を介して質問信号を受信したときに固定情報メモリ25に記憶されている情報と可変情報設定部26に設定された情報を応答信号として高周波回路26を介して送信する。
【0040】
高周波回路26は、所定周波数電波の送信回路及び受信回路を備え、これらはアンテナ接続端子16a,16bを介してアンテナ線12に接続され、外部からの質問信号を受信してこれをバイナリデータとして中央処理部23に送出すると共に、中央処理部23から出力されるバイナリーデータを応答信号として送信する。
【0041】
固定情報メモリ25は、個々のトランスポンダに固有の8ビットの識別情報が予め記憶されたリードオンリーメモリ(ROM)からなり、中央処理部23から読み出し信号を入力したときに、記憶している識別情報を中央処理部23に対して出力する。
【0042】
可変情報設定部26は、2つの3ステートゲート回路(以下、単にゲート回路と称する)261,262から構成されている。各ゲート回路261,262は、入力端子の電圧レベルが所定のしきい値を越えたとき出力信号をハイレベル(バイナリー値「1」)に設定し、入力端子端子の電圧レベルがしきい値以下のとき出力信号をローレベル(バイナリー値「0」)に設定する。また、各ゲート回路261,262は、中央処理部から上記読み出し信号を入力したときに設定値を出力し、これ以外は出力をオープン状態とする。
【0043】
ブリッジ回路27は、4つの抵抗膜R1〜R4から構成され、その一方の入力端子は接地され他方の入力端子には電圧Vsが印加されている。また、ブリッジ回路27の1対の出力端子はそれぞれ可変情報接地部26のゲート回路261,262の入力端子に接続されている。製造時においてはブリッジ回路27が平衡状態となるように且つ2つの出力端子の電圧V1,V2がゲート回路261,262の入力閾値よりもやや低くなるように、各抵抗膜R1〜R4の抵抗値が設定されている。即ち、図5において、R1×R3=R2×R4となるように各抵抗膜R1〜R4の抵抗値が設定されている。平衡状態のとき、ブリッジ回路27の2つの出力端子の電圧V1,V2が等しくなる。
【0044】
次に、前述の構成よりなるトランスポンダ10の動作を説明する。
【0045】
外部から所定周波数の電波によって質問信号を受信したとき、整流回路21及び平滑・蓄電回路22によって動作のための電気エネルギーが生成され、これにより各部が動作可能となる。中央処理部23は、高周波回路から質問信号を入力した後、固定情報メモリ25に記憶されている識別情報と可変情報設定部26に設定された2ビットの可変情報を応答信号として高周波回路24を介して送信する。
【0046】
可変情報設定部26に設定される2ビットの可変情報はブリッジ回路27の平衡状態及び非平衡状態によって変化する。このブリッジ回路27が平衡状態のときは、出力端子の電圧V1,V2が等しく、これらの電圧V1,V2はゲート回路261,262の入力閾値よりもやや低い値であるので、それぞれのゲート回路の261,262の出力設定値は「0」となる。
【0047】
また、ブリッジ回路27の平衡状態が崩れるときは、R1×R3≠R2×R4となるときである。本実施形態では、基板30の抵抗膜R3が形成さている部分の下面を外部に露出させると共に上部に空隙部16dを形成しているので、周囲の温度及び圧力に応じて、露出された部分の基板30が変形し、抵抗膜R3の抵抗値が変化する。
【0048】
例えば、周囲圧力が一定で周囲温度が低下したときは、図6に示すように、第2の層32よりも第1の層31の収縮が大きくなるので、基板30は上方向に突出するように湾曲する。これにより、抵抗膜R3が両端子方向に引き延ばされるので、抵抗膜R3の長さが増加すると共に断面積が減少するため抵抗値が増加する。また、周囲圧力が一定で周囲温度が上昇したときは、図7に示すように、第2の層32よりも第1の層31の膨張が大きくなるので、基板30は下方向に突出するように湾曲する。これにより、抵抗膜R3は両端子間で縮められるので、抵抗膜R3の長さが減少すると共に断面積が増大するため抵抗値が減少する。
【0049】
従って、図8に示すように、応答信号を10ビットとし、ビットD0〜ビットD7を固定情報、ビットD8及びビットD9を可変情報としてゲート回路261の出力をビットD8に、またゲート回路262の出力をビットD9にそれぞれ割り当てると、周囲温度の変化によってビットD8及びD9の値は図9のように変化する。
【0050】
即ち、図9に示すように、ブリッジ回路27が平衡状態にあるときの周囲温度tsを挟む2つの温度t1,t2(t1<ts<t2)の間では、ブリッジ回路27の出力端子の電圧V1,V2共にゲート回路261,262の閾値以下となるので、ビットD8及びD9共に「0」となる。
【0051】
また、周囲温度が上記温度t2より高くなると、抵抗膜R3の抵抗値が減少するため、ブリッジ回路27の出力端子の一方の電圧V1はゲート回路261の閾値より低くなり、他方の電圧V2はゲート回路261の閾値より高くなるので、ビットD8は「0」、ビットD9は「1」となる。
【0052】
また、周囲温度が上記温度t1より低くなると、抵抗膜R3の抵抗値が増大するため、ブリッジ回路27の出力端子の一方の電圧V1はゲート回路261の閾値より高くなり、他方の電圧V2はゲート回路261の閾値より低くなるので、ビットD8は「1」、ビットD9は「0」となる。
【0053】
