JP4176081B2 - Contact manufacturing method - Google Patents

Contact manufacturing method Download PDF

Info

Publication number
JP4176081B2
JP4176081B2 JP2005011745A JP2005011745A JP4176081B2 JP 4176081 B2 JP4176081 B2 JP 4176081B2 JP 2005011745 A JP2005011745 A JP 2005011745A JP 2005011745 A JP2005011745 A JP 2005011745A JP 4176081 B2 JP4176081 B2 JP 4176081B2
Authority
JP
Japan
Prior art keywords
contact
lubricant
plating
recess
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005011745A
Other languages
Japanese (ja)
Other versions
JP2006202569A (en
Inventor
祐二 平社
唯志 新谷
正 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005011745A priority Critical patent/JP4176081B2/en
Publication of JP2006202569A publication Critical patent/JP2006202569A/en
Application granted granted Critical
Publication of JP4176081B2 publication Critical patent/JP4176081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はコンタクトの製造方法に関する。   The present invention relates to a method for manufacturing a contact.

一般に、コネクタ用コンタクトは、銅や銅合金を基材に使用し、下地用金属としてニッケルメッキ又はニッケル合金メッキ、接触用金属として金又は金合金メッキ、或いはスズメッキ又はスズ合金メッキがメッキ層として施されていることが多く、コネクタを多数回挿抜(抜き差し)するような場合、更に接触用金属のメッキ層上にオイル,ワックス,グリース等の潤滑層を設けることによって、コンタクトの摺動による接触部の表面の摩擦摩耗を防止している。このような潤滑層は、接触用金属のメッキ層を施した後に潤滑剤を溶かした溶液中に基材を浸漬して形成されるか、或いはスプレー,刷毛塗り等により表面に塗布形成されることが普通である。   In general, connector contacts use copper or copper alloy as the base material, and nickel plating or nickel alloy plating as the base metal, gold or gold alloy plating as the contact metal, or tin plating or tin alloy plating as the plating layer. In many cases, when a connector is inserted and removed many times, a contact layer by sliding of the contact is provided by providing a lubricating layer of oil, wax, grease, etc. on the contact metal plating layer. Prevents frictional wear on the surface. Such a lubrication layer is formed by immersing the substrate in a solution in which a lubricant is dissolved after a contact metal plating layer is applied, or is formed on the surface by spraying, brushing or the like. Is normal.

コネクタ用コンタクトの接触部に塗布される潤滑剤は、多数回の嵌合・離脱が行われる長期間に及ぶ使用においても安定した潤滑効果を示し、接触抵抗が不安定になることや接点表面が摩耗されるのを防止できることを主な目的として用いられている。特にICカード用やメモリカード用のコネクタ等では、1万回以上のカードの挿抜(挿入,抜去)後もコンタクトの接触部(接点)表面が摩耗されることなく、安定した低接触抵抗を維持することが要求されている。   The lubricant applied to the contact part of the connector contact shows a stable lubrication effect even when used for a long period of time when it is engaged and disengaged many times, resulting in unstable contact resistance and contact surface The main purpose is to prevent wear. Especially for IC card and memory card connectors, the contact surface of the contact (contact) surface is not worn even after 10,000 or more times of card insertion / extraction (insertion / extraction), and stable low contact resistance is maintained. Is required to do.

従来、潤滑剤をコンタクトの表面に塗布する場合、可能な限り潤滑剤が表面に多く残るように塗布量を多くするように工夫されているが、実際には潤滑層の厚さを厚くするとコンタクト以外の部分への付着や汚染が発生したり、電気接点での皮膜抵抗が増大して接触抵抗が高くなる等の不安定性が生じるために表面に厚く塗布するには限界があって結局塗布量を充分に多くすることができないという問題がある他、潤滑剤には流動性があるためにコネクタの嵌合・離脱の状態で長期間保持すること(長期間コネクタを使用すること)により接触部の表面(接点表面)から潤滑層が徐々に流失してしまうという問題や、或いはICカード用コネクタに適用する場合のように1万回以上に及ぶ多数回の挿抜を繰り返すことにより接触部の表面(接点表面)から潤滑層が徐々に拭い去られて消失して潤滑効果の減少・劣化が生じることにより実用に耐えられなくなってしまうという問題があるため、上述したような多数回の挿抜使用には耐えられないのが実態となっている。   Conventionally, when applying lubricant to the surface of a contact, it has been devised to increase the coating amount so that as much lubricant as possible remains on the surface. Since there is instability such as adhesion to other parts or contamination, or instability such as increased film resistance at electrical contacts and higher contact resistance, there is a limit to thick coating on the surface, and the amount of coating after all In addition to the problem that the amount of contact cannot be increased sufficiently, the lubricant has fluidity, so that the contact portion can be maintained by holding the connector in a mated / removed state for a long time (using the connector for a long time). The problem is that the lubricant layer will be gradually washed away from the surface (contact surface) of the contact, or the surface of the contact portion by repeating insertion and removal as many as 10,000 times as in the case of application to an IC card connector. (Contact With the problem that the lubricating layer is gradually wiped off from the surface) and disappears and the lubrication effect decreases and deteriorates, making it unusable for practical use. The reality is that it is not possible.

そこで、このような問題を解消するため、電気接点部材としてのコンタクトに対して潤滑油を用いて耐摩耗性や高潤滑性を持たせる技術として、マイクロカプセルを利用した方法(特許文献1,2参照)や、表面に凹み部を設ける方法(特許文献3参照)が知られている。   Therefore, in order to solve such a problem, a method using microcapsules (Patent Documents 1 and 2) is a technique for imparting wear resistance and high lubricity to a contact as an electrical contact member by using lubricating oil. And a method of providing a recess on the surface (see Patent Document 3).

例えば特許文献1に係る耐摩耗性および摺動性にすぐれた複合めっき金属材料、およびその製造方法の場合、潤滑油を内包したマイクロカプセルをめっき皮膜に分散させ、それが破壊されたときにしみ出す潤滑油により潤滑効果が発揮されるもので、特許文献2に係るコネクタの場合、有機溶媒に不溶の高分子被膜に覆われた潤滑油を利用して相手側コンタクトの接触により高分子被膜が破れることにより、コネクタ接点の耐挿抜性を向上させ得るものとなっている。又、特許文献3に係る摺動部材用硬質皮膜の形成方法の場合、基材上に形成した離脱物質を含む硬質皮膜から離脱物質を離脱させ、硬質皮膜表面に微細な凹部を形成することにより、効率良く潤滑油保持用ピットを有する硬質皮膜を形成できるものとなっている。   For example, in the case of the composite plating metal material excellent in wear resistance and slidability according to Patent Document 1 and the manufacturing method thereof, the microcapsules containing the lubricating oil are dispersed in the plating film, and blotting occurs when it is destroyed. In the case of the connector according to Patent Document 2, the polymer film is formed by the contact of the mating contact using the lubricant covered with the polymer film insoluble in the organic solvent. By tearing, the connector contact resistance can be improved. Further, in the case of the method for forming a hard coating for a sliding member according to Patent Document 3, the release material is detached from the hard coating containing the release material formed on the substrate, and a fine recess is formed on the surface of the hard coating. Thus, it is possible to efficiently form a hard film having lubricating oil retaining pits.

特開平6−330392号公報(要約、図2、段落[0023])JP-A-6-330392 (Abstract, FIG. 2, Paragraph [0023]) 特開平5−266938号公報(要約、図1)Japanese Patent Laid-Open No. 5-266638 (Summary, FIG. 1) 特開平6−57414号公報(要約、図4)JP-A-6-57414 (summary, FIG. 4)

上述した電気接点部材に対して潤滑油を用いて耐摩耗性や高潤滑性を持たせるための特許文献1〜特許文献3に係る周知技術の場合、何れも実際には充分な耐摩耗性や高潤滑性を持った品質高い製品を作業性及び生産性良く簡便に製造することが困難となっている。   In the case of the well-known techniques according to Patent Documents 1 to 3 for imparting wear resistance and high lubricity to the above-described electrical contact member using a lubricating oil, each of them is actually sufficient wear resistance or It is difficult to easily produce a high-quality product having high lubricity with good workability and productivity.

即ち、特許文献1に係る技術の場合、マイクロカプセルの調製やメッキ処理液中にマイクロカプセルを分散させるためにメッキ処理液を改良する必要があり、それらの作業が煩雑である上、周知の場合よりも使用する薬品種数が増えることにより、製造に際しての作業性及び生産性が優れないばかりでなく安全性の面で周知のメッキ工程よりも劣るという問題がある他、マイクロカプセル自体が潤滑油を含む非常に柔らかいものであり、金属に複合メッキした場合の皮膜の硬度は複合メッキしない場合と比べて柔らかくなることにより、表面硬度の低下が生じて耐摩耗性が低下してしまうという問題もある。   That is, in the case of the technique according to Patent Document 1, it is necessary to improve the plating treatment liquid in order to prepare the microcapsules and disperse the microcapsules in the plating treatment liquid. As the number of chemicals used increases, the workability and productivity in production are not only excellent, but also inferior to the well-known plating process in terms of safety, and the microcapsules themselves are lubricating oils. There is also a problem that the hardness of the film when the composite plating is applied to the metal becomes soft compared to the case where the composite plating is not performed, resulting in a decrease in surface hardness and a decrease in wear resistance. is there.

又、特許文献2に係る技術の場合、特許文献1の場合と同様にマイクロカプセルの調製が必要であって、しかもその材質を選定しなければならず、実施に相当な時間がかかると共に、調製や材質の選定の煩雑であることにより、製造に際しての作業性及び生産性と安全性とが優れないという問題がある。   In the case of the technique according to Patent Document 2, preparation of microcapsules is necessary as in the case of Patent Document 1, and the material must be selected. In addition, there is a problem that workability, productivity, and safety at the time of manufacture are not excellent due to complicated selection of materials.

更に、特許文献3に係る技術の場合、メッキ工程前の離脱物質を表面塗布する工程と、メッキ工程後のその離脱物質を離脱させる工程とを要するため、工程が増えて手間がかかることにより、製造に際しての作業性及び生産性が優れないという問題がある。   Furthermore, in the case of the technique according to Patent Document 3, a process for applying a surface of the release substance before the plating process and a process for releasing the release substance after the plating process are required. There is a problem that workability and productivity in manufacturing are not excellent.

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、充分な耐摩耗性並びに高潤滑性を持つ品質高いコンタクト及びそれを適用したコネクタ、並びに周知のメッキ装置やメッキ処理液をそのまま使用できて品質高い製品を作業性及び生産性良く安全にして簡便に製造し得るコンタクトの製造方法を提供することにある。   The present invention has been made to solve such problems, and its technical problem is to provide a high-quality contact having sufficient wear resistance and high lubricity, a connector to which the contact is applied, and a known plating apparatus. It is another object of the present invention to provide a contact manufacturing method that can use a plating solution as it is and can easily manufacture a high-quality product with good workability and productivity with safety.

発明によれば、相手側電気接触部材との接続に供される接触部を備えた所定形状のコンタクト材となる少なくともスズを含む銅合金の基材を加熱して酸化処理することで少なくとも該接触部を含む表面に対して酸化物層を形成する酸化処理工程と、基材を水素イオン濃度pHが所定の範囲となるように調整したフッ素化合物溶液に浸すことにより、少なくとも接触部を含む表面に対して酸化物層との化学反応により複数の凹部の核を形成する凹部核形成工程と、基材における少なくとも接触部を含む表面に対して下地用金属を電解メッキすることにより、少なくとも凹部核形成工程で形成された複数の凹部の核を含む箇所に対してメッキ皮膜の析出に伴って発生する水素ガスの滞留に起因する気泡の生成により微小な複数の凹部を直径が10μm〜100μmの範囲となるように形成する下地用金属及び凹部形成工程と、基材における少なくとも接触部を含む表面に対して接触用金属を電解メッキ又は無電解メッキすることにより、少なくとも下地用金属及び凹部形成工程で形成された複数の凹部を含む箇所に対してメッキ皮膜により接触のための金属を形成する接触用金属形成工程と、基材における少なくとも接触部を含む表面に対して流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を塗布又は浸すことにより、少なくとも接触用金属形成工程で形成された複数の凹部内に該潤滑物質を滞留保持させてコンタクトを得る潤滑物質滞留工程とを有するコンタクトの製造方法が得られる。 According to the present invention, at least the copper alloy base material containing at least tin that becomes a contact material having a predetermined shape provided with a contact portion provided for connection with the counterpart electrical contact member is heated and oxidized to at least An oxidation treatment step for forming an oxide layer on the surface including the contact portion, and a surface including at least the contact portion by immersing the base material in a fluorine compound solution adjusted to have a hydrogen ion concentration pH within a predetermined range A recess nucleation step of forming a plurality of recess nuclei by a chemical reaction with the oxide layer, and at least the recess nuclei by electroplating a base metal on the surface of the substrate including at least the contact portion A plurality of minute recesses having a diameter of 1 due to generation of bubbles due to stagnation of hydrogen gas generated as a result of deposition of the plating film at locations including the nuclei of the plurality of recesses formed in the forming step. By forming the base metal and the recess forming step so as to be in the range of μm to 100 μm, and electrolytically or electrolessly plating the contact metal on the surface including at least the contact portion of the substrate, at least the base metal And a contact metal forming step of forming a metal for contact with a plating film on a portion including a plurality of recesses formed in the recess forming step, and fluidity with respect to the surface including at least the contact portion in the substrate. By applying or immersing a lubricant substance comprising any one of a lubricant having a lubricant, solid lubricant fine particles, and a lubricant containing solid lubricant fine particles, at least the lubricant substance is formed in the plurality of recesses formed in the contact metal forming step. A contact manufacturing method is obtained, which has a lubricating substance retention step of obtaining a contact by retaining and retaining the lubricant.

又、本発明によれば、上記コンタクトの製造方法において、凹部核形成工程では、水素イオン濃度pHにあっての所定の範囲を2〜5の範囲とすると共に、フッ素化合物溶液としてフッ化水素酸,酸性フッ化アンモニウム,酸性フッ化カリウム,フッ化ナトリウムのうちの少なくとも一種以上を含んだものを用い、下地用金属及び凹部形成工程では、下地用金属としてニッケルメッキ又はニッケル合金メッキを用い、接触用金属形成工程では、接触用金属として金メッキ又は金合金メッキ、或いはスズメッキ又はスズ合金メッキを用いるコンタクトの製造方法が得られる。   According to the present invention, in the contact manufacturing method, in the recess nucleation step, the predetermined range at the hydrogen ion concentration pH is set to a range of 2 to 5, and hydrofluoric acid is used as the fluorine compound solution. , Using at least one of acid ammonium fluoride, potassium acid fluoride, and sodium fluoride, in the base metal and recess forming step, using nickel plating or nickel alloy plating as the base metal, contact In the metal forming step, a contact manufacturing method using gold plating or gold alloy plating, or tin plating or tin alloy plating as the contact metal is obtained.

更に、本発明によれば、上記何れかのコンタクトの製造方法において、潤滑物質滞留工程では、潤滑剤としてパラフィン系,オレフィン系,エステル系,エーテル系のオイル,ワックス,グリースの一つ以上を含むものを用いると共に、固体潤滑性微粒子として粒径1μm以下の二硫化モリブデン,PTFE,フッ化グラファイトの一つ以上を含むものを用いるコンタクトの製造方法が得られる。   Furthermore, according to the present invention, in any one of the above contact manufacturing methods, the lubricating substance retention step includes at least one of paraffinic, olefinic, esteric, etheric oil, wax, and grease as a lubricant. And a contact manufacturing method using solid lubricant fine particles containing at least one of molybdenum disulfide, PTFE, and graphite fluoride having a particle diameter of 1 μm or less.

本発明のコンタクトの場合、少なくとも接触部を含む一部分又は全体の表面に微小な複数の凹部を形成し、これらの凹部に流動性を有する潤滑剤,固体潤滑性微粒子,或いは固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を滞留保持させることを基本とした上、凹部については、直径が10μm〜100μmの範囲にあり、固体潤滑性微粒子の粒径については、凹部内に滞留保持され易く、且つ潤滑剤に分散され易くなるように、1μm以下であるように規定しているので、多数回の嵌合・離脱の使用においても安定した接触状態が保たれ、充分な耐摩耗性並びに高潤滑性を持つ品質高い製品が得られるようになる。この結果、係るコンタクトの所定数のものをインシュレータ又はハウジングに列設して保持固定することにより、同様に充分な耐摩耗性や高潤滑性を持つ品質高いコネクタが得られるようになる。又、本発明のコンタクトの製造方法の場合、最初に酸化処理工程において、所定形状のコンタクト材となるスズを含んだ銅合金の基材を加熱して酸化処理することで表面に対して酸化物層を形成し、引き続く凹部核形成工程において、基材を水素イオン濃度pHが所定の範囲となるように調整したフッ素化合物溶液に浸して酸化物層との化学反応により複数の凹部の核を形成し、更に下地用金属及び凹部形成工程において、基材における少なくとも接触部を含む表面に対して下地用金属を電解メッキしてメッキ皮膜の析出に伴って発生する水素ガスの滞留に起因する気泡の生成により微小な複数の凹部を直径が上述した10μm〜100μmの範囲となるように形成した後、接触用金属形成工程において、基材における表面に対して接触用金属をメッキ皮膜により形成した上、最後の潤滑物質滞留工程において、基材における表面に対して流動性を有する潤滑剤,固体潤滑性微粒子,或いは固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を塗布又は浸して各凹部内に潤滑物質を滞留保持させてコンタクトを得るようにしているので、こうした各工程を経て得られるコンタクトは、少なくともスズを含む銅合金材を基材とすると共に、基材における少なくとも接触部を含む表面に対して下地用金属,及び接触用金属が被覆されて成り、且つ接触用金属における接触部を含む表面上に各凹部が形成される基本構造を持つようになり、又潤滑物質滞留工程では、潤滑剤としてパラフィン系,オレフィン系,エステル系,エーテル系のオイル,ワックス,グリースの一つ以上を含むものを用いると共に、固体潤滑性微粒子として粒径1μm以下の二硫化モリブデン,PTFE,フッ化グラファイトの一つ以上を含むものを用いるために特別な薬品や設備を要することなく、周知のメッキ装置や処理液をそのまま使用できて上述した品質高い製品(コンタクト)を作業性及び生産性良く安全にして簡便に製造し得るようになる。   In the case of the contact of the present invention, at least a part of the entire surface including the contact portion or a plurality of minute recesses are formed on the entire surface, and the recess includes fluid lubricant, solid lubricating fine particles, or solid lubricating fine particles. Basically, the lubricant is retained and retained by any one of the lubricants, and the diameter of the recess is in the range of 10 μm to 100 μm. The particle size of the solid lubricating fine particles is retained and retained in the recess. Since it is specified to be 1 μm or less so that it can be easily dispersed and dispersed in the lubricant, a stable contact state can be maintained even when used many times of mating / removing, and sufficient wear resistance In addition, a high-quality product having high lubricity can be obtained. As a result, a high-quality connector having sufficient wear resistance and high lubricity can be obtained in the same manner by arranging and holding a predetermined number of such contacts on the insulator or the housing. In the contact manufacturing method of the present invention, first, in the oxidation treatment step, a copper alloy base material containing tin, which becomes a contact material having a predetermined shape, is heated and oxidized to form an oxide on the surface. In the subsequent recess nucleation step, the substrate is immersed in a fluorine compound solution adjusted so that the hydrogen ion concentration pH is within a predetermined range, and a plurality of recess nuclei are formed by a chemical reaction with the oxide layer. Furthermore, in the base metal and recess forming step, the base metal is electroplated onto the surface including at least the contact portion of the base material, and bubbles caused by the retention of hydrogen gas generated along with the deposition of the plating film are generated. After forming a plurality of minute recesses so that the diameter is in the range of 10 μm to 100 μm as described above, in the contact metal forming step, the contact metal with respect to the surface of the substrate Is formed by plating film, and in the last lubricating substance retention step, it depends on any one of lubricant having fluidity to the surface of the base material, solid lubricating fine particles, or lubricant containing solid lubricating fine particles. Since the contact is obtained by applying or dipping the lubricant and retaining the lubricant in each recess to obtain the contact, the contact obtained through each of these steps is based on a copper alloy material containing at least tin. The base metal and the contact metal are coated on the surface including at least the contact portion of the base material, and each concave portion is formed on the surface including the contact portion of the contact metal. In the lubricant retention process, the lubricant contains one or more of paraffinic, olefinic, esteric and etheric oils, waxes and greases. In addition to the use of such a material, and using a solid lubricating fine particle containing one or more of molybdenum disulfide, PTFE, and graphite fluoride having a particle diameter of 1 μm or less, a known plating apparatus or The treatment liquid can be used as it is, and the above-described high-quality products (contacts) can be manufactured easily with safety and good workability and productivity.

本発明の最良の形態に係るコンタクトは、相手側電気接触部材との接続に供される接触部を備えた所定形状のものにおいて、少なくとも接触部を含む一部分又は全体の表面には微小な複数の凹部が形成され、各凹部には流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質が滞留保持されたものである。但し、ここでの複数の凹部は、直径が10μm〜100μmの範囲にあり、固体潤滑性微粒子の粒径は凹部の大きさと潤滑剤中に含有される場合の分散性とを考慮して1μm以下であるようにすることが好ましい。ここで使用する潤滑剤は、パラフィン系,オレフィン系,エステル系,エーテル系のオイル,ワックス,グリースの一つ以上を含むものとし、固体潤滑性微粒子は、二硫化モリブデン,PTFE,フッ化グラファイトの一つ以上を含むものとすることが好ましい。係るコンタクトの基本構造は、周知構造の場合と同様に、少なくともスズを含む銅合金材を基材とすると共に、基材における少なくとも接触部を含む表面に対して下地用金属,及び接触用金属が被覆されて成るものとした上、接触用金属における接触部を含む表面上に各凹部が形成されたものであることが好ましい。   The contact according to the best mode of the present invention has a predetermined shape provided with a contact portion used for connection with the mating electrical contact member, and at least a part of or the entire surface including the contact portion has a plurality of minute contacts. Concave portions are formed, and in each of the concave portions, a lubricant substance is retained and held by any one of a fluid lubricant, solid lubricating fine particles, and a lubricant containing solid lubricating fine particles. However, the plurality of recesses here have a diameter in the range of 10 μm to 100 μm, and the particle size of the solid lubricating fine particles is 1 μm or less in consideration of the size of the recesses and the dispersibility when contained in the lubricant. It is preferable to make it. The lubricant used here includes one or more of paraffinic, olefinic, esteric, and etheric oils, waxes, and greases, and the solid lubricating fine particles are one of molybdenum disulfide, PTFE, and graphite fluoride. It is preferable to include two or more. As in the case of the known structure, the basic structure of such a contact is based on a copper alloy material containing at least tin, and the base metal and the contact metal are provided on the surface including at least the contact portion of the base material. It is preferable that each recess is formed on the surface including the contact portion of the contact metal.

即ち、本発明は、コネクタ用コンタクトの接触部の表面に形成した微小な凹部に対して周知の流動性を有する潤滑剤,固体潤滑性微粒子,或いは固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を滞留保持させることにより、繰り返しの挿抜使用条件下にあっても長期的に安定した接触が得られることを見い出したものである。安定した潤滑効果は、微小な凹部に蓄えられた潤滑剤が長期間に及んで保持され、しかも嵌合・離脱時においては接点部分に連続的に供給されて消失を防ぐことにより長期間使用が実現され、固体潤滑性微粒子が凹部に滞留保持された状態では金属同士の直接的な接触を避けて摩擦・摩耗が防止されるために潤滑効果が発現される。従って、係るコンタクトは、少なくとも接触部の表面に形成された各凹部内に潤滑物質が安定して滞留保持されたものであるため、多数回の嵌合・離脱の使用においても安定した接触状態が保たれ、充分な耐摩耗性並びに高潤滑性を持つ品質高い製品となる。   That is, the present invention is any one of a lubricant having a known fluidity, a solid lubricating fine particle, or a lubricant containing a solid lubricating fine particle with respect to a minute recess formed on the surface of the contact portion of the connector contact. It has been found that long-term stable contact can be obtained even under repeated insertion / extraction use conditions by retaining and retaining the lubricating substance. The stable lubrication effect is that the lubricant stored in the minute recesses is retained for a long period of time, and it is continuously supplied to the contact part at the time of mating / removing to prevent disappearance, so that it can be used for a long time In a state where the solid lubricating fine particles are realized and retained in the recesses, a direct contact between metals is avoided and friction and wear are prevented, so that a lubricating effect is exhibited. Therefore, since the contact is such that the lubricating substance is stably retained and retained in at least the recesses formed on the surface of the contact portion, a stable contact state can be obtained even in the use of multiple engagements / disengages. High quality products with sufficient wear resistance and high lubricity are maintained.

本発明のコンタクトの場合、従来から使用されている潤滑剤や固体潤滑性微粒子を使用した上、多数回(1000回〜20000回)の嵌合・離脱を行った使用条件下にあっても、安定した接触状態を保つことができる。因みに、このようなコンタクトは、所定数のものがインシュレータ又はハウジングに列設して保持固定されることにより、コネクタとして構成されるが、係るコネクタにおいても同様に充分な耐摩耗性並びに高潤滑性を持つ品質高いものとなる。   In the case of the contact of the present invention, a conventional lubricant and solid lubricating fine particles are used, and even under use conditions in which a large number of times (1000 times to 20000 times) are engaged and detached, A stable contact state can be maintained. By the way, such a contact is configured as a connector by arranging and holding a predetermined number of contacts in an insulator or a housing, and in such a connector as well, sufficient wear resistance and high lubricity are similarly provided. It will be of high quality.

図1は、本発明の最良の実施の形態に係るコネクタ用コンタクトにおける表面に形成された微小な凹部を含む組織の電子顕微鏡(SEM)写真(150倍拡大した二次電子像)を示したものである。   FIG. 1 shows an electron microscopic (SEM) photograph (secondary electron image magnified 150 times) of a structure including minute concave portions formed on the surface of a connector contact according to the preferred embodiment of the present invention. It is.

図1では、コンタクトにおける接触部の表面(接点表面)に微小な凹部が形成された様子を150倍の二次電子像により示している。尚、ここで形成される凹部の直径は概ね10μm〜100μmの範囲内であり、その深さは下地用金属のニッケルメッキ層の厚さに依存した形状を成す。これらの凹部内には流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質が滞留保持されるが、これによって長期間に及んで安定した潤滑効果を示すようになる。   In FIG. 1, a state in which minute concave portions are formed on the surface of the contact portion (contact surface) in the contact is shown by a secondary electron image of 150 times. In addition, the diameter of the recessed part formed here exists in the range of about 10 micrometers-100 micrometers, and the depth comprises the shape depending on the thickness of the nickel plating layer of a base metal. In these recesses, a lubricating substance by any one of fluid lubricant, solid lubricant fine particles, and lubricant containing solid lubricant fine particles is retained and retained, which makes it stable over a long period of time. Shows a lubricating effect.

因みに、凹部内に潤滑物質を滞留保持させることにより潤滑効果を長く維持できる理由は、以下に示すように考えられる。   Incidentally, the reason why the lubricating effect can be maintained for a long time by retaining the lubricating substance in the recess is considered as follows.

即ち、流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を少なくとも接触部を含む一部分又は全体の表面(接点表面)に従来通りに塗布することにより、接点表面に潤滑層が形成されるだけでなく、微小な凹部には余分な潤滑物質が蓄えられ、コンタクトの摺動初期には接点表面の潤滑層により潤滑効果が発揮される。摺動回数の増加に伴って摺動部分では潤滑層が薄くなり始めるが、微小な凹部を多数設けて潤滑剤を多く蓄え、潤滑効果を長期間維持できるようにしておけば、凹部に蓄えられた潤滑剤が新たに供給されるため、摺動部分から潤滑剤が消失することが無くなる。尚、ここで使用する潤滑物質は、上述したような一般に使用されている物質を使用することができる。   That is, a lubricant material by any one of a fluid lubricant, solid lubricant fine particles, and a lubricant containing solid lubricant fine particles is applied to a part or the entire surface (contact surface) including at least a contact portion as usual. By doing so, not only a lubricating layer is formed on the contact surface, but also extra lubricating material is stored in the minute recesses, and the lubricating effect is exerted by the lubricating layer on the contact surface at the initial sliding of the contact. As the number of sliding operations increases, the lubricating layer begins to thin at the sliding part.However, if a large number of minute concave parts are provided to store a large amount of lubricant so that the lubricating effect can be maintained for a long period of time, the lubricating layer can be stored. Since the lubricant is newly supplied, the lubricant does not disappear from the sliding portion. In addition, the lubrication substance used here can use the substance generally used as mentioned above.

又、潤滑物質として、特に固体潤滑性微粒子を分散させた潤滑剤を接触部の表面に塗布すると、固体潤滑性微粒子が凹部に保持されて金属同士の直接的な接触を防いで摺動部分の摩擦摩耗を抑制する。この固体潤滑性微粒子は凹部に保持されると接点表面から消失することがないため、長期に及んで安定した潤滑効果が得られる。固体潤滑性微粒子の大きさは、微小な凹部の大きさと潤滑剤への分散性とを考慮し、上述したように凹部の直径10μm〜100μmの範囲に対して直径を1μm以下とするのが望ましい。尚、ここで使用する固体潤滑性微粒子は、上述したような周知のものを使用することができる。   In addition, when a lubricant in which solid lubricating fine particles are dispersed is applied to the surface of the contact portion as a lubricating substance, the solid lubricating fine particles are held in the recesses to prevent direct contact between metals and prevent sliding parts. Reduces frictional wear. Since the solid lubricating fine particles do not disappear from the contact surface when held in the recesses, a stable lubricating effect can be obtained over a long period of time. The size of the solid lubricating fine particles is preferably 1 μm or less with respect to the diameter range of 10 μm to 100 μm of the recesses as described above in consideration of the size of the minute recesses and the dispersibility in the lubricant. . In addition, the well-known thing as mentioned above can be used for the solid lubricating fine particle used here.

以下は、コンタクトの基材として、少なくともスズを含む銅合金材を使用するものとして、接触部の表面に対する微小な凹部を形成する工程を含むコンタクトの製造方法を説明する。   In the following, a contact manufacturing method including a step of forming a minute recess with respect to the surface of the contact portion will be described on the assumption that a copper alloy material containing at least tin is used as the contact substrate.

コンタクトの製造に先立ち、所定形状の基材の表面からプレス油や人の皮脂等の有機物による汚れを周知の脱脂処理により完全に取り除いておく。   Prior to the manufacture of the contacts, the dirt due to organic substances such as press oil and human sebum is completely removed from the surface of the base material having a predetermined shape by a known degreasing treatment.

そこで、先ず100℃から200℃の温度範囲で基材を加熱して酸化処理することにより少なくとも接触部を含む表面に対して酸化物層を形成する酸化処理工程を実施する。この酸化物層には銅及びスズの化合物が含まれている。加熱の温度範囲として、100℃以下の温度で加熱すると酸化物層の形成に時間がかかり過ぎるために実用的ではなく、又200℃以上の温度ではすぐに厚い強固な酸化物層が形成されて正常なメッキ皮膜の生成を阻害するために好ましくない。従って、100℃から200℃の温度範囲で加熱することが好ましい。因みに、加熱の所用時間は加熱温度に依存するもので、例えば120℃では10時間程度、140℃では1時間程度とするのが適当である。   Therefore, first, an oxidation treatment process is performed in which an oxide layer is formed on the surface including at least the contact portion by heating and oxidizing the substrate in a temperature range of 100 ° C. to 200 ° C. This oxide layer contains a compound of copper and tin. The heating temperature range is not practical because it takes too much time to form an oxide layer when heated at a temperature of 100 ° C. or less, and a thick and strong oxide layer is immediately formed at a temperature of 200 ° C. or more. This is not preferable because it inhibits the formation of a normal plating film. Therefore, it is preferable to heat in a temperature range of 100 ° C to 200 ° C. Incidentally, the required heating time depends on the heating temperature. For example, it is appropriate that the heating time is about 10 hours at 120 ° C. and about 1 hour at 140 ° C.

次に、基材を水素イオン濃度pHが2〜5の範囲となるように調整したフッ化水素酸,酸性フッ化アンモニウム,酸性フッ化カリウム,フッ化ナトリウムのうちの少なくとも一種以上を含んだフッ素化合物溶液に浸すことにより、少なくとも接触部を含む表面に対して酸化物層との化学反応により複数の凹部の核を形成する凹部核形成工程を実施する。ここでの水素イオン濃度pHの領域におけるフッ素化合物溶液に基材を浸すと、銅系酸化物は溶解するが、スズ系酸化物は不溶解性の生成物として表面に残留(スズ系酸化物はフッ素化合物溶液により溶解と同時にフッ素イオンとの化学反応により化合物を形成するものと理解される)し、残留物部分に凹部の核が形成される。又、スズ系酸化物以外の酸化物はフッ素イオンと錯体とを形成して溶液中に溶解する。ここで水素イオン濃度pHが2より低いとスズ系酸化物に起因する不溶解性生成物が溶液中に溶解して核ができなくなり、水素イオン濃度pHが5よりも高いとスズ以外の酸化物の溶解が阻害されて引き続く下地用金属及び凹部形成工程でメッキ処理したときにメッキ皮膜の密着性に問題が生じるため、何れも好ましくない。従って、水素イオン濃度pHは2〜5の範囲とするのが好ましい。因みに、基材をフッ素化合物溶液に浸す処理は室温でも可能であるが、スズ系酸化物以外の酸化物の溶解反応が遅いために50℃程度の温度条件下で行う方が良い。   Next, fluorine containing at least one or more of hydrofluoric acid, acidic ammonium fluoride, acidic potassium fluoride, sodium fluoride whose base material was adjusted to have a hydrogen ion concentration pH in the range of 2 to 5 By immersing in the compound solution, a recess nucleation step is performed in which nuclei of a plurality of recesses are formed on the surface including at least the contact portion by a chemical reaction with the oxide layer. When the substrate is immersed in the fluorine compound solution in the region of the hydrogen ion concentration pH here, the copper-based oxide is dissolved, but the tin-based oxide remains on the surface as an insoluble product (the tin-based oxide is It is understood that a compound is formed by a chemical reaction with fluorine ions simultaneously with dissolution by the fluorine compound solution), and a concave nucleus is formed in the residue portion. In addition, oxides other than tin-based oxides form fluorine ions and complexes and dissolve in the solution. Here, if the hydrogen ion concentration pH is lower than 2, the insoluble product resulting from the tin-based oxide dissolves in the solution and nuclei are not formed. If the hydrogen ion concentration pH is higher than 5, oxides other than tin Since the problem of the adhesion of the plating film occurs when plating is performed in the subsequent formation of the underlying metal and the recess, the dissolution of the metal is hindered. Therefore, the hydrogen ion concentration pH is preferably in the range of 2-5. Incidentally, the treatment of immersing the substrate in the fluorine compound solution can be performed at room temperature, but it is better to perform the treatment under a temperature condition of about 50 ° C. because the dissolution reaction of oxides other than the tin-based oxide is slow.

引き続き、基材における少なくとも接触部を含む表面に対して下地用金属としてのニッケルメッキ又はニッケル合金メッキを電気メッキすることにより、少なくとも先の凹部核形成工程で形成された各凹部の核を含む箇所に対してメッキ皮膜の析出に伴って発生する水素ガスの滞留に起因する気泡の生成により微小な複数の凹部を直径が10μm〜100μmの範囲となるように形成する下地用金属及び凹部形成工程を実施する。ここでは、ニッケルメッキ又はニッケル合金メッキの電気メッキにより接触部を含む表面に微小な凹部が形成されるが、これは上述したスズ系酸化物とフッ素イオンとの反応により生成された微小の不溶解性生成物部分にメッキ皮膜の析出と共に発生する水素ガスが滞留することに起因している。即ち、ニッケルメッキ又はニッケル合金メッキを電気メッキしたメッキ皮膜の析出により接触部を含む表面にはニッケルメッキ層が形成されるが、メッキ皮膜の析出に伴って発生する水素ガスが不溶解性生成物部分を核として滞留し、微小な気泡を生成する。この気泡部分にはニッケルメッキ層が生成されずに凹部が形成されることになる。但し、凹部の深さはニッケルメッキ層の厚さに依存し、ニッケルメッキ層の厚さは0.5μm以上を必要とするもので、これ以下の厚さでは凹部が殆ど形成されない。   Subsequently, at least a portion including the nucleus of each recess formed in the previous recess nucleus forming step by electroplating nickel plating or nickel alloy plating as a base metal on the surface including at least the contact portion in the base material In contrast, a base metal and recess forming step for forming a plurality of minute recesses in a range of 10 μm to 100 μm by the generation of bubbles due to the retention of hydrogen gas generated with the deposition of the plating film carry out. Here, a minute concave portion is formed on the surface including the contact portion by electroplating of nickel plating or nickel alloy plating, and this is a minute insolubility generated by the reaction between the above tin-based oxide and fluorine ions. This is because hydrogen gas generated along with the deposition of the plating film stays in the product portion. That is, the nickel plating layer is formed on the surface including the contact portion by the deposition of the plating film electroplated with nickel plating or nickel alloy plating, but the hydrogen gas generated along with the deposition of the plating film is an insoluble product. It stays with the part as a nucleus, and produces microbubbles. A concave portion is formed in the bubble portion without forming a nickel plating layer. However, the depth of the recess depends on the thickness of the nickel plating layer, and the thickness of the nickel plating layer requires 0.5 μm or more, and the recess is hardly formed at a thickness less than this.

更に、基材における少なくとも接触部を含む表面に対して接触用金属としての金メッキ又は金合金メッキ、或いはスズメッキ又はスズ合金メッキを電解メッキ又は無電解メッキすることにより、少なくとも先の下地用金属及び凹部形成工程で形成された各凹部を含む箇所に対してメッキ皮膜により接触のための金属を形成する接触用金属形成工程を実施する。ここでは、凹部が形成されたニッケルメッキ層に対して金メッキ又は金合金メッキの何れか、或いはスズメッキ又はスズ合金メッキの何れかの接触用金属を電解メッキ又は無電解メッキにより更に形成するが、この場合、ニッケルメッキ層の凹部の底に極めて薄いメッキが被覆されて凹部が保護される。尚、接触用金属形成工程に先立ち、下地用金属及び凹部形成工程を再度繰り返してメッキ皮膜することにより薄いニッケルメッキ層を加えるようにして凹部の保護を強化することも可能である。   Further, by subjecting the surface of the base material including at least the contact portion to gold plating or gold alloy plating as a contact metal, or tin plating or tin alloy plating by electrolytic plating or electroless plating, at least the previous base metal and recesses A contact metal forming step is performed in which a metal for contact is formed by a plating film on a portion including each recess formed in the forming step. Here, a contact metal of either gold plating or gold alloy plating or tin plating or tin alloy plating is further formed by electrolytic plating or electroless plating on the nickel plating layer in which the recess is formed. In this case, the bottom of the concave portion of the nickel plating layer is covered with a very thin plating to protect the concave portion. Prior to the contact metal forming step, it is also possible to reinforce the protection of the concave portion by adding a thin nickel plating layer by repeating the base metal and concave portion forming step again to perform plating.

最後に、基材における少なくとも接触部を含む表面に対して流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を塗布又は浸すことにより、少なくとも接触用金属形成工程で形成された各凹部内に潤滑物質を滞留保持させてコンタクトを得る潤滑物質滞留工程を実施する。但し、ここでは潤滑剤としてパラフィン系,オレフィン系,エステル系,エーテル系のオイル,ワックス,グリースの一つ以上を含むものを用いると共に、潤滑剤中に分散され易い固体潤滑性微粒子として粒径1μm以下の二硫化モリブデン,PTFE,フッ化グラファイトの一つ以上を含むものを用いる。   Finally, by applying or immersing a lubricating substance by any one of a lubricant having fluidity with respect to the surface including at least the contact portion in the substrate, solid lubricating fine particles, and solid lubricating fine particles, At least a lubricating substance retention step is performed in which a lubricating substance is retained and retained in each of the recesses formed in the contact metal forming step to obtain a contact. In this case, however, a lubricant containing at least one of paraffinic, olefinic, esteric, and etheric oils, waxes, and greases is used, and solid lubricating fine particles that are easily dispersed in the lubricant have a particle size of 1 μm. A material containing one or more of the following molybdenum disulfide, PTFE, and graphite fluoride is used.

これらの各工程を経て得られるコンタクトにおいては、微小な凹部の数が多い程、潤滑剤を多く滞溜保持できると共に、多くの固体潤滑性微粒子も滞溜保持できるため、より長い期間に及んで潤滑効果を発揮することができる。上述した各工程において、凹部の数は以下に説明する幾つかの手法により増加させることができる。   In the contact obtained through these steps, the larger the number of minute recesses, the more lubricant can be retained and the more solid lubricating fine particles can be retained. A lubricating effect can be exhibited. In each step described above, the number of recesses can be increased by several methods described below.

即ち、上述した凹部核形成工程で使用するフッ素化合物溶液におけるフッ素化合物濃度を高めることが挙げられる。フッ素化合物濃度が高ければスズ系酸化物と反応するフッ素イオン量が増加し、不溶解性生成物の生成量が増加するために凹部の形成数が増加する。又、基材をフッ素化合物溶液に浸す時間を長くしても良い。この場合、スズ系酸化物とフッ素イオンとの反応時間が長引くことになり、不溶解性生成物の生成が促進されるために凹部の形成数が増加する。更に、下地用金属及び凹部形成工程で基材にニッケルメッキ層を形成するためのメッキ皮膜を高い電流密度条件で行うことが挙げられる。メッキ皮膜形成を高い電流密度条件で行うと水素ガスの発生量が増加するために凹部の形成数が増加する。   That is, it is possible to increase the fluorine compound concentration in the fluorine compound solution used in the above-described recess nucleation step. If the fluorine compound concentration is high, the amount of fluorine ions that react with the tin-based oxide increases, and the amount of insoluble products increases, so the number of concave portions increases. Further, the time for immersing the substrate in the fluorine compound solution may be lengthened. In this case, the reaction time between the tin-based oxide and the fluorine ions is prolonged, and the formation of insoluble products is promoted, so that the number of concave portions increases. Furthermore, a plating film for forming a nickel plating layer on the base material in the base metal and recess formation step is performed under high current density conditions. When the plating film is formed under a high current density condition, the amount of hydrogen gas generated increases, so the number of recesses increases.

因みに、微小な凹部はコンタクトの表面全体ではなく、接触部等の所定の位置に部分的に形成することもできる。この場合、水素イオン濃度pHの異なる2種類のフッ素化合物溶液を用い、コンタクトの基材を水素イオン濃度pHが2〜5の範囲に調整された第1のフッ素化合物溶液に浸すようにした後、凹部を形成しない部分を水素イオン濃度pHが2以下となるように調整された第2のフッ素化合物溶液に浸すようにする。この結果、接触部を含む凹部を形成しようとする所定箇所にだけ不溶解性生成物ができ、最終的に所定箇所に微小な凹部を多数形成することができる。   Incidentally, the minute concave portion can be partially formed at a predetermined position such as the contact portion instead of the entire surface of the contact. In this case, after using two types of fluorine compound solutions having different hydrogen ion concentrations pH and immersing the contact base material in the first fluorine compound solution having a hydrogen ion concentration pH adjusted to a range of 2 to 5, The portion where the recess is not formed is immersed in the second fluorine compound solution adjusted so that the hydrogen ion concentration pH is 2 or less. As a result, an insoluble product can be formed only at a predetermined location where the concave portion including the contact portion is to be formed, and finally a large number of minute concave portions can be formed at the predetermined location.

要するに、係る各工程を経て得られるコンタクトは、少なくともスズを含む銅合金材を基材とすると共に、基材における少なくとも接触部を含む表面に対して下地用金属,及び接触用金属が被覆されて成る周知構造を有する以外、接触用金属における接触部を含む表面上に各凹部が形成される基本構造を持つものとなり、且つ少なくとも接触部の表面に形成された微小な凹部内に潤滑物質が滞留保持されていることにより、接触部の接点表面が従来の潤滑層を形成する手法では実現できなかった多数回(1000回〜20000回)の挿抜に及ぶ使用条件下にあっても充分に潤滑効果を維持する品質高い製品となる。又、上述した下地用金属及び凹部形成工程や接触用金属形成工程が従来から行われている一般的なメッキ処理方法を適用でき、特別な薬品や設備を必要とせずに周知のメッキ装置や処理液をそのまま使用し、しかも形状を問うことなく簡単にその表面における接触部を含む部分的又は全面に微小な凹部を形成した上で各凹部内に潤滑物質を滞留保持させて製造することができるので、結果として特許文献1〜特許文献3に代表される周知技術として提案された手法の場合よりも品質高い製品を作業性及び生産性良く安全にして簡便に製造することができる。   In short, the contact obtained through each of the steps is based on a copper alloy material containing at least tin, and the surface of the substrate including at least the contact portion is coated with the base metal and the contact metal. In addition to having a well-known structure, it has a basic structure in which each recess is formed on the surface including the contact portion of the contact metal, and at least the lubricating substance stays in the minute recess formed on the surface of the contact portion. By being held, the contact surface of the contact portion has sufficient lubrication effect even under use conditions that extend and insert many times (1000 times to 20000 times) that could not be realized by the conventional method of forming a lubricating layer. Maintain high quality products. In addition, a general plating method in which the above-described base metal and concave portion forming process and contact metal forming process are conventionally performed can be applied, and a well-known plating apparatus and process without requiring special chemicals or equipment. The liquid can be used as it is, and it can be manufactured by forming a minute recess partly or entirely including the contact part on the surface and retaining the lubricating substance in each recess part without questioning the shape. Therefore, as a result, a product with higher quality than that in the case of the technique proposed as a well-known technique represented by Patent Documents 1 to 3 can be manufactured safely and easily with good workability and productivity.

以下に幾つかの実施例並びに比較例を挙げ、本発明のコンタクトについて、その製造工程を含めて具体的に説明する。   Several examples and comparative examples will be described below, and the contact of the present invention will be specifically described including its manufacturing process.

実施例1では、先ず市販のアルカリ性溶液[例えばユケン工業(株)のF−1550等]を用いて陰極電解脱脂したコンタクトの基材としてのばね用リン青銅[C5191−P−1/2H;原田伸銅(株)製]材のU宇型テストピース又は平板クーポンを140℃のオーブン内で1時間加熱して酸化処理することにより酸化物層を形成する酸化処理工程を施した。   In Example 1, first, phosphor bronze for a spring [C5191-P-1 / 2H; Harada as a base material of a contact subjected to cathodic electrolytic degreasing using a commercially available alkaline solution [for example, F-1550 of Yuken Industry Co., Ltd.] A U-shaped test piece or a flat coupon made of wrought copper) was subjected to an oxidation treatment step of forming an oxide layer by heating in a 140 ° C. oven for 1 hour to carry out an oxidation treatment.

次に、凹部核形成工程として、酸化物層を形成した基材を水素イオン濃度pHが約4に調整された酸性フッ化アンモニウム溶液20グラム/リットル(g/L)に50℃の温度条件下で20秒間浸漬してその表面に複数の凹部の核を形成した後、引き続いて電解メッキにより下地用金属及び凹部形成工程,接触用金属形成工程を経て基材の表面にメッキ層を形成した。   Next, as the recess nucleation step, the base material on which the oxide layer is formed is added to 20 g / liter (g / L) of an acidic ammonium fluoride solution in which the hydrogen ion concentration pH is adjusted to about 4 under a temperature condition of 50 ° C. After forming a plurality of concave nuclei on the surface by dipping for 20 seconds, a plating layer was formed on the surface of the base material through a base metal, concave portion forming step, and contact metal forming step by electrolytic plating.

下地用金属及び凹部形成工程では、スルファミン酸ベースの浴に光沢剤を添加したものを電流密度10A/dmで180秒間処理する電解メッキにより下地用金属としてニッケルメッキを基材の表面に約5μmの厚さで形成(そのニッケルメッキ層には上述したように微小な複数の凹部が形成される)し、接触用金属形成工程では、クエン酸ベースの浴に光沢剤を添加したものを電流密度4A/dmで30秒間処理する電解メッキにより接触用金属としてコバルト硬質金メッキを基材の表面に約0.2μmの厚さで形成(そのコバルト硬質金メッキ層は上述したように微小な各凹部を薄く被覆するように形成される)した。 In the base metal and recess formation step, nickel plating is applied to the surface of the base material as a base metal by electrolytic plating in which a brightener is added to a sulfamic acid-based bath at a current density of 10 A / dm 2 for 180 seconds. (The nickel plating layer has a plurality of minute recesses as described above.) In the contact metal formation process, the current density is obtained by adding a brightener to a citric acid-based bath. Cobalt hard gold plating as a contact metal is formed on the surface of the substrate to a thickness of about 0.2 μm by electroplating for 30 seconds at 4 A / dm 2 (the cobalt hard gold plating layer is formed with minute recesses as described above. Thinly coated).

更に、潤滑物質滞留工程として、表面にコバルト硬質金メッキ層が形成された基材(U宇型テストピース又は平板クーポン)に対して有機溶剤(n−プロピルブロマイド)を用いて3容量%の濃度に希釈した市販の潤滑物質としての潤滑剤(コンタクトの接触部用でアルファオレフィン系オイルをベースとしたもの)を浸潰処理により塗布し、各凹部内に滞留保持させて実施例1に係るコンタクトを得た。   Furthermore, as a lubricating substance retention step, a concentration of 3% by volume using an organic solvent (n-propyl bromide) is applied to a base material (U-shaped test piece or flat coupon) on which a cobalt hard gold plating layer is formed. A diluted lubricant as a commercially available lubricant (for contact part of contact and based on alpha olefin oil) is applied by squeezing treatment and retained in each recess to form the contact according to Example 1 Obtained.

実施例2では、先の実施例1における凹部核形成工程で使用した酸性フッ化アンモニウム溶液をその濃度が100グラム/リットル(g/L)と異なるものを用いた以外は同様な手順に従って実施例2に係るコンタクトを得た。   In Example 2, the same procedure was followed except that the acidic ammonium fluoride solution used in the recess nucleation step in Example 1 was different in concentration from 100 g / liter (g / L). Contact according to 2 was obtained.

実施例3では、先の実施例1における凹部核形成工程で使用した酸性フッ化アンモニウム溶液の浸し処理の時間を120秒とした以外は同様な手順に従って実施例3に係るコンタクトを得た。   In Example 3, a contact according to Example 3 was obtained according to the same procedure except that the immersion time of the acidic ammonium fluoride solution used in the concave nucleus formation step in Example 1 was set to 120 seconds.

[比較例1]
比較例1では、先の実施例1における酸化処理工程で加熱による酸化処理を施さなかった基材(U宇型テストピース又は平板クーポン)を用い、潤滑物質滞留工程における潤滑剤の塗布を行わない以外は同様な手順に従って比較例1に係るコンタクトを得た。
[Comparative Example 1]
In Comparative Example 1, the base material (U-U test piece or flat coupon) that was not subjected to the oxidation treatment by heating in the oxidation treatment step in Example 1 above was used, and the lubricant was not applied in the lubricant retention step. A contact according to Comparative Example 1 was obtained according to the same procedure as described above.

[比較例2]
比較例2では、比較例1で得られたコンタクトに対し、更に潤滑物質滞留工程における潤滑剤の塗布を行うことにより、比較例2に係るコンタクトを得た。
[Comparative Example 2]
In Comparative Example 2, a contact according to Comparative Example 2 was obtained by further applying a lubricant in the lubricating substance retention step to the contact obtained in Comparative Example 1.

[比較例3]
比較例3では、先の実施例1における凹部核形成工程で使用した酸性フッ化アンモニウム溶液の浸し処理を行わない以外は同様な手順に従って比較例3に係るコンタクトを得た。
[Comparative Example 3]
In Comparative Example 3, a contact according to Comparative Example 3 was obtained according to the same procedure except that the immersion treatment of the acidic ammonium fluoride solution used in the concave nucleus formation step in Example 1 was not performed.

[比較例4]
比較例4では、先の実施例1における凹部核形成工程で使用した酸性フッ化アンモニウム溶液に対して硫酸を10容量%添加したものを用いて浸し処理した以外は同様な手順に従って比較例4に係るコンタクトを得た。
[Comparative Example 4]
In Comparative Example 4, the same procedure was followed as in Comparative Example 4, except that 10% by volume of sulfuric acid was added to the acidic ammonium fluoride solution used in the recess nucleation step in Example 1 above, and immersion was performed. Such contact was obtained.

そこで、先ず実施例1〜3及び比較例1〜4に係るコンタクトの試料に関して、基材としての平板クーポンの表面に形成された微小な凹部の数を両面について光学式顕微鏡により50倍程度に拡大して数えると共に、その凹部の形成数をメッキ層の面積で割ることにより単位面積当たりの凹部形成数を算出し、その結果を比較して凹部形成数の評価を行った。   Therefore, first, regarding the contact samples according to Examples 1 to 3 and Comparative Examples 1 to 4, the number of minute recesses formed on the surface of the flat coupon as a base material is enlarged about 50 times with an optical microscope on both sides. The number of recesses formed per unit area was calculated by dividing the number of recesses formed by the area of the plating layer, and the number of recesses formed was evaluated by comparing the results.

次に、実施例1〜3及び比較例1〜4に係るコンタクトの試料に関して、基材としてU宇型テストピースにおける摩擦摩耗試験を行った。図2は、実施例1〜3及び比較例1〜4に係るコンタクトの試料に対する摩擦摩耗試験の様子を説明するために示した斜視模式図である。ここでは、U宇型テストピースの一方(上部のもの)を固定側試料10とし、他方(下部のもの)を実施例1〜3及び比較例1〜4に係る可動側試料20とし、可動側試料20が固定側試料10に対して90度交差して接触しながら摺動するようにして摩擦摩耗試験(潤滑効果)を調べることを示している。但し、摩擦摩耗試験条件は、温度25℃下において摺動距離を往復3mmとし、摺動スピードを1mm/sとし、且つ固定側試料10の可動側試料20に対する接触荷重を0.98Nとした。   Next, for the contact samples according to Examples 1 to 3 and Comparative Examples 1 to 4, a frictional wear test was performed on a U-shaped test piece as a base material. FIG. 2 is a schematic perspective view shown for explaining the state of the friction and wear test on the contact samples according to Examples 1 to 3 and Comparative Examples 1 to 4. FIG. Here, one (upper part) of the U-shaped test piece is the fixed-side sample 10, and the other (lower part) is the movable-side sample 20 according to Examples 1 to 3 and Comparative Examples 1 to 4. This shows that the frictional wear test (lubricating effect) is examined by causing the sample 20 to slide while intersecting with the fixed-side sample 10 by 90 degrees. However, the friction and wear test conditions were a sliding distance of 3 mm at a temperature of 25 ° C., a sliding speed of 1 mm / s, and a contact load of the fixed sample 10 to the movable sample 20 of 0.98 N.

以上の実施例1〜3及び比較例1〜3に係るコンタクトの試料について、各々条理条件別に凹部形成数及び摩擦摩耗試験の評価結果を総括したものを表1に示す。但し、凹部形成数の判定基準は、多量に凹部が形成されたもの(具体的には20個/cm以上)を◎印で示し、凹部が普通に形成されたもの(具体的には10個/cm程度)を○印で示し、凹部が形成されなかったものを×印で示しており、摩擦摩耗試験の判定基準は、20000回の摺動でも動摩擦係数が低く安定し、潤滑効果が維持されたものを○印で示し、10000回程度摺動させると潤滑効果が無くなったものを△印で示し、摺動開始直後に動摩擦係数が不安定になり、すぐに潤滑効果が無くなったものを×印で示している。又、酸性フッ化アンモニウム溶液の水素イオン濃度pHは、蒸留水を用いて酸性フッ化アンモニウム溶液を10倍に希釈したときの値である。 Table 1 shows a summary of the number of recesses formed and the evaluation results of the frictional wear test for each of the contact samples according to Examples 1 to 3 and Comparative Examples 1 to 3 according to each condition. However, the criteria for determining the number of recesses formed are those with a large number of recesses (specifically 20 pieces / cm 2 or more) indicated by ◎ and those with normal recesses (specifically 10). pieces / cm showed about 2) with ○ mark indicates what recess is not formed in the × mark, the criterion of the friction wear test, the dynamic friction coefficient stable low at 20000 times of sliding, lubrication effect Is indicated by a circle, and when it is slid about 10,000 times, the lubrication effect is lost, and a triangle is indicated by a triangle. The dynamic friction coefficient becomes unstable immediately after the start of sliding, and the lubrication effect immediately disappears. Things are indicated by crosses. The hydrogen ion concentration pH of the acidic ammonium fluoride solution is a value obtained when the acidic ammonium fluoride solution is diluted 10 times with distilled water.

表1からは、凹部が形成された実施例1〜3に係るコンタクトの試料は、凹部が形成されない比較例1〜3に係るコンタクトの試料と比べて格段に良好な潤滑効果が発揮されていることが判る。   From Table 1, the contact samples according to Examples 1 to 3 in which the recesses are formed exhibit a much better lubricating effect than the contact samples according to Comparative Examples 1 to 3 in which the recesses are not formed. I understand that.

図3は、実施例1、並びに比較例1,2に係るコンタクトの試料についての摩擦摩耗試験結果を摺動回数(回)に対する動摩擦係数の関係で示したものである。尚、図3中では、縦軸の動摩擦係数の低い方が高い潤滑効果を持つこと意味している。図3からは、酸化処理を施さずに潤滑物質としての潤滑剤を塗布していない比較例1の試料では動摩擦係数が摺動後にすぐに急激に上昇しており、又比較例2のように潤滑剤が塗布された試料でも酸化処理を施さずに表面に凹部を持たない場合には摺動回数が7000回を超えると動摩擦係数が上昇し始めて潤滑効果を示さなくなるのに対し、酸化処理を施して表面に凹部を形成した上で潤滑物質としての潤滑剤を塗布した実施例1の試料では、摺動回数が20000回であっても低い動摩擦係数を維持しており、安定した潤滑効果が発揮されていることが判る。   FIG. 3 shows the results of the frictional wear test on the contact samples according to Example 1 and Comparative Examples 1 and 2 in terms of the dynamic friction coefficient with respect to the number of sliding times. In FIG. 3, a lower kinetic friction coefficient on the vertical axis means a higher lubricating effect. From FIG. 3, in the sample of Comparative Example 1 in which the lubricant as a lubricant was not applied without being subjected to the oxidation treatment, the dynamic friction coefficient rapidly increased immediately after sliding, and as in Comparative Example 2 Even if a sample coated with a lubricant is not oxidized and has no recess on the surface, the sliding coefficient exceeds 7000 times, the coefficient of dynamic friction begins to increase, and no lubricating effect is exhibited. In the sample of Example 1 in which a concave portion was formed on the surface and a lubricant as a lubricant was applied, the low dynamic friction coefficient was maintained even when the number of sliding was 20000, and a stable lubricating effect was obtained. It can be seen that it is being demonstrated.

図4は、上述した実施例1及び比較例4に係るコンタクトの試料についての経時的な摩擦摩耗試験の結果を摺動回数(回)に対する動摩擦係数の関係で示したものである。但し、ここでは各試料を潤滑物質滞留工程において潤滑物質としての潤滑剤の濃度を5容量%として調整してから3ケ月放置した後、上述した場合と同様な手順で摩擦摩耗試験を行った。   FIG. 4 shows the result of the frictional wear test over time for the contact samples according to Example 1 and Comparative Example 4 described above in relation to the dynamic friction coefficient with respect to the number of sliding times. However, in this case, each sample was left to stand for 3 months after adjusting the concentration of the lubricant as a lubricant to 5 vol% in the lubricant retention step, and then subjected to a frictional wear test in the same procedure as described above.

図4からは、比較例4の試料では摺動回数の少ない回数から徐々に動摩擦係数が大きくなっているのに対し、実施例1の試料では塗布後に直ちに摩擦摩耗の試験を行った場合の結果と比べて初期的な動摩擦係数がやや大きくなっているが、摺動回数が20000回であっても低い動摩擦係数を維持して安定した潤滑効果が発揮されていることが判る。   From FIG. 4, in the sample of Comparative Example 4, the dynamic friction coefficient gradually increased from the small number of sliding times, whereas in the sample of Example 1, the result of the frictional wear test immediately after coating. It can be seen that the initial dynamic friction coefficient is slightly larger than that of, but even if the number of sliding times is 20000, a low dynamic friction coefficient is maintained and a stable lubricating effect is exhibited.

本発明の最良の実施の形態に係るコネクタ用コンタクトにおける表面に形成された微小な凹部を含む組織の電子顕微鏡写真を示したものである。1 shows an electron micrograph of a structure including a minute recess formed on a surface of a connector contact according to a best embodiment of the present invention. 本発明の実施例1〜3及び比較例1〜4に係るコンタクトの試料に対する摩擦摩耗試験を様子を説明するために示した斜視模式図である。It is the perspective schematic diagram shown in order to demonstrate a friction abrasion test with respect to the sample of the contact which concerns on Examples 1-3 and Comparative Examples 1-4 of this invention. 本発明の実施例1、並びに比較例1,2に係るコンタクトの試料についての摩擦摩耗試験結果を摺動回数に対する動摩擦係数の関係で示したものである。The friction abrasion test result about the sample of the contact which concerns on Example 1 of this invention and Comparative Examples 1 and 2 is shown by the relationship of the dynamic friction coefficient with respect to the frequency | count of sliding. 本発明の実施例1及び比較例4に係るコンタクトの試料についての経時的な摩擦摩耗試験の結果を摺動回数に対する動摩擦係数の関係で示したものである。The result of the frictional wear test with respect to the sample of the contact which concerns on Example 1 of this invention and the comparative example 4 is shown by the relationship of the dynamic friction coefficient with respect to the frequency | count of sliding.

符号の説明Explanation of symbols

10 固定側試料
20 可動側試料
10 Fixed side sample 20 Movable side sample

Claims (3)

相手側電気接触部材との接続に供される接触部を備えた所定形状のコンタクト材となる少なくともスズを含む銅合金の基材を加熱して酸化処理することで少なくとも該接触部を含む表面に対して酸化物層を形成する酸化処理工程と、前記基材を水素イオン濃度pHが所定の範囲となるように調整したフッ素化合物溶液に浸すことにより、少なくとも前記接触部を含む表面に対して前記酸化物層との化学反応により複数の凹部の核を形成する凹部核形成工程と、前記基材における少なくとも前記接触部を含む表面に対して下地用金属を電解メッキすることにより、少なくとも前記凹部核形成工程で形成された前記複数の凹部の核を含む箇所に対してメッキ皮膜の析出に伴って発生する水素ガスの滞留に起因する気泡の生成により微小な複数の凹部を直径が10μm〜100μmの範囲となるように形成する下地用金属及び凹部形成工程と、前記基材における少なくとも前記接触部を含む表面に対して接触用金属を電解メッキ又は無電解メッキすることにより、少なくとも前記下地用金属及び凹部形成工程で形成された前記複数の凹部を含む箇所に対してメッキ皮膜により接触のための金属を形成する接触用金属形成工程と、前記基材における少なくとも前記接触部を含む表面に対して流動性を有する潤滑剤,固体潤滑性微粒子,固体潤滑性微粒子を含む潤滑剤の何れか一つによる潤滑物質を塗布又は浸すことにより、少なくとも前記接触用金属形成工程で形成された前記複数の凹部内に該潤滑物質を滞留保持させてコンタクトを得る潤滑物質滞留工程とを有することを特徴とするコンタクトの製造方法。   By heating and oxidizing a copper alloy base material containing at least tin, which becomes a contact material having a predetermined shape provided with a contact portion provided for connection with the counterpart electrical contact member, on the surface including at least the contact portion An oxidation treatment step for forming an oxide layer on the surface, and by immersing the base material in a fluorine compound solution adjusted to have a hydrogen ion concentration pH within a predetermined range, the surface including at least the contact portion A recess nucleation step of forming a plurality of recess nuclei by a chemical reaction with the oxide layer; and at least the recess nuclei by electroplating a base metal on a surface of the substrate including at least the contact portion. A plurality of minute recesses due to the generation of bubbles due to the stagnation of hydrogen gas generated along with the deposition of the plating film at the locations including the nuclei of the plurality of recesses formed in the forming step. Forming a base metal and a recess forming step so that the diameter is in a range of 10 μm to 100 μm, and electroplating or electrolessly plating the contact metal on the surface of the substrate including at least the contact portion A contact metal forming step of forming a metal for contact with a plating film on at least the base metal and a portion including the plurality of recesses formed in the recess forming step; and at least the contact portion in the base material Formed at least in the contact metal forming step by applying or dipping a lubricant material of any one of a lubricant having fluidity with respect to the surface containing solid, solid lubricant fine particles, and a lubricant containing solid lubricant fine particles And a lubricating substance retention step for obtaining a contact by retaining the lubricating substance in the plurality of recessed portions. Method of manufacturing a door. 請求項記載のコンタクトの製造方法において、前記凹部核形成工程では、前記水素イオン濃度pHにあっての前記所定の範囲を2〜5の範囲とすると共に、前記フッ素化合物溶液としてフッ化水素酸,酸性フッ化アンモニウム,酸性フッ化カリウム,フッ化ナトリウムのうちの少なくとも一種以上を含んだものを用い、前記下地用金属及び凹部形成工程では、前記下地用金属としてニッケルメッキ又はニッケル合金メッキを用い、前記接触用金属形成工程では、前記接触用金属として金メッキ又は金合金メッキ、或いはスズメッキ又はスズ合金メッキを用いることを特徴とするコンタクトの製造方法。 2. The contact manufacturing method according to claim 1 , wherein, in the recess nucleation step, the predetermined range at the hydrogen ion concentration pH is set to a range of 2 to 5 and hydrofluoric acid is used as the fluorine compound solution. In addition, in the step of forming the base metal and the recess, nickel plating or nickel alloy plating is used as the base metal. In the contact metal forming step, the contact metal is made of gold plating, gold alloy plating, tin plating or tin alloy plating. 請求項1又は2記載のコンタクトの製造方法において、前記潤滑物質滞留工程では、前記潤滑剤としてパラフィン系,オレフィン系,エステル系,エーテル系のオイル,ワックス,グリースの一つ以上を含むものを用いると共に、前記固体潤滑性微粒子として粒径1μm以下の二硫化モリブデン,PTFE,フッ化グラファイトの一つ以上を含むものを用いることを特徴とするコンタクトの製造方法。 3. The method for manufacturing a contact according to claim 1 , wherein the lubricant containing step includes using at least one of paraffinic, olefinic, esteric, etheric oil, wax, and grease as the lubricant. In addition, a contact manufacturing method using the solid lubricating fine particles containing at least one of molybdenum disulfide, PTFE, and graphite fluoride having a particle diameter of 1 μm or less.
JP2005011745A 2005-01-19 2005-01-19 Contact manufacturing method Expired - Fee Related JP4176081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011745A JP4176081B2 (en) 2005-01-19 2005-01-19 Contact manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011745A JP4176081B2 (en) 2005-01-19 2005-01-19 Contact manufacturing method

Publications (2)

Publication Number Publication Date
JP2006202569A JP2006202569A (en) 2006-08-03
JP4176081B2 true JP4176081B2 (en) 2008-11-05

Family

ID=36960386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011745A Expired - Fee Related JP4176081B2 (en) 2005-01-19 2005-01-19 Contact manufacturing method

Country Status (1)

Country Link
JP (1) JP4176081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305676B2 (en) 2011-10-04 2016-04-05 Denso Corporation Composite material, electric contact electrode, electric contact film, conductive filler, electric contact structure using composite material, and manufacturing method of composite material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2755819B1 (en) * 2011-09-14 2016-09-14 Xtalic Corporation Silver alloy coated articles
DE102011088793A1 (en) * 2011-12-16 2013-06-20 Tyco Electronics Amp Gmbh Electrical connector with microstructured contact element
JP2013129902A (en) * 2011-12-22 2013-07-04 Om Sangyo Kk Plated product and method for producing the same
WO2013094766A1 (en) * 2011-12-22 2013-06-27 オーエム産業株式会社 Plated article and manufacturing method therefor
DE102014005941A1 (en) * 2014-04-24 2015-11-12 Te Connectivity Germany Gmbh Method for producing an electrical contact element for avoiding tin whisker formation, and contact element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222575A (en) * 1992-02-10 1993-08-31 Tsubakimoto Chain Co Treatment of metallic surface
JPH0657414A (en) * 1992-08-07 1994-03-01 Kobe Steel Ltd Formation of hard film for sliding member
JPH0849093A (en) * 1994-08-03 1996-02-20 Mec Kk Electroplating method
JP3391427B2 (en) * 1996-05-14 2003-03-31 三菱伸銅株式会社 Plated copper alloy sheet and connector manufactured from the sheet
JP2002343168A (en) * 2001-05-11 2002-11-29 Mitsubishi Electric Corp Current-carrying slide body
JP2003243810A (en) * 2002-02-15 2003-08-29 Mitsubishi Gas Chem Co Inc Method of manufacturing printed wiring board equipped with very fine wire pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305676B2 (en) 2011-10-04 2016-04-05 Denso Corporation Composite material, electric contact electrode, electric contact film, conductive filler, electric contact structure using composite material, and manufacturing method of composite material
DE102012218134B4 (en) 2011-10-04 2023-07-27 Denso Corporation Contact film for electrical contact, contact electrode for electrical contact, and contact structure for electrical contact

Also Published As

Publication number Publication date
JP2006202569A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4176081B2 (en) Contact manufacturing method
CN108352639A (en) Tin plating copper tip material and terminal and wire terminations portion structure
WO2009123144A1 (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
TWI225322B (en) Terminal having ruthenium layer and a connector with the terminal
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
KR102390232B1 (en) Terminal material for connector and manufacturing method thereof
JP2007254860A (en) Plating film and method for forming the same
JP5692799B2 (en) Sn plating material and method for producing the same
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
KR102316967B1 (en) Sn plating material and manufacturing method thereof
JP6267404B1 (en) Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
JP6501039B2 (en) Connector terminal material and terminal and wire end structure
JP6201554B2 (en) Mating type connection terminal
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP5019591B2 (en) Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
JP2008248332A (en) Tin-plated strip and its production method
JP2010265489A (en) Method for manufacturing conductive member
JP4246707B2 (en) lubricant
Antler Tribology of electronic connectors: Contact sliding wear, fretting, and lubrication
EP3816326B1 (en) Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
JP2016130362A (en) Silver plated material and manufacturing method of the same
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP2020143307A (en) Silver plated material, and method of producing the same
JP3780453B2 (en) Solid wire for arc welding without copper plating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4176081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees