JP7128009B2 - Ag-plated material, its manufacturing method, and contact or terminal part - Google Patents

Ag-plated material, its manufacturing method, and contact or terminal part Download PDF

Info

Publication number
JP7128009B2
JP7128009B2 JP2018065683A JP2018065683A JP7128009B2 JP 7128009 B2 JP7128009 B2 JP 7128009B2 JP 2018065683 A JP2018065683 A JP 2018065683A JP 2018065683 A JP2018065683 A JP 2018065683A JP 7128009 B2 JP7128009 B2 JP 7128009B2
Authority
JP
Japan
Prior art keywords
plated
plating
layer
carbon particles
water emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018065683A
Other languages
Japanese (ja)
Other versions
JP2019173141A (en
Inventor
圭介 篠原
陽介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2018065683A priority Critical patent/JP7128009B2/en
Publication of JP2019173141A publication Critical patent/JP2019173141A/en
Application granted granted Critical
Publication of JP7128009B2 publication Critical patent/JP7128009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Agめっき材およびその製造方法、並びに当該Agめっき材が用いられた接点または端子部品に関し、特に車載用や民生用の電気配線に使用されるコネクタ、スイッチ、リレーなどの接点や端子部品の材料として使用されるAgめっき材およびその製造方法、並びに、接点または端子部品に関する。 The present invention relates to an Ag-plated material, a method for producing the same, and contact or terminal components using the Ag-plated material, particularly contacts and terminals of connectors, switches, relays, etc. used in electrical wiring for vehicles and households. The present invention relates to an Ag-plated material used as a material for parts, a method for manufacturing the same, and contact or terminal parts.

電気機器には、接点や端子部品等の摺動部分を有する電子部材が設けられている。そして当該摺動部分においては、当該摺動部分を構成するCuやCu合金等の導体素材が、比較的安価でありながら、耐食性や機械的特性などに優れた基材として用いられている。電気特性や半田付け性などの必要な特性に応じて、この基材へSn、Au、Ag等のめっきを施しためっき材が使用されている。 Electrical devices are provided with electronic members having sliding portions such as contacts and terminal parts. In the sliding portion, a conductor material such as Cu or a Cu alloy that constitutes the sliding portion is used as a base material that is relatively inexpensive and has excellent corrosion resistance, mechanical properties, and the like. A plated material obtained by plating the base material with Sn, Au, Ag, or the like is used according to the required properties such as electrical properties and solderability.

CuまたはCu合金等の基材へSnめっきを施したSnめっき材は、安価であるが、高温環境下における耐食性に劣っている。また、これらの基材へAuめっきを施したAuめっき材は、耐食性に優れ、信頼性は高いが、コストが高くなる。これに対し、これらの基材へAgめっきを施したAgめっき材は、Snめっき材と比べて耐食性に優れ、Auめっき材と比べて安価である。 A Sn-plated material obtained by plating a base material such as Cu or a Cu alloy with Sn is inexpensive, but has poor corrosion resistance in a high-temperature environment. In addition, Au-plated materials obtained by plating these substrates with Au have excellent corrosion resistance and high reliability, but the cost is high. On the other hand, Ag-plated materials obtained by applying Ag-plating to these base materials are superior in corrosion resistance to Sn-plated materials and less expensive than Au-plated materials.

一方、コネクタやスイッチ等に用いられる接点や端子部品へは、コネクタの挿抜やスイッチの摺動に伴う耐磨耗性も要求される。
ところが、Agめっき材は軟質で磨耗し易い為、接点や端子部品として使用すると、挿抜や摺動によりAgめっきが凝着し、凝着磨耗が生じ易くなったり、接続端子の挿入時にAgめっきの表面が削られて摩擦係数が高くなって挿入力が高くなる、という問題がある。特に、Agめっき材をワイヤーハーネスなどの挿抜可能なコネクタ材料として使用した場合、繰り返しの挿抜によってAgめっき層が削られて下地めっき層や基材が露出することがある。そして、下地めっき層や基材が露出すると、接触抵抗が増大して、発熱や発火に至るおそれがある。
このような問題を回避する為、Agめっき層の膜厚を厚くする方法や、Agめっき材の表面に潤滑材を塗布する方法等が知られている。
On the other hand, contacts and terminal parts used in connectors, switches, and the like are required to have resistance to wear associated with inserting/removing connectors and sliding of switches.
However, since Ag-plated materials are soft and wear easily, when they are used as contact points or terminal parts, the Ag-plated material adheres to them when they are inserted, removed, or slid. There is a problem that the surface is scraped and the friction coefficient increases, resulting in an increase in the insertion force. In particular, when an Ag-plated material is used as a pluggable connector material such as a wire harness, the Ag-plated layer may be scraped off by repeated plugging and unplugging, exposing the underlying plating layer and the substrate. Then, when the underlying plating layer and the base material are exposed, the contact resistance increases, which may lead to heat generation and ignition.
In order to avoid such problems, a method of increasing the film thickness of the Ag plating layer, a method of applying a lubricant to the surface of the Ag plating material, and the like are known.

例えば特許文献1には、Agめっき層上に脂肪酸を含む有機化合物の有機被膜が設けられ、耐食性および耐摺動性に優れているとされる電気接点材料について記載されている。
また特許文献2には、導電体の摺動部表面にAgめっき層が施され、さらに黒鉛とパーフロロポリエーテルからなるグリース状潤滑剤が膜厚10μm以上になるように塗布され、潤滑性に優れるとされた摺動通電体について記載されている。
さらに特許文献3には、摺動接触部の表面にAgめっき層が形成され、当該Agめっき層上に固着された黒鉛または二硫化モリブデン層を備え、耐摩耗性、摺動抵抗、耐熱性に優れるとされた可動接触装置について記載されている。
For example, Patent Literature 1 describes an electrical contact material in which an organic film of an organic compound containing a fatty acid is provided on an Ag plating layer and is said to be excellent in corrosion resistance and sliding resistance.
Further, in Patent Document 2, an Ag plating layer is applied to the surface of the sliding portion of the conductor, and a grease-like lubricant composed of graphite and perfluoropolyether is applied to a film thickness of 10 μm or more to improve lubricity. A sliding current-carrying body, which is said to be excellent, is described.
Furthermore, in Patent Document 3, an Ag plating layer is formed on the surface of the sliding contact portion, and a graphite or molybdenum disulfide layer is fixed on the Ag plating layer, and abrasion resistance, sliding resistance, and heat resistance are provided. A preferred moveable contact device is described.

特開2008-273189号公報JP 2008-273189 A 特開2002-343168号公報JP-A-2002-343168 特開平9-306326号公報JP-A-9-306326

Agめっき層の膜厚を厚くすると、原料コストが高くなる。
例えば、上述した特許文献1は、Agめっき層上へ有機被膜を設け、その潤滑作用により摩耗量の低減を図る提案である。しかしながら本発明者らの検討によると、特許文献1に係るAgめっきは、摺動等による摩耗の進行と伴にAgめっき上に有機堆積物が生成し、電気接点における接触抵抗上昇が懸念されるものであった。また、磨耗の進行により基材(下地金属)の例えばCuまたはCu合金が露出し酸化して接触抵抗が上昇するなど、信頼性が低下するおそれもあった。
一方、特許文献2、3は、電気接点における接触抵抗上昇を抑制する為、Agめっき層上へ設ける潤滑剤へ黒鉛を添加することを提案している。しかしながら本発明者らの検討によると、特許文献2、3に記載の潤滑剤(グリース)は、パーフロロポリエーテル等のハロゲン化合物をバインダーとして用いている。この為、特許文献2、3に係るAgめっき層は、めっき層表面での摩擦係数が比較的高く、接点を摩耗させる懸念があった。だからと言って潤滑剤の膜厚を厚くすると、今度は、コストの上昇と共に、接触抵抗の上昇も懸念されるものであった。
If the thickness of the Ag plating layer is increased, the raw material cost increases.
For example, the above-mentioned Patent Literature 1 proposes to provide an organic film on the Ag plating layer and to reduce the amount of wear by its lubricating action. However, according to the studies of the present inventors, the Ag plating according to Patent Document 1 generates organic deposits on the Ag plating as wear progresses due to sliding or the like, and there is concern that the contact resistance at the electrical contact will increase. It was something. In addition, as the wear advances, Cu or a Cu alloy of the base material (base metal), for example, is exposed and oxidized to increase the contact resistance, thereby reducing the reliability.
On the other hand, Patent Documents 2 and 3 propose adding graphite to the lubricant provided on the Ag plating layer in order to suppress the increase in contact resistance in the electrical contact. However, according to the studies of the present inventors, the lubricants (greases) described in Patent Documents 2 and 3 use a halogen compound such as perfluoropolyether as a binder. For this reason, the Ag plating layers according to Patent Documents 2 and 3 have a relatively high coefficient of friction on the surface of the plating layer, and there is a concern that the contact may be worn. However, if the film thickness of the lubricant is increased, there is a concern that the cost will increase and the contact resistance will also increase.

本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、端子(コネクタ)、接点(スイッチ)等の電子部材に用いられる、耐摩耗性を向上させたAgめっき材およびその製造方法、並びに、接点または端子部品を提供することである。 The present invention has been made under the above circumstances, and the problem to be solved is to provide an Ag plating with improved abrasion resistance, which is used for electronic members such as terminals (connectors) and contacts (switches). The object is to provide a material, a method for manufacturing the same, and a contact or terminal component.

ここで本発明者らは研究を続け、表層にAgめっき層が形成された基材を、炭素粒子、脂肪酸および水を含有する水エマルジョンに浸漬し、Agめっき層の表面に炭素粒子を含む脂肪酸含有皮膜を設けるという構成に想到した。
そして、当該構成により、耐摩耗性が高く接触抵抗上昇が回避出来るAgめっき材を製造出来ることを見出し、本発明を完成するに至った。そして、接点(スイッチ)、端子(コネクタ)等の電子部材の摺動部分へ、当該脂肪酸含有被膜が設けられたAgめっき材を用いることに拠り、当該摺動部分の耐摩耗性が向上し、接触抵抗上昇が回避出来ることを知見し、本発明を完成した。
Here, the present inventors continued their research, immersed a base material having an Ag plating layer on the surface layer in a water emulsion containing carbon particles, fatty acids and water, The inventors have come up with a configuration in which an inclusion film is provided.
Then, the present inventors have found that this structure can produce an Ag-plated product that has high wear resistance and can avoid an increase in contact resistance, thereby completing the present invention. And, by using the Ag-plated material provided with the fatty acid-containing film for the sliding parts of electronic members such as contacts (switches) and terminals (connectors), the wear resistance of the sliding parts is improved, The inventors have found that the increase in contact resistance can be avoided, and completed the present invention.

即ち、上述の課題を解決する第1の発明は、
表層にAgめっき層が形成された基材を、炭素粒子と脂肪酸と水とを含む水エマルジョンに浸漬し、前記Agめっき層の表面に炭素粒子を含む脂肪酸含有皮膜を形成することを特徴とする、Agめっき材の製造方法である。
第2の発明は、
前記炭素粒子が、湿式処理による酸化処理を施されているとを特徴とする、第1の発明に記載のAgめっき材の製造方法である。
第3の発明は、
前記炭素粒子として、鱗片状の黒鉛粒子を用いることを特徴とする、第1または第2の発明に記載のAgめっき材の製造方法である。
第4の発明は、
前記水エマルジョン中における前記炭素粒子の量を、1g/L以上10g/L以下とすることを特徴とする、第1~第3の発明のいずれかに記載のAgめっき材の製造方法である。
第5の発明は、
前記脂肪酸として、ステアリン酸を用いることを特徴とする、第1~第4の発明のいずれかに記載のAgめっき材の製造方法である。
第6の発明は、
前記基材として、CuまたはCu合金を用いることを特徴とする、第1~第5の発明のいずれかに記載のAgめっき材の製造方法である。
第7の発明は、
前記基材に、CuまたはNiからなる下地層を形成した後、前記Agめっき層を形成することを特徴とする、第1~第6の発明のいずれかに記載のAgめっき材の製造方法である。
第8の発明は、
前記Agめっき層を、電気めっきにより形成することを特徴とする、第1~第7の発明のいずれかに記載のAgめっき材の製造方法である。
第9の発明は、
基材上にAgめっきからなる表層が形成され、前記表層上に炭素粒子を含む脂肪酸含有皮膜が形成されていることを特徴とする、Agめっき材である。
第10の発明は、
前記炭素粒子が、鱗片状の黒鉛粒子であることを特徴とする、第9の発明に記載のAgめっき材である。
第11の発明は、
前記脂肪酸が、ステアリン酸であることを特徴とする、第9または第10の発明に記載のAgめっき材である。
第12の発明は、
前記基材が、CuまたはCu合金からなることを特徴とする、第9~第11の発明のいずれかに記載のAgめっき材である。
第13の発明は、
前記基材と前記Agめっき層の間に、CuまたはNiからなる下地層が形成されていることを特徴とする、第9~第12の発明のいずれかに記載のAgめっき材である。
第14の発明は、
第9~第13の発明のいずれかに記載のAgめっき材を用いていることを特徴とする、接点または端子部品である。
That is, the first invention for solving the above problems is
A base material having an Ag plating layer formed on its surface is immersed in a water emulsion containing carbon particles, fatty acids and water to form a fatty acid-containing film containing carbon particles on the surface of the Ag plating layer. , a method for producing an Ag-plated material.
The second invention is
The method for producing an Ag-plated material according to the first invention, wherein the carbon particles are subjected to oxidation treatment by wet treatment.
The third invention is
The method for producing an Ag-plated material according to the first or second invention, characterized in that scale-like graphite particles are used as the carbon particles.
The fourth invention is
The method for producing an Ag-plated material according to any one of the first to third inventions, wherein the amount of the carbon particles in the water emulsion is 1 g/L or more and 10 g/L or less.
The fifth invention is
The method for producing an Ag-plated product according to any one of the first to fourth inventions, wherein stearic acid is used as the fatty acid.
The sixth invention is
The method for producing an Ag-plated product according to any one of the first to fifth inventions, wherein Cu or a Cu alloy is used as the base material.
The seventh invention is
The method for producing an Ag-plated product according to any one of the first to sixth inventions, wherein the Ag-plated layer is formed after forming a base layer made of Cu or Ni on the base material. be.
The eighth invention is
The method for producing an Ag-plated product according to any one of the first to seventh inventions, wherein the Ag-plated layer is formed by electroplating.
The ninth invention is
An Ag-plated material, comprising: a surface layer made of Ag plating is formed on a substrate; and a fatty acid-containing film containing carbon particles is formed on the surface layer.
A tenth invention is
The Ag-plated product according to the ninth invention, wherein the carbon particles are scale-like graphite particles.
The eleventh invention is
The Ag-plated product according to the ninth or tenth invention, wherein the fatty acid is stearic acid.
A twelfth invention is
The Ag-plated product according to any one of the ninth to eleventh inventions, wherein the base material is made of Cu or a Cu alloy.
A thirteenth invention is
The Ag-plated material according to any one of the ninth to twelfth inventions, characterized in that an underlying layer made of Cu or Ni is formed between the base material and the Ag-plated layer.
A fourteenth invention is
A contact or terminal component, characterized by using the Ag-plated material according to any one of the ninth to thirteenth inventions.

本発明に係る、Agめっき層上に炭素粒子を含む脂肪酸含有皮膜を設けた接点(スイッチ)、端子(コネクタ)等の電子部材に用いられるAgめっき材により、耐摩耗性が高いAgめっき材およびその製造方法を提供することが出来る。 According to the present invention, the Ag-plated material used for electronic members such as contacts (switches) and terminals (connectors) having a fatty acid-containing film containing carbon particles on the Ag-plated layer has high wear resistance Ag-plated material and A manufacturing method thereof can be provided.

往復摺動試験後における実施例3に係るAgめっき面のデジタルマイクロスコープによる外観写真である。FIG. 10 is an appearance photograph taken with a digital microscope of the Ag-plated surface according to Example 3 after a reciprocating sliding test; FIG. 往復摺動試験後における比較例3に係るAgめっき面のデジタルマイクロスコープによる外観写真である。FIG. 10 is an appearance photograph taken with a digital microscope of the Ag-plated surface according to Comparative Example 3 after a reciprocating sliding test; FIG.

本発明に係るAgめっき材の製造方法は、表層にAgめっき層が形成された基材を、炭素粒子と脂肪酸と水とを含む水エマルジョンに浸漬し、Agめっき層の表面に炭素粒子を含む脂肪酸含有皮膜を形成するものである。
即ち、本発明に係るAgめっき材は、基材上にAgめっきからなる表層が形成され、この表層の表面に炭素粒子を含む脂肪酸含有皮膜が設けられているものである。
そして、当該構成により、優れた耐摩耗性と、接触抵抗上昇の回避とを兼ね備えたAgめっき材を得ることが出来た。
The method for producing an Ag-plated product according to the present invention includes immersing a substrate having an Ag-plated layer on its surface in a water emulsion containing carbon particles, fatty acids, and water, and including carbon particles on the surface of the Ag-plated layer. It forms a fatty acid-containing film.
That is, the Ag-plated material according to the present invention has a surface layer made of Ag plating formed on a substrate, and a fatty acid-containing film containing carbon particles is provided on the surface of this surface layer.
With this configuration, it was possible to obtain an Ag-plated material having both excellent wear resistance and avoidance of an increase in contact resistance.

以下、本発明について、(1)炭素粒子、(2)脂肪酸、(3)水エマルジョンの調製方法、(4)Agめっき材に用いる基材およびAgめっき、(5)Agめっき面への脂肪酸含有皮膜の形成方法、(6)評価、の順に説明する。 Hereinafter, the present invention will be described in terms of (1) carbon particles, (2) fatty acids, (3) a method for preparing a water emulsion, (4) base materials and Ag plating used for Ag-plated products, and (5) fatty acid content on Ag-plated surfaces. The method of forming the film and (6) evaluation will be described in this order.

(1)炭素粒子
本発明においては炭素粒子として、平均粒径1~10μmの鱗片状または土状の黒鉛(グラファイトと同義である。)粒子を好ましく使用することが出来るが、鱗片状黒鉛粒子がさらに好ましい。
これは、黒鉛粒子の平均粒径が1μmより大きいと、耐摩耗性の向上効果を十分に得ることが出来るからである。一方、黒鉛粒子の平均粒径が10μm以下であれば、Agめっき層の表層をアタックすることが無く、耐摩耗性に劣化や接触抵抗上昇のおそれがないことによる。当該観点から、黒鉛粒子の平均粒径は3~8μmであることがより好ましい。また黒鉛粒子が鱗片状であるとへき開し易く、摩擦係数を小さくすることが出来、好ましい。
(1) Carbon Particles In the present invention, flaky or earthy graphite (synonymous with graphite) particles having an average particle size of 1 to 10 μm can be preferably used. More preferred.
This is because when the average particle size of the graphite particles is larger than 1 μm, a sufficient effect of improving the wear resistance can be obtained. On the other hand, if the average particle size of the graphite particles is 10 μm or less, the surface layer of the Ag plating layer is not attacked, and there is no risk of deterioration in wear resistance or increase in contact resistance. From this point of view, it is more preferable that the graphite particles have an average particle size of 3 to 8 μm. Further, when the graphite particles are scaly, they are easily cleaved and the coefficient of friction can be reduced, which is preferable.

本発明において、炭素粒子の平均粒径は、炭素粒子0.5gを0.2重量%のヘキサメタリン酸ナトリウム溶液50gに分散させ、さらに超音波により分散させた後、レーザー光散乱粒度分布測定装置を用いて、当該炭素粒子の体積基準分布における粒径を測定し、累積分布で50%の粒径を平均粒径とすることにより求めた。 In the present invention, the average particle size of the carbon particles is determined by dispersing 0.5 g of the carbon particles in 50 g of a 0.2% by weight sodium hexametaphosphate solution, further dispersing the particles with ultrasonic waves, and then using a laser light scattering particle size distribution measuring device. was used to measure the particle size of the carbon particles in the volume-based distribution, and the particle size of 50% of the cumulative distribution was taken as the average particle size.

また、本発明者らが、炭素粒子を後述する水-脂肪酸のエマルジョンに添加したところ、当該炭素粒子が凝集してしまい、当該水-脂肪酸のエマルジョン中にうまく分散(乳濁あるいは懸濁)しないことが判明した。
本発明者らは当該現象が、炭素粒子の表面に強い親油性を有する有機物が吸着しており、水-脂肪酸エマルジョン中において当該炭素粒子が互い凝集する為、分散が悪くなることによるのではないか、と推論した。
そこで当該推論に基づき、本発明者らが種々の検討を行った結果、当該強い親油性を有する有機物として、アルカンやアルケン等の脂肪酸炭化水素や、アルキルベンゼンなどの芳香族炭化水素が炭素粒子中に含まれていることを知見した。さらに本発明者らは、酸化処理により炭素粒子の表面に吸着している親油性有機物を除去した後、当該炭素粒子を水-脂肪酸エマルジョンに添加すると、当該炭素粒子の分散性が向上するとの知見を得た。
In addition, when the present inventors added carbon particles to a water-fatty acid emulsion to be described later, the carbon particles aggregated and were not well dispersed (emulsified or suspended) in the water-fatty acid emulsion. It has been found.
The present inventors believe that this phenomenon is not due to poor dispersion due to the adsorption of organic substances having strong lipophilicity on the surface of the carbon particles and the aggregation of the carbon particles in the water-fatty acid emulsion. I inferred.
Therefore, based on this inference, the present inventors conducted various studies, and as a result, fatty acid hydrocarbons such as alkanes and alkenes, and aromatic hydrocarbons such as alkylbenzene are contained in carbon particles as organic substances having strong lipophilicity. I found it included. Furthermore, the present inventors have found that the dispersibility of the carbon particles is improved by adding the carbon particles to the water-fatty acid emulsion after removing the lipophilic organic substances adsorbed on the surface of the carbon particles by oxidation treatment. got

上述した炭素粒子の酸化処理方法としては、量産性の観点から湿式酸化処理を使用するのが好ましく、当該湿式酸化処理によって表面積が大きい炭素粒子を均一に酸化処理することが出来る。 As the oxidation treatment method for the carbon particles described above, it is preferable to use a wet oxidation treatment from the viewpoint of mass production, and the wet oxidation treatment can uniformly oxidize the carbon particles having a large surface area.

湿式酸化処理の方法としては、導電塩を含む水中に炭素粒子を懸濁させた後に、当該水中へ陰極や陽極となる白金電極などを挿入して電気分解を行う方法や、炭素粒子を水中に懸濁させた後に適量の酸化剤を添加する方法等、を使用することが出来る。尤も、生産性を考慮すると後者の方法を使用するのが好ましく、水中に添加する炭素粒子の量を1~20重量%にするのが好ましい。
後者の方法を適用する場合、酸化剤としては、硝酸、過酸化水素、過マンガン酸カリウム、過硫酸カリウム、過塩素酸ナトリウムなどの酸化剤を使用することが出来るが、過硫酸カリウムがより好ましい。
そして、炭素粒子に付着している親油性有機物は、添加された酸化剤により酸化されて水に溶けやすい形態になり、炭素粒子の表面から適宜除去されると考えられる。また、この湿式酸化処理を行った後、ろ過を行い、さらに炭素粒子を水洗することにより、炭素粒子の表面から親油性有機物を除去する効果をさらに高めることが出来る。
As a method of wet oxidation treatment, after suspending carbon particles in water containing a conductive salt, electrolysis is performed by inserting a platinum electrode or the like as a cathode or anode into the water, or carbon particles are placed in water. A method of adding an appropriate amount of oxidizing agent after suspending can be used. However, considering the productivity, it is preferable to use the latter method, and the amount of carbon particles added to water is preferably 1 to 20% by weight.
When the latter method is applied, oxidizing agents such as nitric acid, hydrogen peroxide, potassium permanganate, potassium persulfate, and sodium perchlorate can be used, and potassium persulfate is more preferable. .
It is believed that the lipophilic organic matter adhering to the carbon particles is oxidized by the added oxidizing agent into a water-soluble form, and is appropriately removed from the surface of the carbon particles. After the wet oxidation treatment, the carbon particles are filtered and then washed with water to further enhance the effect of removing lipophilic organic substances from the surfaces of the carbon particles.

具体的には、上述した炭素粒子を純水中に投入し、攪拌機で撹拌した混合液中に、酸化剤を添加することにより湿式酸化による酸化処理を行った。その後、混合液をろ紙によりろ別、水洗して酸化処理された炭素粒子を得た。 Specifically, the carbon particles described above were put into pure water, and an oxidizing agent was added to the mixed liquid stirred by a stirrer to perform oxidation treatment by wet oxidation. Thereafter, the mixed solution was filtered with filter paper and washed with water to obtain oxidized carbon particles.

上述した酸化処理により、炭素粒子の表面から脂肪族炭化水素や芳香族炭化水素等の親油性有機物を除去することが出来る。ここで、上述した酸化処理後の炭素粒子を300℃に加熱して発生したガスを分析したところ、当該ガス中にはアルカンやアルケンなどの親油性の強い脂肪族炭化水素や、アルキルベンゼンなどの親油性芳香族炭化水素が殆ど含まれていないことも判明した。 By the oxidation treatment described above, lipophilic organic substances such as aliphatic hydrocarbons and aromatic hydrocarbons can be removed from the surface of the carbon particles. Here, when the gas generated by heating the carbon particles after the above oxidation treatment to 300° C. was analyzed, it was found that the gas contained strongly oleophilic aliphatic hydrocarbons such as alkanes and alkenes, and hydrophilic compounds such as alkylbenzene. It was also found that almost no oily aromatic hydrocarbons were contained.

(2)脂肪酸
本発明に係る水エマルジョンに用いる脂肪酸は、ステアリン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ベヘン酸、セロチン酸、メリシン酸などの飽和脂肪酸や、ミリストレイン酸、パルミトレイン酸、オレイン酸、ネルボン酸、リノール酸、α-リノレン酸などの不飽和脂肪酸を使用することが出来るが、ステアリン酸を使用するのが好ましい。
(2) Fatty Acid Fatty acids used in the water emulsion according to the present invention include saturated fatty acids such as stearic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, behenic acid, cerotic acid and melissic acid, and myristoleic acid. , palmitoleic acid, oleic acid, nervonic acid, linoleic acid, α-linolenic acid and the like can be used, but it is preferred to use stearic acid.

(3)水エマルジョンの調製方法
本発明の水エマルジョンは、純水へ、上述した本発明に係る炭素粒子と脂肪酸(必要に応じて界面活性剤と)を添加・撹拌し、炭素粒子と脂肪酸を純水中に(乳濁あるいは懸濁させて)分散させることで得ることが出来る。
(3) Method for preparing a water emulsion The water emulsion of the present invention is prepared by adding and stirring the above-described carbon particles and fatty acid (with a surfactant if necessary) according to the present invention to pure water, and mixing the carbon particles and fatty acid. It can be obtained by dispersing (emulsifying or suspending) in pure water.

水エマルジョン中における炭素粒子の(添加)量は1~10g/Lであることが好ましい。
これは、炭素粒子の量が1g/L以上あれば、Agめっきからなる表層の表面に炭素粒子を含む脂肪酸含有皮膜を形成した際に、十分な量の炭素粒子を表層に形成することが出来、Agめっき材の耐摩耗性が担保されるからである。一方、炭素粒子が10g/L以下であれば、炭素粒子を含む脂肪酸含有皮膜の炭素粒子が多過ぎず、接触抵抗が高くなる(1mΩを超える)おそれがないからである。
The (added) amount of carbon particles in the water emulsion is preferably 1 to 10 g/L.
This is because if the amount of carbon particles is 1 g/L or more, a sufficient amount of carbon particles can be formed on the surface layer when a fatty acid-containing film containing carbon particles is formed on the surface layer made of Ag plating. , the wear resistance of the Ag-plated material is ensured. On the other hand, if the amount of carbon particles is 10 g/L or less, the fatty acid-containing film containing carbon particles does not contain too many carbon particles, and the contact resistance does not increase (exceeds 1 mΩ).

水エマルジョン中における脂肪酸の濃度は10~50g/Lであることが好ましい。脂肪酸の濃度が10g/L以上あれば、十分な厚さ(5nm以上、好ましくは10nm以上)の脂肪酸含有皮膜を形成するからである。一方、脂肪酸の濃度が50g/L以下であれば、脂肪酸含有皮膜が(例えば500nmより)厚くなり過ぎることが無く、接触抵抗上昇を回避出来るからである。 The fatty acid concentration in the water emulsion is preferably 10-50 g/L. This is because a fatty acid-containing film having a sufficient thickness (5 nm or more, preferably 10 nm or more) is formed when the concentration of the fatty acid is 10 g/L or more. On the other hand, if the fatty acid concentration is 50 g/L or less, the fatty acid-containing film will not become too thick (for example, greater than 500 nm), and an increase in contact resistance can be avoided.

また、上述した各成分を純水中に分散させ、水エマルジョンとする際は攪拌機を用い、例えば10分間以上撹拌することが好ましい。 Further, when dispersing each of the above components in pure water to form a water emulsion, it is preferable to use a stirrer and stir for, for example, 10 minutes or more.

(4)Agめっき材に用いる基材およびAgめっき
Agめっき材において、基材は導電性や機械強度に優れたCuまたはCu合金を、用途に応じて適宜選択することが好ましい。
そして、当該基材にAgめっき層を形成する前に、当該基材をアルカリ脱脂や電解脱脂等により前処理し、酸洗により基材の表面を酸活性させるのが好ましい。
また、当該基材にAgめっき層を形成する前に、基材とAgめっき層との密着性を向上させるとともに、基材の成分のAgめっき層への拡散を防止する為に、Cuめっき層またはNiめっき層からなる下地層を形成しておくことが好ましい。
(4) Base material and Ag plating used for Ag-plated material In the Ag-plated material, it is preferable to appropriately select Cu or a Cu alloy having excellent electrical conductivity and mechanical strength as the base material according to the application.
Then, before forming the Ag plating layer on the base material, the base material is preferably pretreated by alkali degreasing, electrolytic degreasing, or the like, and the surface of the base material is acid-activated by pickling.
In addition, before forming the Ag plating layer on the base material, in order to improve the adhesion between the base material and the Ag plating layer, and to prevent the diffusion of the components of the base material into the Ag plating layer, a Cu plating layer Alternatively, it is preferable to form an underlying layer made of a Ni plating layer.

具体的な例としては、まず、基材の表面にCuめっき層またはNiめっき層からなる下地層を形成し、その後、シアン浴などによるAgストライクめっきにより中間層を形成した後、シアン浴などによるAgめっきにより表層のAgめっき層を形成することが好ましい。
尚、これらのめっきは、電気めっきでも無電解めっきでもよいが、生産効率から電気めっきが好ましい。
As a specific example, first, a base layer consisting of a Cu plating layer or a Ni plating layer is formed on the surface of the base material, and then an intermediate layer is formed by Ag strike plating using a cyan bath or the like. It is preferable to form a surface Ag plating layer by Ag plating.
These platings may be electroplating or electroless plating, but electroplating is preferable from the viewpoint of production efficiency.

尚、Agめっき層からなる表層は、Agめっきを形成する際にAgめっき液へ添加される微量のSeやSb等の添加物を含んでいてもよい。
そして、Agめっき表層の厚さは、0.1~20μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、0.5~8μmであるのが最も好ましい。
これは、表層の厚さが厚すぎなければ、Agの使用量が多過ぎず、生産性が担保されるので、製造コストや原料コストが増大しないからである。一方、表層の厚さが薄すぎなければ、耐摩耗性の低下や基材(または下地)成分の拡散による接触抵抗上昇するおそれがないからである。
The surface layer composed of the Ag plating layer may contain a trace amount of additives such as Se and Sb that are added to the Ag plating solution when forming the Ag plating.
The thickness of the Ag-plated surface layer is preferably 0.1-20 μm, more preferably 0.3-10 μm, and most preferably 0.5-8 μm.
This is because if the thickness of the surface layer is not too large, the amount of Ag used is not too large, and productivity is ensured, so that manufacturing costs and raw material costs do not increase. On the other hand, if the thickness of the surface layer is not too thin, there is no risk of deterioration in wear resistance or increase in contact resistance due to diffusion of base material (or base) components.

CuまたはNiからなる下地層の厚さは、0.05~3μmであるのが好ましく、0.1~2μmであるのがさらに好ましい。
これは、CuまたはNiからなる下地層の厚さが3μm以下であれば、Agめっき材の曲げ加工性が担保されることによる。一方、下地層の厚さが0.05μm以上であれば、基材と表層の密着性が担保されると共に、基材の成分の拡散を防止する効果が担保されることによる。
The thickness of the underlying layer made of Cu or Ni is preferably 0.05 to 3 μm, more preferably 0.1 to 2 μm.
This is because the bending workability of the Ag-plated material is ensured if the thickness of the base layer made of Cu or Ni is 3 μm or less. On the other hand, if the thickness of the underlayer is 0.05 μm or more, the adhesiveness between the substrate and the surface layer is ensured, and the effect of preventing diffusion of the components of the substrate is also ensured.

(5)Agめっき材への脂肪酸含有皮膜の形成方法
本発明に係るAgめっき材への、脂肪酸含有皮膜の形成方法としては、上述のAgめっき材を本発明の水エマルジョンに浸漬した後、乾燥させて水分を除去し、炭素粒子を含む脂肪酸含有皮膜を形成することが好ましい。さらに、浸漬中は水エマルジョンを撹拌することが好ましい。
(5) Method for forming a fatty acid-containing film on an Ag-plated product As a method for forming a fatty acid-containing film on the Ag-plated product according to the present invention, the above-mentioned Ag-plated product is immersed in the water emulsion of the present invention, and then dried. It is preferable to remove moisture by drying to form a fatty acid-containing film containing carbon particles. Furthermore, it is preferable to stir the water emulsion during the immersion.

具体的には、攪拌機を用いて水エマルジョンを撹拌しながら、上述したAgめっき層を設けたAgめっき材を5秒間以上浸漬することが好ましい。
当該浸漬後、水エマルジョンへの浸漬を行ったAgめっき層を設けたAgめっき材を、例えば、30~60℃程度の温風により乾燥し、表面の水分を除去する。その後、当該Agめっき材を70~130℃程度の高温下に置き、表面の水分を除去することが好ましい。
Specifically, it is preferable to immerse the Ag-plated material provided with the Ag-plated layer for 5 seconds or longer while stirring the water emulsion using a stirrer.
After the immersion, the Ag-plated material provided with the Ag-plated layer immersed in the water emulsion is dried, for example, by hot air of about 30 to 60° C. to remove moisture on the surface. After that, it is preferable to place the Ag-plated material under a high temperature of about 70 to 130° C. to remove moisture on the surface.

また、Agめっき層上の炭素粒子の付着状態について、レーザー顕微鏡によりAgめっき層の表面を観察したとき、観察領域の全面積に対して、10~80%程度の面積率で炭素粒子が付着しているのが認められることが好ましい。面積率が小さすぎないことから耐摩耗性が十分に向上し、大きすぎないことから接触抵抗が増大する恐れがないからである。 Regarding the adhesion state of the carbon particles on the Ag plating layer, when the surface of the Ag plating layer was observed with a laser microscope, the carbon particles adhered at an area ratio of about 10 to 80% of the total area of the observation area. It is preferable to allow This is because if the area ratio is not too small, the wear resistance is sufficiently improved, and if it is not too large, there is no risk of an increase in contact resistance.

乾燥後のAgめっき材において、上述した脂肪酸含有皮膜の厚さは5~500nmであることが好ましい。
これは、脂肪酸含有皮膜の厚さが5nm以上あれば、摩擦が小さくなり耐摩耗性が担保されるかである。一方、脂肪酸含有皮膜の厚さが500nm以下であれば、接触抵抗上昇を回避出来好ましいからである。
In the Ag-plated product after drying, the thickness of the fatty acid-containing film described above is preferably 5 to 500 nm.
This is because if the thickness of the fatty acid-containing film is 5 nm or more, friction is reduced and wear resistance is ensured. On the other hand, if the thickness of the fatty acid-containing film is 500 nm or less, it is preferable because an increase in contact resistance can be avoided.

(6)評価
本発明に係るAgめっき材から2枚の試験片を切り出して、一方の試験片を平板状試験片(雄端子としての試験片)とすると共に、他方の試験片をインデント加工(R=1.5mmの半球状の打ち出し加工)してインデント付き試験片(雌端子としての試験片)とした。
当該インデント付き試験片を、荷重3Nで平板状試験片の表面に押し付けながら、摺動速度100mm/分、摺動距離5mmで300往復および500往復摺動させる摺動試験後において、基材が表面に露出するか否かについて評価した。
すると、本発明に係るAgめっき材は基材が表面に露出せず、Agめっき材の耐摩耗性が高いことが判明した。
つまり、本発明に係るAgめっき材は実用上十分に接触抵抗が低く、さらに摺動後も基材が表面に露出しない為、摺動後の経時変化による表面に露出した基材の酸化等の変質を回避することが出来る。
以上より、本発明に係るAgめっき材は、接点や端子部品などの電子部材に好適であるといえる。
(6) Evaluation Two test pieces are cut out from the Ag-plated material according to the present invention, one test piece is a flat test piece (test piece as a male terminal), and the other test piece is indented ( R = 1.5 mm hemispherical stamping) to obtain an indented test piece (test piece as a female terminal).
After the sliding test in which the indented test piece is pressed against the surface of the flat test piece with a load of 3 N, the sliding speed is 100 mm / min, and the sliding distance is 5 mm, 300 reciprocations and 500 reciprocations are performed. It was evaluated whether or not it was exposed to
As a result, it was found that the base material of the Ag-plated material according to the present invention was not exposed on the surface, and the wear resistance of the Ag-plated material was high.
In other words, the Ag-plated material according to the present invention has a sufficiently low contact resistance for practical use, and the base material is not exposed on the surface even after sliding. Degeneration can be avoided.
From the above, it can be said that the Ag-plated material according to the present invention is suitable for electronic members such as contacts and terminal parts.

以下、実施例を参照しながら本発明をより具体的に説明する。
実施例1~3においては、(1)炭素粒子の表面への酸化処理工程、(2)水エマルジョンの調製工程、(3)基材への前処理工程、(4)被めっき材へのNiめっき工程、(5)被めっき材へのAgストライクめっき工程、(6)被めっき材へのAgめっき工程、(7)Agめっき材の水エマルジョンへの浸漬工程、(8)摺動摩耗試験および評価、の各工程を実施した。一方、比較例1においては、(7)Agめっき材の水エマルジョンへの浸漬工程、を実施しなった。また、比較例2、3においては、水エマルジョンとして炭素粒子を含まない水エマルジョンを用いた。
Hereinafter, the present invention will be described more specifically with reference to examples.
In Examples 1 to 3, (1) a step of oxidizing the surface of carbon particles, (2) a step of preparing a water emulsion, (3) a step of pretreatment of a base material, (4) a Ni Plating process, (5) Ag strike plating process on the material to be plated, (6) Ag plating process on the material to be plated, (7) Ag plating material immersion process in water emulsion, (8) Sliding wear test and Each step of evaluation was performed. On the other hand, in Comparative Example 1, (7) the step of immersing the Ag-plated material in a water emulsion was not performed. In Comparative Examples 2 and 3, a water emulsion containing no carbon particles was used as the water emulsion.

[実施例1]
(1)炭素粒子の表面への酸化処理工程
炭素粒子として、平均粒径5μmの鱗片状の黒鉛粒子(エスイーシー社製のカーボンSN-5)を用意した。
[Example 1]
(1) Step of Oxidizing the Surface of Carbon Particles As carbon particles, scaly graphite particles (Carbon SN-5 manufactured by SEC Co., Ltd.) having an average particle size of 5 μm were prepared.

次に、黒鉛粒子180gを3Lの純水中に投入し、この混合液を撹拌しながら50℃に昇温させた。次いで酸化剤として0.1モルの過硫酸カリウム水溶液1.2Lを徐々に滴下した後、さらに2時間攪拌して、湿式酸化による酸化処理を行った。その後、ろ紙によりろ別を行い、ろ別された黒鉛粒子を水洗し、実施例1に係る酸化処理済み黒鉛粒子を得た。
尚、黒鉛粒子の平均粒径は、黒鉛粒子0.5gを0.2重量%のヘキサメタリン酸ナトリウム溶液50gに分散させ、さらに超音波により分散させた後、レーザー光散乱粒度分布測定装置を用いて体積基準分布の粒径を測定し、累積分布で50%の粒径を平均粒径とすることにより求めた。
Next, 180 g of graphite particles were put into 3 L of pure water, and the mixture was heated to 50° C. while being stirred. Then, 1.2 L of a 0.1 mol potassium persulfate aqueous solution was gradually added dropwise as an oxidizing agent, and the mixture was further stirred for 2 hours to carry out oxidation treatment by wet oxidation. Thereafter, filtration was performed with filter paper, and the filtered graphite particles were washed with water to obtain oxidation-treated graphite particles according to Example 1.
The average particle size of the graphite particles was determined by dispersing 0.5 g of graphite particles in 50 g of a 0.2% by weight sodium hexametaphosphate solution, dispersing the particles with ultrasonic waves, and measuring the particle size using a laser light scattering particle size distribution analyzer. The particle size of the volume-based distribution was measured, and the particle size of 50% of the cumulative distribution was taken as the average particle size.

(2)水エマルジョンの調製工程
31gのステアリン酸(脂肪酸)を含む水エマルジョン浴1L中に、2gの酸化処理済み黒鉛粒子を添加した。そして、当該水エマルジョン浴をスターラーにて500rpmで攪拌して分散させ、酸化処理済み黒鉛粒子を含む水エマルジョンを調製し、実施例1に係る水エマルジョン(潤滑剤)を得た。
尚、実施例1に係る水エマルジョン中の黒鉛粒子量を表2に記載する。
(2) Water emulsion preparation process 2 g of oxidized graphite particles were added to 1 L of water emulsion bath containing 31 g of stearic acid (fatty acid). Then, the water emulsion bath was dispersed by stirring at 500 rpm with a stirrer to prepare a water emulsion containing oxidized graphite particles, and a water emulsion (lubricant) according to Example 1 was obtained.
Table 2 shows the amount of graphite particles in the water emulsion according to Example 1.

(3)基材への前処理工程
基材(被めっき材)として、70mm×50mm×0.6mmの純銅金属基板を用意した。
当該被めっき材とSUS板とをアルカリ脱脂液に入れ、被めっき材を陰極、SUS板を陽極として電圧5Vを印加し、30秒間電解脱脂を行った。
当該電解脱脂の後、被めっき材を水洗し、さらに3%硫酸水溶液中で15秒間酸洗を行って、電解脱脂と酸洗とを施した被めっき材を得た。
(3) Pretreatment process for substrate A pure copper metal substrate of 70 mm x 50 mm x 0.6 mm was prepared as a substrate (material to be plated).
The material to be plated and the SUS plate were placed in an alkaline degreasing solution, and electrolytic degreasing was performed for 30 seconds by applying a voltage of 5 V using the material to be plated as a cathode and the SUS plate as an anode.
After the electrolytic degreasing, the material to be plated was washed with water and then pickled in a 3% sulfuric acid aqueous solution for 15 seconds to obtain a material to be plated that had been subjected to electrolytic degreasing and pickling.

(4)被めっき材へのNiめっき工程
濃度504g/Lのスルファミン酸ニッケル四水和物と、濃度25g/Lの塩化ニッケルと、濃度35g/Lのホウ酸とを含む、Niめっき水溶液を調製した。
前記Niめっき水溶液中において、前記電解脱脂と酸洗とを施した被めっき材を陰極、SKニッケル電極板を陽極とした。そして、スターラを用いて前記Niめっき水溶液を500rpmで撹拌しつつ、電流密度5A/dm、液温55℃で、前記被めっき材へNiめっきを行い、膜厚1μmのNiめっきを施した被めっき材を得た。
(4) Ni-plating process on the material to be plated A Ni-plating aqueous solution containing nickel sulfamate tetrahydrate with a concentration of 504 g/L, nickel chloride with a concentration of 25 g/L, and boric acid with a concentration of 35 g/L was prepared. did.
In the Ni plating aqueous solution, the material to be plated which had been electrolytically degreased and pickled was used as a cathode, and the SK nickel electrode plate was used as an anode. Then, while stirring the Ni plating aqueous solution at 500 rpm using a stirrer, Ni plating is performed on the material to be plated at a current density of 5 A / dm 2 and a solution temperature of 55 ° C., and the Ni plating with a film thickness of 1 μm is applied. A plated material was obtained.

(5)被めっき材へのAgストライクめっき工程
濃度3g/Lのシアン化銀カリウムと、濃度90g/Lのシアン化カリウムとを含む、Agストライクめっき水溶液を調製した。
前記Niめっきを施した被めっき材を陰極、白金で被覆したチタン電極板を陽極とした。そして、スターラを用いて前記Agストライクめっき水溶液を500rpmで撹拌しつつ、電流密度2A/dm、液温18℃で10秒間、前記Niめっきを施した被めっき材へAgストライクめっきを行い、Agストライクめっきを施した被めっき材を得た。
(5) Ag Strike Plating Process for Plating Material An Ag strike plating aqueous solution containing potassium silver cyanide with a concentration of 3 g/L and potassium cyanide with a concentration of 90 g/L was prepared.
The Ni-plated material to be plated was used as a cathode, and the titanium electrode plate coated with platinum was used as an anode. Then, while stirring the Ag strike plating aqueous solution at 500 rpm using a stirrer, Ag strike plating is performed on the Ni-plated material to be plated at a current density of 2 A / dm 2 and a liquid temperature of 18 ° C. for 10 seconds. A material to be plated with strike plating was obtained.

(6)被めっき材へのAgめっき工程
濃度175g/Lのシアン化銀カリウムと、濃度95g/Lのシアン化カリウムと、濃度100mg/Lのセレノシアン酸カリウム(55mg/Lのセレン含有)とを含む、Agめっき水溶液を調製した。
上述したAgストライクめっきを施した被めっき材を陰極、銀電極板を陽極として、当該Agめっき水溶液に浸漬した。そして、スターラを用いてAgめっき水溶液を500rpmで撹拌しつつ、電流密度5A/dm、液温18℃で、前記Agストライクめっきを施した被めっき材へAgめっきを行い、膜厚5μmのAgめっきを施したAgめっき材を得た。
(6) Ag plating process on the material to be plated Containing potassium silver cyanide with a concentration of 175 g / L, potassium cyanide with a concentration of 95 g / L, and potassium selenocyanate with a concentration of 100 mg / L (containing 55 mg / L of selenium), An aqueous Ag plating solution was prepared.
Using the material to be plated subjected to the Ag strike plating described above as a cathode and the silver electrode plate as an anode, the material was immersed in the Ag plating aqueous solution. Then, while stirring the Ag plating aqueous solution at 500 rpm using a stirrer, Ag plating is performed on the material to be plated that has been subjected to the Ag strike plating at a current density of 5 A / dm 2 and a liquid temperature of 18 ° C., Ag with a film thickness of 5 μm A plated Ag-plated material was obtained.

(7)Agめっき材の水エマルジョンへの浸漬工程
上述した実施例1に係る水エマルジョン(潤滑剤)をスターラにより500rpmで攪拌している浴中へ、上述したAgめっき材を120秒間浸漬した。尚、当該後処理時間を表2に記載する。
そして当該浸漬後、Agめっき材を浴から引き上げ、その表面に対してドライヤーで温風を当て、表面の水分を完全に除去した。その後、Agめっき材を、加熱乾燥機(アズワン株式会社製のスチール強制対流乾燥機)により大気中において110℃で45秒間加熱して乾燥させ、Agめっき材の表面に黒鉛粒子とステアリン酸を含む脂肪酸含有皮膜を形成して、実施例1に係るAgめっき材試料を得た。
(7) Immersion step of Ag-plated material in water emulsion The Ag-plated material was immersed for 120 seconds in a bath in which the water emulsion (lubricant) of Example 1 was stirred at 500 rpm with a stirrer. Table 2 shows the post-treatment time.
After the immersion, the Ag-plated material was pulled out of the bath, and hot air was applied to the surface of the Ag-plated material using a dryer to completely remove moisture on the surface. After that, the Ag-plated material is dried by heating at 110 ° C. for 45 seconds in the atmosphere with a heat dryer (Steel forced convection dryer manufactured by AS ONE Co., Ltd.), and graphite particles and stearic acid are included on the surface of the Ag-plated material. An Ag-plated material sample according to Example 1 was obtained by forming a fatty acid-containing film.

(8)摺動摩耗試験および評価
上述した実施例1に係るAgめっき材試料から2枚の試験片を切り出して、一方の試験片を平板状試験片(雄端子としての試験片)とし、他方の試験片をインデント加工(R=1.5mmの半球状の打ち出し加工)してインデント付き試験片(雌端子としての試験片)とした。
摺動試験装置である精密摺動試験機(株式会社山崎精機研究所製のCRS-G2050-DWA型)のステージに平板状試験片を固定し、その平板状試験片へインデント付き試験片を接触させた。そして、荷重3Nでインデント付き試験片を平板状試験片の表面に押しつけながら、平板状試験片を固定したステージを水平方向に摺動速度100mm/分、摺動距離5mmで、300往復および500往復させる摺動試験を行なった。尚、当該摺動試験条件を表1に示す。
(8) Sliding wear test and evaluation Cut out two test pieces from the Ag-plated material sample according to Example 1 described above, and use one test piece as a flat test piece (test piece as a male terminal), and the other The test piece was indented (r=1.5 mm hemispherical punching) to obtain an indented test piece (test piece as a female terminal).
A flat test piece is fixed to the stage of a precision sliding tester (CRS-G2050-DWA type manufactured by Yamazaki Seiki Laboratory Co., Ltd.), which is a sliding test device, and the indented test piece is brought into contact with the flat test piece. let me Then, while pressing the indented test piece against the surface of the flat test piece with a load of 3 N, the stage on which the flat test piece was fixed was slid horizontally at a sliding speed of 100 mm / min and a sliding distance of 5 mm, 300 and 500 reciprocations. A sliding test was performed. Table 1 shows the sliding test conditions.

Figure 0007128009000001
Figure 0007128009000001

摺動試験後の実施例1に係るAgめっき材試料の平板状試験片の表面を、デジタルマイクロスコープ((株)キーエンス製:VHX-1000)を用い、(×400)倍率にて観察した。そして、当該観察において銅素地露出の有無を観察し耐摩耗性を評価した。
そして、銅素地露出が無ければ耐摩耗性が〇、銅素地露出が有れば耐摩耗性が×と評価したところ、300往復後、500往復後のいずれも銅素地露出が無く、耐摩耗性は〇であった。尚、当該評価結果を表2に記載する。
After the sliding test, the surface of the flat test piece of the Ag-plated material sample according to Example 1 was observed at a magnification of (×400) using a digital microscope (manufactured by Keyence Corporation: VHX-1000). Then, the presence or absence of exposure of the copper substrate was observed during the observation, and the wear resistance was evaluated.
Then, when there was no exposure of the copper base, the wear resistance was evaluated as ◯, and when there was exposure of the copper base, the wear resistance was evaluated as x. was 0. The evaluation results are shown in Table 2.

一方、上述した摺動摩耗試験中において、実施例1に係るAgめっき材試料の接触抵抗を測定した。そして当該摺動期間中における接触抵抗の最大値をもって、実施例1に係るAgめっき材試料の接触抵抗とした。その結果、300往復後および500往復後の接触抵抗は、0.91mΩ(300往復)、0.89mΩ(500往復)であり良好であった。尚、当該測定結果を表2に記載する。
また、Agめっき層上の炭素粒子の付着状態について、レーザー顕微鏡によりAgめっき層の表面を観察した結果、観察領域(650μm×490μm)の全面積に対して炭素粒子の付着が認められる領域の面積率は70%であった。
On the other hand, during the sliding wear test described above, the contact resistance of the Ag-plated material sample according to Example 1 was measured. The contact resistance of the Ag-plated material sample according to Example 1 was defined as the maximum value of the contact resistance during the sliding period. As a result, the contact resistance after 300 reciprocations and 500 reciprocations was 0.91 mΩ (300 reciprocations) and 0.89 mΩ (500 reciprocations), which were good. The measurement results are shown in Table 2.
In addition, regarding the state of adhesion of carbon particles on the Ag plating layer, the surface of the Ag plating layer was observed with a laser microscope. The rate was 70%.

[実施例2]
上述した「(7)Agめっき材の水エマルジョンへの浸漬工程」におけるAgめっき材の浸漬時間を10秒間とした以外は、実施例1と同様の操作を行って、実施例2に係るAgめっき材試料を得た。
そして、実施例2に係るAgめっき材試料へ、実施例1と同様に摺動試験を行い、摺動摩耗試験後の接触抵抗測定を行った。
[Example 2]
Ag plating according to Example 2 was performed in the same manner as in Example 1 except that the immersion time of the Ag plating material in the above "(7) Ag plating material immersion step in water emulsion" was set to 10 seconds. A wood sample was obtained.
Then, the Ag-plated material sample according to Example 2 was subjected to the sliding test in the same manner as in Example 1, and the contact resistance was measured after the sliding wear test.

その結果、300往復後および500往復後も基材の表面の露出はなく耐摩耗性は〇であった。接触抵抗は0.66mΩ(300往復)、0.66mΩ(500往復)であり良好であった。また、実施例1と同様にAgめっき層の表面を観察した結果、観察領域の全面積に対して炭素粒子の付着が認められる領域の面積率は20%であった。尚、当該作製条件および評価・測定結果を表2に記載する。 As a result, even after 300 reciprocations and 500 reciprocations, the surface of the substrate was not exposed and the abrasion resistance was ◯. The contact resistance was 0.66 mΩ (300 reciprocations) and 0.66 mΩ (500 reciprocations), which were good. Further, as a result of observing the surface of the Ag plating layer in the same manner as in Example 1, the area ratio of the area where carbon particles were observed to adhere to the entire area of the observed area was 20%. Table 2 shows the production conditions and evaluation/measurement results.

また、得られたAgめっき材について、熱分解型ガスクロマトグラフ質量分析計によりAgめっき皮膜の表面の定性分析を行ったところ、Agめっき皮膜の表面にステアリン酸を含む脂肪酸含有が確認された。
また、本発明の脂肪酸含有皮膜の膜厚の測定として、アルゴンイオンを照射することによりAgめっき皮膜の表面(の直径100μmの分析エリア、黒鉛粒子の存在しない部分)をスパッタし、オージェ電子分光分析装置(日本電子株式会社製のJAMP-7800)を使用してオージェ電子分光法(AES)による深さプロファイル分析を行った。すると、Agめっき皮膜の表面に脂肪酸含有皮膜が付着しているのが確認された。当該脂肪酸含有皮膜の厚さを、上述したスパッタリング時間からSiOの標準試料のスパッタリング速度(5nm/分)に換算して求めたところ、12nmであった。
In addition, when the surface of the Ag plating film was qualitatively analyzed using a pyrolysis gas chromatograph mass spectrometer, fatty acids including stearic acid were found to be present on the surface of the Ag plating film.
In addition, as a measurement of the film thickness of the fatty acid-containing film of the present invention, the surface of the Ag plating film (analysis area with a diameter of 100 μm, a portion where no graphite particles are present) was sputtered by irradiating with argon ions, and Auger electron spectroscopic analysis was performed. Depth profile analysis by Auger electron spectroscopy (AES) was performed using an apparatus (JAMP-7800 manufactured by JEOL Ltd.). Then, it was confirmed that a fatty acid-containing film adhered to the surface of the Ag plating film. The thickness of the fatty acid-containing film was found to be 12 nm by converting the sputtering time described above into the sputtering rate (5 nm/min) of a standard sample of SiO 2 .

[実施例3]
上述した「(1)炭素粒子の表面への酸化処理工程」の酸化処理済み黒鉛粒子を含む水エマルジョン液中における黒鉛粒子の添加量を5gとし、後処理工程におけるAgめっき材の水エマルジョンへの浸漬時間を10秒間とした以外は、実施例1と同様の操作を行って、実施例3に係るAgめっき材試料を得た。
[Example 3]
The amount of graphite particles added to the water emulsion containing oxidized graphite particles in the above-described “(1) step of oxidizing the surface of carbon particles” is set to 5 g, and the Ag-plated material is added to the water emulsion in the post-treatment step. An Ag-plated material sample according to Example 3 was obtained by performing the same operation as in Example 1, except that the immersion time was set to 10 seconds.

そして、実施例3に係るAgめっき材試料へ実施例1と同様に摺動試験を行い、摺動摩耗試験後の接触抵抗測定を行った。
その結果、300往復後および500往復後も基材の表面の露出はなく、耐摩耗性は〇であった。接触抵抗は0.58mΩ(300往復)、0.73mΩ(500往復)であり良好であった。また、実施例1と同様にAgめっき層の表面を観察した結果、観察領域の全面積に対して炭素粒子の付着が認められる領域の面積率は50%であった。尚、当該作製条件および評価・測定結果を表2に記載する。
Then, the Ag-plated material sample according to Example 3 was subjected to the sliding test in the same manner as in Example 1, and the contact resistance was measured after the sliding wear test.
As a result, the surface of the substrate was not exposed even after 300 reciprocations and 500 reciprocations, and the abrasion resistance was ◯. The contact resistance was 0.58 mΩ (300 reciprocations) and 0.73 mΩ (500 reciprocations), which were good. Further, as a result of observing the surface of the Ag plating layer in the same manner as in Example 1, the area ratio of the area where carbon particles were observed to adhere to the entire area of the observed area was 50%. Table 2 shows the production conditions and evaluation/measurement results.

また、実施例2と同様の方法で、実施例3に係る脂肪酸含有皮膜の厚さを測定したところ12nmであった。
また、500回往復摺動後における実施例3に係るめっき面の(×400)倍率の外観写真を図1に示す。図1より500回往復摺動後におけるAgめっき面において、基材(銅)の露出がないことが確認出来た。
Moreover, when the thickness of the fatty acid-containing film according to Example 3 was measured in the same manner as in Example 2, it was 12 nm.
FIG. 1 shows a photograph of the appearance of the plated surface according to Example 3 after 500 times of reciprocating sliding at (×400) magnification. From FIG. 1, it was confirmed that the base material (copper) was not exposed on the Ag-plated surface after 500 reciprocating slides.

[比較例1]
上述した「(7)Agめっき材の水エマルジョンへの浸漬工程」を実施しなかった以外は、実施例1と同様の操作を行って、比較例1に係るAgめっき材試料を得た。
そして、比較例1に係るAgめっき材試料へ、実施例1と同様に摺動試験を行い、摺動摩耗試験後の接触抵抗測定を行った。
その結果、300往復後および500往復後のどちらにおいても、基材(Cu)の表面が露出していて耐摩耗性は×であった。接触抵抗は0.35mΩ(300往復)、0.40mΩ(500往復)であり良好であった。尚、当該作製条件および評価・測定結果を表2に記載する。
[Comparative Example 1]
An Ag-plated material sample according to Comparative Example 1 was obtained in the same manner as in Example 1, except that the above-described "(7) step of immersing Ag-plated material in water emulsion" was not performed.
Then, the Ag-plated material sample according to Comparative Example 1 was subjected to the sliding test in the same manner as in Example 1, and the contact resistance was measured after the sliding wear test.
As a result, both after 300 reciprocations and 500 reciprocations, the surface of the substrate (Cu) was exposed and the wear resistance was x. The contact resistance was 0.35 mΩ (300 reciprocations) and 0.40 mΩ (500 reciprocations), which were good. Table 2 shows the production conditions and evaluation/measurement results.

[比較例2]
上述した「(7)Agめっき材の水エマルジョンへの浸漬工程」において、酸化処理済み黒鉛粒子を含まないエマルジョン液中へ、Agめっき材を120秒間浸漬した以外は、実施例1と同様の操作を行って、比較例2に係るAgめっき材試料を得た。
そして、比較例2に係るAgめっき材試料へ、実施例1と同様に摺動試験を行い、摺動摩耗試験後の接触抵抗測定を行った。
その結果、300往復後には基材の表面の露出はなく耐摩耗性は〇であったが、500往復後に基材の表面の露出が観察され耐摩耗性は×であった。接触抵抗は1.37mΩ(300往復)、1.98mΩ(500往復)であり高かった。尚、当該作製条件および評価・測定結果を表2に記載する。
[Comparative Example 2]
The same operation as in Example 1, except that the Ag-plated material was immersed for 120 seconds in the emulsion containing no oxidized graphite particles in the above-described "(7) step of immersing the Ag-plated material in the water emulsion". was performed to obtain an Ag-plated material sample according to Comparative Example 2.
Then, the Ag-plated material sample according to Comparative Example 2 was subjected to the sliding test in the same manner as in Example 1, and the contact resistance was measured after the sliding wear test.
As a result, after 300 reciprocations, there was no exposure of the surface of the substrate and the wear resistance was ◯, but after 500 reciprocations, exposure of the surface of the substrate was observed and the wear resistance was x. The contact resistance was high at 1.37 mΩ (300 round trips) and 1.98 mΩ (500 round trips). Table 2 shows the production conditions and evaluation/measurement results.

[比較例3]
上述した「(7)Agめっき材の水エマルジョンへの浸漬工程」において、酸化処理済み黒鉛粒子を含まないエマルジョン液中へ、Agめっき材を10秒間浸漬した以外は、実施例1と同様の操作を行って、比較例3に係るAgめっき材試料を得た。
そして、比較例3に係るAgめっき材試料へ、実施例1と同様に摺動試験を行い、摺動摩耗試験後の接触抵抗測定を行った。
その結果、300往復後、500往復後のいずれも基材の表面の露出が観察され耐摩耗性は×であった。接触抵抗は1.17mΩ(300往復)、1.50mΩ(500往復)であり高かった。尚、当該作製条件および評価・測定結果を表2に記載する。
[Comparative Example 3]
The same operation as in Example 1, except that the Ag-plated material was immersed for 10 seconds in the emulsion containing no oxidized graphite particles in the above-described "(7) step of immersing the Ag-plated material in the water emulsion". was performed to obtain an Ag-plated material sample according to Comparative Example 3.
Then, the Ag-plated material sample according to Comparative Example 3 was subjected to the sliding test in the same manner as in Example 1, and the contact resistance was measured after the sliding wear test.
As a result, exposure of the substrate surface was observed after 300 reciprocations and after 500 reciprocations, and the abrasion resistance was evaluated as x. The contact resistance was high at 1.17 mΩ (300 reciprocations) and 1.50 mΩ (500 reciprocations). Table 2 shows the production conditions and evaluation/measurement results.

また、実施例2と同様の方法で脂肪酸含有皮膜の厚さを測定したところ12nmであった。
また、500回往復摺動後における比較例3に係るめっき面の(×400)倍率の外観写真を図2に示す。図2より、500回往復摺動後におけるめっき面では、めっきが完全に摩耗し、下地の基材(銅)が露出していた。
Further, when the thickness of the fatty acid-containing film was measured in the same manner as in Example 2, it was 12 nm.
FIG. 2 shows an appearance photograph of the plated surface according to Comparative Example 3 at (×400) magnification after 500 times of reciprocating sliding. From FIG. 2, on the plated surface after 500 times of reciprocating sliding, the plating was completely worn away, and the underlying base material (copper) was exposed.

Figure 0007128009000002
Figure 0007128009000002

[まとめ]
実施例1~3、表2、および図1より、本発明に係るAgめっき材に炭素粒子を含む脂肪酸含有皮膜が形成されたAgめっき素材においては、300回および500回の摺動摩耗試験後においても、銅素地露出が無く耐摩耗性は良好であった。また、300回および500回の摺動摩耗試験中における接触抵抗の上昇も回避されており良好であった。

[summary]
From Examples 1 to 3, Table 2, and FIG. 1, in the Ag-plated material in which a fatty acid-containing film containing carbon particles was formed on the Ag-plated material according to the present invention, after 300 times and 500 times the sliding wear test Also in , there was no exposure of the copper substrate, and the wear resistance was good. In addition, the contact resistance did not increase during the sliding wear test of 300 times and 500 times, which was good.

Claims (10)

表層にAgめっき層が形成された基材を、湿式処理による酸化処理を施された鱗片状の黒鉛粒子と、ステアリン酸と、水とを含む水エマルジョンに浸漬し、前記Agめっき層の表面に、前記鱗片状の黒鉛粒子とステアリン酸からなる厚さが5nm以上500nm以下である皮膜を形成することを特徴とする、接点または端子部品に用いられるAgめっき材の製造方法。 A base material having an Ag plating layer formed on the surface layer is immersed in a water emulsion containing scale-like graphite particles that have been subjected to oxidation treatment by a wet treatment , stearic acid , and water, and the surface of the Ag plating layer is 3. A method for producing an Ag-plated material for use in contacts or terminal components, characterized by forming a film having a thickness of 5 nm or more and 500 nm or less , comprising said scale-like graphite particles and stearic acid . 前記水エマルジョン中における前記鱗片状の黒鉛粒子の量を、1g/L以上10g/L以下とすることを特徴とする、請求項1に記載のAgめっき材の製造方法。 2. The method for producing an Ag-plated product according to claim 1, wherein the amount of said scale-like graphite particles in said water emulsion is 1 g/L or more and 10 g/L or less. 前記基材として、CuまたはCu合金を用いることを特徴とする、請求項1または2に記載のAgめっき材の製造方法。 3. The method for producing an Ag-plated material according to claim 1 , wherein Cu or a Cu alloy is used as said base material. 前記基材に、CuまたはNiからなる下地層を形成した後、前記Agめっき層を形成することを特徴とする、請求項1~3のいずれかに記載のAgめっき材の製造方法。 The method for producing an Ag-plated product according to any one of claims 1 to 3 , wherein the Ag-plated layer is formed after forming a base layer made of Cu or Ni on the base material. 前記Agめっき層を、電気めっきにより形成することを特徴とする、請求項1~4のいずれかに記載のAgめっき材の製造方法。 The method for producing an Ag-plated product according to any one of claims 1 to 4, wherein the Ag-plated layer is formed by electroplating. 前記水エマルジョン中におけるステアリン酸の濃度が、10g/L以上50g/L以下であることを特徴とする、請求項1~5のいずれかに記載のAgめっき材の製造方法。 The method for producing an Ag-plated product according to any one of claims 1 to 5, wherein the concentration of stearic acid in the water emulsion is 10 g/L or more and 50 g/L or less. 前記Agめっき層の厚さを、0.5μm以上8μm以下とすることを特徴とする、請求項1~6のいずれかに記載のAgめっき材の製造方法。 The method for producing an Ag-plated material according to any one of claims 1 to 6, wherein the Ag-plated layer has a thickness of 0.5 µm or more and 8 µm or less. 基材上にAgめっきからなる表層が形成され、前記表層上に鱗片状の黒鉛粒子とステアリン酸からなる厚さが5nm以上500nm以下である皮膜が形成されていることを特徴とする、接点または端子部品に用いられるAgめっき材。 A surface layer made of Ag plating is formed on a base material, and a film made of scale-like graphite particles and stearic acid and having a thickness of 5 nm or more and 500 nm or less is formed on the surface layer. Ag plating material used for terminal parts. 前記基材が、CuまたはCu合金からなることを特徴とする、請求項8に記載のAgめっき材。 9. The Ag-plated product according to claim 8, wherein said substrate is made of Cu or a Cu alloy. 前記基材と前記Agめっき層の間に、CuまたはNiからなる下地層が形成されていることを特徴とする、請求項8または9に記載のAgめっき材。 10. The Ag-plated product according to claim 8 , further comprising a base layer made of Cu or Ni formed between said base material and said Ag-plated layer.
JP2018065683A 2018-03-29 2018-03-29 Ag-plated material, its manufacturing method, and contact or terminal part Active JP7128009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018065683A JP7128009B2 (en) 2018-03-29 2018-03-29 Ag-plated material, its manufacturing method, and contact or terminal part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018065683A JP7128009B2 (en) 2018-03-29 2018-03-29 Ag-plated material, its manufacturing method, and contact or terminal part

Publications (2)

Publication Number Publication Date
JP2019173141A JP2019173141A (en) 2019-10-10
JP7128009B2 true JP7128009B2 (en) 2022-08-30

Family

ID=68166519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018065683A Active JP7128009B2 (en) 2018-03-29 2018-03-29 Ag-plated material, its manufacturing method, and contact or terminal part

Country Status (1)

Country Link
JP (1) JP7128009B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343168A (en) 2001-05-11 2002-11-29 Mitsubishi Electric Corp Current-carrying slide body
JP2004067711A (en) 2002-08-01 2004-03-04 Kyodo Yushi Co Ltd Grease composition for electric contact
JP2007016251A (en) 2005-07-05 2007-01-25 Dowa Holdings Co Ltd Method for producing composite plated material
JP2007262528A (en) 2006-03-29 2007-10-11 Kumamoto Univ Method of manufacturing composite plated material
JP2008273189A (en) 2007-04-03 2008-11-13 Furukawa Electric Co Ltd:The Electric contact material, its manufacturing method, and electric contact
WO2018041006A1 (en) 2016-08-30 2018-03-08 南通万德科技有限公司 Composite material and preparation method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126465A (en) * 1983-01-08 1984-07-21 Toshiba Silicone Co Ltd Pressure-sensitive electrically conductive silicone rubber composition
JPS619738U (en) * 1984-06-25 1986-01-21 オムロン株式会社 push button switch
JP3396877B2 (en) * 1996-05-17 2003-04-14 三菱電機株式会社 Movable contact device for circuit breakers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343168A (en) 2001-05-11 2002-11-29 Mitsubishi Electric Corp Current-carrying slide body
JP2004067711A (en) 2002-08-01 2004-03-04 Kyodo Yushi Co Ltd Grease composition for electric contact
JP2007016251A (en) 2005-07-05 2007-01-25 Dowa Holdings Co Ltd Method for producing composite plated material
JP2007262528A (en) 2006-03-29 2007-10-11 Kumamoto Univ Method of manufacturing composite plated material
JP2008273189A (en) 2007-04-03 2008-11-13 Furukawa Electric Co Ltd:The Electric contact material, its manufacturing method, and electric contact
WO2018041006A1 (en) 2016-08-30 2018-03-08 南通万德科技有限公司 Composite material and preparation method therefor

Also Published As

Publication number Publication date
JP2019173141A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4783954B2 (en) Composite plating material and method for producing the same
JP6309124B1 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2007254876A (en) Composite plating material and method of manufacturing the same
JP4813785B2 (en) Tin plating material
JP4830133B2 (en) Manufacturing method of composite plating material
JP6804574B2 (en) Composite plating material and its manufacturing method
JP7128009B2 (en) Ag-plated material, its manufacturing method, and contact or terminal part
JP5625166B2 (en) Composite plating material and method for producing the same
JP6978568B2 (en) Composite plating material and its manufacturing method
JP2016130362A (en) Silver plated material and manufacturing method of the same
JP6911164B2 (en) Composite plating material
JP5107117B2 (en) Composite plating material and method for producing the same
JP6809856B2 (en) Silver plating material and its manufacturing method
JP6804597B1 (en) Composite plating material and its manufacturing method
JP6963079B2 (en) Composite plating material and its manufacturing method
JP6592140B1 (en) Surface-treated metal material, method for producing surface-treated metal material, and electronic component
JP7394086B2 (en) Male pin for connector and method for manufacturing male pin for connector
JP7341871B2 (en) Composite plating material and its manufacturing method
WO2023188446A1 (en) Production method for silver-plated material, silver-coated sheet metal, and conductive component
KR20240055171A (en) Composite plated material and method for producing same
JP2022076573A (en) Composite plated material, and method of producing the same
JP2022068422A (en) Composite material, method of producing composite material, terminal, and method of producing terminal
JP2014005483A (en) Tin-plated copper-alloy terminal with excellent insertion/extraction performance and terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150