一方、周囲温度が一定で周囲の空気圧が上昇したときは、空隙部16d内の空気圧よりも外部空気圧が高くなるので、図6に示すように、基板30は上方向に突出するように湾曲する。また、周囲温度が一定で周囲の空気圧が低下したときは、空隙部16d内の空気圧よりも外部空気圧が低くなるので、図7に示すように、基板30は下方向に突出するように湾曲する。
【0054】
従って、周囲空気圧の変化によってビットD8及びD9の値は図10のように変化する。
【0055】
即ち、図10に示すように、ブリッジ回路27が平衡状態にあるときの周囲空気圧Psを挟む2つの空気圧P1,P2(P1<Ps<P2)の間では、ブリッジ回路27の出力端子の電圧V1,V2共にゲート回路261,262の閾値以下となるので、ビットD8及びD9共に「0」となる。
【0056】
また、周囲の空気圧が上記空気圧P2より高くなると、抵抗膜R3の抵抗値が増大するため、ブリッジ回路27の出力端子の一方の電圧V1はゲート回路261の閾値より高くなり、他方の電圧V2はゲート回路261の閾値より低くなるので、ビットD8は「1」、ビットD9は「0」となる。
【0057】
また、周囲温度が上記温度t1より低くなると、抵抗膜R3の抵抗値が減少するため、ブリッジ回路27の出力端子の一方の電圧V1はゲート回路261の閾値より低くなり、他方の電圧V2はゲート回路261の閾値より高くなるので、ビットD8は「0」、ビットD9は「1」となる。
【0058】
従って、本実施形態によれば、トランスポンダ素子本体15に形成されたブリッジ回路27を温度又は圧力センサとして使用できると共に、センサの検出結果を消費電力が大きいA/D変換器を用いることなくバイナリーデータとして得ることができる。これにより、従来よりも電源容量を低減でき、受信電波のエネルギーを用いても十分な動作が可能である。
【0059】
次に、本発明の第2の実施形態を説明する。
【0060】
図11は、本発明の第2の実施形態におけるトランスポンダの電気系回路を示すブロック図である。図において、前述した第1の実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態と第2の実施形態との相違点は、第2の実施形態のトランスポンダ素子本体15Aにおいてシュミットトリガ回路からなるゲート回路263,364を備えた可変情報設定部26Aを設けたことである。これらのゲート回路263,264の接続は第1の実施形態と同様である。
【0061】
このようにヒステリシス特性を有するゲート回路263,264を設けることにより、入力電圧の変動による誤検出をヒステリシス特性の範囲内で抑制することができる。
【0062】
次に、本発明の第3の実施形態を説明する。
【0063】
図12は、本発明の第3の実施形態におけるトランスポンダの電気系回路を示すブロック図である。図において、前述した第1の実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態と第3の実施形態との相違点は、第3の実施形態のトランスポンダ素子本体15Bにおいて同期式R−Sフリップフロップからなる可変情報設定部26Bを設けたことである。例えば、図12に示すように、ブリッジ回路27の一方の出力端子(電圧V1)がS入力に接続され、他方の出力端子(電圧V2)がR入力端子に接続されている。これにより、中央処理部23から出力される読み出し信号に同期してR−S入力に対応したバイナリーデータが2つの出力端子Q、Q’から出力され、これらがビットD8,D9のデータとして応答信号が送信される。
【0064】
尚、図13に示すトランスポンダ素子本体15Cのように、非同期式のR−Sフリップフロップからなる可変情報設定部26Cを設けても良い。
【0065】
次に、本発明の第4の実施形態を説明する。
【0066】
図14は、本発明の第4の実施形態におけるトランスポンダ素子11Dを示す平面図、図15は図14におけるA−A線矢視方向断面図、図16は第4の実施形態におけるトランスポンダの電気系回路を示すブロック図である。図において、前述した第1の実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態と第4の実施形態との相違点は、ブリッジ回路27に代えて長さ方向に対して徐々に幅が狭くなる1つの抵抗膜28を設けると共に、シュミットトリガ回路からなる3ステートのゲート回路263〜266を4つ備えた可変情報設定部26Dを設けたことである。
【0067】
トランスポンダ素子本体15Dを覆うパッケージ16には抵抗膜28の上部所定空間に空隙部16dが形成されると共にこの空隙部16dに対向する基板30の下面側に開口部16cが形成されている。さらに、基板30において抵抗膜28が形成されている部分には、熱膨張率が異なる第1の層31と第2の層32が形成されている。ここで、第2の層32の熱膨張率は第1の層31の熱膨張率よりも大きく設定されている。
【0068】
また、第2の層32の上面に帯状の導電層33が複数形成され、これらの導電層33の一端は抵抗膜28の長手方向両端部と長手方向に5等分するように抵抗膜28に接続されている。また、抵抗膜28の一端(抵抗膜の幅広側)に接続された導電層33の他端には電圧Vsが印加され、抵抗膜28の他端に接続された導電層33の他端は接地されている。さらに、抵抗膜28の長手方向中間部に接続された4本の導電層33の他端はゲート回路263〜266の入力端子に接続されている。
