JP4183436B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP4183436B2
JP4183436B2 JP2002128561A JP2002128561A JP4183436B2 JP 4183436 B2 JP4183436 B2 JP 4183436B2 JP 2002128561 A JP2002128561 A JP 2002128561A JP 2002128561 A JP2002128561 A JP 2002128561A JP 4183436 B2 JP4183436 B2 JP 4183436B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
signal line
inverter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002128561A
Other languages
English (en)
Other versions
JP2003255916A (ja
Inventor
村 卓 中
宏 宜 林
原 久 男 藤
部 正 男 苅
村 和 夫 中
谷 正 克 木
Original Assignee
東芝松下ディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝松下ディスプレイテクノロジー株式会社 filed Critical 東芝松下ディスプレイテクノロジー株式会社
Priority to JP2002128561A priority Critical patent/JP4183436B2/ja
Publication of JP2003255916A publication Critical patent/JP2003255916A/ja
Application granted granted Critical
Publication of JP4183436B2 publication Critical patent/JP4183436B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタル画素データをアナログ映像信号に変換するD/A変換器、D/A変換器の出力を増幅する増幅器、および信号線選択回路を、画素アレイ部と一体に絶縁基板上に形成する表示装置に関する。
【0002】
【従来の技術】
画素アレイ部と駆動回路を同一のガラス基板上に形成する液晶表示装置の開発が盛んに行われている。画素アレイ部と駆動回路を同一のガラス基板に形成することにより、液晶表示装置全体を軽薄短小化することができ、携帯電話やノート型コンピュータなどの携帯機器の表示装置として幅広く用いることができる。
【0003】
この種の駆動回路一体型の液晶表示装置は、ガラス基板上にポリシリコンなどでTFTを形成し、これらTFT(薄膜トランジスタ)を用いて、画素アレイ部と駆動回路の双方を形成する。
【0004】
【発明が解決しようとする課題】
しかしながら、ガラス基板上に形成されるTFTは、動作速度があまり速くないため、駆動回路を構成するには色々な回路的な工夫が必要になる。また、ガラス基板上に特性の均一なTFTを形成するのは現時点では技術的に困難であり、TFTの特性の違いにより、表示むらなどの表示品質の低下が起きるおそれがある。
【0005】
さらに、画素アレイ部と駆動回路を同一のガラス基板に形成すると、ガラス基板の面積に対して相対的に画素アレイ部の占める割合が小さくなり、額縁が大きくなるという問題がある。
【0006】
本発明は、このような点に鑑みてなされたものであり、その目的は、表示品質を向上可能な表示装置を提供することにある。
【0007】
また、本発明の他の目的は、額縁を小さくできる表示装置を提供することにある。
【0008】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、絶縁基板上に縦横に列設される信号線および走査線と、前記信号線および走査線の各交点付近に形成される表示素子と、前記走査線を駆動する走査線駆動回路と、前記絶縁基板上に形成され前記信号線を駆動する信号線駆動回路と、を備えた表示装置において、前記信号線駆動回路は、デジタル画素データをラッチするラッチ回路と、前記ラッチ回路のラッチ出力をアナログ映像信号に変換するD/A変換器と、前記D/A変換器で変換されたアナログ映像信号を増幅する増幅器と、前記増幅器で増幅されたアナログ映像信号の供給先である信号線を選択する信号線選択回路と、を有し、前記増幅器は、縦続接続される奇数個のインバータと、前記インバータの段間と、初段の前記インバータの入力端子と最終段の前記インバータの出力端子との間と、にそれぞれ接続される第1キャパシタ素子と、初段の前記インバータに電源電圧を供給する第1電源供給線と、初段以外の前記インバータに電源電圧を供給する第2電源供給線と、を有する。
【0019】
【発明の実施の形態】
以下、本発明に係る表示装置について、図面を参照しながら具体的に説明する。図1は液晶表示装置の第1の実施形態の概略構成を示すブロック図である。図1の液晶表示装置は、画素アレイ部1と駆動回路とが一体に形成されたガラス基板2を備えている。このガラス基板2は、不図示の対向基板と対向配置され、間に液晶層を挟んで封止される。
【0020】
図1のガラス基板2とは別個に、駆動回路にデジタル映像信号と制御信号を送出するコントローラIC3と電源電圧を供給する電源IC4とを実装した基板が設けられ、これら基板間はフレキシブル・プリント基板等で接続される。
【0021】
図1のガラス基板2上には、信号線と走査線が列設され信号線と走査線の各交点付近に画素TFTが形成された画素アレイ部1と、信号線を駆動する信号線駆動回路5と、走査線を駆動する走査線駆動回路6とが設けられている。
【0022】
信号線駆動回路5は、スタートパルスを順にシフトさせたシフトパルスを生成するシフトレジスタ11と、デジタル画素データを供給するデータバス12と、シフトパルスに同期させてデジタル画素データを順次ラッチするサンプリングラッチ13と、サンプリングラッチ13のラッチ出力をまとめて同タイミングでラッチするロードラッチ14と、デジタル画素データの上位側ビット列に基づいて基準電圧を選択する電圧選択回路15と、選択された基準電圧に基づいてデジタル画素データの下位側ビット列をD/A変換するD/A変換器(以下、DAC)16と、D/A変換されたアナログ映像信号を増幅するアンプ(以下、AMP)17と、AMP17の出力をどの信号線に供給するかを切替制御する信号線選択回路18と、タイミング制御回路19とを有する。
【0023】
図2は信号線駆動回路5の内部構成を示すブロック図である。図2のデータ分配回路21は、図1のシフトレジスタ11とデータバス12に対応する。また、図2では、DAC16とAMP17をまとめて一つのブロックで表している。
【0024】
分圧抵抗ラダー20は、電源IC4から供給された3種類の基準電圧REF1,Vm,REF2に基づいて9種類の基準電圧V1〜V9を生成し、生成した基準電圧V1〜V9を電圧選択回路15に供給する。電圧選択回路15は、デジタル画素データの上位3ビットに基づいて、基準電圧V1〜V9の中から2種類の基準電圧Vr1,Vr2を選択して出力する。
【0025】
DAC16は、電圧選択回路15から出力された基準電圧Vr1,Vr2を用いて、デジタル画素データの下位3ビットに応じた電圧を生成する。DAC16で生成された電圧はAMP17で増幅された後、信号線選択回路18に供給される。
【0026】
信号線選択回路18は、AMP17からの電圧を対応する信号線に供給する前に、信号線のプリチャージを行う。プリチャージ電圧として、電源IC4から供給される基準電圧Vmが用いられる。より具体的には、図8に示すような構成の回路を用いてプリチャージを行う。
【0027】
図3は信号線駆動回路5内のDAC16、AMP17および信号線選択回路18の詳細構成を示す回路図である。図示のように、DAC16は、電圧選択回路15から供給された基準電圧Vr1,Vr2に基づいてD/A変換を行う。
【0028】
DAC16は、キャパシタ素子C1〜C3,C6と、キャパシタ素子の電荷再配分を行うアナログスイッチS1a〜S1c,S2,S3a,S3b,S4と、デジタル画素データの下位3ビットの論理に応じてオン・オフ制御されるアナログスイッチS5,/S5,S6,/S6,S7,/S7と、を有する。C6はAMPとDACとで共用される。D/A変換動作の過程でも用いられるし、AMPの初段インバータの動作でも役割をもつ。
【0029】
図4はDAC16の動作タイミング図である。まず、時刻T1のときに、デジタル画素データの下位3ビットに応じてアナログスイッチS5〜S7がオン・オフし、かつアナログスイッチS1a〜S1cがオンする。これにより、デジタル画素データの下位2ビットに応じた電荷がキャパシタ素子C1とC3に蓄積される。例えば、アナログスイッチS6がオンの場合には、電圧Vr2に応じた電荷がキャパシタ素子C1に蓄積され、アナログスイッチ/S6がオンの場合には、電圧Vr1に応じた電荷がキャパシタ素子C1に蓄積される。また、アナログスイッチS7がオンの場合には、電圧Vr2に応じた電荷がキャパシタ素子C3に蓄積され、アナログスイッチ/S7がオンの場合には、電圧Vr1に応じた電荷がキャパシタ素子C3に蓄積される。一方、キャパシタ素子C2には、常に電圧Vr1に応じた電荷が蓄積される。
【0030】
その後、時刻T2になると、アナログスイッチS2がオンし、キャパシタ素子C1,C2の間で電荷の再配分が行われる。その後、時刻T3になると、アナログスイッチS3a,S3bがオンし、キャパシタ素子C2,C3の間で電荷の再配分が行われ、キャパシタ素子C6には3ビット目に応じた電荷が蓄積される。その後、時刻T4になると、アナログスイッチS4がオンし、キャパシタ素子C2とキャパシタ素子C6のそれぞれに蓄積されていた電荷が再配分される。こうして下位3ビットに基づくD/A変換が完了し、所望のアナログ電圧Voutがキャパシタ素子C6の左端に蓄積される。また、時刻T3以降では、AMP17と信号線の間のアナログスイッチ18は全てオフし、アナログスイッチS9,S10,S11がオンしてIV1〜IV3の入出力を短絡する。容量C6〜C8の右端には、IV1〜IV3の動作閾値電圧が蓄積される。時刻T5になると、アナログスイッチS9〜S11はオフしてスイッチS8とスイッチ18の内のひとつがオンし、信号線電圧を前記アナログ電圧Voutに等しくする書込み動作を行う。AMP17は信号線電圧をフィードバックするスイッチS8により、容量C6の左端の電圧が前記アナログ電圧Voutに等しくなる方向の電圧書込みを信号線に対して行うように動作する。
【0031】
その後、時刻T5以降は、時刻T1〜T4の同様の動作が繰り返される。
【0032】
AMP17は、図3に示すように、縦続接続される3つのインバータIV1,IV2,IV3と、インバータIV1〜IV3の段間に挿入されたキャパシタ素子C4,C5と、最終段のインバータIV3と初段のインバータIV1との間に直列接続されたアナログスイッチS8およびキャパシタ素子C6と、各インバータIV1〜IV3の入出力端子間に挿入されたアナログスイッチS9〜S11とを有する。
【0033】
AMP17内の3段のインバータIV1〜IV3にはそれぞれ電源電圧XAVDDと接地電圧XAVSSが供給されるが、本実施形態では、図3に示すように、初段のインバータIV1の電源供給線L1と2段目以降のインバータIV2,IV3の電源供給線L2を分離している。具体的には、初段のインバータIV1には、抵抗素子R1,R2を介してそれぞれ電源電圧XAVDDと接地電圧XAVSSを供給するのに対し、2段目以降のインバータIV2,IV3には、抵抗をR3,R4を介してそれぞれ電源電圧XAVDDと接地電圧XAVSSを供給する。
【0034】
このように、初段のインバータIV1だけ電源供給線を分ける理由は、初段のインバータIV1はAMP17の精度に大きく影響を与えるためである。
【0035】
なお、初段のインバータIV1だけ電源供給線を分ける具体的な回路構成は、図3に示したものに限定されない。例えば、図5は外部から供給される電源電圧の種類を初段のインバータIV1と2段目以降のインバータIV2,IV3とで分ける例を示している。図5の場合、初段のインバータIV1には、電源電圧XAVDD2が抵抗R1を介して供給されるとともに、接地電圧XAVSS1が抵抗R2を介して供給される。一方、2段目以降のインバータIV2,IV3には、電源電圧XAVDD1が抵抗R3を介して供給されるとともに、接地電圧XAVSS1が抵抗R4を介して供給される。
【0036】
AMP17の2段目のインバータIV2の入出力端に接続されたキャパシタ素子C7は、発明者が試行錯誤の末、AMPの動作を安定化させる手段として見出した重要なインピーダンス素子の一形態である。このキャパシタ素子C7は、位相補償のためのインピーダンス素子であり、詳しくは後述する。キャパシタ素子C7は、明示的に設けなくとも、回路レイアウトによっては、寄生容量として非明示的に容量形成され、明示の位相補償容量を設けなくとも良い場合も考えられるが、C7の値を0としてしまうと奇数段のインバータがループ状に縦続接続されて極めて発振を起こしやすい回路になってしまい、到底表示装置のアンプ回路の用をなさなくなる。
【0037】
図5の場合も、図3と同様に、AMP17内の初段のインバータIV1の電源供給線を、他のインバータIV2,IV3の電源供給線と分離するため、AMP17の精度を向上できる。
【0038】
なお、図5では、簡略化のため、AMP17内の各インバータIV1〜IV3の入出力端子間のアナログスイッチを省略している。
【0039】
また、図3に示す抵抗素子Rmとキャパシタ素子Cmはモジュール上(実装基板)にあり、R1〜R4は絶縁基板上にある。
【0040】
キャパシタ素子Cmは電源電圧XAVDD,XAVSSを安定化し、抵抗素子Rm,R1〜R4はAMP17を構成するインバータIV1,IV2,IV3に大電流が流れるのを防ぎ、消費電力の増加を抑える。さらに、AMP17の発振を防ぎ、表示不良の発生を抑える。
【0041】
(第2の実施形態)
信号線駆動回路5内の信号線選択回路18は、TFTからなるアナログスイッチで構成されるが、TFTの特性のばらつきにより、アナログスイッチのオン抵抗がばらつき、AMPによる信号線の駆動速度がばらついて表示ムラを招くおそれがある。
【0042】
また、局所的なVthばらつきが発生した場合、特定アナログスイッチのオン抵抗が小さくなりすぎ、奇数段の縦続接続インバータのループが無負荷状態に近づき、AMPの発振を引き起こし、線欠陥を招くおそれもある。
【0043】
そこで、図6(a)に示すように、各信号線ごとに、2つのアナログスイッチS21,S22を並列接続して信号線選択回路18を構成してもよい。この場合、ある信号線に接続された信号線選択回路18の回路図は、図6(b)に示すように、pMOSトランジスタとnMOSトランジスタからなるアナログスイッチS21,S22が並列接続された構成になる。
【0044】
このように、アナログスイッチS21,S22を並列接続して信号線選択回路18を構成することにより、並列接続された2個のアナログスイッチS21,S22のうち一方が局所的なVthばらつきにより十分なオンにならなくても他方がオンになれば信号線書き込みが行われるため、前述の表示不良を招く確率を低減できる。したがって、アナログスイッチの特性のばらつきの影響を受けにくくなる。また、一方のアナログスイッチが不良で正常に機能しなくても、他方のアナログスイッチで信号線書き込みが行えるため、製造上の歩留まりが向上する。
【0045】
なお、レイアウトの制約がなければ、3個以上の並列化をすればさらに有効である。
【0046】
(第3の実施形態)
信号線選択回路18を構成するアナログスイッチのオン抵抗を均一化するのは技術的に困難である。そこで、図7に示すように、信号線選択回路18と信号線との間に抵抗素子R5を挿入して、信号線選択回路18内のアナログスイッチのオン抵抗の影響を受けにくくする手法が考えられる。この場合、抵抗素子R5の抵抗値は、信号線選択回路18内のアナログスイッチのオン抵抗よりも大きい値に設定するのが望ましい。これにより、AMP17側から信号線側を見たインピーダンスが抵抗素子R5の抵抗値に依存するようになり、信号線選択回路18内のアナログスイッチのオン抵抗に無関係になるため、信号線の書き込みタイミングのずれを低減できる。
【0047】
また、抵抗素子R5の一端に、図8に示すようにプリチャージ制御回路22を接続してもよい。図8のプリチャージ制御回路22内のアナログスイッチは、AMP17の出力に基づいて信号線の書き込みを行う前にオンして信号線のプリチャージ(予備書き込み)を行う。このように、信号線書き込みを行う前に、信号線のプリチャージを行うことにより、信号線の書き込みに要する時間を短縮できる。
【0048】
なお、プリチャージ制御回路22内のアナログスイッチのサイズを信号線選択回路18内のアナログスイッチのサイズよりも小さくすることにより、プリチャージ電源からのリーク電流を低減できる。
【0049】
逆に、プリチャージ制御回路22内のアナログスイッチのサイズを信号線選択回路18内のアナログスイッチのサイズよりも大きくすることにより、信号線書き込みに要する時間をより短縮できる。
【0050】
(第4の実施形態)
信号線駆動回路5内の各部で用いられるアナログスイッチは通常、図9(a)に示すように、nMOSトランジスタとpMOSトランジスタを並列接続した構造になっている。ところが、このような構造の場合、アナログスイッチがオンからオフに変化したときに、アナログスイッチのゲート・ソース間容量に蓄積された電荷が負荷容量に流れ込み、アナログスイッチの出力電圧が変動するという問題がある。
【0051】
ここで、アナログスイッチがオンのときのpMOSトランジスタおよびnMOSトランジスタの各ゲート・ソース間容量をそれぞれCgsp(ON),Cgsn(ON)とし、アナログスイッチがオフのときのpMOSトランジスタおよびnMOSトランジスタの各ゲート・ソース間容量をそれぞれCgsp(OFF),Cgsn(OFF)とすると、アナログスイッチの出力電圧の変動量ΔVは、以下の(1)式で表される。
【0052】
【数1】
Figure 0004183436
例えば、信号線選択回路18内のアナログスイッチの出力電圧が変動すると、信号線の書き込み電圧が変動することになり、表示品質に悪影響を与える。これは図3に示すDAC16のキャパシタ素子C1〜C3などの容量につながるスイッチにも有効である。
【0053】
そこで、本実施形態では、信号線駆動回路5内の少なくとも一部のアナログスイッチについては、図9(b)に示すように、本来のアナログスイッチS23に突き抜け補償用のアナログスイッチS24を直列接続する。この突き抜け補償用のアナログスイッチS24は、pMOSトランジスタとnMOSトランジスタを並列接続し、両トランジスタのソース−ドレイン端子を短絡した構造になっている。突き抜け補償用のアナログスイッチS24は、本来のアナログスイッチS23とは逆方向にオン・オフ制御される。
【0054】
図9(b)のような突き抜け補償用のアナログスイッチS24を設けることにより、本来のアナログスイッチS23がオンからオフに変化するときに、本来のアナログスイッチS23内のトランジスタのゲート−ソース間容量に蓄積された電荷が突き抜け補償用のアナログスイッチS24に転送される。したがって、本来のアナログスイッチS23をオン・オフしても、その出力電圧の変動は表示に影響を与えないほど非常に小さくなる。
【0055】
(第5の実施形態)
第5の実施形態は、DAC16の出力を増幅するAMP17を構成する2段目のインバータIV2の入出力端子間に、図10〜図12に示すような位相補償素子を配置したことを特徴とする。このような位相補償素子を配置することにより、位相補償(信号の伝播速度の適切な調整)が行われ、AMP17の発振防止およびリンギング防止を図ることができる。
【0056】
ここで、発振とは、AMP17の出力電圧が所望の電位のまわりで振動してしまい、収束しなくなることをいう。この発振は、縦続接続された奇数段のインバータループの信号伝播速度が速すぎ、AMP17の出力が振動し、そのまま信号線に伝播してしまうことによって生じる。例えば、Vthの絶対値が小さくなり、各インバータの負荷駆動能力が高くなりすぎる場合などに生じる。
【0057】
一方、リンギングとは、所望の値への収束速度が遅くなりすぎることをいう。縦続接続された奇数段のインバータループの信号伝播速度が遅すぎ、信号線の電位のフィードバックが遅くなりすぎることによって生じる。例えば、Vthの絶対値が大きくなり、各インバータの負荷駆動能力が低くなりすぎる場合などに生じる。
【0058】
本発明者は、試行錯誤の末、AMP17の動作を安定化させる手段として、以下に述べる手段を見出し、AMP17の動作安定性を飛躍的に向上させることに成功した。
【0059】
図10に示すように、直列接続される抵抗素子Ra及びキャパシタ素子C7からなる位相補償素子を2段目のインバータIV2の入出力間に設けるため、Vthの絶対値が小さくなった場合にも、発振が起こりにくくなる。RaとC7の積が所定の値程度となるようにRaの抵抗値やC7の容量の大きさをレイアウトを勘案しつつ定めればよい。所定の値とは、AMP17の出力から信号線に至る抵抗Rsigと信号線容量Csigとの積の値のオーダー程度とするがよい。さらに望ましくは、Csig×Rsigの0.5倍乃至3倍程度がよい。
【0060】
図10の回路では、信号線負荷の発振しやすい周波数成分を、インピーダンス素子Raとキャパシタ素子C7でカットオフして発振を防止する。また、キャパシタ素子C7をあまり大きくしすぎると、回路面積が増大する弊害と初段インバータの駆動負荷増大の弊害が生じ、収束性が悪化し、リンギングを招きやすくなる。
【0061】
なお、図10のキャパシタ素子C7を、AMP17を構成する3段目のインバータIV3の入出力端子間に挿入してもよい。
【0062】
図11は図10の変形例であり、初段のインバータIV1と2段目のインバータIV2との間に挿入されるキャパシタ素子C4の一端と、2段目のインバータIV2の出力端との間に、図示のような抵抗素子Ra及びキャパシタ素子C7からなる位相補償素子を挿入したことを特徴とする。このようなキャパシタ素子C7を挿入することにより、図10と同様に発振を防止する効果が得られる上に、図10よりもゲインの減少分を抑制できる。さらに、収束速度が改善されるため、Vthの絶対値が大きくなった場合にもリンギングを防止する効果がある。この場合、キャパシタ素子C7の容量の大きさは、キャパシタ素子C4の1/2以下で足りる。あまり大きくしすぎると、回路面積が増大する弊害と初段インバータの駆動負荷増大の弊害が生じ、収束性が悪化し、リンギングを招きやすくなる。
【0063】
また、図11の変形例として、図12に示すように、新たに挿入したキャパシタ素子C7と2段目のインバータIV2の出力端との間に抵抗素子R6を挿入してもよい。キャパシタ素子C7と抵抗素子R6は左右入れ替えてもよい。この抵抗素子R6は、キャパシタ素子C7と同様に、位相補償を行う。すなわち、抵抗素子R6を設けることで、位相補償の精度をより向上できる。作用・効果は図11の場合と同様である。レイアウトのしやすさ、プロセスとの整合性などから判断して選択すればよい。
【0064】
あるいは、抵抗素子R6の代わりに、図13に示すように、新たに追加したキャパシタ素子C7の一方の電極、より具体的には2段目のインバータIV2の出力端に接続される電極C7aを高抵抗材料で形成してもよい。これにより、抵抗素子R6を別個に接続しなくても、抵抗素子R6を接続した場合と同様の効果が得られる。
【0065】
(第6の実施形態)
携帯電話やノート型コンピュータなどの携帯機器に用いられる液晶表示装置は、額縁を小さくしたいという要望がある。そこで、第6の実施形態は、DAC16の出力を増幅するAMP17の電源配線パターンP1を、図14に示すように、対向基板上のコモン電極23に重なる位置に配置する。これにより、ガラス基板2の外形寸法を削減でき、額縁を小さくできる。
【0066】
図14の変形例として、図15に示すように、AMP17内のインバータIV1〜IV3の段間に接続されるキャパシタ素子C4,C5を、対向基板上のコモン電極23に重なる位置に配置してもよい。キャパシタ素子は、他の回路部品に比べて広い実装面積を要するため、図15のようにコモン電極23に重なる位置に配置することにより、ガラス基板2の外形寸法を小さくできる。
【0067】
(第7の実施形態)
ガラス基板上のコモン電位供給端からの合成抵抗Rcomが高いと、対向基板上に形成されるコモン電極23の電圧レベルが所定の期間内に所望の値にならないおそれがある。この合成抵抗Rcomは図16の太線部分の抵抗である。
【0068】
そこで、第7の実施形態では、コモン電極23への電圧供給線を太くしたり、短くしたりすることにより、コモン電位給電端からの合成抵抗R7の抵抗値を低くする。
【0069】
具体的には、以下の(2)式の関係を満たすようにコモン電位給電端からの合成抵抗R7の抵抗値Rcomを設定するのが望ましい。
【0070】
Figure 0004183436
また、ガラス基板上の補助容量供給端からの合成抵抗Rcsが高いと、補助容量の電圧レベルが所定の期間内に所望の値にならないおそれがある。この合成抵抗Rcsは図17の太線部分の抵抗である。
【0071】
そこで、第7の実施形態の変形例として、補助容量配線への電圧供給線を太くしたり、短くしたりすることにより、補助容量電位供給端からの合成抵抗R7の抵抗値を低くしてもよい。
【0072】
具体的には、以下の(3)式の関係を満たすように補助容量電位供給端からの合成抵抗R7の抵抗値Rcsを設定するのが望ましい。
【0073】
Figure 0004183436
(第8の実施形態)
図18(a)は本実施形態の液晶表示装置の、液晶部分の電圧−輝度曲線である。電圧変化に対する輝度変化は、中間電圧付近で大きく、その他の電圧では中間電圧付近に較べて小さい。すなわち、中間電圧付近でのAMP17の出力の誤差電圧は表示むらに直結してしまうのに対し、その他の電圧では誤差電圧がよほど大きくないと視認されない。したがって、AMP17の出力誤差電圧は、中間電圧付近で最小になるようにするのが望ましい。
【0074】
本発明のAMP17の出力誤差電圧は、信号線書き込み時の各反転増幅回路(インバータ)のゲインの積に反比例する。ここで、ゲインとは、反転増幅回路の入出力特性極性の傾き(急峻度)を言い、ゲインは入力電圧によって変化する。本発明者は、液晶表示装置の信号線を駆動するAMP17に用いる反転増幅回路として、pチャネルTFTとnチャネルTFTを電源電圧間に直列に接続する相補型インバータが最適であることを見出した。
【0075】
このようにすると、中間電圧を書き込むとき、各インバータは、それぞれのインバータ閾値付近で動作することになる。図18(b)に示すように、相補型インバータはその閾値付近でゲインが最大となる。この他の、例えばソースフォロアなども反転増幅回路を構成できるが、中間調付近の電圧を出力するときに、誤差電圧が最小になるように構成するのが困難である。
【0076】
そこで、本実施形態では、pチャネルTFTとnチャネルTFTとが電源間に直列接続された相補型インバータをAMP17のインバータとして用いた。
【0077】
なお、液晶表示装置以外の表示素子を用いる場合は次のようにする。すなわち、図18(a)のような表示素子の電圧−輝度特性図から最も傾きが急峻となる電圧範囲を調べ、該当部分でAMP各増幅段のゲインが最大になるように増幅段の電源電圧、増幅段の種類の選定を行えばよい。
【0078】
(第9の実施形態)
図19に示すように、AMP17は奇数段のインバータを縦続接続して構成され、初段のインバータIV1の入力端子と最終段のインバータIV3の出力端子との間には、アナログスイッチS8とキャパシタ素子C6が挿入されている。
【0079】
AMP17のゲイン精度に最も影響を与えるのは、初段のインバータIV1である。最終段のインバータIV3からの帰還経路上のアナログスイッチS8と初段のインバータIV1の入力容量C6とが互いに離れた位置にあると、このアナログスイッチS8のオン・オフが初段のインバータIV1の入力容量に与える影響が大きくなる。
【0080】
そこで、第9の実施形態は、帰還経路上のアナログスイッチS8と初段のインバータIV1の入力容量C6とを互いに近傍に配置することを特徴とする。これにより、このアナログスイッチS8のオン・オフにより、初段のインバータIV1の入力容量が影響を受けなくなり、高精度のゲイン調整を行える。
【0081】
(第10の実施形態)
第10の実施形態は、AMP17の電源供給線上に接続される抵抗の抵抗値と接地線上に接続される抵抗の抵抗値とをアンバランスにするものである。
【0082】
図20は信号線駆動回路の第10の実施形態の回路図である。図20の信号線駆動回路は、回路構成的には図3の信号線駆動回路と同じであるが、AMP17内のインバータに接続される電源供給線L11(電源供給線L1,L2を含む)上に接続される抵抗R1,R3,Rdの抵抗値の総和を、接地線L12(接地線L3,L4を含む)上に接続される抵抗R2,R4,Rsの抵抗値の総和よりも大きくしている。ここで、抵抗Rd,Rsは、ガラス基板に外付けされる抵抗であり、抵抗R1〜R4はガラス基板内に形成される抵抗である。
【0083】
図20の電圧選択回路15、DAC16、AMP17および信号線選択回路18は一組の回路となっている。この回路が複数、同一のガラス基板上に一体形成されている。
【0084】
図21は本実施形態の液晶表示装置内の各部の電圧レベルを示す図である。電源電圧XVDD(=5V)は、図1のシフトレジスタ11、データバス12、サンプリングラッチ13、ロードラッチ14、電圧選択回路15、DAC16および信号線選択回路18に供給される電源電圧である。電源電圧XAVDD(=5.5V)は、図1のAMP17のインバータIV1,IV2,IV3に供給される電源電圧である。電圧Gateは画素駆動用TFTのゲート電圧である。コモン電圧VCOMは0Vまたは5.3Vの電圧であり、所定周期で交互の値をとる。信号電圧VsigH,VsigLはAMP17から出力される信号電圧であり、その最大電圧はVsigH(=4.5V)、その最小電圧はVsigL(=0.5V)である。電圧REF1,REF2は、図2の分圧抵抗ラダー20に供給される基準電圧であり、VCOMの駆動周期に連動してREF1とREF2の値は0Vと5V、または5Vと0Vと交互に代わる。
【0085】
図21からわかるように、電源電圧XAVDDと信号電圧の最大値VsigHとの電位差は1.0Vなのに対し、接地電圧0Vと信号電圧の最小値VsigLとの電位差は0.5Vである。すなわち、図22に示すように、電源電圧側は1.0Vのマージンがあるのに対し、接地電圧側は0.5Vしかマージンがない。図22では、信号電圧VsigH,VsigLの電圧変動分をΔで表している。この場合、電源電圧側のマージンΔV1は、ΔV1=XAVDD−(VsigH+Δ)、接地電圧側のマージンΔV2は、ΔV2=(VsigL−Δ)−XAVSSになる。
【0086】
電源供給線L11と接地線L12にそれぞれ抵抗を接続すると、これら抵抗の両端で電圧降下が起きるため、その分だけAMP17の電源端子の電圧は低下し、接地端子の電圧は上昇する。それでも、電圧降下が上述したマージンの範囲内であれば、AMP17は正常に動作する。
【0087】
例えば、電源供給線L11と接地線L12にそれぞれ接続する抵抗の抵抗値を互いに等しくし、これら抵抗の抵抗値を徐々に上げていく場合について考える。抵抗値を上げるに従って抵抗の両端間での電圧降下は大きくなる。上述したように、接地電圧側の方がマージンが小さいため、接地電圧側が先にマージンから外れてしまう。接地電圧側が先にマージンから外れないようにするには、接地電圧側の抵抗の抵抗値を、電源電圧側の抵抗の抵抗値よりも小さくすればよい。
【0088】
そこで、本実施形態では、電源供給線L11上に接続される抵抗の抵抗値の総和が接地線L12上に接続される抵抗の抵抗値の総和よりも大きくなるようにする。これにより、電源供給線側も接地線側も同様のマージンが確保できるとともに、電源供給線L11側の抵抗値を大きくすることで、電源供給線L11を流れる電流が少なくなり、消費電力の低減が図れる。
【0089】
なお、消費電力低減の効果は、AMP17のインバータを構成する各TFT素子のVthの絶対値が小さいときに特に有効である。AMP17の各インバータのゲートの印加電圧は常に0.5〜4.5Vであるため、各インバータには貫通電流が流れる。前記Vthの絶対値が小さいときには、この貫通電流が増大する。
【0090】
本実施形態では、電源供給線に抵抗を設けているため、電流×抵抗の積だけインバータに印加される実効電圧は低減し、貫通電流を抑制するように作用する。一方、Vthの絶対値が大きいときには、貫通電流は比較的少なく、電流×抵抗の積も小さくなり、インバータへ印加される実効電圧は殆ど電源電圧がそのまま印加されることになり、最大限の電流駆動能力を確保できる。
【0091】
このような理由から、本実施形態の技術は、Vthばらつきが大きいポリシリコンTFTをガラス基板上に形成して表示装置の画素部と駆動回路を一体形成する場合にとくに適する。
【0092】
上述した図20では、ガラス基板内の電源供給線L1,L2上に抵抗R1,R2を、接地線L3,L4上に抵抗R3,R4を、ガラス基板外に抵抗Rd,Rsを設ける例を示したが、各線上に設ける抵抗の数に特に制限はなく、また、すべての抵抗をガラス基板内に形成してもよく、逆にすべての抵抗をガラス基板外に設けてもよい。
【0093】
(第11の実施形態)
第11の実施形態は、AMP17内の各インバータに、それぞれ別個の抵抗を介して電源電圧を供給するものである。
【0094】
図23は信号線駆動回路の第11の実施形態の回路図である。図23の信号線駆動回路は、AMP17内の各インバータに接続される電源供給線の配置が異なる他は、図の信号線駆動回路の回路構成と共通している。
【0095】
AMP17内の縦続接続される3つのインバータIV1,IV2,IV3の電源端子と外部から電源電圧XAVDDを供給する基準電源端子T1との間には、それぞれ抵抗R11,R12,R13が接続されている。これら抵抗R11〜R13は、ガラス基板の内部に形成してもよいし、ガラス基板に外付けしてもよい。
【0096】
初段のインバータIV1に接続された抵抗R11の抵抗値Rd1、二段目のインバータIV2に接続された抵抗R12の抵抗値Rd2、および最終段のインバータIV3に接続された抵抗R13の抵抗値Rd3は、例えばRd2<Rd3<Rd1となるように設定される。より具体的には、例えば、Rd1=2kΩ、Rd2=200Ω、Rd3=700Ωに設定される。
【0097】
初段の抵抗R11の抵抗値Rd1を一番大きくする理由は、初段のインバータIV1は、しきい値電圧付近でのみ動作すればよいため、消費電力を低減するという目的から抵抗値を大きくしてインバータIV1に供給される電源電圧を低くしている。
【0098】
最終段の抵抗の抵抗値Rd3は、インバータIV3から所望の電圧振幅の電圧が出力されるような値に設定される。また、二段目の抵抗の抵抗値Rd2を大きくすると、AMP17が発振するおそれがあることから、抵抗値Rd2は小さい値に設定される。
【0099】
このように、本実施形態では、AMP17内の各インバータIV1〜IV3に電源電圧を供給する電源供給線上の抵抗を各インバータごとに別個に設け、各抵抗R11〜R13の抵抗値を各インバータIV1〜IV3の役割に応じて最適な値に設定するため、AMP17の性能向上を図りつつ、消費電力の低減が図れる。
【0100】
(第12の実施形態)
第12の実施形態は、AMP17内のインバータのサイズを調整するものである。
【0101】
図24は第12の実施形態の信号線駆動回路内のAMP17の回路図である。図示のように、AMP17は、縦続接続される3つのインバータIV1〜IV3と、各インバータIV1〜IV3の段間に接続されたキャパシタ素子C4,C5と、最終段のインバータIV3の出力端子と初段のインバータIV1の入力端子との間に直列接続されたアナログスイッチS8およびキャパシタ素子C6と、インバータIV2の入出力端子間に接続された位相補償用のキャパシタ素子C7とを有する。
【0102】
本実施形態では、2段目のインバータIV2のサイズを最終段のインバータIV3のサイズ以上にし、かつ初段のインバータIV1のサイズは2段目のインバータIV2のサイズ以下にしている。
【0103】
図24では、AMP17内のインバータの段数を3段にしているが、3段以上の奇数段であれば特に段数は問わない。例えば、AMP17内に(2n+1)段のインバータ(nは1以上の整数)が縦続接続されている場合、各段のインバータを構成するトランジスタのゲート幅W1〜W2n+1とゲート長L1〜L2n+1が以下のの関係を満たすようにする。
【0104】
Figure 0004183436
上式の関係を満たすようにする理由は以下の通りである。
【0105】
初段のインバータIV1は入力信号段でもあるため、このインバータのサイズを大きくすると、寄生容量が大きくなってAMP17の精度に影響することから、むやみに大きくすることはできない。
【0106】
また、最終段のインバータIV3のサイズは、本来的には後段の信号線負荷により決める必要がある。このインバータのサイズを大きくすると、信号線負荷に対する駆動能力が大きくなりすぎ、AMP17の安定性を損なう結果になる。
【0107】
一方、2段目のインバータIV2のサイズを最終段のインバータIV3よりも大きくすると、2段目のインバータIV2での応答速度が速くなり、AMP17の動作速度が向上する。
【0108】
なお、AMP17内のインバータの段数は、3段以上の奇数段であればよい。
【0109】
このように、AMP17内のインバータのサイズを(1)式の関係を満たすように設定することにより、AMP17の精度が高くなり、かつ動作速度も速くなる。
【0110】
(第13の実施形態)
第13の実施形態は、AMP17内の最終段のインバータのサイズを信号線選択回路のサイズ以下にするものである。
【0111】
図25は第13の実施形態の信号線駆動回路内のAMP17と信号線選択回路18の回路図である。
【0112】
AMP17の構成は図24と同じであり、縦続接続される3個のインバータIV1〜IV3を有する。本実施形態では、最終段のインバータIV3のサイズを信号線選択回路18のサイズ以下にしている。より具体的には、最終段のインバータIV3を構成するトランジスタのゲート幅をW3、ゲート長をL3とし、信号線選択回路18内のトランジスタのゲート幅をW4、ゲート長をL4としたときに、以下の関係を満たすようにする。
【0113】
W4/L4≧W3/L3
上式の関係を満たすようにする理由は、信号線選択回路18のオン抵抗が高くなると、AMP17のフィードバックが早くなりすぎAMP17が発振するおそれがあるためである。このとき、縦続接続されたIV1〜IV3がリングオシレータ回路(発振回路)と同様に作用してしまうため激しく発振する。
【0114】
図26は、AMP17内のインバータIV1〜IV3のサイズと信号線選択回路18のサイズを色々変えた場合に、発振の起こりやすさを示す位相余裕が変化する様子を示す図である。図26のグラフg1はサイズ比が2:1:2:5の場合、グラフg2はサイズ比が1:2:2:5の場合、グラフg3はサイズ比が2:2:1:5の場合をそれぞれ示している。
【0115】
図26より、グラフg3の場合、すなわち、最終段のインバータIV3のサイズがその他のインバータIV1,IV2と信号線選択回路18のサイズより小さい場合が最も位相余裕度が大きいことがわかる。このことからも、(2)の条件を満たすと、発振が起こりにくいことがわかる。
【0116】
このように、本実施形態は、AMP17内の最終段のインバータIV3のサイズを信号線選択回路18のサイズ以下にするため、AMP17の発振を確実に防止できる。
【0117】
なお、本実施形態では、図24に示すように、AMP17内のインバータの段数を3段にしているが、3段以上の奇数段でも同様に適用できる。
【0118】
(第14の実施形態)
第14の実施形態は、AMP17内の各段のインバータの電源端子に接続される抵抗素子の抵抗値を調整するものである。
【0119】
図27は第14の実施形態の信号線駆動回路内のAMP17の回路図である。図27のAMP17は、図24のAMP17と同様に、縦続接続される3個のインバータIV1〜IV3を有する。各インバータIV1〜IV3は、電源端子Vddと接地端子Vssを持っており、各インバータの電源端子Vddと基準電圧端子XAVDDとの間にはそれぞれ別個に抵抗素子Rv(1),Rv(2),Rv(3)が接続されている。同様に、各インバータIV1〜IV3の接地端子Vssと接地電圧端子XAVSSとの間にもそれぞれ別個に抵抗素子Rs(1),Rs(2),Rs(3)が接続されている。
【0120】
2段目の抵抗素子Rv(2)の抵抗値は3段目の抵抗素子Rv(3)の抵抗値以下で、初段の抵抗素子Rv(1)の抵抗値は2段目の抵抗素子Rv(2)の抵抗値以上に設定されている。
【0121】
同様に、2段目の抵抗素子Rs(2)の抵抗値は3段目の抵抗素子Rs(3)の抵抗値以下で、初段の抵抗素子Rs(1)の抵抗値は2段目の抵抗素子Rs(2)の抵抗値以上に設定されている。
【0122】
図27では、AMP17内のインバータの段数を3段にしているが、3段以上の奇数段であれば特に段数は問わない。例えば、AMP17内に(2n+1)段のインバータ(nは1以上の整数)が縦続接続されている場合、各段のインバータの電源端子にそれぞれ接続される抵抗素子Rv(1)〜Rv(2n+1)がそれぞれ以下の関係を満たすようにする。
【0123】
Figure 0004183436
あるいは、各段のインバータの接地端子にそれぞれ接続される抵抗素子Rs(1)〜Rs(2n+1)がそれぞれ以下の関係を満たすようにする。
【0124】
Figure 0004183436
このように、本実施形態では、AMP17内の各段のインバータの電源端子または接地端子に接続される抵抗素子の抵抗値が上式の関係を満たすようにするため、第12の実施形態と同様の作用効果が得られる。すなわち、各抵抗素子の抵抗値を調整することにより、各段のインバータの駆動能力を最適に調整でき、AMP17の精度と動作速度向上が図れる。
【0125】
(第15の実施形態)
第15の実施形態は、AMP17内の各段のインバータにそれぞれ別個の電源電圧を供給するものである。
【0126】
図28は第15の実施形態の信号線駆動回路内のAMP17の回路図である。図28のAMP17は、図24のAMP17と同様に、縦続接続される3個のインバータIV1〜IV3を有する。各インバータIV1〜IV3はそれぞれ第1および第2の電源端子Vdd,Vssをもっている。各段のインバータIV1〜IV3の第1の電源端子Vddにはそれぞれ別種類の電源電圧XAVDD(1),XAVDD(2),XAVDD(3)が供給される。同様に、各段のインバータIV1〜IV3の第2の電源端子Vssにはそれぞれ別種類の電源電圧XAVSS(1),XAVSS(2),XAVSS(3)が供給される。
【0127】
2段目のインバータIV2に供給される電源電圧XAVDD(2)は最終段のインバータIV3に供給される電源電圧XAVDD(3)以上に設定され、初段のインバータIV1に供給される電源電圧XAVDD(1)は2段目のインバータIV2に供給される電源電圧XAVDD(2)以下に設定される。
【0128】
あるいは、2段目のインバータIV2に供給される電源電圧XAVSS(2)は最終段のインバータIV3に供給される電源電圧XAVSS(3)以下に設定され、初段のインバータIV1に供給される電源電圧XAVSS(1)は2段目のインバータIV2に供給される電源電圧XAVSS(2)以上に設定される。
【0129】
図28では、AMP17内のインバータの段数を3段にしているが、3段以上の奇数段であれば特に段数は問わない。例えば、AMP17内に(2n+1)段のインバータ(nは1以上の整数)が縦続接続されている場合、各段のインバータの第1の電源端子Vddにそれぞれ供給される電源電圧XAVDD(1)〜XAVDD(2N+1)は以下の関係を満たすように設定される。
【0130】
Figure 0004183436
あるいは、各段のインバータの第2の電源端子Vssにそれぞれ供給される電源電圧XAVSS(1)〜XAVSS(2N+1)は以下の関係を満たすように設定される。
【0131】
Figure 0004183436
このように、本実施形態では、AMP17内の各段のインバータに供給される電源電圧を個別に調整するため、各段のインバータの駆動能力を最適に調整でき、AMP17の精度と動作速度向上が図れる。
【0132】
また、(第12の実施形態)、(第13の実施形態)、(第14の実施形態)、(第15の実施形態)を併用することでも、同様の作用効果を得ることができるため、各段のインバータの駆動能力を最適に調整でき、AMP17の精度と動作速度向上が図れる。
【0133】
(第16の実施形態)
第16の実施形態は、アナログ映像信号のサンプリングと信号線への書き込みを並列的に実行するものである。
【0134】
図29(a)は第16の実施形態の信号線駆動回路内のAMP17の回路図である。図29(a)のAMP17は、初段のインバータを、並列接続された2つの第1増幅部31で構成している。これら第1増幅部31はそれぞれ、直列接続されたスイッチS21、キャパシタ素子C6a、インバータIV1a及びスイッチS22と、インバータIV1aの入出力端子間に並列接続されたスイッチS23とを有する。これら第1増幅部31は、第2増幅部32に接続されている。第2増幅部32は、直列接続されたキャパシタ素子C4、インバータIV2、キャパシタ素子C5及びインバータIV3で構成される。また、図示しないが、2段目のインバータは、図11に示す位相補償素子を設ける。
【0135】
図25に示したAMP17は、図29(b)に示すように、信号線6本ごとに一つずつ設けられていたのに対し、本実施形態のAMP17は、信号線12本ごとに一つずつ設けられている。従って、AMP17一個あたり、インバータを2個ずつ削減できる。
【0136】
図30(a)は本実施形態のAMP17の動作タイミング図であり、図30(b)は比較のために示した図25のAMP17の動作タイミング図である。
【0137】
図25のAMP17は、アナログ映像信号のサンプリングと信号線書き込みとを交互に行うが、本実施形態のAMP17はサンプリングと信号線書き込みとを並列的に行う。このため、サンプリング期間と信号線書き込み期間を短くすることなく、図25の倍の数の信号線を駆動することができる。
【0138】
図31はAMP17の周辺回路図であり、DAC16、AMP17及び信号線選択回路18の回路図を示している。DAC16は、デジタル画素データの下位3ビットb2〜b0の値に応じて切替制御されるアナログスイッチS30、S31、S32a、S32bと、ビットb0に応じた電荷を蓄積するキャパシタ素子C11と、ビットb0〜b2に応じた電荷を蓄積するキャパシタ素子C12と、キャパシタ素子C11,C12における電荷蓄積制御を行うスイッチS33a、S33b,S33c,S33d,S34a,S34b,S34cとを有する。
【0139】
図32は図31の回路の動作タイミング図である。まず、時刻T1でスイッチS33a,S33b,S33cがオンする。これにより、キャパシタ素子C11、C12にそれぞれビットb0,b1に応じた電荷が蓄積される。その後、時刻T2で、スイッチS9aがオンし、ビットb2に応じた電荷がキャパシタ素子C6aに蓄積される。
【0140】
その後、時刻T3でスイッチS33a,S33b,S33cがオフした後、時刻T4〜T5の間でスイッチS34a,S34bがオンする。これにより、キャパシタ素子C11,C12,C6aの間で電荷の再配分が行われる。
【0141】
その後、時刻T6でスイッチS10,S11がオンし、時刻T8までの間、AMP17のサンプリングが行われる。その後、時刻T9〜T12までの間、信号線の書き込みが行われる。
【0142】
また、時刻T7〜T15では、時刻T1〜T8と同様に、次に信号線に書き込むべきデータのサンプリングが行われる。
【0143】
このように、本実施形態では、初段のインバータを並列化して各インバータIV1a,IV1bを交互に切替駆動することで、データのサンプリングと信号線書き込みを並列的に行う。
【0144】
ここで、AMP17の消費電力は、AMP17の電源電圧×AMP17の一個当たりの電流×AMP17の数で表される。したがって、本実施形態のように、AMP17を構成するインバータの数を減らせば、消費電力の削減が図れる。
【0145】
(第17の実施形態)
第17の実施形態は、AMP17を駆動するための電源電圧XAVDDを、外部から供給される電源電圧VDDの整数倍(例えば2倍)に設定するものである。電源ICなどのLSIの電源電圧は3V以下が一般的となっているが、液晶表示装置の駆動回路では、1)液晶材料を駆動するために、また、2)LSIにくらべてVthの大きいポリシリコンを駆動するために適切な値に昇圧して信号線駆動回路に供給するために必要である。例えば、最も普及しているツイステッド・ネマティック液晶では4V程度の電圧範囲で駆動する必要がある。ポリシリコンを駆動するために必要な電圧値は、PチャネルTFTとNチャネルTFTのVth(絶対値)の最大和程度必要である。
【0146】
図33は図2の電源ICに含まれる昇圧回路の一例を示す回路図である。この昇圧回路は、外部から供給される電源電圧VDDを2倍に昇圧した電源電圧XAVDDを生成する。生成した電源電圧XAVDDは、AMP17を駆動するために用いられる。
【0147】
図33の昇圧回路は、IN(+)端子とOUT(+)端子との間に直列接続されるスイッチSW1a,SW2aと、スイッチSW1a,SW2a間の接続経路とIN(-)端子との間に直列接続されるキャパシタ素子C13及びスイッチSW1bと、IN(+)端子及びIN(-)端子間に接続されるキャパシタ素子C14と、キャパシタ素子C14の両端子間に直列接続されるスイッチSW1b,SW2bと、OUT(+)端子及びOUT(-)端子間に接続されるキャパシタ素子C15と、を備えている。
【0148】
まず、スイッチSW1a,SW1bをオンする。これにより、入力電圧Vinに応じた電荷がキャパシタ素子C13に蓄積される。次に、スイッチ1a,1bをオフしてスイッチSW2a,SW2bをオンする。これにより、キャパシタ素子C13が入力電圧Vinに直列接続され、キャパシタ素子C13には入力電圧Vinの2倍の電圧に応じた電荷が蓄積され、出力電圧V0は2×Vinになる。
【0149】
図33の昇圧回路内に抵抗を接続することで、任意の倍率の昇圧電圧を生成できるが、電源効率を考えると、図33のように入力電圧の整数倍の電圧を生成するのが望ましい。そこで、本実施形態では、電源電圧VDDの整数倍の電圧XAVDDを電源IC4で生成する。
【0150】
電源IC4は、ガラス基板2上に形成される表示装置上に実装したり、ガラス基板2上に表示装置と同様にポリシリコンTFT等を用いて形成したり、あるいはガラス基板2とは別基板上に実装または形成される。いずれにしても図33の昇圧回路は、インダクタンス素子が不要であるため、LSIへの集積や、ガラス基板上への集積が容易である。
【0151】
電源IC4は、図34に示すように、AMP17駆動用の電源電圧XAVDDの他に、表示装置内のデジタル回路部品を駆動するための電源電圧XVDDと、D/A変換用の基準電圧REFH,REFLも生成する。デジタル回路部品は、電力消費量が少ないので、電源電圧XVDDに対する要求は少ない。そこで、本実施形態では、回路設計の効率化と製造の容易性から、電源電圧XVDDの電圧レベルを電源電圧XAVDDと同じにする。
【0152】
このように、第17の実施形態では、AMP17を駆動するための電源電圧XAVDDを、外部から供給される電源電圧VDDの整数倍に設定するため、AMP17の駆動能力を高めつつ、電源効率を向上できる。
【0153】
また、表示装置内のデジタル回路部品を駆動するための電源電圧XVDDを電源電圧XAVDDと同じ電圧レベルにするため、電源IC4の内部構成を簡略化できる。
【0154】
(第18の実施形態)
第18の実施形態は、第17の実施形態を改良したものであり、製造ばらつき等により、AMPを構成するTFTのVthなどの特性がばらついても十分な動作マージンを確保し、かつ、消費電力が最小になるように各電源電圧を設定するものである。
【0155】
ポリシリコンTFTを用いてガラス基板上にDAC16やAMP17を一体形成する液晶表示装置の消費電力は、AMP17の消費電力と分圧抵抗ラダー20の消費電力の占める割合が大きい。AMP17はインバータに貫通電流を流しながら動作するため、電流消費量が大きい。電源IC4の構成上、AMP17の電源の昇圧効率最大化を最優先とすべきである。従って、XAVDDはVDD(2.75V)の2倍の5.5Vとした。
【0156】
一方、分圧抵抗ラダー20の消費電力は、印加電圧の2乗/抵抗値と表すことができることから、分圧抵抗ラダー20への印加電圧は不必要に大きくすべきでない。しかも、電圧ばらつきも5%以下にするべきである。電圧ばらつきが大きいと、液晶の駆動に必要な印加電圧範囲を確保できずにコントラスト不足を招いたり、液晶に印加される電圧が所定の値からずれることにより、中間調の表示に支障が生じる。従って、分圧抵抗ラダー20の両端に印加する電圧は一方を0V(GND)とし、他方を5Vとした。
【0157】
外部電源電圧VDD、電源電圧XAVDD、分圧抵抗ラダー20に供給される基準電圧最大値REFH、基準電圧最小値REFLの電圧レベルは図35のような関係にある。基準電圧最大値REFHと基準電圧最小値REFLは、極性反転のたびに電圧レベルが反転する基準電圧REF1,REF2として分圧抵抗ラダー20に供給される。
【0158】
消費電力を低減するという観点から電圧設定を行うと、図35に示すように、信号線駆動電圧は、0.5V〜4.5Vの範囲内になり、電源電圧XAVDDよりも0V側に必然的に偏ってしまう。AMP17の電源電圧に対して偏った範囲のAMP17の出力電圧を確保するために、AMP17内のインバータの電源線及び接地線に挿入する抵抗の値を、電源線側と接地線側とで非対称にするのが望ましい。その理由は、第10の実施形態で説明した通りであり、図36のような抵抗Ra,Rbを接続することで、第10の実施形態と同様の効果を奏する。
【0159】
図36において、AMP17内の各インバータの電源端子と電源電圧線XAVDDとの間に接続される抵抗Raと、各インバータの接地端子と接地線GNDとの間に接続される抵抗Rbとの抵抗比は、非対称(例えば、Ra:Rb=2:1)に設定されている。これにより、ポリシリコンTFT基板の製造プロセスによりTFTのVthがばらついても消費電力を最低限に抑制しつつ、安定に動作させることが可能となる。
【0160】
(第19の実施形態)
第19の実施形態は、AMP17を構成する3つのインバータのうち、2段目のインバータのゲート幅Wを3段目のインバータのゲート幅Wよりも大きくするものである。一般に表示装置の信号線を駆動するために用いられるTAB−ICのAMP17は、差動回路からなる比較回路部の素子のゲート幅をできるだけ小さくし、出力段の素子のゲート幅を大きく設計するが、本実施形態のAMP17は、一般的なものと考え方が著しく異なる。
【0161】
発明者は試行錯誤の結果、携帯電話向け液晶表示装置やPDA向け液晶表示装置などの比較的小型な表示装置に特に適する非自明なインバータ各段のゲート幅の相対関係を見出した。ここで比較的小型とは、AMP17から見た駆動負荷容量(信号線1本あたりの容量)が略20pF程度以下のものをいう。
【0162】
ポリシリコンTFT素子のようにVthなどの特性ばらつきが比較的大きい素子を用いて信号線駆動のためのAMP17を構成する場合、出力段を大きくすることは動作安定性確保のために必ずしも有効でなく、むしろ、発振やリンギングを招きやすいという問題がある。発明者はこの事実を試行錯誤の結果見出し、最終段のインバータを構成するTFTのゲート幅はむしろ小さくし、2段目のゲート幅を大きくする方が良いことを発見した。
【0163】
AMP17は、図24等に示すように、3つのインバータを、キャパシタ素子を挟んで縦続接続して構成されている。このため、AMP17の出力は発振やリンギングを起こしやすく、図37に示すように、出力が安定するまでにある程度の時間(以下、この時間を収束時間と呼ぶ)を要する。
【0164】
図38は初段のインバータのゲート幅W1と2段目のインバータのゲート幅W2とを等しくし、2段目のインバータのゲート幅W2と3段目のインバータのゲート幅W3との比W2/W3を変えたときに、AMP17の出力の収束時間がどのように変化するかを示す図である。
【0165】
図示のように、W2/W3が0.5〜1.5の範囲では、2段目のインバータのゲート幅W2が3段目のインバータのゲート幅W3よりも大きいほど、収束時間は短いことがわかる。したがって、2段目のインバータのゲート幅W2を3段目のインバータのゲート幅W3よりも大きくすることで、AMP17の動作をより安定化させることができる。
【0166】
(第20の実施形態)
対角2インチの176×180ドットの液晶表示装置に用いるのに適したAMP回路の具体的なレイアウトの形態について説明する。
【0167】
図39は、図3のAMP17の部分のレイアウト図である。スイッチや素子の記号は図3に対応させて記している。
【0168】
発振やリンギングを防止するために、2段目のインバータの前後に設ける位相補償素子として、図11のものを用いている。抵抗素子として、N+ドープポリシリコンを利用している。容量素子は、N+ドープポリシリコンとゲート線レイヤーの交差により形成している。この表示装置では信号線容量が12pFである。信号線抵抗は0.4kΩである。駆動負荷の時定数は、12pF×0.8kΩ=9.6nsecである。位相補償素子の抵抗値は100kΩ、静電容量は、0.1pFとした。信号線1本あたりの駆動時間は4usとした。
【0169】
アナログスイッチの突き抜け電圧による出力電圧誤差を抑制するために、図9と同様に、各所に突き抜け補償スイッチを配置している。
【0170】
アナログスイッチやインバータはいずれもPチャネルTFTとNチャネルTFTを相補的に用いている。好ましくない寄生容量が、PチャネルTFTとNチャネルTFTに均等に寄生するようにして、影響を最小化するべく、左右対称の回路配置を実施している。
【0171】
D/A変換に用いる容量素子C1,C2,C3,C6は、N+ドープポリシリコンのレイヤーとゲート線レイヤーの交差部で形成している。これらの容量は同一の静電容量をもつことが望ましい。静電容量のばらつきはD/A変換の誤差電圧に直結するからである。例えばC3では一部信号線レイヤーとゲート線レイヤーの交差部も用いて、できるだけC2と同一の静電容量となるようにしている。
【0172】
AMP17を構成する各インバータと電源の間の抵抗は、図3の記号をもちいて、Rm=360Ω(XAVDD側)/220Ω(XAVSS側)、R1=70Ω、R3=50Ω、R2=35Ω、R4=25Ωとした。
【0173】
AMP17の各インバータのゲート幅比は、IV1:IV2:IV3=6:6:5とした。
【0174】
液晶セルを構成する2枚のガラス基板の一方はコモン電極が形成されたカラーフィルタ基板である。コモン電極は1水平期間を周期として極性反転駆動される。他方の基板は、図40に示すように、画素アレイ部1、信号線駆動回路5、走査線(ゲート線)駆動回路6、タイミング回路7を一体形成してなる低温ポリシリコンTFTアレイ基板である。
【0175】
信号線駆動回路5には、AMP17及びDAC16が44組配置され、1水平期間にD/A変換とAMP17による信号線駆動(図4に示す動作)を12回、12本の信号線を順次選択しつつ行うように動作する。
【0176】
信号線駆動回路5の概略構成図を図41に示す。また、本実施形態の液晶表示装置は、図34に示す電源IC4とLCDコントローラを備え、図35及び図21に示す電源設定にて動作する。
【0177】
このような構成により、低消費電力とAMP17の安定性にすぐれ、D/A変換の精度にも問題が無く、良好な表示を行うことができた。また、製造プロセスのばらつきに起因するVthばらつきに対して十分な歩留りを確保できた。さらに、NチャネルTFTとPチャネルTFTのVthの絶対値が各々最小0.5Vから最大2.5V程度までの広範な範囲において問題なく動作した。
【0178】
【発明の効果】
以上詳細に説明したように、本発明によれば、D/A変換器から出力されたアナログ映像信号を増幅する増幅器内の縦続接続される奇数個のインバータのうち、精度に最も影響する初段のインバータのみ電源供給線を分けるため、高精度のゲイン調整を行うことができる。
【0179】
また、信号線を選択する信号線選択回路として、信号線ごとに複数の並列接続されたアナログスイッチを設けるため、アナログスイッチの特性のばらつきの影響を受けにくくなり、信号線の書き込みタイミングのずれを解消できる。
【0180】
また、絶縁基板上のアナログスイッチに突き抜け補償用のアナログスイッチを直列接続するため、ゲート−ソース間容量に蓄積された電荷を突き抜け補償用のアナログスイッチに転送することができ、アナログスイッチがオンからオフに変化しても、アナログスイッチの出力電圧の変動を防止できる。
【0181】
また、増幅器内の2段目以降のインバータの入出力端子間に第2キャパシタ素子を挿入するため、位相補償を行うことができ、増幅器の発振を防止できる。
【0182】
また、増幅器の電源供給線を、コモン電極と重ね合わされるように配置するため、表示装置の額縁を小さくできる。
【0183】
また、対極抵抗を小さくするため、コモン電極の電圧を所望の値に設定できる。
【0184】
また、信号線の書き込み電圧を増幅器でゲイン調整する際、中輝度領域のゲイン調整をきめ細かく行えるようにしたため、表示品質を向上できる。
【0185】
また、増幅器内の初段のインバータの入力容量と、帰還経路上のアナログスイッチとを近接して配置するため、このアナログスイッチがオン・オフしても、初段のインバータの入力容量はその影響を受けなくなる。
【図面の簡単な説明】
【図1】液晶表示装置の第1の実施形態の概略構成を示すブロック図。
【図2】信号線駆動回路の内部構成を示すブロック図。
【図3】信号線駆動回路内のDAC、AMP17および信号線選択回路18の詳細構成を示す回路図。
【図4】DACの動作タイミング図。
【図5】外部から供給される電源電圧の種類を初段のインバータと2段目以降のインバータとで分ける例を示す図。
【図6】信号線選択回路18の具体的構成を示す回路図。
【図7】信号線選択回路18の変形例を示す回路図。
【図8】プリチャージ制御回路の構成を示す回路図。
【図9】アナログスイッチに突き抜け補償用のアナログスイッチを直列接続した例を示す回路図。
【図10】AMP17内に位相補償用のキャパシタ素子を設けた例を示す回路図。
【図11】図10の変形例を示す回路図。
【図12】図10の他の変形例を示す回路図。
【図13】図12の変形例を示す回路図。
【図14】AMP17の電源配線パターンをコモン電極に重なるように配置する例を示す図。
【図15】AMP17内のキャパシタ素子をコモン電極に重なるように配置する例を示す図。
【図16】ガラス基板2上のコモン電位供給端からの合成抵抗を示す図。
【図17】補助容量電位供給端からの合成抵抗を示す図。
【図18】(a)はAMPのゲイン特性を示す図、(b)は相補型インバータを用いたAMPのゲイン特性を示す図。
【図19】帰還経路上のアナログスイッチを初段のインバータの入力容量の近傍に配置する例を示す図。
【図20】信号線駆動回路の第10の実施形態の回路図。
【図21】本実施形態の液晶表示装置内の各部の電圧レベルを示す図。
【図22】電源電圧側と接地電圧側のマージンを示す図。
【図23】信号線駆動回路の第11の実施形態の回路図。
【図24】第12の実施形態の信号線駆動回路内のAMPの回路図。
【図25】第13の実施形態の信号線駆動回路内のAMPと信号線選択回路の回路図。
【図26】位相余裕が変化する様子を示す図。
【図27】第14の実施形態の信号線駆動回路内のAMPの回路図。
【図28】第15の実施形態の信号線駆動回路内のAMPの回路図。
【図29】(a)は第16の実施形態の信号線駆動回路内のAMPの回路図、(b)は従来のAMPの回路図。
【図30】(a)は本実施形態のAMP17の動作タイミング図、(b)は比較のために示した図25のAMP17の動作タイミング図。
【図31】AMP17の周辺回路図。
【図32】図31の回路の動作タイミング図。
【図33】図2の電源ICに含まれる昇圧回路の一例を示す回路図。
【図34】電源ICの機能を説明する図。
【図35】外部電源電圧VDD、電源電圧XAVDD、分圧抵抗ラダーで生成される基準電圧最大値REFH、基準電圧最小値REVLの電圧レベルの関係を示す図。
【図36】AMP内のインバータの電源線及び接地線に接続される抵抗を説明する図。
【図37】AMP出力の収束時間を説明する図。
【図38】初段のインバータのゲート幅W1と2段目のインバータのゲート幅W2とを等しくし、2段目のインバータのゲート幅W2と3段目のインバータのゲート幅W3との比W2/W3を変えたときに、AMP17の出力の収束時間がどのように変化するかを示す図。
【図39】図3のAMPの部分のレイアウト図。
【図40】第20の実施形態における低温ポリシリコンTFTアレイ基板のレイアウト図。
【図41】信号線駆動回路の概略構成図。
【符号の説明】
1 画素アレイ部
2 ガラス基板
3 コントローラIC
4 電源IC
5 信号線駆動回路
6 走査線駆動回路
11 シフトレジスタ
12 データバス
13 サンプリングラッチ
14 ロードラッチ
15 電圧選択回路
16 DAC
17 AMP
18 信号線選択回路
20 分圧抵抗ラダー

Claims (2)

  1. 絶縁基板上に縦横に列設される信号線および走査線と、
    前記信号線および走査線の各交点付近に形成される表示素子と、
    前記走査線を駆動する走査線駆動回路と、
    前記絶縁基板上に形成され前記信号線を駆動する信号線駆動回路と、を備えた表示装置において、
    前記信号線駆動回路は、
    アナログ映像信号を増幅する増幅器と、
    前記増幅器で増幅されたアナログ映像信号の供給先である信号線を選択する信号線選択回路と、を有し、
    前記増幅器は、
    縦続接続される奇数個のインバータと、
    前記インバータの段間と、初段の前記インバータの入力端子と最終段の前記インバータの出力端子との間と、にそれぞれ接続される第1キャパシタ素子と、
    初段の前記インバータに電源電圧を供給する第1電源供給線と、
    初段以外の前記インバータに電源電圧を供給する第2電源供給線と、を有することを特徴とする表示装置。
  2. 前記第1および第2電源供給線にそれぞれ別個に挿入されるインピーダンス素子を備えることを特徴とする請求項1に記載の表示装置。
JP2002128561A 2001-04-27 2002-04-30 表示装置 Expired - Fee Related JP4183436B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128561A JP4183436B2 (ja) 2001-04-27 2002-04-30 表示装置

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001132969 2001-04-27
JP2001-132969 2001-04-27
JP2001-323178 2001-10-22
JP2001323178 2001-10-22
JP2001400089 2001-12-28
JP2001-400089 2001-12-28
JP2002128561A JP4183436B2 (ja) 2001-04-27 2002-04-30 表示装置

Publications (2)

Publication Number Publication Date
JP2003255916A JP2003255916A (ja) 2003-09-10
JP4183436B2 true JP4183436B2 (ja) 2008-11-19

Family

ID=28678990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128561A Expired - Fee Related JP4183436B2 (ja) 2001-04-27 2002-04-30 表示装置

Country Status (1)

Country Link
JP (1) JP4183436B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604067B1 (ko) * 2004-12-24 2006-07-24 삼성에스디아이 주식회사 버퍼 및 이를 이용한 데이터 집적회로와 발광 표시장치
TWI413957B (zh) * 2005-03-01 2013-11-01 Innolux Corp 主動式矩陣陣列裝置
JP4509004B2 (ja) * 2005-03-31 2010-07-21 三星モバイルディスプレイ株式會社 バッファー及びこれを利用したデータ駆動回路と発光表示装置
US8384641B2 (en) * 2006-08-25 2013-02-26 Sharp Kabushiki Kaisha Amplifier circuit and display device including same
JP4505481B2 (ja) * 2007-05-31 2010-07-21 ティーピーオー ディスプレイズ コーポレイション 液晶表示装置の駆動装置
JP4724785B2 (ja) * 2007-07-11 2011-07-13 チーメイ イノラックス コーポレーション 液晶表示装置および液晶表示装置の駆動装置
JP2010191198A (ja) * 2009-02-18 2010-09-02 Toshiba Mobile Display Co Ltd 表示装置の駆動回路
JP7110853B2 (ja) * 2018-09-11 2022-08-02 セイコーエプソン株式会社 表示ドライバー、電気光学装置、電子機器及び移動体

Also Published As

Publication number Publication date
JP2003255916A (ja) 2003-09-10

Similar Documents

Publication Publication Date Title
US7136058B2 (en) Display apparatus, digital-to-analog conversion circuit and digital-to-analog conversion method
US20060038764A1 (en) Source driver, electro-optic device, and driving method
US6567327B2 (en) Driving circuit, charge/discharge circuit and the like
US7863982B2 (en) Driving circuit capable of enhancing response speed and related method
US20120019502A1 (en) Source driver for a liquid crystal display device and liquid crystal display device using the same
US7459967B2 (en) Differential amplifier, digital-to-analog converter and display device
US7482845B2 (en) Output buffer circuit
US20080180174A1 (en) Output buffer with a controlled slew rate offset and source driver including the same
JP4082398B2 (ja) ソースドライバ、電気光学装置、電子機器及び駆動方法
US20100097360A1 (en) Display driving apparatus
KR101079760B1 (ko) 시프트 레지스터 및 그 구동방법
EP1265217A2 (en) Operational amplifier circuit, driving circuit and driving method
KR20010029617A (ko) 출력회로
US7551111B2 (en) Decoder circuit, driving circuit for display apparatus and display apparatus
JP2008122567A (ja) データドライバ及び表示装置
CN102113216B (zh) 电容负载驱动电路和具备该电容负载驱动电路的显示装置
KR100427733B1 (ko) 표시 장치, 디지털 아날로그 변환 회로 및 디지털아날로그 변환 방법
JP4183436B2 (ja) 表示装置
US7948278B2 (en) Load capacity driving circuit
CN108962156B (zh) 半导体装置及数据驱动器
JP3691034B2 (ja) 信号出力装置及びこれを用いた液晶表示装置
US20020145408A1 (en) Voltage supplying device, and semiconductor device, electro-optical device and electronic instrument using the same
JP5128996B2 (ja) 出力回路、及びオフセットキャンセル方法
JP2005338131A (ja) 駆動回路およびそれを備える表示装置
US20090096491A1 (en) Driver circuit, data driver, integrated circuit device, and electronic instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees