JP2002343168A - Current-carrying slide body - Google Patents

Current-carrying slide body

Info

Publication number
JP2002343168A
JP2002343168A JP2001141067A JP2001141067A JP2002343168A JP 2002343168 A JP2002343168 A JP 2002343168A JP 2001141067 A JP2001141067 A JP 2001141067A JP 2001141067 A JP2001141067 A JP 2001141067A JP 2002343168 A JP2002343168 A JP 2002343168A
Authority
JP
Japan
Prior art keywords
sliding
lubricant
grease
graphite
perfluoropolyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001141067A
Other languages
Japanese (ja)
Inventor
Koji Higake
浩二 樋掛
Hitoshi Ito
仁志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001141067A priority Critical patent/JP2002343168A/en
Publication of JP2002343168A publication Critical patent/JP2002343168A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a current carrying slide body superior in heat resistance/ electroconductivity/lubricity. SOLUTION: This is that which is coated with a greasy lubricant 25 composed of 20 to 30 wt.% graphite whose average particle size is from 5 to 30 μm and 70 to 80 wt.% perfluoropolyether 22 whose viscosity is from 200 to 350 so that the film thickness becomes 10 μm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電気を通電する
と共に開閉などの際に摺動する可動接触子・可動子受け
のような摺動通電部を有する電気機器の摺動通電体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding energizer for an electric device having a sliding energizing portion such as a movable contact or a movable member that is energized and slid during opening and closing.

【0002】[0002]

【従来の技術】電気機器、例えば、回路遮断器の可動接
触子や可動子受けのような摺動通電部は、銅やアルミな
どの導体素地のままでは摺動による摩擦熱や通電による
ジュール熱に起因する発熱のために酸化して接触抵抗が
増加することがある。このため、酸化を防止して摺動接
触子や摺動接触片の通電容量を安定に維持するため、重
要な摺動通電部には摺動接触面に銀めっきによる皮膜処
理が施されている。しかしながら、銀めっきによる皮膜
処理は、摺動により皮膜に欠けが発生することがあり、
一旦欠けが発生すると摩耗が急速に進行して可動接触子
や可動子受けの素地が容易に露出するため、一般に有機
系の潤滑剤が併用される。
2. Description of the Related Art Sliding current-carrying parts, such as movable contacts and mover receivers of electric equipment, for example, circuit breakers, are subjected to frictional heat due to sliding and Joule heat due to current flow when a conductor base such as copper or aluminum is used. The contact resistance may increase due to oxidation due to the heat generated by the heat treatment. For this reason, in order to prevent oxidation and stably maintain the current carrying capacity of the sliding contact element and the sliding contact piece, the sliding contact surface of the important sliding energizing portion is coated with silver plating. . However, the coating treatment by silver plating may cause chipping of the coating due to sliding,
Once chipping occurs, abrasion proceeds rapidly and the base of the movable contact and the movable element receiver is easily exposed, so that an organic lubricant is generally used together.

【0003】(従来例1)例えば特開平9−30632
6号公報には、約5重量%のグラファイトと約1重量%
のパーフロロポリエーテルとをフッ素溶媒に混合した液
に、回路遮断器の可動接触子の摺動通電部を浸漬した
後、引き上げるものが記載されている。引き上げた摺動
通電部のフッ素溶媒は容易に乾燥するので、図6に示す
ように、銅素地7に設けられた銀めっき皮膜21上にパ
ーフロロポリエーテル22をバインダーとしてグラファ
イト23が付着した状態になる。
(Conventional example 1) For example, Japanese Patent Laid-Open No. 9-30632
No. 6 discloses about 5% by weight of graphite and about 1% by weight.
A method in which a sliding current-carrying part of a movable contact of a circuit breaker is immersed in a liquid obtained by mixing perfluoropolyether with a fluorosolvent and then pulled up is described. Since the fluorine solvent in the sliding current-carrying portion is easily dried, as shown in FIG. 6, a state in which graphite 23 adheres to silver plating film 21 provided on copper substrate 7 using perfluoropolyether 22 as a binder. become.

【0004】(従来例2)例えば特開平8−22858
号公報には、摺動部品にパーフロロポリエーテルを基油
とし、これと化学親和性の高いPTFE(四フッ化エチ
レン)を増ちょう剤としたフッ素系グリースを塗布する
ことが記載されている。
(Conventional example 2) For example, JP-A-8-22858
Japanese Patent Application Laid-Open Publication No. H11-157, discloses that a sliding component is coated with a fluorine-based grease using perfluoropolyether as a base oil and PTFE (ethylene tetrafluoride) having a high chemical affinity with the base oil as a thickener. .

【0005】[0005]

【発明が解決しようとする課題】従来例1に記載の発明
は、溶媒で希釈した液に浸漬することによってパーフロ
ロポリエーテル22とグラファイト23を付着させてい
るため、パーフロロポリエーテル22の膜厚は約2μm
と薄く、耐荷重性に劣り高荷重の作用する摺動通電部に
対する使用が困難であり、かつ、耐久寿命が短いものと
なっていた。また、浸漬塗布方式であるために、部品形
状によっては、必要な塗布箇所に適切な塗布を行うこと
ができなかった。従来例2に記載の発明は、パーフロロ
ポリエーテルを基油とし、PTFE(四フッ化エチレ
ン)を増ちょう剤としたフッ素系グリースを摺動通電部
に塗布したものである。この場合、パーフロロポリエー
テルは250°Cを越えると熱分解し、また、250°
C以下の温度でも経時的に拡散流出することがある。こ
のようにパーフロロポリエーテルが熱劣化すると、PT
FEが摺動通電部に残存するが、熱劣化したPTFEは
高絶縁性であり、また、へき開性も低い。従って、自己
潤滑性にも優れないので、通電接触障害を引き起こすな
どの問題点があった。
In the invention described in the prior art 1, the perfluoropolyether 22 and the graphite 23 are adhered by immersion in a solution diluted with a solvent. About 2μm thick
However, it is difficult to use it for a current-carrying sliding part which is inferior in load resistance and has a high load, and has a short durability life. In addition, because of the dip coating method, appropriate coating could not be performed at a required coating location depending on the shape of the component. The invention described in Conventional Example 2 is one in which a fluorine-based grease using perfluoropolyether as a base oil and PTFE (ethylene tetrafluoride) as a thickener is applied to a current-carrying sliding portion. In this case, the perfluoropolyether thermally decomposes above 250 ° C.
Even if the temperature is lower than C, the diffusion and outflow may occur over time. When the perfluoropolyether is thermally degraded in this way, PT
Although the FE remains in the current-carrying portion, the thermally degraded PTFE has high insulation properties and low cleavage. Therefore, the self-lubricating property is not excellent, and there is a problem that a current-carrying contact failure occurs.

【0006】この発明は上述のような問題点を解決する
ためになされたもので、耐荷重性、高温での潤滑性にも
優れた摺動通電体を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a sliding electric conductor excellent in load resistance and lubricity at high temperatures.

【0007】[0007]

【課題を解決するための手段】この発明に係る摺動通電
体は、表面に銀めっきを施された導電体の摺動部に、2
0〜30重量%のグラファイトと70〜80重量%のパ
ーフロロポリエーテルとを含み、ちょう度200〜35
0のグリース状潤滑剤が塗布されたものである。
According to the present invention, there is provided a sliding current-carrying member provided with a sliding portion of a conductor having a silver-plated surface.
It contains 0 to 30% by weight of graphite and 70 to 80% by weight of perfluoropolyether, and has a consistency of 200 to 35%.
0 grease-like lubricant is applied.

【0008】また、グラファイトの平均粒径を5〜30
μmにすることにより、グリース状潤滑剤からパーフロ
ロポリエーテルの拡散流出が少なく、潤滑性の低下を防
止できる。
The average particle size of graphite is 5-30.
By setting the particle size to μm, diffusion and outflow of perfluoropolyether from the grease-like lubricant is small, and a decrease in lubricity can be prevented.

【0009】さらに、塗布されたグリース状潤滑剤の膜
厚を10μm以上にすることにより、耐荷重性がより優
れた摺動通電体が得られる。
Further, by setting the thickness of the applied grease-like lubricant to 10 μm or more, a sliding electric conductor having more excellent load resistance can be obtained.

【0010】[0010]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1に係る摺動通電部の表面状態を示す断面図
である。図1において、7は厚さ2mmの銅素地であ
り、例えば、開閉器や回路遮断器などにおける摺動接触
子あるいは摺動接触片である。21は厚さ約5μmの銀
めっき皮膜、30はパーフロロポリエーテル22とグラ
ファイト23からなるグリース状潤滑剤であり、厚さは
約20μmである。パーフロロポリエーテル22はフッ
素系合成潤滑油であり、耐熱性が高く250゜C以下で
は酸化、分解は起こらず、高温で分解しても固形物の残
さ(残渣)が生じないために接触抵抗や耐摩耗性に悪影
響を与えない。グラファイト23は固体潤滑剤であり、
400°C以上の耐熱性、比抵抗10-2Ω・mmの高導
電性、層状結晶構造による高へき開性(高劈開性)を有
する。ここで、グリース状潤滑剤とは、基油と増ちょう
剤からなる半固体状の潤滑剤であるグリースの特性に類
似するものを意味し、パーフロロポリエーテル22、グ
ラファイト23がそれぞれグリースにおける基油、増ち
ょう剤に相当する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a cross-sectional view showing a surface state of a current-carrying sliding portion according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 7 denotes a copper base material having a thickness of 2 mm, for example, a sliding contact or a sliding contact piece in a switch or a circuit breaker. 21 is a silver plating film having a thickness of about 5 μm, 30 is a grease-like lubricant composed of perfluoropolyether 22 and graphite 23, and has a thickness of about 20 μm. Perfluoropolyether 22 is a fluorine-based synthetic lubricating oil that has high heat resistance and does not oxidize or decompose at 250 ° C. or lower, and does not produce a solid residue even when decomposed at a high temperature. And does not adversely affect wear resistance. Graphite 23 is a solid lubricant,
It has heat resistance of 400 ° C. or higher, high conductivity of specific resistance 10 −2 Ω · mm, and high cleavage (high cleavage) due to a layered crystal structure. Here, the grease-like lubricant means a substance similar to the properties of grease which is a semi-solid lubricant composed of a base oil and a thickener, and the perfluoropolyether 22 and the graphite 23 are each a base in the grease. Equivalent to oil and thickener.

【0011】なお、グリース状潤滑剤中のグラファイト
23比率は20〜30重量%の範囲が望ましい。グラフ
ァイト23の比率が20重量%未満の場合、離油度が大
きくなりグリース状潤滑剤からパーフロロポリエーテル
22が流出しやすくなる。一方、30重量%より多い場
合、グラファイト23が多いため、パーフロロポリエー
テル22に分散しにくく、グリース状潤滑剤の製造が困
難となる傾向があった。
The proportion of graphite 23 in the grease-like lubricant is preferably in the range of 20 to 30% by weight. When the ratio of the graphite 23 is less than 20% by weight, the degree of oil separation increases, and the perfluoropolyether 22 easily flows out of the grease-like lubricant. On the other hand, if it is more than 30% by weight, the amount of graphite 23 is large, so that it is difficult to disperse in the perfluoropolyether 22, and the production of a grease-like lubricant tends to be difficult.

【0012】また、グリース状潤滑剤のちょう度は20
0〜350の範囲が望ましい。ちょう度が350より高
い場合、グリース状潤滑剤として使用するには不適当な
ほど軟らかく、離油度が高い。その結果、グリース状潤
滑剤の形状保持が困難であり、摺動面での潤滑剤保持性
が悪く、潤滑性能が低下する傾向が生じていた。一方、
ちょう度が200より低い場合、グリース状潤滑剤とし
て使用するには不適当なほど硬く、摺動面での摺動抵抗
が大きくなり、必要な潤滑性が得られない状態になる傾
向があった。
The consistency of the grease-like lubricant is 20
A range of 0 to 350 is desirable. When the consistency is higher than 350, it is unsuitably soft for use as a grease-like lubricant and has a high degree of oil separation. As a result, it was difficult to maintain the shape of the grease-like lubricant, the lubricant retention on the sliding surface was poor, and the lubrication performance tended to decrease. on the other hand,
When the consistency is lower than 200, it is unsuitably hard to use as a grease-like lubricant, the sliding resistance on the sliding surface increases, and the required lubricity tends to be not obtained. .

【0013】また、グラファイト23の平均粒径は5〜
30μmの範囲が望ましい。即ち、グラファイト23の
平均粒径が5μm未満の場合は結晶性が悪く、へき開し
にくくなり、摺動部の摩擦係数が高くなって、摺動面が
磨耗しやすくなる。一方、グラファイト23の平均粒径
が30μmより大きい場合、グリ−ス状潤滑剤の離油度
が高くなる。離油度が高くなると、グリース状潤滑剤か
らパーフロロポリエーテル22が拡散流出し、潤滑性が
低下する。その上、摺動面から流出したパーフロロポリ
エーテル22が摺動面の周辺部、例えば、回路遮断器に
適用したときは、その機構部などに付着して悪影響を与
える可能性がある。
The average particle size of the graphite 23 is 5 to 5.
A range of 30 μm is desirable. That is, when the average particle size of the graphite 23 is less than 5 μm, the crystallinity is poor, cleavage is difficult, the friction coefficient of the sliding portion is increased, and the sliding surface is easily worn. On the other hand, when the average particle size of the graphite 23 is larger than 30 μm, the degree of oil separation of the grease-like lubricant increases. When the degree of oil separation increases, the perfluoropolyether 22 diffuses out of the grease-like lubricant, and the lubricity decreases. In addition, when the perfluoropolyether 22 flowing out of the sliding surface is applied to a peripheral portion of the sliding surface, for example, to a circuit breaker, there is a possibility that the perfluoropolyether 22 adheres to a mechanism of the circuit breaker and exerts an adverse effect.

【0014】なお、この発明の摺動通電体におけるグリ
ース状潤滑剤においては、グラファイト23は、高へき
開性を持ち、摩擦・摩耗を減ずる効果が高い鱗片状天然
黒鉛質のものが好ましい。
In the grease-like lubricant for the current-sliding body according to the present invention, the graphite 23 is preferably a scaly natural graphite having a high cleavage property and a high effect of reducing friction and wear.

【0015】以上のように、パーフロロポリエーテル2
2と固体潤滑剤であるグラファイト23とを混練して得
たグリース状潤滑剤を、塗布、例えば刷毛により塗布す
ることにより摺動通電性能に優れる摺動通電体を得るこ
とができた。即ち、従来例1による塗布(浸漬)方式で
は摺動部に付着する潤滑剤は薄膜であるが、本発明の方
式ではグリース状であるため、摺動部への厚膜塗布が可
能になり、潤滑性能、耐荷重性が向上する。また、従来
例1は浸漬方式であったため、必要な塗布箇所に適切な
塗布を行うことができなかったが、本発明の方式では、
潤滑剤がグリース状であるため、浸漬方式では困難であ
った局部的な潤滑剤塗布が可能となった。
As described above, perfluoropolyether 2
By applying a grease-like lubricant obtained by kneading No. 2 with graphite 23 as a solid lubricant, for example, by applying a brush, it was possible to obtain a sliding energizer having excellent sliding energizing performance. That is, in the application (immersion) method according to Conventional Example 1, the lubricant adhering to the sliding portion is a thin film, but in the method of the present invention, the lubricant is grease-like, so that a thick film can be applied to the sliding portion. Lubrication performance and load resistance are improved. In addition, since the conventional example 1 was an immersion method, it was not possible to perform appropriate application at a required application location. However, in the method of the present invention,
Since the lubricant is in the form of grease, it has become possible to locally apply the lubricant, which was difficult with the immersion method.

【0016】また、前述の従来例において、潤滑剤を塗
布するものを説明しているが、この場合の潤滑剤は、通
常、溶剤で薄めて塗布するためパーフロロポリエーテル
22の膜厚は厚くても2μmほどで、グラファイト23
の付着量もわずかである。これに対して本発明のもの
は、グリース状であるため粘着力が強く、流れにくく、
膜厚は10μm以上とすることができる。膜厚を10μ
m以上に厚くできると、グラファイト23とパーフロロ
ポリエーテル22が大量に付着しているため耐荷重性に
優れる上、耐熱性にも優れる。また、摺動動作によりパ
ーフロロポリエーテル22とグラファイト23が摺動通
電部から一時的に取り除かれても、周りに充満している
パーフロロポリエーテル22とグラファイト23が瞬時
に補われるので、従来例と比べ、安定性・潤滑性に優れ
た摺動通電体となる。
Further, in the above-mentioned conventional example, the case where a lubricant is applied is described. However, since the lubricant is usually applied by diluting with a solvent, the film thickness of the perfluoropolyether 22 is large. It is about 2μm and graphite 23
Is small. On the other hand, the thing of the present invention has a strong adhesive force because it is grease-like, and it is hard to flow,
The film thickness can be 10 μm or more. 10μ thickness
When the thickness can be increased to m or more, the graphite 23 and the perfluoropolyether 22 are adhered in a large amount, so that the load resistance is excellent and the heat resistance is also excellent. Further, even if the perfluoropolyether 22 and the graphite 23 are temporarily removed from the current-carrying part by the sliding operation, the perfluoropolyether 22 and the graphite 23 which are filled around are instantaneously supplemented. As compared with the example, the sliding current conductor is excellent in stability and lubricity.

【0017】さらに、従来例のPTFE(四フッ化エチ
レン)は高絶縁性で、へき開性を有さないため、パーフ
ロロポリエーテルが流出した場合、通電接触障害を引き
起こす可能性があったが、本発明のものは、グラファイ
ト23は400°C以上の耐熱性と、比抵抗10−2Ω
・mmの高導電性、また、層状結晶構造により高へき開
性を有するため、パーフロロポリエーテル22が流出し
た場合も、通電接触障害は引き起こさず、摺動通電部の
通電耐久性能を保持できる。
Further, the conventional PTFE (ethylene tetrafluoride) has a high insulating property and does not have a cleavage property, so that when perfluoropolyether flows out, there is a possibility that a current-carrying contact failure may occur. According to the present invention, graphite 23 has a heat resistance of 400 ° C. or more and a specific resistance of 10 −2 Ω.
-High conductivity of 1 mm and high cleavage due to the layered crystal structure, so that even if the perfluoropolyether 22 flows out, no current contact failure occurs, and the current-carrying durability of the sliding current-carrying portion can be maintained.

【0018】実施例1.上記実施の形態におけるグリー
ス状潤滑剤の特性に関し、現実の実施例について、材
料、測定方法、測定結果などを説明する。 (材料)パーフロロポリエーテル22として、住鉱潤滑
剤株式会社製のスミテックFオイルを、グラファイト2
3として鱗片状の天然黒鉛のグラファイトを用いた。 (グリース状潤滑剤調合及び測定項目)パーフロロポリ
エーテル22とグラファイト23を25°C±0.5°
Cで60回混和して得られたグリース状潤滑剤のちょう
度、滴点、離油度及び潤滑特性を測定した。グラファイ
トの比率別とグラファイトの粒径別の測定結果をそれぞ
れ後述の表1、表2に示す。
Embodiment 1 FIG. Regarding the characteristics of the grease-like lubricant in the above embodiment, materials, measurement methods, measurement results, and the like will be described in actual examples. (Material) Sumitec F oil manufactured by Sumiko Lubricant Co., Ltd. was used as perfluoropolyether 22 in graphite 2
As scale 3, graphite of flaky natural graphite was used. (Grease-like lubricant preparation and measurement items) Perfluoropolyether 22 and graphite 23 were mixed at 25 ° C ± 0.5 °.
The consistency, the dropping point, the degree of oil separation, and the lubricating properties of the grease-like lubricant obtained by mixing 60 times with C were measured. The measurement results for each graphite ratio and each graphite particle size are shown in Tables 1 and 2 below, respectively.

【0019】(測定方法)ちょう度はグリースの硬さを
示す指標の1つであり、日本工業規格JIS K222
Oの5.3項に示された規定に基づいて測定した。滴点
はグリースの温度による相変化を示す指標の1つであ
り、JIS K222Oの5.4項に示された規定に基
づいて測定した。離油度はグリースから基油の流出を示
す指標の1つであり、100°C24時間に流出した基
油の( 重量%) 条件で、JIS K222Oの5.7項
に示された規定に基づいて測定した。
(Measurement method) The consistency is one of the indexes indicating the hardness of grease, and is defined by Japanese Industrial Standard JIS K222.
The measurement was carried out according to the rules given in 5.3 of O. The dropping point is one of the indices indicating the phase change of the grease depending on the temperature, and was measured according to the provisions in 5.4 of JIS K222O. The degree of oil separation is one of the indexes indicating the flow of the base oil from the grease, and is based on the conditions described in 5.7 of JIS K222O under the condition (% by weight) of the base oil which flowed out at 100 ° C for 24 hours. Measured.

【0020】(測定結果)グリース状潤滑剤中のグラフ
ァイト比率は20〜30重量%の範囲のとき、滴点や離
油の特性に優れていた。表1中「*」で示すグラファイ
トの比率が10重量%のとき、グリース状とならず試験
ができなかった。また、表1中「**」で示すグラファ
イトの比率が40重量%のとき、グラファイトの比率が
高く、グラファイトが均一に分散しなかった。
(Measurement results) When the graphite ratio in the grease-like lubricant was in the range of 20 to 30% by weight, the characteristics of dropping point and oil release were excellent. When the ratio of graphite indicated by “*” in Table 1 was 10% by weight, the test was not performed because it was not grease-like. When the ratio of graphite indicated by “**” in Table 1 was 40% by weight, the ratio of graphite was high, and the graphite was not uniformly dispersed.

【0021】また、グリース状潤滑剤のちょう度は20
0〜350の範囲が望ましいことがわかった。ちょう度
が350より高い場合、グリース状潤滑剤として使用す
るには不適当なほど軟らかく、離油度が高くなった。そ
の結果、グリース状潤滑剤の形状保持が困難であり、摺
動面への潤滑剤保持性が悪くなり、潤滑性能が低下する
傾向があった。一方、ちょう度が200より低い場合、
グリース状潤滑剤として使用するには不適当なほど硬
く、摺動部の摺動抵抗が大きくなり潤滑性が悪くなる傾
向があった。
The consistency of the grease-like lubricant is 20
It has been found that a range of 0 to 350 is desirable. When the consistency was higher than 350, it was unsuitably soft for use as a grease-like lubricant and the oil separation increased. As a result, it was difficult to maintain the shape of the grease-like lubricant, the lubricant retention on the sliding surface was deteriorated, and the lubrication performance tended to decrease. On the other hand, if the consistency is lower than 200,
When used as a grease-like lubricant, it is unsuitably hard, and the sliding resistance of the sliding portion tends to increase, resulting in poor lubricity.

【0022】また、グラファイトの平均粒径は5〜30
μm、好ましくは20〜25μmの範囲で滴点や離油の
特性に優れ、総合的に潤滑特性に優れることがわかっ
た。グラファイトの平均粒径が5μm未満の場合、結晶
性が悪くなり、へき開しにくくなり、摺動部の摩擦係数
が高くなって、摺動面が摩耗しやすくなる。一方、グラ
ファイトの平均粒径が30μmより大きい場合、グリー
ス状潤滑剤の離油度が高くなる。
The average particle size of graphite is 5 to 30.
It was found that, in the range of μm, preferably 20 to 25 μm, the properties of dropping point and oil release were excellent, and the lubrication properties were comprehensively excellent. If the average particle size of graphite is less than 5 μm, the crystallinity becomes poor, cleavage becomes difficult, the friction coefficient of the sliding portion increases, and the sliding surface is easily worn. On the other hand, when the average particle size of graphite is larger than 30 μm, the degree of oil release of the grease-like lubricant increases.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】実施の形態2.実施の形態2では実施の形
態1のグリース状潤滑剤を回路遮断器の可動接触子の回
動中心となる摺動接触部に適用する場合について説明す
る。図2はこの発明の実施の形態2に係る回路遮断器の
側断面図、図3は図2の回路遮断器の可動接触子装置を
一部断面にして示す平面図、図4は図2の回路遮断器の
可動接触子装置を一部断面にして示す側面図である。図
において、1、2は回路遮断器の本体ケースを形成する
合成樹脂製のベースとカバーである。3はベース1に固
定された電源側の固定導体で、先端部に固定接点4が固
着されている。5は自動引き外し装置、6は自動引き外
し装置5に接続された負荷側の固定導体である。7は銀
めっきを施した銅製の可動接触子で、固定接点4と接離
する可動接点8を有している。
Embodiment 2 In the second embodiment, a case will be described in which the grease-like lubricant of the first embodiment is applied to a sliding contact portion serving as a rotation center of a movable contact of a circuit breaker. FIG. 2 is a side sectional view of a circuit breaker according to Embodiment 2 of the present invention, FIG. 3 is a plan view partially showing a movable contact device of the circuit breaker of FIG. 2, and FIG. It is a side view which shows the movable contactor apparatus of a circuit breaker in partial cross section. In the figure, reference numerals 1 and 2 denote a synthetic resin base and a cover forming a main body case of the circuit breaker. Reference numeral 3 denotes a fixed conductor on the power supply side fixed to the base 1, and a fixed contact 4 is fixed to a tip portion. Reference numeral 5 denotes an automatic tripping device, and reference numeral 6 denotes a load-side fixed conductor connected to the automatic tripping device 5. Reference numeral 7 denotes a silver-plated copper movable contact having a movable contact 8 which comes into contact with and separates from the fixed contact 4.

【0026】9は銀めっきを施した銅板製の可動子受け
で、それぞれL字状に形成された一対の支持板9a、9
b(図3、4参照)により構成されている。支持板9
a、9bは一端が自動引き外し装置5に接続された接続
導体19にそれぞれ接続されている。また、支持板9
a、9bはねじ孔9c、9dに螺合された取付ねじ20
により接続導体19と共にベース1に固定されている。
10は一対の支持板9a、9bに挟まれた可動接触子7
と支持板9a、9bに開口された孔に挿通された開閉軸
で、開閉軸10を介して可動接触子7が可動子受け9に
回動自在に枢支されている。11は合成樹脂製のホルダ
ーであり、ベース1に回動自在に支持され、後述の開閉
機構により開閉(回動)されるようになされたものであ
る。11aはホルダー11に形成された凹部で、開閉軸
10の両端を保持している。12は開閉軸10の両側に
それぞれ嵌合されたコイル状の圧縮ばね(図3、4参
照)で、ホルダー11と可動子受け9の支持板9a、9
bとの間に介在し、支持板9a、9bの内壁面を可動接
触子7の側面に圧接させている。
Reference numeral 9 denotes a movable plate receiver made of a silver-plated copper plate, and a pair of support plates 9a and 9 each formed in an L shape.
b (see FIGS. 3 and 4). Support plate 9
One end of each of a and 9b is connected to a connection conductor 19 connected to the automatic tripping device 5. The support plate 9
a and 9b are mounting screws 20 screwed into the screw holes 9c and 9d.
Is fixed to the base 1 together with the connection conductor 19.
Reference numeral 10 denotes a movable contact 7 sandwiched between a pair of support plates 9a and 9b.
The movable contact 7 is rotatably supported by the movable member receiver 9 via an opening / closing shaft 10 with an opening / closing shaft inserted through holes opened in the support plates 9a and 9b. Reference numeral 11 denotes a synthetic resin holder, which is rotatably supported by the base 1 and is opened and closed (rotated) by an opening and closing mechanism described later. Reference numeral 11a denotes a concave portion formed in the holder 11, which holds both ends of the opening / closing shaft 10. Reference numerals 12 denote coil-shaped compression springs (see FIGS. 3 and 4) fitted to both sides of the opening / closing shaft 10, respectively, and support plates 9a and 9 of the holder 11 and the movable member receiver 9.
b, and presses the inner wall surfaces of the support plates 9 a and 9 b against the side surface of the movable contact 7.

【0027】13はホルダー11と可動接触子7との間
に張架された接圧ばねである。14は操作ハンドル、1
5は回路遮断器の開閉機構で、ハンドル受け15a、ク
レドル15b、上部リンク15c、下部リンク15dな
どにより構成されている。16はクレドル15bに設け
られたストッパーピン、17は下部リンク15dをホル
ダー11に連繋するための連結ピン、18は消弧室であ
る。可動接触子装置の投入状態では、図2において、電
源側の固定導体3→固定接点4→可動接点8→可動接触
子7→可動受け9→接続導体19→自動引き外し装置5
→負荷側の固定導体6のように電流が流れる。この場
合、大電流回路に対応する回路遮断器では、通電接触部
の電磁反発力に抗するため、圧縮ばね12のばね定数を
大きくして、可動接触子7と可動子受け9の摺動面の接
圧を大きくする必要がある。
A contact pressure spring 13 is stretched between the holder 11 and the movable contact 7. 14 is an operation handle, 1
Reference numeral 5 denotes a circuit breaker opening / closing mechanism, which includes a handle receiver 15a, a cradle 15b, an upper link 15c, a lower link 15d, and the like. 16 is a stopper pin provided on the cradle 15b, 17 is a connection pin for connecting the lower link 15d to the holder 11, and 18 is an arc extinguishing chamber. In the closed state of the movable contact device, in FIG. 2, the fixed conductor 3 on the power supply side → the fixed contact 4 → the movable contact 8 → the movable contact 7 → the movable receiver 9 → the connecting conductor 19 → the automatic tripping device 5
→ An electric current flows like the fixed conductor 6 on the load side. In this case, in a circuit breaker corresponding to a large current circuit, the spring constant of the compression spring 12 is increased in order to resist the electromagnetic repulsion of the energizing contact portion, and the sliding surface of the movable contact 7 and the movable member receiver 9 is increased. The contact pressure needs to be increased.

【0028】従来例1の潤滑剤では、本実施の形態2と
同等の可動接触装置(図3、4参照)により、回路遮断
器の定格最大負荷時に想定される通電部の最高温度より
高い140゜Cで一ヶ月保持後、往復摺動試験を実施
し、復摺動試験3万回合格であった。しかしながら、圧
縮ばね12を大電流回路用にばね定数を大きくした仕様
においては、3万回摺動試験は不可能であった。一方、
この条件で、本実施の形態1のグリース状潤滑剤を適用
したものは3万回摺動試験後においても接触抵抗変化は
許容範囲内であり、合格であった。また、蛍光X線膜厚
計を用いためっき膜厚変化による摩耗量測定においても
明瞭な摩耗は検出されなかった。
In the lubricant of the first conventional example, the movable contact device (see FIGS. 3 and 4) equivalent to the second embodiment uses a lubricant 140 that is higher than the maximum temperature of the energized portion assumed at the time of the rated maximum load of the circuit breaker. After holding at ゜ C for one month, a reciprocating sliding test was performed, and the re-sliding test was passed 30,000 times. However, in the specification in which the spring constant of the compression spring 12 was increased for a large current circuit, a sliding test of 30,000 times was impossible. on the other hand,
Under these conditions, the case where the grease-like lubricant of the first embodiment was applied showed that the change in contact resistance was within the allowable range even after the 30,000-time sliding test, and was acceptable. Further, no clear wear was detected in the measurement of the wear amount due to the change in the plating film thickness using a fluorescent X-ray film thickness meter.

【0029】従来例1ではパーフロロポリエーテル22
の膜厚が約2μmと薄いため接圧が大きいと油膜切れし
やすく、潤滑性能が低下しやすいが、本実施の形態1の
仕様ではグリース状潤滑剤の付着量が多く、安定して摺
動面に付着しているため、安定した潤滑性能を有すると
考えられる。次に、回路遮断器の過負荷試験として、短
時間の過大電流の通過による異常発熱を発生させた後、
再度往復摺動試験を実施した結果、潤滑性、導電特性と
もに異常は発見されなかった。このように耐荷重性、耐
熱性に優れ、摺動抵抗の経時変化が少ない回路遮断器の
可動接触装置を得ることができる。
In Conventional Example 1, perfluoropolyether 22
When the contact pressure is large, the oil film easily breaks and the lubricating performance tends to decrease because the film thickness is as thin as about 2 μm. It is considered to have stable lubricating performance because it adheres to the surface. Next, as an overload test for the circuit breaker, after generating abnormal heat due to the passage of an excessive current for a short time,
As a result of performing the reciprocating sliding test again, no abnormality was found in both lubricity and conductive properties. As described above, it is possible to obtain a movable contact device of a circuit breaker which has excellent load resistance and heat resistance and has little change in sliding resistance with time.

【0030】実施の形態3.実施の形態3では、実施の
形態1のグリース状潤滑剤を開閉機器の摺動接続端子に
適用する場合について説明する。図5は実施の形態3に
係る開閉機器の摺動接続端子を示す構成図である。遮断
器や断路器の開閉機器のうち、特にキュービクルに収納
されるものでは、入力側および出力側主回路端子は、メ
ンテナンスや開閉機器交換等のために抜き差しのできる
摺動接続構造になっている。
Embodiment 3 In a third embodiment, a case will be described in which the grease-like lubricant of the first embodiment is applied to a sliding connection terminal of a switching device. FIG. 5 is a configuration diagram showing a sliding connection terminal of the switchgear according to the third embodiment. Of the circuit breakers and disconnecting switchgear, particularly those housed in cubicles, the input and output main circuit terminals have a sliding connection structure that can be inserted and removed for maintenance, replacement of the switchgear, etc. .

【0031】図5において、27は開閉機器の引き出し
時にキュービクル本体側に残る銅製の固定端子であり銀
めっきが施されれている。25は開閉機器側の回路端子
導体であり、24はこの端子導体25にねじ26を用い
て固定された銅製の接触板であり銀めっきが施されれて
いる。28は接触スプリングであり、図5の状態では接
触板24の開放端部の最小間隔は固定端子27の板厚よ
りも小さい。この構成では、接触スプリング28により
接触板を外側より押圧して固定端子27に接続圧力が与
えられて接続されている。本実施の形態3では、固定端
子27と接触端子25の摺動面に実施の形態1のグリー
ス状潤滑剤を塗布する。
In FIG. 5, reference numeral 27 denotes a copper fixed terminal which remains on the cubicle body side when the switchgear is pulled out, and is plated with silver. Reference numeral 25 denotes a circuit terminal conductor on the switchgear side, and reference numeral 24 denotes a copper contact plate fixed to the terminal conductor 25 with screws 26, and is provided with silver plating. Reference numeral 28 denotes a contact spring. The minimum distance between the open ends of the contact plate 24 is smaller than the thickness of the fixed terminal 27 in the state shown in FIG. In this configuration, the contact plate is pressed from the outside by the contact spring 28 to apply the connection pressure to the fixed terminal 27 so as to be connected. In the third embodiment, the grease-like lubricant of the first embodiment is applied to the sliding surface between the fixed terminal 27 and the contact terminal 25.

【0032】実施の形態2の摺動部は面接触であるが、
実施の形態3の摺動接続端子は線接触になるため、接圧
が高い。また、抜き差しするため、常に摺動面同士が接
触している実施の形態2の構成と比べ、回路端子導体2
5はグリース状潤滑剤が剥離しやすい。しかし、本発明
に係るグリース状潤滑剤を用いることにより、実施の形
態3の摺動接続端子は長期的に安定した潤滑特性を奏す
ることができる。
Although the sliding portion of the second embodiment is a surface contact,
Since the sliding connection terminal of the third embodiment is in line contact, the contact pressure is high. In addition, since the sliding surfaces are always in contact with each other, the circuit terminal conductors 2
In No. 5, the grease-like lubricant is easily peeled off. However, by using the grease-like lubricant according to the present invention, the sliding connection terminal of the third embodiment can exhibit stable lubrication characteristics for a long time.

【0033】上述のそれぞれの実施の形態において、本
発明に係るグリース状潤滑剤を、回路遮断器の可動接触
子及び開閉機器の摺動接続端子に適用する例について説
明したが、これらだけに限らず、本発明に係るグリース
状潤滑剤は、耐熱性・導電性・潤滑性が要求される全て
の電気機器の摺動通電部に適用可能である。
In each of the above embodiments, examples have been described in which the grease-like lubricant according to the present invention is applied to the movable contact of the circuit breaker and the sliding connection terminal of the switching device. Instead, the grease-like lubricant according to the present invention can be applied to the current-carrying parts of all electric devices that require heat resistance, conductivity, and lubricity.

【0034】[0034]

【発明の効果】この発明に係る摺動通電体は、表面に銀
めっきを施された導電体の摺動部に、20〜30重量%
のグラファイトと70〜80重量%のパーフロロポリエ
ーテルとを含み、ちょう度200〜350のグリース状
潤滑剤が塗布されたので、グリース状潤滑剤を厚膜とす
ることができ、耐荷重性、高温での潤滑性に優れる摺動
通電体を得ることができる。
According to the present invention, the current-carrying member has a sliding portion of 20 to 30% by weight of a conductor whose surface is coated with silver.
And 70 to 80% by weight of perfluoropolyether, and a grease-like lubricant having a consistency of 200 to 350 is applied, so that the grease-like lubricant can be formed into a thick film, and the load resistance, A sliding energizer having excellent lubrication at high temperatures can be obtained.

【0035】また、グラファイトの平均粒径は5〜30
μmにしたことにより、潤滑性がより優れた摺動通電体
が得られる。
The average particle size of graphite is 5 to 30.
By setting the thickness to μm, a sliding conductor having more excellent lubricity can be obtained.

【0036】さらに、グリース状潤滑剤の膜厚は10μ
m以上したことにより、耐荷重性がより優れた摺動通電
体が得られる。
Further, the thickness of the grease-like lubricant is 10 μm.
By setting m or more, a sliding current-carrying body having more excellent load resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る摺動通電部の
表面状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a surface state of a current-carrying sliding portion according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2に係る回路遮断器の
側断面図である。
FIG. 2 is a side sectional view of a circuit breaker according to Embodiment 2 of the present invention.

【図3】 図2の回路遮断器の可動接触装置を一部断面
にして示す拡大平面図である。
FIG. 3 is an enlarged plan view showing a movable contact device of the circuit breaker of FIG. 2 in a partial cross section.

【図4】 図2の回路遮断器の可動接触装置を一部断面
にして示す拡大側面図である。
FIG. 4 is an enlarged side view showing the movable contact device of the circuit breaker of FIG. 2 in a partial cross section.

【図5】 この発明の実施の形態3に係る開閉機器の摺
動接続端子を示す構成図である。
FIG. 5 is a configuration diagram showing a sliding connection terminal of the switchgear according to Embodiment 3 of the present invention.

【図6】 従来の摺動通電部の表面状態を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing a surface state of a conventional sliding energizing section.

【符号の説明】[Explanation of symbols]

1 ベース、2 カバー、3 固定導体、4 固定接
点、5 自動引き外し装置、6 固定導体、7 可動接
触子、9 可動子受け、9a、9b 支持板、10 開
閉軸、11 ホルダー、12 圧縮ばね、13 接圧ば
ね、14 操作ハンドル、15 開閉機構、16 スト
ッパーピン、17 連結ピン、18消弧室、19 接続
導体、21 銀めっき被膜、22 パーフロロポリエー
テル、23 グラファイト、24 接触板、25 開閉
機器側の回路端子導体、27 固定端子、28 接触
板、30 グリース状潤滑剤。
Reference Signs List 1 base, 2 cover, 3 fixed conductor, 4 fixed contact, 5 automatic trip device, 6 fixed conductor, 7 movable contact, 9 mover receiver, 9a, 9b support plate, 10 opening / closing axis, 11 holder, 12 compression spring , 13 contact pressure spring, 14 operating handle, 15 opening / closing mechanism, 16 stopper pin, 17 connecting pin, 18 arc extinguishing chamber, 19 connection conductor, 21 silver plating film, 22 perfluoropolyether, 23 graphite, 24 contact plate, 25 Circuit terminal conductor on switchgear side, 27 fixed terminal, 28 contact plate, 30 grease-like lubricant.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に銀めっきを施された導電体の摺動
部に、20〜30重量%のグラファイトと70〜80重
量%のパーフロロポリエーテルとを含み、ちょう度20
0〜350のグリース状潤滑剤を塗布してなる摺動通電
体。
1. A sliding part of a conductor whose surface has been subjected to silver plating contains 20 to 30% by weight of graphite and 70 to 80% by weight of perfluoropolyether and has a consistency of 20%.
A sliding energizer coated with a grease-like lubricant of 0 to 350.
【請求項2】 グラファイトの平均粒径が5〜30μm
であることを特徴とする請求項1記載の摺動通電体。
2. An average particle size of graphite is 5 to 30 μm.
2. The sliding energizer according to claim 1, wherein:
【請求項3】 塗布されたグリース状潤滑剤の膜厚が1
0μm以上であることを特徴とする請求項1又は請求項
2記載の摺動通電体。
3. The applied grease-like lubricant has a thickness of 1
The sliding energizer according to claim 1 or 2, wherein the thickness is 0 µm or more.
JP2001141067A 2001-05-11 2001-05-11 Current-carrying slide body Pending JP2002343168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141067A JP2002343168A (en) 2001-05-11 2001-05-11 Current-carrying slide body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141067A JP2002343168A (en) 2001-05-11 2001-05-11 Current-carrying slide body

Publications (1)

Publication Number Publication Date
JP2002343168A true JP2002343168A (en) 2002-11-29

Family

ID=18987573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141067A Pending JP2002343168A (en) 2001-05-11 2001-05-11 Current-carrying slide body

Country Status (1)

Country Link
JP (1) JP2002343168A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact
JP2007080764A (en) * 2005-09-16 2007-03-29 Nippon Koyu Ltd Suppressing method of damage caused by arc between electric contacts
WO2009005041A1 (en) * 2007-06-29 2009-01-08 The Furukawa Electric Co., Ltd. Fretting-resistant connector and process for manufacturing the same
CN102789910A (en) * 2011-04-27 2012-11-21 株式会社日立制作所 Grease for electrical contact and slide electricity structure, power switch, vacuum circuit breaker, vacuum-insulated switchgear assembling method
JP2014156631A (en) * 2013-02-15 2014-08-28 Yasunori Murayama Sliding contact member
WO2014178259A1 (en) * 2013-04-30 2014-11-06 第一電子工業株式会社 Electronic component
CN109075479A (en) * 2016-04-20 2018-12-21 株式会社自动网络技术研究所 Connection terminal and connection terminal pair
JP2019525421A (en) * 2016-08-08 2019-09-05 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electrical contact element for an electrical connector having a microstructured cavity under the contact surface
JP2019173141A (en) * 2018-03-29 2019-10-10 Dowaメタルテック株式会社 Ag PLATED MATERIAL, METHOD FOR MANUFACTURING SAME, AND CONTACT OR TERMINAL PART

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact
JP2007080764A (en) * 2005-09-16 2007-03-29 Nippon Koyu Ltd Suppressing method of damage caused by arc between electric contacts
WO2009005041A1 (en) * 2007-06-29 2009-01-08 The Furukawa Electric Co., Ltd. Fretting-resistant connector and process for manufacturing the same
JP4809920B2 (en) * 2007-06-29 2011-11-09 古河電気工業株式会社 Fretting-resistant connector and manufacturing method thereof
KR101486117B1 (en) 2011-04-27 2015-01-23 가부시키가이샤 히타치세이사쿠쇼 Electric contact grease and current-carrying sliding structures, power switch, vacuum circuit breaker, and vacuum insulated switch gear and assembling method for vacuum insulated switch gear
JP2012238584A (en) * 2011-04-27 2012-12-06 Hitachi Ltd Grease for electrical contact and slide electricity structure, power switching device, vacuum circuit breaker, vacuum insulated switchgear, and method for assembling vacuum insulated switchgear
CN102789910A (en) * 2011-04-27 2012-11-21 株式会社日立制作所 Grease for electrical contact and slide electricity structure, power switch, vacuum circuit breaker, vacuum-insulated switchgear assembling method
US9238784B2 (en) 2011-04-27 2016-01-19 Hitachi, Ltd. Grease for electrical contact and slide electricity structure, power switch, vacuum circuit breaker, vacuum insulated switchgear, and vacuum-insulated switchgear assembling method
JP2014156631A (en) * 2013-02-15 2014-08-28 Yasunori Murayama Sliding contact member
WO2014178259A1 (en) * 2013-04-30 2014-11-06 第一電子工業株式会社 Electronic component
US9705221B2 (en) 2013-04-30 2017-07-11 Ddk Ltd. Electronic component
CN109075479A (en) * 2016-04-20 2018-12-21 株式会社自动网络技术研究所 Connection terminal and connection terminal pair
CN109075479B (en) * 2016-04-20 2021-01-01 株式会社自动网络技术研究所 Connection terminal and connection terminal pair
JP2019525421A (en) * 2016-08-08 2019-09-05 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Electrical contact element for an electrical connector having a microstructured cavity under the contact surface
US11239593B2 (en) 2016-08-08 2022-02-01 Te Connectivity Germany Gmbh Electrical contact element for an electrical connector having microstructured caverns under the contact surface
JP2019173141A (en) * 2018-03-29 2019-10-10 Dowaメタルテック株式会社 Ag PLATED MATERIAL, METHOD FOR MANUFACTURING SAME, AND CONTACT OR TERMINAL PART
JP7128009B2 (en) 2018-03-29 2022-08-30 Dowaメタルテック株式会社 Ag-plated material, its manufacturing method, and contact or terminal part

Similar Documents

Publication Publication Date Title
JP5199498B2 (en) Grease for electrical contacts and sliding energization structure, power switchgear, vacuum circuit breaker, vacuum insulation switchgear, and vacuum insulation switchgear assembly method
JP2002343168A (en) Current-carrying slide body
WO2018189146A1 (en) Graphene composite material for sliding contact
JP2007080764A (en) Suppressing method of damage caused by arc between electric contacts
Chudnovsky Lubrication of electrical contacts
US8314355B2 (en) Gas insulated breaking device
AU778665B2 (en) A contact element and a contact arrangement
JPH097445A (en) Sliding contact of electric equipment
He et al. Effects of oxidation layer and roughness on the fretting wear behavior of copper under electrical contact
JP3396877B2 (en) Movable contact device for circuit breakers
WO2016103240A1 (en) Lubricant for gas-insulated switchgear, and gas-insulated switchgear
JP3388483B2 (en) Movable contact mechanism for circuit breakers
US6565983B1 (en) Electrical contact element and use of the contact element
Sawa et al. Effect of lubricant on sliding conditions in Au-plated slip-ring system for small electric power transfer
Leung et al. Thermal cycling induced wiping wear of connector contacts at 150/spl deg/C
JP3097467B2 (en) Movable contact mechanism for circuit breakers
JPH06346079A (en) Lubricant composition for electrical contact
JP2929464B2 (en) Sliding contacts for electrical equipment
Grandin et al. A wear tolerant slip-ring assembly
WO2012076281A1 (en) Electrical contact element and an electrical contact
Arnell et al. Silver iodide as a solid lubricant for power contacts
US2371755A (en) Disconnecting switch
Kaushik et al. Effect of different lubricant films on contact resistance of stationary separable gold-plated electrical contacts
EP1229566B1 (en) Circuit breaker
Aronstein An updated view of the aluminum contact interface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309