【0069】
これにより、抵抗膜28は、図16に示すように導電層33との接続点によって5つの部分に分割され、各部分の抵抗値をRa〜Reとしてこれらが直列接続されたものと考えられる。また、周囲の温度及び圧力に応じて、開口部16c,13aによって露出された部分の基板30が変形し、抵抗膜28の抵抗値が変化する。このとき、抵抗膜28の幅が徐々に減少するように形成されているので、上記各部分の抵抗値Ra〜Reの増減率が異なったものとなり、周囲温度の変化或いは周囲空気圧の変化に伴って各ゲート回路263〜266の入力電圧V1〜V4が変化する。これにより、ゲート回路263〜266から出力されるバイナリーデータの値も変化する。
【0070】
従って、図17に示すように、応答信号を12ビットとし、ビットD0〜ビットD7を固定情報、ビットD8〜ビットD11を可変情報としてゲート回路263〜266の出力をビットD8〜D11にそれぞれ割り当てると、周囲温度の変化によってビットD8〜D11の値は図18のように変化する。
【0071】
例えば、図18に示すように、標準温度tsを挟む2つの温度t1,t2(t1<ts<t2)の間では、電圧V1,V2共にゲート回路263,264の閾値以上となり且つ電圧V3,V4がゲート回路265,266の閾値以下となるように各抵抗値Ra〜Reを設定しておくと、ビットD8,D9が「1」となり、ビットD10,D11が「0」となる。
【0072】
また、周囲温度が上記温度t1より低くなると、抵抗膜28の抵抗値が増大し且つ幅の広い部分よりも幅の狭い部分の抵抗値の増加率が高くなるため、電圧V3がゲート回路265の閾値以上となるので、ビットD8〜D10が「1」、ビットD11が「0」となる。
【0073】
また、周囲温度が上記温度t2より高くなると、抵抗膜28の抵抗値が減少し且つ幅の広い部分よりも幅の狭い部分の抵抗値の減少率が高くなるため、電圧V2がゲート回路264の閾値以下となるので、ビットD8が「1」、ビットD9〜D11が「0」となる。
【0074】
周囲温度が上記温度t2よりさらに高い温度t3よりも高くなると、電圧V1がゲート回路263の閾値以下となるので、ビットD8〜D11が「0」となる。
【0075】
一方、周囲温度が一定で周囲の空気圧が上昇したときは、空隙部16d内の空気圧よりも外部空気圧が高くなるので、図6に示すように、基板30は上方向に突出するように湾曲する。また、周囲温度が一定で周囲の空気圧が低下したときは、空隙部16d内の空気圧よりも外部空気圧が低くなるので、図7に示すように、基板30は下方向に突出するように湾曲する。
【0076】
従って、周囲空気圧の変化によってビットD8〜D11の値は図19のように変化する。
【0077】
例えば、図19に示すように、標準圧力Psを挟む2つの圧力P1,P2(P1<Ps<P2)の間では、電圧V1,V2共にゲート回路263,264の閾値以上となり且つ電圧V3,V4がゲート回路265,266の閾値以下となるように各抵抗値Ra〜Reを設定しておくと、ビットD8,D9が「1」となり、ビットD10,D11が「0」となる。
【0078】
また、周囲の空気圧が上記圧力P1より低くなると、抵抗膜28の抵抗値が減少し且つ幅の広い部分よりも幅の狭い部分の抵抗値の減少率が高くなるため、電圧V2がゲート回路264の閾値以下となるので、ビットD8が「1」、ビットD9〜D11が「0」となる。
【0079】
また、周囲の空気圧が上記圧力P2より高くなると、抵抗膜28の抵抗値が増大し且つ幅の広い部分よりも幅の狭い部分の抵抗値の増加率が高くなるため、電圧V3がゲート回路265の閾値以上となるので、ビットD8〜D10が「1」、ビットD11が「0」となる。
【0080】
周囲の空気圧が上記圧力P2よりさらに高い圧力P3よりも高くなると、電圧V4がゲート回路266の閾値以上となるので、ビットD8〜D11が「1」となる。
【0081】
従って、本実施形態によれば、トランスポンダ素子本体15Dに形成された抵抗膜28を温度又は圧力センサとして使用できると共に、センサの検出結果を消費電力が大きいA/D変換器を用いることなくバイナリーデータとして得ることができる。これにより、従来よりも電源容量を低減でき、受信電波のエネルギーを用いても十分な動作が可能である。
【0082】
次に、本発明の第5の実施形態を説明する。
【0083】
図20は、本発明の第5の実施形態におけるトランスポンダの電気系回路を示すブロック図である。図において、前述した第4の実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第4の実施形態と第5の実施形態との相違点は、第5の実施形態のトランスポンダ素子本体15Eにおいてシュミットトリガ回路からなるゲート回路263〜266と不揮発性のランダムアクセスメモリ(以下、単にRAMと称する)267を備えた可変情報設定部26Eを設けたことである。これらのゲート回路263〜266の接続は第4の実施形態と同様である。また、RAM267の4ビットデータバスはゲート回路263〜266の出力端子に接続され、RAM267は中央処理部23からの読み出し信号或いは書き込み信号によって中央処理部23の指定したアドレスに対して上記ビットD8〜D11のデータの書き込み読み出しを行う。
【0084】
このようにRAM267に検出した4ビットD8〜D11のデータを記憶できるようにしたので、例えば中央処理部23はデータ検出時にこれをRAM267に記憶し、記憶データ読み出し命令を含む質問信号を受信したときにRAM267の指定されたアドレスからデータを読み出して送信することも可能である。
【0085】
次に、本発明の第6の実施形態を説明する。
【0086】
図21は、本発明の第6の実施形態におけるトランスポンダを示す外観斜視図、図22は第6の実施形態におけるトランスポンダ素子を示す外観斜視図、図23は第6の実施形態におけるセンサ部を示す平面図、図24は図23のA−A線矢視方向の断面図、図25は第6の実施形態におけるトランスポンダ素子の電気回路を示すブロック図である。図において、前述した第4の実施形態と同一構成部分は同一符号をもって表しその説明を省略する。また、第4の実施形態と第6の実施形態との相違点は、第6の実施形態では第1の実施形態における抵抗膜28の部分を分離したトランスポンダ素子41を構成し、抵抗膜28に代えてこれと同等の機能を有するセンサ部42を設けたことである。
【0087】
即ち、第6の実施形態のトランスポンダ40は、図21に示すように、トランスポンダ素子41とループ状のアンテナ線12及びセンサ部42を2枚のフィルム13,14で挟むことにより構成されている。
【0088】
フィルム13,14は、前述と同様に例えばポリイミドフィルムからなり、下側のフィルム13上にアンテナ線12が印刷形成されている。また、トランスポンダ素子41とセンサ部42及び2枚のフィルム13,14間は樹脂によって接着されている。
【0089】
トランスポンダ素子41は、図22に示すように、トランスポンダ素子本体41aとこの周囲を覆う直方体形状の樹脂製のパッケージ41bから成り、パッケージ41bの一側面にはアンテナ接続端子41c,41dが設けられ、他側面には電源出力端子41e、4つの入力端子41f〜41i、及び接地端子41jが設けられている。また、トランスポンダ素子本体41aは、主回路20が矩形状のシリコン基板上に形成された周知の半導体チップからなる。
【0090】
センサ部42は、図23及び図24に示すように、2枚のフィルム51a,51bを貼り合わせた基板52上に長さ方向に対して徐々に幅が狭くなる1つの抵抗膜53が形成されている。
【0091】
さらに、基板52を形成する2つのフィルム51a,51bは、互いに異なる熱膨張率を有し、上層フィルム51aの熱膨張率は下層フィルム51bの熱膨張率よりも大きく設定され、上層フィルム51aの上面には、帯状の印刷配線54が複数形成されている。これらの印刷配線54の一端は抵抗膜53の長手方向両端部と長手方向に5等分するように抵抗膜53に接続されている。
【0092】
また、図25に示すように、抵抗膜53の一端(抵抗膜の幅広側)に接続された印刷配線54の他端はトランスポンダ素子41の電源出力端子41eに接続されて電圧Vsが印加されている。また、抵抗膜53の他端に接続された印刷配線54の他端は、トランスポンダ素子41の接地端子41jに接続されている。さらに、抵抗膜28の長手方向中間部に接続された4本の印刷配線54の他端は、トランスポンダ素子41の4つの入力端子41f〜41iにそれぞれ接続されている。
【0093】
これにより、センサ部42の抵抗膜53は、図25に示すように印刷配線54との接続点によって5つの部分に分割され、第4の実施形態と同様に各部分の抵抗値をRa〜Reとしてこれらが直列接続されたものとなり、周囲の温度に応じて、基板52が変形し、抵抗膜53の抵抗値が変化する。
【0094】
上記構成よりなるトランスポンダ40も周囲温度の変化を検出するセンサとして使用できると共に、センサの検出結果を消費電力が大きいA/D変換器を用いることなくバイナリーデータとして得ることができる。これにより、従来よりも電源容量を低減でき、受信電波のエネルギーを用いても十分な動作が可能である。
【0095】
尚、前述した各実施形態は本発明の一具体例にすぎず、本発明がこれらの実施形態に限定されないことは言うまでもない。
【0096】
例えば、上記実施形態では受信電磁波のエネルギーのみによって動作するように構成したが電池を用いても良いし、発電装置を設けて駆動するようにしても良い。
【0097】
また、上記実施形態では抵抗膜を用いた抵抗ブリッジ回路をセンサとして用いたが、抵抗膜に限定されることはなく、リアクタンスブリッジ回路或いはキャパシタンスブリッジ回路を用いても良い。
【0098】
また、第6の実施形態のトランスポンダ素子41の入力端子41f〜41iと電源出力端子41e或いは接地端子41jをトランスポンダ40の外部に露出する端子に接続して、これらの端子間の電気伝導度の変化を直接検出するようにしても良い。
【0099】
【発明の効果】
以上説明したように本発明の請求項1乃至10記載のトランスポンダ素子によれば、可変情報設定部の入力端子における電気的状態が二値化信号として応答情報に設定されるため、環境状態に対応して変化するアナログ電気信号を前記可変情報設定部の入力端子に入力することにより該アナログ電気信号のレベルに応じて二値化信号の値が変化するので、時々刻々と変化する環境状態の物理量などを検出するセンサとして使用できるトランスポンダを容易に構成することができる。また、消費電力の大きいA/D変換器を用いることなく、前記可変情報設定部の1つの入力端子に対して1ビットの二値化信号を出力しているので、A/D変換器を用いた場合に比べて消費電力を大幅に削減することができる。これにより、受信電波のエネルギーによる駆動でも十分な動作が可能であると共に、電池を用いた駆動では電池寿命の延命を図ることができ電池交換の手間を大幅に削減することができる。
【0100】
また、請求項1に記載のトランスポンダ素子によれば、上記の効果に加えて、基板の歪みよってインピーダンスが変化するインピーダンス素子を有するブリッジ回路を、圧力や温度などのセンサとして使用することができる。
【0101】
また、請求項2に記載のトランスポンダ素子によれば、上記の効果に加えて、基板の歪みよって抵抗値が変化する抵抗膜を、圧力や温度などのセンサとして使用することができる。
【0102】
また、請求項3に記載のトランスポンダ素子によれば、上記の効果に加えて、部分的に異なった熱膨張率を有する基板を用いたので、熱膨張或いは熱収縮に伴って前記インピーダンス素子或いは抵抗膜の断面積及び長さを部分的に変化させることができ、センサ機能の多様化を図ることができる。
【0103】
また、請求項4に記載のトランスポンダ素子によれば、上記の効果に加えて、熱膨張率の異なる少なくとも2つの層をもつ基板を用いたので、周囲温度の変換を敏感に検出可能となる
【0104】
た、請求項5に記載のトランスポンダ素子によれば、上記の効果に加えて、ランダムアクセスメモリを可変情報設定部に設けたので、可変情報設定部の入力端子における電気的状態が二値化信号としてランダムアクセスメモリに一時記憶されると共に応答情報に設定されるので、時々刻々と変化する環境状態などを検出するセンサとして使用する場合、環境状態に対応して変化するアナログ電気信号を二値化データとしてランダムアクセスメモリの任意アドレスに順次記憶することができ、必要に応じてデータ読み出し手段によって記憶データの読み出しを行うことができる。
【0105】
また、請求項6に記載のトランスポンダ素子によれば、上記の効果に加えて、双安定回路を可変情報設定部として用いたので、その入力端子における電気的状態を二値化信号として一時的に蓄積することができると共に、双安定回路から安定して出力される二値化信号を応答情報に設定することができる。
【0106】
また、請求項7に記載のトランスポンダ素子によれば、上記の効果に加えて、セントラルプロセッシングユニットの独立した入力ポート端子を可変情報設定部の入力端子としたので、構成を簡略化することができる。
【0107】
また、請求項8に記載のトランスポンダ素子によれば、上記の効果に加えて、シュミットトリガ回路のヒステリシス特性によって、入力された電気的状態の微小変化に対する出力変動を除去することができる。
【0108】
また、請求項9に記載のトランスポンダ素子によれば、上記の効果に加えて、固定情報としてトランスポンダに固有の識別情報が送信されるので、該識別情報によってトランスポンダを容易に特定することができる。
【0109】
また、請求項10に記載のトランスポンダ素子によれば、上記の効果に加えて、各構成部分がチップ型のシリコン基板上に形成されるので、形状を小型化することができる。
【0110】
また、請求項11に記載のトランスポンダによれば、可変情報設定部の入力端子における電気的状態が二値化信号として応答情報に設定されるため、環境状態に対応して変化するアナログ電気信号を前記可変情報設定部の入力端子に入力することにより該アナログ電気信号のレベルに応じて二値化信号の値が変化するので、時々刻々と変化する環境状態の物理量などを検出するセンサとして使用することができる。また、高度なA/D変換器を用いることなく、前記可変情報設定部の1つの入力端子に対して1ビットの二値化信号を出力しているので、A/D変換器を用いた場合に比べて消費電力を大幅に削減することができる。これにより、受信電波のエネルギーによる駆動でも十分な動作が可能であると共に、電池を用いた駆動では電池寿命の延命を図ることができ電池交換の手間を大幅に削減することができる
【図面の簡単な説明】
【図1】 本発明の第1の実施形態におけるトランスポンダを示す外観斜視図
【図2】 本発明の第1の実施形態におけるトランスポンダ素子を示す外観斜視図
【図3】 本発明の第1の実施形態におけるトランスポンダ素子を示す平面図
【図4】 図3におけるA−A線矢視方向断面図
【図5】 本発明の第1の実施形態におけるトランスポンダの電気回路を示すブロック図
【図6】 本発明の第1の実施形態における温度変化或いは圧力変化の検出動作を説明する図
【図7】 本発明の第1の実施形態における温度変化或いは圧力変化の検出動作を説明する図
【図8】 本発明の第1の実施形態における固定情報及び可変情報のデータビットを示す図
【図9】 本発明の第1の実施形態における温度変化検出時のデータビット変化を説明する図
【図10】 本発明の第1の実施形態における圧力変化検出時のデータビット変化を説明する図
【図11】 本発明の第2の実施形態におけるトランスポンダの電気系回路を示すブロック図
【図12】 本発明の第3の実施形態におけるトランスポンダの電気系回路を示すブロック図
【図13】 本発明の第3の実施形態に係る他の電気系回路を示すブロック図
【図14】 本発明の第4の実施形態におけるトランスポンダ素子を示す平面図
【図15】 図14におけるA−A線矢視方向断面図
【図16】 本発明の第4の実施形態におけるトランスポンダの電気系回路を示すブロック図
【図17】 本発明の第4の実施形態における固定情報及び可変情報のデータビットを示す図
【図18】 本発明の第4の実施形態における温度変化検出時のデータビット変化を説明する図
【図19】 本発明の第4の実施形態における圧力変化検出時のデータビット変化を説明する図
【図20】 本発明の第5の実施形態におけるトランスポンダの電気系回路を示すブロック図
【図21】 本発明の第6の実施形態におけるトランスポンダを示す外観斜視図
【図22】 本発明の第6の実施形態におけるトランスポンダ素子を示す外観斜視図
【図23】 本発明の第6の実施形態におけるセンサ部を示す平面図
【図24】 図23のA−A線矢視方向の断面図
【図25】 本発明の第6の実施形態におけるトランスポンダの電気系回路を示すブロック図
【符号の説明】
10…トランスポンダ、11…トランスポンダ素子、12…アンテナ線、13,14…フィルム、13a…開口部、15,15A〜15E…トランスポンダ素子本体、16…パッケージ、16a,16b…アンテナ接続端子、16c…開口部、16d…空隙部、20…主回路、21…整流回路、22…平滑・蓄電回路、23…中央処理部、24…高周波回路、25…固定情報メモリ、26,26A〜26E…可変情報設定部、261〜266…ゲート回路、267…RAM、27…ブリッジ回路、30…基板、31…下層、32…上層、33…導電層、R1〜R4…抵抗膜、40…トランスポンダ、41…トランスポンダ素子、42…センサ部、51a,51b…フィルム、52…基板、53…抵抗膜、54…印刷配線。

Claims (11)

  1. 設定されている応答情報を二値化信号として出力する応答情報設定部と、質問信号を入力したときに前記応答情報設定部に設定されている応答情報を応答信号として送信する送受信手段とを備え、アンテナと接続することによってトランスポンダを構成するトランスポンダ素子において、
    外部から働く力によって変形する基板の表面に膜状に形成されたインピーダンス素子を有するとともに一対の入力端子と一対の出力端子とを有するブリッジ回路からなるセンサ部と、
    前記ブリッジ回路の対向する1対の入力端子に接続された電源とを備えると共に、
    前記応答情報設定部は、
    変化しない固定情報を記憶し、該記憶されている固定情報を二値化信号として出力する固定情報記憶部と、
    前記ブリッジ回路の出力端子に接続された2つの入力端子を有し、該入力端子の電気的状態に応じた二値化信号を入力端子毎に1ビットで出力する可変情報設定部とからなる
    ことを特徴とするトランスポンダ素子。
  2. 設定されている応答情報を二値化信号として出力する応答情報設定部と、質問信号を入力したときに前記応答情報設定部に設定されている応答情報を応答信号として送信する送受信手段とを備え、アンテナと接続することによってトランスポンダを構成するトランスポンダ素子において、
    外部から働く力によって変形する基板上に形成され且つ一端と他端を入力端子として該入力端子に電源が接続された電気的な抵抗膜と、前記抵抗膜の一端と他端との間の異なる位置に接続された2つ以上の出力端子とを有するセンサ部を備えると共に、
    前記応答情報設定部は、
    変化しない固定情報を記憶し、該記憶されている固定情報を二値化信号として出力する固定情報記憶部と、
    前記センサ部の出力端子に接続された2つ以上の入力端子を有し、該入力端子の電気的状態に応じた二値化信号を入力端子毎に1ビットで出力する可変情報設定部とからなる
    ことを特徴とするトランスポンダ素子。
  3. 前記基板は部分的に異なった熱膨張率を有していることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  4. 前記基板は熱膨張率の異なる少なくとも2つの層を有していることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  5. 前記可変情報設定部は、ランダムアクセスメモリと、該ランダムアクセスメモリに対するデータ書き込み手段とデータ読み出し手段とを備えていることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  6. 前記可変情報設定部が双安定回路から成ることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  7. 前記送受信手段はセントラルプロセッシングユニットを有し、
    前記可変情報設定部が前記セントラルプロセッシングユニットの他のポートから独立して設けられている入力ポート端子から成ることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  8. 前記可変情報設定部は、入力端子に接続されたシュミットトリガ回路を有し、該シュミットトリガ回路から二値化信号を出力することを特徴とする請求項1又は2に記載のトランスポンダ素子。
  9. 前記固定情報がトランスポンダに固有の識別情報であることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  10. 各構成部分がチップ型のシリコン基板上に形成されていることを特徴とする請求項1又は2に記載のトランスポンダ素子。
  11. 前記請求項1乃至10の何れかに記載のトランスポンダ素子を備えていることを特徴とするトランスポンダ。
JP11873699A 1999-04-26 1999-04-26 トランスポンダ素子及びトランスポンダ Expired - Fee Related JP4184536B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11873699A JP4184536B2 (ja) 1999-04-26 1999-04-26 トランスポンダ素子及びトランスポンダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11873699A JP4184536B2 (ja) 1999-04-26 1999-04-26 トランスポンダ素子及びトランスポンダ

Publications (2)

Publication Number Publication Date
JP2000306188A JP2000306188A (ja) 2000-11-02
JP4184536B2 true JP4184536B2 (ja) 2008-11-19

Family

ID=14743809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11873699A Expired - Fee Related JP4184536B2 (ja) 1999-04-26 1999-04-26 トランスポンダ素子及びトランスポンダ

Country Status (1)

Country Link
JP (1) JP4184536B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005611A (ja) * 2000-06-22 2002-01-09 Akira Sugano 歪み検知装置及び歪み検知システム
JP2003006777A (ja) * 2001-06-18 2003-01-10 Lintec Corp 無線送信装置及び無線送受信システム
JP2005029142A (ja) * 2003-06-17 2005-02-03 Yokohama Rubber Co Ltd:The アンチロック・ブレーキ・システム及びそのセンサユニット
JP2005035523A (ja) 2003-06-26 2005-02-10 Yokohama Rubber Co Ltd:The 車両駆動制御システム及びそのセンサユニット
JP2005327104A (ja) * 2004-05-14 2005-11-24 Oki Electric Ind Co Ltd 非接触データキャリア、質問器、非接触データキャリアシステム、非接触データキャリアのデータ取得方法、及び、非接触データキャリアのデータ取得用プログラム
JP4561500B2 (ja) * 2005-06-30 2010-10-13 株式会社日立製作所 ワイヤレスひずみ測定システム
JP4528239B2 (ja) 2005-10-03 2010-08-18 株式会社日立製作所 無線icタグ
JP2007122600A (ja) * 2005-10-31 2007-05-17 Fujitsu Ltd 集積回路チップ及びrfidシステム
JP5052079B2 (ja) * 2006-09-08 2012-10-17 株式会社半導体エネルギー研究所 センサ装置及びそれを有する容器類
US8044813B1 (en) 2006-11-16 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Radio field intensity measurement device, and radio field intensity detector and game console using the same
US8991265B2 (en) 2007-08-27 2015-03-31 Koninklijke Philips N.V. Pressure sensor, sensor probe comprising a pressure sensor, medical apparatus comprising a sensor probe and a method of fabricating a sensor probe
WO2009048064A1 (ja) * 2007-10-09 2009-04-16 Systec Corporation 監視具、付設用状態センサ、及び、遠隔監視システム
JP5469445B2 (ja) * 2009-12-22 2014-04-16 株式会社メガチップス 近接センサ機能付き通信装置およびセンサシステム
JP7433071B2 (ja) 2020-02-13 2024-02-19 三菱重工業株式会社 センサ制御用無線タグ、移動体および点検システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363020A (en) * 1980-12-22 1982-12-07 Borg-Warner Corporation Interrogating system for remotely monitoring tire air pressure
JPS62159024A (ja) * 1986-01-07 1987-07-15 Fuji Electric Co Ltd 半導体圧力スイツチの圧力しきい値調整方法
JPS63141436U (ja) * 1987-03-07 1988-09-19
DE4100472C1 (ja) * 1991-01-09 1992-07-23 Texas Instruments Deutschland Gmbh, 8050 Freising, De
EP0563713A3 (en) * 1992-04-01 1996-01-24 Hughes Aircraft Co Remote identification sensor system
ATE184240T1 (de) * 1993-03-11 1999-09-15 Schrader Bridgeport Int Inc Reifendruckfernüberwachungssystem unter verwendung von kodierter reifenidentifikation und radiofrequenzdatenübertragung mit möglichkeit zum rekalibrieren nach reifenwechsel oder reifenaustausch
JPH0781340A (ja) * 1993-09-20 1995-03-28 Calsonic Corp タイヤ毎の減圧警報装置
DE69722336T2 (de) * 1996-09-27 2003-11-27 Motorola Inc Reifendrucküberwachungssystem
JPH10289297A (ja) * 1997-04-16 1998-10-27 Toshiba Chem Corp 非接触データキャリアと非接触データキャリアシステム
JP3875349B2 (ja) * 1997-05-02 2007-01-31 横浜ゴム株式会社 タイヤ摩耗状態検出方法並びにトランスポンダ装着タイヤ及び車両のタイヤ摩耗状態モニター装置
JP3878280B2 (ja) * 1997-05-27 2007-02-07 横浜ゴム株式会社 タイヤ装着用トランスポンダ及びトランスポンダ装着タイヤ

Also Published As

Publication number Publication date
JP2000306188A (ja) 2000-11-02

Similar Documents

Publication Publication Date Title
JP4184536B2 (ja) トランスポンダ素子及びトランスポンダ
AU757389B2 (en) Response device in IC card communication system
JP2005327104A (ja) 非接触データキャリア、質問器、非接触データキャリアシステム、非接触データキャリアのデータ取得方法、及び、非接触データキャリアのデータ取得用プログラム
CN106156824B (zh) 混合传感器/通信设备和方法
US10037486B2 (en) RF module and RF system
US8650460B2 (en) Electronic apparatus, method of correcting detection data, and sensor unit
US11662258B2 (en) Force sensor integrated on substrate
US7825767B2 (en) System for setting shutdown voltage of electronic device
CN207636196U (zh) 温度贴片及温度检测系统
CN206671517U (zh) 一种具有磁滞线圈的磁传感器封装结构
JP2015506069A (ja) 電池セル内から情報を伝送するための装置および方法、ならびに電池セル
CN107015171A (zh) 一种具有磁滞线圈的磁传感器封装结构
CN101167252B (zh) 提供外部开关功能的集成电路
CN102750570B (zh) 一种带受力敏感装置的rfid标签、rfid系统及受力检测方法
CN206291846U (zh) 导轨形变检测装置
CN102243718A (zh) 基于半导体衬底的装置、其制造方法和rfid装置
CN207730350U (zh) 一种柔性薄膜压力传感器
CN207730349U (zh) 微型薄片压力传感器
Le et al. A comparison of printed flexible RFID/NFC antennas for a microelectronic measurement system
CN107026670A (zh) 通讯装置
CN113091965B (zh) 压力传感器及压力传感系统
CN215832755U (zh) 温湿度记录仪
CN210694293U (zh) 蓝牙耳机及其中的温度筛选电路
CN219533806U (zh) 基于mems开关的无芯片uhf射频标签
CN112107088B (zh) 感应模组及可穿戴设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees