JP6267404B1 - Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts - Google Patents

Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts Download PDF

Info

Publication number
JP6267404B1
JP6267404B1 JP2017530781A JP2017530781A JP6267404B1 JP 6267404 B1 JP6267404 B1 JP 6267404B1 JP 2017530781 A JP2017530781 A JP 2017530781A JP 2017530781 A JP2017530781 A JP 2017530781A JP 6267404 B1 JP6267404 B1 JP 6267404B1
Authority
JP
Japan
Prior art keywords
layer
plating material
upper layer
material according
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017530781A
Other languages
Japanese (ja)
Other versions
JPWO2018138928A1 (en
Inventor
篤志 児玉
篤志 児玉
遠藤 智
智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Application granted granted Critical
Publication of JP6267404B1 publication Critical patent/JP6267404B1/en
Publication of JPWO2018138928A1 publication Critical patent/JPWO2018138928A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • H01R12/585Terminals having a press fit or a compliant portion and a shank passing through a hole in the printed circuit board

Abstract

ウィスカの発生が抑制され、且つ、高温環境下に曝されても良好なはんだ付け性及び低接触抵抗を保持し、且つ、端子・コネクタの挿入力が低い表面処理めっき材を提供する。基材に上層が設けられ、前記上層がSnまたはInを含有するめっき材を備え、めっき材表面に所定の一般式で表される化合物と、所定の一般式で表される化合物とを含み、さらに所定の一般式で表されるD構成化合物群から選択された1種もしくは2種以上を上層側の表面に付着させた表面処理めっき材。Provided is a surface-treated plated material in which the generation of whiskers is suppressed, good solderability and low contact resistance are maintained even when exposed to a high temperature environment, and the terminal / connector insertion force is low. An upper layer is provided on the base material, the upper layer includes a plating material containing Sn or In, and includes a compound represented by a predetermined general formula on the surface of the plating material, and a compound represented by a predetermined general formula, Furthermore, the surface treatment plating material which made 1 type or 2 types or more selected from the D structural compound group represented by a predetermined general formula adhere to the surface of the upper layer side.

Description

本発明は、表面処理めっき材、コネクタ端子、コネクタ、FFC端子、FFC、FPC及び電子部品に関する。   The present invention relates to a surface treatment plating material, a connector terminal, a connector, an FFC terminal, an FFC, an FPC, and an electronic component.

一般に、自動車、家電、OA機器等の各種電子機器に使用されるコネクタ・端子等の電子部品には、銅又は銅合金が母材として使用され、これらは防錆、耐食性向上、電気的特性向上といった機能向上を目的としてめっき処理がなされている。めっきにはAu、Ag、Cu、Sn、Ni、半田及びPd等の種類があるが、特にSnまたはSn合金めっきを施したSnめっき材はコスト面、接触信頼性およびはんだ付け性等の観点からコネクタ、端子、スイッチ及びリードフレームのアウターリード部等に多用されている。   In general, copper or copper alloy is used as a base material for electronic parts such as connectors and terminals used in various electronic equipment such as automobiles, home appliances, OA equipment, etc., and these are rust-proof, corrosion-resistant, and improved in electrical characteristics. The plating process is performed for the purpose of such functional improvement. There are various types of plating, such as Au, Ag, Cu, Sn, Ni, solder, and Pd. Especially, Sn plating materials plated with Sn or Sn alloy are from the viewpoint of cost, contact reliability, solderability, etc. Widely used in connectors, terminals, switches, outer lead parts of lead frames, and the like.

一方、SnまたはSn合金などのいわゆるSn系めっき材では、ウィスカ発生の問題がある。ウィスカとはSnの針状結晶が成長したものであり、SnやZnなど比較的低融点の金属に発生する。ウィスカは数十〜数百μmの長さまで髭状に成長し、電気的な短絡を起こすことがあるため、その発生、成長の防止が望まれている。   On the other hand, a so-called Sn-based plating material such as Sn or an Sn alloy has a problem of whisker generation. The whisker is a growth of a needle crystal of Sn and occurs in a metal having a relatively low melting point such as Sn or Zn. Whisker grows in a bowl shape to a length of several tens to several hundreds of μm, and may cause an electrical short circuit, so that generation and growth prevention is desired.

さらに、Sn系めっきでは、高温環境下で接触抵抗が上昇し、またはんだ付け性が劣化するという問題がある。この問題を回避する方法としてSn系めっきの厚さを厚くするという方法もあるが、この方法では後述の端子、コネクタの挿入力が増大するという問題が新たに発生する。   Furthermore, Sn-based plating has a problem that contact resistance increases in a high temperature environment or solderability deteriorates. As a method for avoiding this problem, there is a method of increasing the thickness of the Sn-based plating. However, this method newly causes a problem that the insertion force of terminals and connectors described later increases.

近年では、コネクタのピンの数が増え、これに伴うコネクタ挿入力の増加も問題になっている。自動車等のコネクタの組み立て作業は人手に頼ることが多く、挿入力の増大は作業者の手にかかる負担が大きくなるため、コネクタの低挿入力化が望まれているが、Snは端子の嵌合接続時の摩擦が大きく、コネクタの芯数が著しく増大すると強大な挿抜力が必要になる。   In recent years, the number of connector pins has increased, and the accompanying increase in connector insertion force has also become a problem. Connector assembly work for automobiles and the like often relies on human hands, and increasing the insertion force increases the burden on the operator's hand, so a low insertion force of the connector is desired. When the connection is large and the number of cores of the connector is remarkably increased, a strong insertion / extraction force is required.

例えば、特許文献1には、鋼板表面にSnめっき層を施し、該Snめっき層の上層に、PとSiを含有する化成皮膜を形成させ、この化成皮膜の付着量を特定した発明が記載されている。この発明でははんだ付け性、耐ウィスカが優れていると述べられている。しかしめっき表面にSiが存在しているため、高温環境下ではめっきの接触抵抗が高くなるという問題があると推定される。   For example, Patent Document 1 describes an invention in which a Sn plating layer is applied to the surface of a steel plate, a chemical conversion film containing P and Si is formed on the top of the Sn plating layer, and the amount of this chemical conversion film is specified. ing. In this invention, it is stated that solderability and whisker resistance are excellent. However, since Si is present on the plating surface, it is presumed that there is a problem that the contact resistance of the plating becomes high under a high temperature environment.

また、特許文献2には、SnまたはSn合金めっきの表面を、ホスホン酸基が結合しているメチレン基を少なくとも2個以上有したアミノ窒素を有する化合物等の有する溶液で処理する発明が記載されている。この発明ではSnまたはSn合金めっきをリン酸系の液で後処理する方法について述べられているが、処理した後のめっき表面の各元素の存在状態、付着量については言及されていない。したがって、処理液組成や処理条件によっては、はんだ付け性や耐ウィスカ性がまったく向上しないことが予想される。   Patent Document 2 describes an invention in which the surface of Sn or Sn alloy plating is treated with a solution having a compound containing amino nitrogen having at least two methylene groups to which phosphonic acid groups are bonded. ing. This invention describes a method of post-treating Sn or Sn alloy plating with a phosphoric acid-based solution, but does not mention the existence state and the amount of each element on the plated surface after the treatment. Therefore, it is expected that solderability and whisker resistance will not be improved at all depending on the treatment liquid composition and treatment conditions.

特開2004−360004号公報JP 2004-360004 A 特開2007−197791号公報JP 2007-197771 A

従来の、Ni下地またはCu下地めっきの上にSnめっきを施しためっき材、あるいは、3層めっきにおいて、耐ウィスカ性を向上させ、さらに挿抜力を低減するには、Snめっき厚を薄くすればよいが、Snめっきの厚みが薄くなると今度は高温環境下で表層のSnが素材のCu又は下地めっきのNi及びCuと合金化して表層にSnが残存しなくなり、はんだ付け性や接触抵抗が劣化し、特に高温雰囲気中での劣化が顕著になるという問題がある。   To improve the whisker resistance and reduce the insertion / extraction force in a conventional plating material in which Sn plating is applied on Ni base or Cu base plating, or three-layer plating, the Sn plating thickness can be reduced. However, when the Sn plating thickness is reduced, the surface Sn is alloyed with Cu as the material or Ni and Cu as the base plating in a high temperature environment, so that Sn does not remain on the surface layer, and solderability and contact resistance deteriorate. However, there is a problem that deterioration in a high temperature atmosphere becomes remarkable.

そこで、本発明は、ウィスカの発生が抑制され、且つ、高温環境下に曝されても良好なはんだ付け性及び低接触抵抗を保持し、且つ、端子・コネクタの挿入力が低い表面処理めっき材を提供することを課題とする。   Accordingly, the present invention provides a surface-treated plating material that suppresses the generation of whiskers, maintains good solderability and low contact resistance even when exposed to a high temperature environment, and has a low terminal / connector insertion force. It is an issue to provide.

本発明者は、上記課題を解決すべく鋭意検討を重ねたところ、意外にも、Ni下地めっきの上にSnまたはInを含有するめっき(以下Sn・In系めっきとよぶ)を施し、さらにその上に特定の液を用いて表面処理することにより、ウィスカの発生が抑制され、しかも高温環境下に曝されても良好なはんだ付け性及び低接触抵抗を保持することができる表面処理めっき材が得られることを見出した。しかも、当該表面処理めっき材は表層Sn・In系めっきを薄くすることができるため、端子・コネクタとして使用する場合の挿入力が低い。このような現象が生じることは従来の知見からは予想できないものである。   The present inventor has conducted extensive studies to solve the above-mentioned problems. Surprisingly, a plating containing Sn or In (hereinafter referred to as Sn / In plating) is applied on the Ni base plating. A surface-treated plating material that suppresses the generation of whiskers by performing a surface treatment with a specific liquid on the top and can maintain good solderability and low contact resistance even when exposed to a high temperature environment. I found out that Moreover, since the surface-treated plating material can make the surface Sn / In plating thinner, the insertion force when used as a terminal / connector is low. Such a phenomenon cannot be predicted from conventional knowledge.

以上の知見を基礎として完成した本発明は一側面において、基材に上層が設けられ、前記上層がSnまたはInを含有するめっき材を備え、前記めっき材が、前記基材上に形成された、Ni、Cr、Mn、Fe、Co及びCuからなる群であるA構成元素群から選択された1種又は2種以上で構成された下層と、前記下層上に形成された、前記A構成元素群から選択された1種又は2種以上と、Sn及びInからなる群であるB構成元素群から選択された1種又は2種とで構成された中層と、前記中層上に形成された、前記B構成元素群から選択された1種又は2種と、Ag、Au、Pt、Pd、Ru、Rh、Os及びIrからなる群であるC構成元素群から選択された1種又は2種類以上との合金で構成された上層とを備え、前記めっき材表面に下記一般式〔1〕または〔2〕で表される化合物と、下記一般式〔3〕で表される化合物とを含み、さらに下記一般式〔4〕〜〔8〕で表されるD構成化合物群から選択された2種以上を前記上層側の表面に付着させたものであって、下記一般式〔4〕で表される化合物が、ジノニルナフタレンスルフォン酸バリウム、ジノニルナフタレンスルフォン酸カルシウム、ジノニルナフタレンスルフォン酸亜鉛、ジノニルナフタレンスルフォン酸ナトリウム及びジノニルナフタレンスルフォン酸リチウムからなる群から選択される少なくとも1種であり、下記一般式〔5〕で表される化合物が、ベンゾトリアゾール及びベンゾトリアゾールのNa塩からなる群から選択される1種であり、下記一般式〔6〕で表される化合物が、パラフィンワックス及び白色ワセリンからなる群から選択される少なくとも1種であり、下記一般式〔7〕で表される化合物が、オレイン酸アミド、スレアリン酸アミド及びラウリン酸アミドからなる群から選択される少なくとも1種であり、下記一般式〔8〕で表される化合物が、プロピレングリコールt−ブチルエーテル及びプロピレングリコールモノメチルエーテルからなる群から選択される少なくとも1種である表面処理めっき材である。
(式〔1〕、〔2〕において、R1、R2はアルキル、置換アルキルを表し、M1は水素、アルカリ金属を表す。)
(式〔3〕において、R3はアルカリ金属または水素を表す。)
(式〔4〕において、R4、R5はアルキル、置換アルキルを表し、M2はアルカリ金属、アルカリ土金属を表し、nは整数を表す。)
(式〔5〕において、R6は水素、アルキル、置換アルキルを表し、R7はアルカリ金属、水素、アルキル、置換アルキルを表す。)
(式〔6〕において、n、mは整数を表す。)
(式〔7〕において、R8はアルキル、置換アルキルを表す。)
(式〔8〕において、R9、R10はアルキル、置換アルキルを表す。)
In one aspect of the present invention completed based on the above knowledge, an upper layer is provided on a base material, the upper layer includes a plating material containing Sn or In, and the plating material is formed on the base material. , Ni, Cr, Mn, Fe, Co and Cu, a lower layer composed of one or more selected from the group consisting of A constituent elements, and the A constituent element formed on the lower layer An intermediate layer composed of one or more selected from the group and one or two selected from the B constituent element group that is a group consisting of Sn and In, and formed on the intermediate layer, 1 type or 2 types selected from the B constituent element group and one or more selected from the C constituent element group which is a group consisting of Ag, Au, Pt, Pd, Ru, Rh, Os and Ir And an upper layer composed of an alloy of The surface contains a compound represented by the following general formula [1] or [2] and a compound represented by the following general formula [3], and further represented by the following general formulas [4] to [8] Two or more selected from the group of constituent compounds are attached to the upper surface, and the compound represented by the following general formula [4] is dinonyl naphthalene sulfonate, dinonyl naphthalene sulfonate And at least one selected from the group consisting of calcium, zinc dinonylnaphthalene sulfonate, sodium dinonyl naphthalene sulfonate and lithium dinonyl naphthalene sulfonate, wherein the compound represented by the following general formula [5] is benzotriazole And a benzotriazole Na salt selected from the group consisting of the following general formula [6]: And at least one compound selected from the group consisting of oleic acid amide, srealic acid amide and lauric acid amide. a seed, a compound represented by the following general formula [8] is at least 1 Tanedea Ru surface treatment plating material selected from the group consisting of propylene glycol t- butyl ether and propylene glycol monomethyl ether.
(In the formulas [1] and [2], R 1 and R 2 represent alkyl and substituted alkyl, and M 1 represents hydrogen and an alkali metal.)
(In the formula [3], R 3 represents an alkali metal or hydrogen.)
(In the formula [4], R 4 and R 5 represent alkyl and substituted alkyl, M 2 represents an alkali metal or an alkaline earth metal, and n represents an integer.)
(In the formula [5], R 6 represents hydrogen, alkyl, or substituted alkyl, and R 7 represents an alkali metal, hydrogen, alkyl, or substituted alkyl.)
(In Formula [6], n and m represent integers.)
(In the formula [7], R 8 represents alkyl or substituted alkyl.)
(In the formula [8], R 9 and R 10 represent alkyl and substituted alkyl.)

本発明の表面処理めっき材は一実施形態において、前記めっき材表面に存在する前記D構成化合物の付着量が、合計で0.005〜10.0μg/mm2である。In one embodiment, the surface-treated plated material of the present invention has a total adhesion amount of the D constituent compounds existing on the surface of the plated material of 0.005 to 10.0 μg / mm 2 .

本発明の表面処理めっき材は更に別の一実施形態において、前記下層の厚みが0.05μm以上5.00μm未満であり、前記中層の厚みが0.01μm以上0.40μm未満であり、前記上層の厚みが0.02μm以上1.00μm未満である。   In still another embodiment of the surface-treated plated material of the present invention, the lower layer has a thickness of 0.05 μm or more and less than 5.00 μm, the middle layer has a thickness of 0.01 μm or more and less than 0.40 μm, and the upper layer Is 0.02 μm or more and less than 1.00 μm.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層が、前記B構成元素群の金属を10〜50at%含有する。   In still another embodiment of the surface-treated plated material of the present invention, the upper layer contains 10 to 50 at% of the metal of the B constituent element group.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相が存在する。   In yet another embodiment of the surface-treated plated material of the present invention, a zeta (Zeta) phase, which is a SnAg alloy containing 11.8 to 22.9 at% of Sn, is present in the upper layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Ag3Snであるε(イプシロン)相が存在する。In still another embodiment of the surface-treated plated material of the present invention, an ε (epsilon) phase that is Ag 3 Sn exists in the upper layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相と、Ag3Snであるε(イプシロン)相とが存在する。In still another embodiment of the surface-treated plated material of the present invention, the upper layer includes a ζ (zeta) phase that is a SnAg alloy containing 11.8 to 22.9 at% of Sn, and ε (epsilon) that is Ag 3 Sn. ) Phase exists.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Ag3Snであるε(イプシロン)相のみが存在する。In still another embodiment of the surface-treated plated material of the present invention, only the ε (epsilon) phase that is Ag 3 Sn exists in the upper layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在する。In still another embodiment of the surface-treated plating material of the present invention, an ε (epsilon) phase that is Ag 3 Sn and βSn that is a Sn single phase are present in the upper layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相と、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在する。In still another embodiment of the surface-treated plated material of the present invention, the upper layer includes a ζ (zeta) phase that is a SnAg alloy containing 11.8 to 22.9 at% of Sn, and ε (epsilon) that is Ag 3 Sn. ) Phase and βSn, which is a single Sn phase.

本発明の表面処理めっき材は更に別の一実施形態において、前記中層が、前記B構成元素群の金属を35at%以上含有する。   In still another embodiment of the surface-treated plated material of the present invention, the intermediate layer contains 35 at% or more of the metal of the B constituent element group.

本発明の表面処理めっき材は更に別の一実施形態において、前記中層に、Ni3Sn4が存在する。In still another embodiment of the surface-treated plated material of the present invention, Ni 3 Sn 4 is present in the intermediate layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記中層に、Ni3Sn4と、Sn単相であるβSnとが存在する。In still another embodiment of the surface-treated plated material of the present invention, Ni 3 Sn 4 and βSn that is a Sn single phase are present in the intermediate layer.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層と前記中層との厚みの比が、上層:中層=9:1〜3:7である。   In still another embodiment of the surface-treated plated material according to the present invention, the thickness ratio of the upper layer to the middle layer is upper layer: middle layer = 9: 1 to 3: 7.

本発明の表面処理めっき材は更に別の一実施形態において、超微小硬さ計により、前記上層の表面に荷重3mNで打痕を打って測定して得られた硬度である、前記上層の表面の押し込み硬さが1000MPa以上10000MPa以下である。   In yet another embodiment, the surface-treated plated material according to the present invention is a hardness obtained by measuring the surface of the upper layer with a load of 3 mN and measuring the surface of the upper layer with an ultrafine hardness meter. The indentation hardness of the surface is 1000 MPa or more and 10,000 MPa or less.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層の表面の算術平均高さ(Ra)が0.3μm以下である。   In still another embodiment of the surface-treated plated material of the present invention, the arithmetic average height (Ra) of the surface of the upper layer is 0.3 μm or less.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層の表面の最大高さ(Rz)が3μm以下である。   In still another embodiment of the surface-treated plated material of the present invention, the maximum height (Rz) of the surface of the upper layer is 3 μm or less.

本発明の表面処理めっき材は更に別の一実施形態において、前記下層は、前記A構成元素群の金属がNi、Cr、Mn、Fe、Co、Cuの合計で50mass%以上であり、さらにB、P、Sn及びZnからなる群から選択された1種又は2種以上を含む。 In still another embodiment of the surface-treated plating material of the present invention, the lower layer has a total of 50 mass% or more of metals of the A constituent element group of Ni, Cr, Mn, Fe, Co, Cu, and B 1 type, or 2 or more types selected from the group consisting of P, Sn and Zn.

本発明の表面処理めっき材は更に別の一実施形態において、前記中層は、前記B構成元素群の金属がSnとInとの合計で50mass%以上であり、残合金成分がAg、Au、Bi、Cd、Co、Cr、Cu、Fe、Mn、Mo、Ni、Pb、Sb、WおよびZnからなる群から選択された1種または2種以上の金属からなる。 In still another embodiment of the surface-treated plating material of the present invention, the intermediate layer has a total of 50 mass% or more of Sn and In as a total of metals of the B constituent element group, and the remaining alloy components are Ag, Au, and Bi. , Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, W, and one or more metals selected from the group consisting of Zn and Zn.

本発明の表面処理めっき材は更に別の一実施形態において、前記上層は、前記C構成元素群の金属がAgとAuとPtとPdとRuとRhとOsとIrとの合計で50mass%以上であり、残合金成分がBi、Cd、Co、Cu、Fe、In、Mn、Mo、Ni、Pb、Sb、Se、Sn、W、TlおよびZnからなる群から選択された1種または2種以上の金属からなる。 In still another embodiment of the surface-treated plated material according to the present invention, the upper layer has a total of 50 mass% or more of the metals of the C constituent element group including Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir. And the remaining alloy component is selected from the group consisting of Bi, Cd, Co, Cu, Fe, In, Mn, Mo, Ni, Pb, Sb, Se, Sn, W, Tl and Zn It consists of the above metals.

本発明の表面処理めっき材は更に別の一実施形態において、前記中層が、Ni3SnとNi3Sn2とで構成されている。In still another embodiment of the surface-treated plated material of the present invention, the intermediate layer is composed of Ni 3 Sn and Ni 3 Sn 2 .

本発明の表面処理めっき材は更に別の一実施形態において、前記中層が、Ni3Sn2で構成されている。In still another embodiment of the surface-treated plating material of the present invention, the intermediate layer is made of Ni 3 Sn 2 .

本発明の表面処理めっき材は更に別の一実施形態において、前記中層が、Ni3Sn4で構成されている。In still another embodiment of the surface-treated plated material of the present invention, the intermediate layer is made of Ni 3 Sn 4 .

本発明の表面処理めっき材は更に別の一実施形態において、前記下層と中層との間に、さらにA構成元素群の金属とC構成元素群の金属との合金で構成された層を備える。   In still another embodiment, the surface-treated plated material of the present invention further includes a layer formed of an alloy of a metal of the A constituent element group and a metal of the C constituent element group between the lower layer and the middle layer.

本発明は別の一側面において、本発明の表面処理めっき材を接点部分に備えたコネクタ端子である。   In another aspect, the present invention is a connector terminal provided with the surface-treated plating material of the present invention at a contact portion.

本発明は更に別の一側面において、本発明のコネクタ端子を備えたコネクタである。   In still another aspect, the present invention is a connector provided with the connector terminal of the present invention.

本発明は更に別の一側面において、本発明の表面処理めっき材を接点部分に備えたFFC端子である。   In still another aspect of the present invention, an FFC terminal including the surface-treated plating material of the present invention at a contact portion.

本発明は更に別の一側面において、本発明のFFC端子を備えたFFCである。   In still another aspect, the present invention is an FFC including the FFC terminal of the present invention.

本発明は更に別の一側面において、本発明のFFC端子を備えたFPCである。   In yet another aspect, the present invention is an FPC including the FFC terminal of the present invention.

本発明は更に別の一側面において、本発明の表面処理めっき材を外部接続用電極に備えた電子部品である。   In still another aspect of the present invention, an electronic component including the surface treatment plating material of the present invention on an external connection electrode.

本発明は更に別の一側面において、ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、前記基板接続部を基板に形成されたスルーホールに圧入して前記基板に取り付ける圧入型端子を備えた電子部品であり、前記圧入型端子が、本発明の表面処理めっき材である電子部品である。   According to another aspect of the present invention, a female terminal connection portion is provided on one side of a mounting portion to be attached to the housing, and a substrate connection portion is provided on the other side, and the substrate connection portion is press-fitted into a through hole formed in the substrate. Thus, the electronic component includes a press-fit terminal attached to the substrate, and the press-fit terminal is an electronic component that is the surface-treated plating material of the present invention.

本発明によれば、ウィスカの発生が抑制され、且つ、高温環境下に曝されても良好なはんだ付け性及び低接触抵抗を保持し、且つ、端子・コネクタの挿入力が低い表面処理めっき材を提供することができる。   According to the present invention, a surface-treated plating material that suppresses the generation of whiskers, maintains good solderability and low contact resistance even when exposed to a high temperature environment, and has low terminal / connector insertion force. Can be provided.

本発明の実施形態に係る表面処理めっき材の構成を示す模式図である。It is a schematic diagram which shows the structure of the surface treatment plating material which concerns on embodiment of this invention.

以下、本発明の実施形態に係る表面処理めっき材について説明する。図1に示すように、本発明の実施形態に係る表面処理めっき材10は、基材11上に下層である層12が形成され、層12上に中層である層13が形成され、層13上に上層である層14が形成されている。また、本発明の実施形態に係る表面処理めっき材10は、基材11上に下地めっきまたは下層である層12が形成され、層12上に層12とSn・In系めっきとの合金層または中層である層13が形成され、層13上にSnまたはInを含有するめっき層または上層である層14が形成されていてもよい。   Hereinafter, the surface-treated plated material according to the embodiment of the present invention will be described. As shown in FIG. 1, in the surface-treated plated material 10 according to the embodiment of the present invention, a lower layer 12 is formed on a substrate 11, an intermediate layer 13 is formed on the layer 12, and a layer 13 is formed. An upper layer 14 is formed thereon. Further, the surface treatment plating material 10 according to the embodiment of the present invention has a base layer 11 or a lower layer 12 formed on a base material 11, and an alloy layer of the layer 12 and Sn / In-based plating on the layer 12 or An intermediate layer 13 may be formed, and a plated layer containing Sn or In or an upper layer 14 may be formed on the layer 13.

<表面処理めっき材の構成>
本発明の実施形態に係る表面処理めっき材は、基材11に上層である層14が設けられ、前記上層がSnまたはInを含有するめっき材を備える。前記めっき材表面に後述の一般式〔1〕または〔2〕で表される化合物と、後述の一般式〔3〕で表される化合物とを含み、さらに後述の一般式〔4〕〜〔8〕で表されるD構成化合物群から選択された1種もしくは2種以上が前記上層側の表面に付着している。
<Configuration of surface treatment plating material>
In the surface-treated plated material according to the embodiment of the present invention, the base layer 11 is provided with the upper layer 14, and the upper layer includes a plated material containing Sn or In. The plating material surface includes a compound represented by the following general formula [1] or [2] and a compound represented by the following general formula [3], and further includes the following general formulas [4] to [8]. 1 type or 2 types or more selected from the D constituent compound group represented by this are adhering to the surface of the said upper layer side.

(基材11)
基材11としては、特に限定されないが、例えば、銅及び銅合金、Fe系材、ステンレス、チタン及びチタン合金、アルミニウム及びアルミニウム合金などの金属基材を用いることができる。また、金属基材に樹脂層を複合させたものであっても良い。金属基材に樹脂層を複合させたものとは、例としてFPC(フレキシブルプリント基板、Flexible Printed Circuits)またはFFC(フレキシブルフラットケーブル、Flexible Flat Cable)基材上の電極部分などがある。
(Substrate 11)
Although it does not specifically limit as the base material 11, For example, metal base materials, such as copper and a copper alloy, Fe-type material, stainless steel, titanium and a titanium alloy, aluminum, and an aluminum alloy, can be used. Alternatively, a metal base and a resin layer may be combined. Examples of composites of resin layers on metal substrates include electrode portions on FPC (Flexible Printed Circuits) or FFC (Flexible Flat Cable) substrates.

(層14)
図1に示される層14は、SnまたはInを含有するめっき、またはSn及びInからなる群であるB構成元素群から選択された1種又は2種と、Ag、Au、Pt、Pd、Ru、Rh、Os及びIrからなる群であるC構成元素群から選択された1種又は2種類以上との合金で構成されていることが望ましい。
(Layer 14)
The layer 14 shown in FIG. 1 includes one or two selected from plating containing Sn or In, or a B constituent element group which is a group consisting of Sn and In, and Ag, Au, Pt, Pd, Ru. It is desirable that the alloy is composed of one or more alloys selected from a group of C constituent elements, which is a group consisting of Rh, Os, and Ir.

Sn及びInは、酸化性を有する金属ではあるが、金属の中では比較的柔らかいという特徴がある。よって、Sn及びIn表面に酸化膜が形成されていても、例えば表面処理めっき材を接点材料としてオス端子とメス端子を勘合する時に、容易に酸化膜が削られ、接点が金属同士となるため、低接触抵抗が得られる。   Sn and In are oxidizable metals, but are relatively soft among metals. Therefore, even if an oxide film is formed on the Sn and In surfaces, for example, when a male terminal and a female terminal are mated using a surface-treated plating material as a contact material, the oxide film is easily scraped, and the contacts become metal to metal. Low contact resistance can be obtained.

また、Sn及びInは塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐ガス腐食性に優れ、例えば、層14に耐ガス腐食性に劣るAg、層12に耐ガス腐食性に劣るNi、基材11に耐ガス腐食性に劣る銅及び銅合金を用いた場合には、表面処理めっき材の耐ガス腐食性を向上させる働きがある。なおSn及びInでは、厚生労働省の健康障害防止に関する技術指針に基づき、Inは規制が厳しいため、Snが好ましい。   Sn and In are excellent in gas corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas. For example, Ag is inferior in gas corrosion resistance in layer 14, Ni is inferior in gas corrosion resistance in layer 12, When copper and copper alloy inferior in gas corrosion resistance are used for the base material 11, there exists a function which improves the gas corrosion resistance of a surface treatment plating material. For Sn and In, Sn is preferable because In is strictly regulated based on the technical guidelines for preventing health problems of the Ministry of Health, Labor and Welfare.

Ag、Au、Pt、Pd、Ru、Rh、Os、Irは、金属の中では比較的耐熱性を有するという特徴がある。よって基材11、層12及び層13の組成が層14側に拡散するのを抑制して耐熱性を向上させる。また、これら金属は、層14のSnやInと化合物を形成してSnやInの酸化膜形成を抑制し、はんだ濡れ性を向上させる。なお、Ag、Au、Pt、Pd、Ru、Rh、Os、Irの中では、導電率の観点でAgがより望ましい。Agは導電率が高い。例えば高周波の信号用途にAgを用いた場合、表皮効果により、インピーダンス抵抗が低くなる。   Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir are characterized by relatively heat resistance among metals. Therefore, it suppresses that the composition of the base material 11, the layer 12, and the layer 13 diffuses to the layer 14 side, and improves heat resistance. In addition, these metals form a compound with Sn or In of the layer 14 to suppress the formation of an oxide film of Sn or In and improve solder wettability. Among Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir, Ag is more desirable from the viewpoint of conductivity. Ag has high conductivity. For example, when Ag is used for high frequency signal applications, the impedance resistance is lowered due to the skin effect.

層14の厚みは0.02μm以上1.00μm未満であることが好ましい。層14の厚みが0.02μm未満であると、基材11や層12の組成が層14側に拡散しやすくなって耐熱性やはんだ濡れ性が悪くなる。また微摺動によって層14が磨耗し、接触抵抗の高い層12が露出しやすくなるため耐微摺動磨耗性が悪く、微摺動によって接触抵抗が上昇しやすくなる。更に耐ガス腐食性が悪い層12が露出しやすくなるため耐ガス腐食性も悪く、ガス腐食試験を行うと外観が変色してしまう。一方、層14の厚みが1.00μm以上であると、硬い基材11または層12による薄膜潤滑効果が低下して凝着磨耗が大きくなりやすい。また機械的耐久性が低下して、めっき削れが発生しやすくなる。   The thickness of the layer 14 is preferably 0.02 μm or more and less than 1.00 μm. When the thickness of the layer 14 is less than 0.02 μm, the composition of the base material 11 and the layer 12 is easily diffused to the layer 14 side, and heat resistance and solder wettability are deteriorated. Further, the layer 14 is worn by fine sliding, and the layer 12 having a high contact resistance is easily exposed, so the resistance to fine sliding wear is poor, and the contact resistance is easily increased by fine sliding. Furthermore, since the layer 12 with poor gas corrosion resistance is easily exposed, the gas corrosion resistance is also poor, and when the gas corrosion test is performed, the appearance is discolored. On the other hand, when the thickness of the layer 14 is 1.00 μm or more, the thin film lubrication effect by the hard base material 11 or the layer 12 is lowered and adhesion wear tends to be increased. In addition, mechanical durability is lowered, and plating scraping is likely to occur.

層14は、純Snまたは純In、あるいはこれら元素を含有する合金めっきであるが、B構成元素群の金属を10〜50at%含有することが好ましい。B構成元素群の金属が10at%未満であると、例えばC構成元素群の金属がAgの場合、耐ガス腐食性が悪く、ガス腐食試験を行うと外観が変色する場合がある。一方、B構成元素群の金属が50at%を超えると、層14におけるB構成元素群の金属の割合が大きくなって凝着磨耗が大きくなり、またウィスカも発生しやすくなる。更に耐微摺動磨耗性が悪い場合もある。   The layer 14 is pure Sn or pure In, or alloy plating containing these elements, but preferably contains 10 to 50 at% of the metal of the B constituent element group. When the metal of the B constituent element group is less than 10 at%, for example, when the metal of the C constituent element group is Ag, the gas corrosion resistance is poor, and when the gas corrosion test is performed, the appearance may be discolored. On the other hand, when the metal of the B constituent element group exceeds 50 at%, the proportion of the metal of the B constituent element group in the layer 14 increases, and adhesion wear increases, and whiskers are likely to occur. Furthermore, there are cases where the resistance to fine sliding wear is poor.

層14に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相が存在することが好ましい。当該ζ(ゼータ)相が存在することで耐ガス腐食性が向上し、ガス腐食試験を行っても外観が変色し難くなる。   The layer 14 preferably has a ζ (zeta) phase which is a SnAg alloy containing 11.8 to 22.9 at% of Sn. The presence of the ζ (zeta) phase improves the gas corrosion resistance, and the appearance hardly changes even when a gas corrosion test is performed.

層14に、ζ(ゼータ)相と、Ag3Snであるε(イプシロン)相とが存在することが好ましい。ε(イプシロン)相の存在によって、層14にζ(ゼータ)相のみが存在する場合と比較して皮膜が硬くなり凝着磨耗が低下する。また層14のSn割合が多くなることで耐ガス腐食性が向上する。It is preferable that a ζ (zeta) phase and an ε (epsilon) phase that is Ag 3 Sn exist in the layer 14. Due to the presence of the ε (epsilon) phase, the coating becomes harder and adhesion wear is reduced compared to the case where only the ζ (zeta) phase is present in the layer 14. Further, the increase in the Sn ratio of the layer 14 improves the gas corrosion resistance.

層14に、Ag3Snであるε(イプシロン)相のみが存在することが好ましい。上層14にε(イプシロン)相が単独に存在することによって、層14にζ(ゼータ)相とAg3Snであるε(イプシロン)相とが存在する場合と比較して皮膜が更に硬くなり凝着磨耗が低下する。また層14のSn割合がより多くなることで耐ガス腐食性も向上する。It is preferable that only an ε (epsilon) phase that is Ag 3 Sn exists in the layer 14. The existence of the ε (epsilon) phase alone in the upper layer 14 makes the film harder and harder than in the case where the ζ (zeta) phase and the ε (epsilon) phase of Ag 3 Sn exist in the layer 14. Wear is reduced. Moreover, gas corrosion resistance also improves because the Sn ratio of the layer 14 increases.

層14に、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在することが好ましい。Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在することによって、層14にε(イプシロン)相のみが存在する場合と比較して更に上層のSn割合がより多くなることで耐ガス腐食性が向上する。It is preferable that an ε (epsilon) phase that is Ag 3 Sn and βSn that is a Sn single phase exist in the layer 14. Due to the presence of the ε (epsilon) phase that is Ag 3 Sn and βSn that is the Sn single phase, the Sn ratio of the upper layer is further increased compared to the case where only the ε (epsilon) phase exists in the layer 14. As a result, the gas corrosion resistance is improved.

層14に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相と、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在することが好ましい。ζ(ゼータ)相と、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在することによって、耐ガス腐食性が向上し、ガス腐食試験を行っても外観が変色しにくく、凝着磨耗が低下する。この組成は拡散で生じるものであり、平衡状態の構造ではない。The layer 14 may include a ζ (zeta) phase that is a SnAg alloy containing 11.8 to 22.9 at% of Sn, an ε (epsilon) phase that is Ag 3 Sn, and βSn that is a Sn single phase. preferable. The presence of the ζ (zeta) phase, the ε (epsilon) phase that is Ag 3 Sn, and βSn that is the Sn single phase improves the gas corrosion resistance, and the appearance changes even when a gas corrosion test is performed. It is difficult to wear and adhesion wear decreases. This composition occurs by diffusion and is not an equilibrium structure.

層14がβSn単独では存在してはいけない。βSn単独での存在の場合には、凝着磨耗が大きく、ウィスカも発生し、耐熱性及び耐微摺動磨耗性等が劣化する。   Layer 14 should not be present by βSn alone. In the presence of βSn alone, adhesion wear is large, whiskers are generated, and heat resistance, fine sliding wear resistance and the like deteriorate.

(層13)
図1に示される層13が層12と層14との間に形成されていることが好ましい。層13は、Sn・In系めっきと層12との合金層、またはNi、Cr、Mn、Fe、Co及びCuからなる群であるA構成元素群から選択された1種又は2種以上と、Sn及びInからなる群であるB構成元素群から選択された1種又は2種とで構成されている。層13は、0.01μm以上0.40μm未満の厚さで形成されていることが好ましい。
(Layer 13)
The layer 13 shown in FIG. 1 is preferably formed between the layer 12 and the layer 14. Layer 13 is an alloy layer of Sn / In plating and layer 12, or one or more selected from an A constituent element group that is a group consisting of Ni, Cr, Mn, Fe, Co, and Cu, and It is comprised by 1 type or 2 types selected from the B structural element group which is the group which consists of Sn and In. The layer 13 is preferably formed with a thickness of 0.01 μm or more and less than 0.40 μm.

Sn及びInは塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐ガス腐食性に優れ、例えば、下層12に耐ガス腐食性に劣るNi、基材11に耐ガス腐食性に劣る銅及び銅合金を用いた場合には、表面処理めっき材の耐ガス腐食性を向上させる働きがある。Ni、Cr、Mn、Fe、Co及びCuは、SnやInと比較して皮膜が硬いために凝着磨耗が生じにくく、基材11の構成金属が上層14に拡散するのを防止し、耐熱性試験やはんだ濡れ性劣化を抑制するなどの耐久性を向上させる。   Sn and In are excellent in gas corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas. For example, Ni is inferior in gas corrosion resistance in the lower layer 12, and copper and copper inferior in gas corrosion resistance in the base material 11. When an alloy is used, it has a function of improving the gas corrosion resistance of the surface-treated plated material. Ni, Cr, Mn, Fe, Co, and Cu are hard to cause adhesive wear because the film is harder than Sn and In, and prevent the constituent metals of the base material 11 from diffusing into the upper layer 14. Improve durability, such as suppressing property deterioration and solder wettability degradation.

層13の厚みが0.01μm以上であると皮膜が硬くなり凝着磨耗が減少する。一方中層13厚みが0.40μm以上であると曲げ加工性が低下し、また機械的耐久性が低下して、めっき削れが発生する場合もある。Sn及びInの中では、厚生労働省の健康障害防止に関する技術指針に基づき、Inは規制が厳しいため、Snが好ましい。またNi、Cr、Mn、Fe、Co及びCuの中ではNiが好ましい。これはNiが硬くて凝着磨耗が生じにくく、また十分な曲げ加工性が得られるためである。   When the thickness of the layer 13 is 0.01 μm or more, the coating becomes hard and adhesion wear decreases. On the other hand, when the thickness of the middle layer 13 is 0.40 μm or more, the bending workability is lowered, the mechanical durability is lowered, and plating scraping may occur. Among Sn and In, Sn is preferable because In is strictly regulated based on the technical guideline for preventing health problems of the Ministry of Health, Labor and Welfare. Of Ni, Cr, Mn, Fe, Co and Cu, Ni is preferable. This is because Ni is hard and adhesion wear hardly occurs, and sufficient bending workability is obtained.

層13においてB構成元素群の金属が35at%以上であることが好ましい。Snが35at%以上になることで皮膜が硬くなり凝着磨耗が減少する場合がある。層13は、Ni3SnとNi3Sn2とで構成されていてもよく、Ni3Sn2又はNi3Sn4単独で構成されていてもよい。Ni3Sn、Ni3Sn2、Ni3Sn4が存在することによって耐熱性やはんだ濡れ性が向上する場合がある。層13に、Ni3Sn4と、Sn単相であるβSnとが存在することが好ましい。これらが存在することによって耐熱性やはんだ濡れ性は、Ni3Sn4とNi3Sn2が存在する場合と比較して耐熱性やはんだ濡れ性が向上する場合がある。In the layer 13, the B constituent element group metal is preferably 35 at% or more. If the Sn content is 35 at% or more, the film becomes hard and adhesion wear may be reduced. The layer 13 may be composed of Ni 3 Sn and Ni 3 Sn 2 , or may be composed of Ni 3 Sn 2 or Ni 3 Sn 4 alone. The presence of Ni 3 Sn, Ni 3 Sn 2 and Ni 3 Sn 4 may improve heat resistance and solder wettability. It is preferable that Ni 3 Sn 4 and βSn which is a Sn single phase are present in the layer 13. The presence of these may improve the heat resistance and solder wettability as compared with the case where Ni 3 Sn 4 and Ni 3 Sn 2 exist.

(層14の厚みと層14の最小厚みとの関係)
層14の最小厚み(μm)が層14の厚み(μm)の50%以上を満たすことが好ましい。層14の最小厚みが層14の厚みの50%未満であると、層14の表面粗さが粗いこととなり、接触抵抗が高く、はんだも濡れにくく、耐ガス腐食性が劣るNiが表面に露出しやすくなるため、耐熱性、はんだ濡れ性、耐ガス腐食性が悪くなる場合がある。
(Relationship between thickness of layer 14 and minimum thickness of layer 14)
It is preferable that the minimum thickness (μm) of the layer 14 satisfies 50% or more of the thickness (μm) of the layer 14. When the minimum thickness of the layer 14 is less than 50% of the thickness of the layer 14, the surface roughness of the layer 14 is rough, the contact resistance is high, the solder is difficult to wet, and Ni having poor gas corrosion resistance is exposed on the surface. Heat resistance, solder wettability, and gas corrosion resistance may deteriorate.

ここで、層14の厚みと上層14の最小厚みとの関係を把握する場所は、本発明の皮膜の作用効果を発揮する部分の平均的断面である。当該部分での、素材の正常表面プロフィール(オイルピット、エッチピット、スクラッチ、だ痕、その他表面欠陥部分を含まない)において正常に成膜処置された部分を示す。成膜前後でのプレス加工による変形部分等を含まないことはいうまでもない。   Here, the place where the relationship between the thickness of the layer 14 and the minimum thickness of the upper layer 14 is grasped is the average cross section of the portion that exhibits the effect of the coating of the present invention. A portion where the film is normally formed in the normal surface profile of the material (excluding oil pits, etch pits, scratches, marks, and other surface defect portions) is shown. Needless to say, it does not include a deformed portion by press working before and after film formation.

(層14と層13の厚さの割合及び組成)
層14と層13の厚みの比が、層14:層13=9:1〜3:7であることが好ましい。層14の割合が9を超えると、硬い基材11、層12及び層14よりも硬い層13に薄膜潤滑効果が低下して凝着磨耗が大きくなる。一方層14の割合が3を下回ると、接触抵抗が高く、はんだも濡れにくく、耐ガス腐食性が劣るNiが表面に露出しやすくなるため、耐熱性、はんだ濡れ性、耐微摺動磨耗性及び耐ガス腐食性が悪くなる場合がある。
(Ratio and composition of thickness of layer 14 and layer 13)
The ratio of the thickness of the layer 14 and the layer 13 is preferably layer 14: layer 13 = 9: 1 to 3: 7. If the ratio of the layer 14 exceeds 9, the thin film lubrication effect is reduced to the hard base material 11, the layer 12, and the harder layer 13 than the layer 14, and adhesion wear increases. On the other hand, if the ratio of the layer 14 is less than 3, the contact resistance is high, the solder is not easily wetted, and Ni having poor gas corrosion resistance is easily exposed on the surface. In addition, gas corrosion resistance may deteriorate.

また、層14から、層14の最表面から0.03μmの範囲を除く層13までにおいて、C、S、Oを、それぞれ2at%以下含有するのが好ましい。C、S、Oが2at%よりも多いと熱処理を施したときにこれら共析元素がガス化して均一な合金皮膜が形成できなくなるおそれがある。   Moreover, it is preferable that C, S, and O are each contained in 2 at% or less from the layer 14 to the layer 13 excluding the 0.03 μm range from the outermost surface of the layer 14. When C, S, and O are more than 2 at%, these eutectoid elements may be gasified when heat treatment is performed, and a uniform alloy film may not be formed.

(層12)
図1に示される層12が、基材11上に形成されているのが好ましい。層12は、任意の下地めっきまたはNi、Cr、Mn、Fe、Co及びCuからなる群であるA構成元素群から選択された1種又は2種以上で構成されている。Ni、Cr、Mn、Fe、Co及びCuからなる群であるA構成元素群から選択された1種又は2種以上の金属を用いて層12を形成することで、硬い下層12形成により薄膜潤滑効果が向上して凝着磨耗が低下し、下層12は基材11の構成金属が層14に拡散するのを防止して耐熱性やはんだ濡れ性などを向上させる。
(Layer 12)
The layer 12 shown in FIG. 1 is preferably formed on the substrate 11. The layer 12 is composed of one or more selected from any base plating or A constituent element group which is a group consisting of Ni, Cr, Mn, Fe, Co and Cu. By forming the layer 12 using one or two or more metals selected from the group A constituent elements that are a group consisting of Ni, Cr, Mn, Fe, Co and Cu, thin film lubrication is achieved by forming the hard lower layer 12. The effect is improved and adhesion wear is reduced, and the lower layer 12 prevents the constituent metals of the base material 11 from diffusing into the layer 14 and improves heat resistance, solder wettability, and the like.

層12の厚みは0.05μm以上であることが好ましい。層12の厚みが0.05μm未満であると、硬い層12による薄膜潤滑効果が低下して凝着磨耗が大きくなりやすい。さらに基材11の構成金属は層14に拡散しやすくなり、耐熱性やはんだ濡れ性が劣化しやすい。一方、下層12の厚みは5.00μm未満であることが好ましい。厚みが5.00μm以上であると曲げ加工性が悪くなる傾向がある。   The thickness of the layer 12 is preferably 0.05 μm or more. When the thickness of the layer 12 is less than 0.05 μm, the thin film lubricating effect by the hard layer 12 is lowered and adhesion wear tends to increase. Furthermore, the constituent metals of the base material 11 are likely to diffuse into the layer 14 and heat resistance and solder wettability are likely to deteriorate. On the other hand, the thickness of the lower layer 12 is preferably less than 5.00 μm. If the thickness is 5.00 μm or more, the bending workability tends to deteriorate.

下層12と中層13との間に、さらにA構成元素群の金属とC構成元素群の金属との合金で構成された層を備えてもよい。当該層としては、例えば、Ni−Ag合金層が好ましい。このような層が層12と層13との間に形成されていれば、基材11の構成金属が層14に拡散するのをさらに良好に防止して耐熱性やはんだ濡れ性などを向上させる。   Between the lower layer 12 and the middle layer 13, a layer made of an alloy of a metal of the A constituent element group and a metal of the C constituent element group may be further provided. As the layer, for example, a Ni—Ag alloy layer is preferable. If such a layer is formed between the layer 12 and the layer 13, the constituent metal of the base material 11 is further prevented from diffusing into the layer 14 and the heat resistance, solder wettability, etc. are improved. .

(A構成元素群)
A構成元素群の金属がNi、Cr、Mn、Fe、Co、Cuの合計で50mass%以上であり、さらにB、P、Sn及びZnからなる群から選択された1種又は2種以上を含んでも良い。層12の合金組成がこのような構成となることで、層12がより硬化することで更に薄膜潤滑効果が向上して更に凝着磨耗が低下し、層12の合金化は基材11の構成金属が上層に拡散するのを更に防止し、耐熱性やはんだ濡れ性等の耐久性を向上させる場合がある。
(Group A element group)
The metal of the A constituent element group is 50 mass% or more in total of Ni, Cr, Mn, Fe, Co, and Cu, and further includes one or more selected from the group consisting of B, P, Sn, and Zn But it ’s okay. When the alloy composition of the layer 12 has such a configuration, the layer 12 is further hardened to further improve the thin film lubrication effect and further reduce the adhesion wear. It may further prevent the metal from diffusing into the upper layer, and may improve durability such as heat resistance and solder wettability.

(B構成元素群)
B構成元素群の金属がSnとInとの合計で50mass%以上であり、残合金成分がAg、As、Au、Bi、Cd、Co、Cr、Cu、Fe、Mn、Mo、Ni、Pb、Sb、W及びZnからなる群から選択された1種又は2種以上の金属からなっていても良い。これらの金属によって更に凝着磨耗が少なくし、またウィスカの発生を抑制し、さらに耐熱性やはんだ濡れ性等の耐久性を向上させる場合がある。
(B element group)
The B group element group metals are 50 mass% or more in total of Sn and In, and the remaining alloy components are Ag, As, Au, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, You may consist of 1 type, or 2 or more types of metals selected from the group which consists of Sb, W, and Zn. These metals may further reduce adhesion wear, suppress whisker generation, and improve durability such as heat resistance and solder wettability.

(C構成元素群)
C構成元素群の金属がAgとAuとPtとPdとRuとRhとOsとIrとの合計で50mass%以上であり、残合金成分がBi、Cd、Co、Cu、Fe、In、Mn、Mo、Ni、Pb、Sb、Se、Sn、W、Tl及びZnからなる群から選択された1種又は2種以上の金属からなっていても良い。これらの金属によって更に凝着磨耗を少なくし、またウィスカの発生を抑制し、さらに耐熱性やはんだ濡れ性等の耐久性を向上させる場合がある。
(C element group)
The metal of the C constituent element group is 50 mass% or more in total of Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir, and the remaining alloy components are Bi, Cd, Co, Cu, Fe, In, Mn, You may consist of 1 type, or 2 or more types of metals selected from the group which consists of Mo, Ni, Pb, Sb, Se, Sn, W, Tl, and Zn. These metals may further reduce adhesion wear, suppress whisker generation, and improve durability such as heat resistance and solder wettability.

(拡散処理)
層14、層13及び層12が、基材11上にA構成元素群から選択された1種又は2種以上を成膜し、その後、C構成元素群から選択された1種又は2種を成膜し、その後、B構成元素群から選択された1種又は2種類以上を成膜し、A構成元素群、B構成元素群及びC構成元素群の各元素が拡散することでそれぞれ形成されていても良い。例えばB構成元素群の金属がSn、C構成元素群の金属がAgの場合、SnへのAgの拡散は速く、自然拡散によってSn−Ag合金層を形成する。合金層形成によりSnの凝着力を一層小さくし、また低ウィスカ性及び耐久性も更に向上させることができる。
(Diffusion processing)
Layer 14, layer 13, and layer 12 form one or more selected from the A constituent element group on the substrate 11, and then one or two selected from the C constituent element group After forming a film, one or more types selected from the B constituent element group are formed, and each element of the A constituent element group, the B constituent element group, and the C constituent element group is diffused to form each film. May be. For example, when the metal of the B constituent element group is Sn and the metal of the C constituent element group is Ag, the diffusion of Ag into Sn is fast, and an Sn—Ag alloy layer is formed by natural diffusion. By forming the alloy layer, the adhesion force of Sn can be further reduced, and the low whisker property and durability can be further improved.

(熱処理)
層14を形成させた後に更に凝着磨耗抑制し、また低ウィスカ性及び耐久性を更に向上させる目的で熱処理を施しても良い。熱処理によって層14のB構成元素群の金属とC構成元素群の金属、層13のA構成元素群の金属とB構成元素群の金属とが合金層をより形成しやすくなり、Snの凝着力を一層小さくし、また低ウィスカ性及び耐久性も更に向上させることができる。
なお、この熱処理については、処理条件(温度×時間)は適宜選択できる。また、特にこの熱処理はしなくてもよい。なお熱処理を施す場合にはB構成元素群の金属の融点以上の温度で行った方が層14のB構成元素群の金属とC構成元素群の金属、層13のA構成元素群の金属とB構成元素群の金属とが合金層をより形成しやすくなる。この熱処理については、処理条件(温度×時間)は適宜選択できる。
(Heat treatment)
After the layer 14 is formed, heat treatment may be performed for the purpose of further suppressing adhesion wear and further improving the low whisker property and durability. By heat treatment, the metal of the B constituent element group and the metal of the C constituent element group of the layer 14, the metal of the A constituent element group of the layer 13 and the metal of the B constituent element group can more easily form an alloy layer, and Sn adhesion force The whisker property and durability can be further improved.
In addition, about this heat processing, process conditions (temperature x time) can be selected suitably. Further, this heat treatment is not particularly required. In the case where heat treatment is performed, the temperature of the B constituent element group is higher than the melting point of the metal of the B constituent element group, the B constituent element group metal of the layer 14 and the C constituent element group metal, the layer 13 of the A constituent element group metal It becomes easier to form an alloy layer with the metal of the B constituent element group. For this heat treatment, treatment conditions (temperature × time) can be selected as appropriate.

(後処理)
層14上に、または層14上に熱処理を施した後に、更に凝着磨耗を低下させ、また耐食性、耐熱性も向上させる目的で後処理を施す。後処理によって潤滑性が向上し、更に耐食性も向上しまた層14の酸化が抑制されて、耐熱性やはんだ濡れ性等の耐久性を向上させることができる。具体的な後処理としてはインヒビターとリン酸化合物を用いた防錆処理、有機化合物を用いた潤滑処理等がある。
(Post-processing)
After the heat treatment is performed on the layer 14 or on the layer 14, a post-treatment is performed for the purpose of further reducing adhesion wear and improving the corrosion resistance and heat resistance. Post-treatment improves lubricity, further improves corrosion resistance, suppresses oxidation of the layer 14, and improves durability such as heat resistance and solder wettability. Specific post-treatments include rust prevention treatment using an inhibitor and a phosphoric acid compound, and lubrication treatment using an organic compound.

後処理としては、層14の表面を、1種又は2種以上のリン酸エステルと、メルカプトベンゾチアゾール系化合物、さらにD構成化合物群(潤滑、防錆剤)を含有する液(以下後処理液と呼ぶ)を用いて行う。   As the post-treatment, the surface of the layer 14 is a liquid containing one or more phosphate esters, a mercaptobenzothiazole-based compound, and further a D constituent compound group (lubricant, rust inhibitor) (hereinafter, post-treatment liquid). Is called).

この後処理液の必須成分のひとつであるリン酸エステルは、めっきの酸化防止剤および潤滑剤としての機能を果たす。本発明に使用されるリン酸エステルは、一般式〔1〕および〔2〕で表される。一般式〔1〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性リン酸モノエステルなどがある。一般式〔2〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性ジリン酸エステルなどがある。   The phosphate ester, which is one of the essential components of the post-treatment liquid, functions as an antioxidant and a lubricant for plating. The phosphate ester used in the present invention is represented by the general formulas [1] and [2]. Preferable examples of the compound represented by the general formula [1] include lauryl acidic phosphoric acid monoester. Preferred examples of the compound represented by the general formula [2] include lauryl acid diphosphate.


(式〔1〕、〔2〕において、R1、R2はアルキル、置換アルキルを表し、M1は水素、アルカリ金属を表す。)

(In the formulas [1] and [2], R 1 and R 2 represent alkyl and substituted alkyl, and M 1 represents hydrogen and an alkali metal.)

後処理液のもうひとつの必須成分であるメルカプトベンゾチアゾール系化合物は、めっきの酸化防止、腐食防止としての機能をはたす。本発明に使用されるメルカプトベンゾチアゾール系化合物のうち好ましいものを挙げると、一般式〔3〕で示されるように、例えばメルカプトベンゾチアゾール、メルカプトベンゾチアゾールのNa塩、メルカプトベンゾチアゾールのK塩などがある。   The mercaptobenzothiazole-based compound, which is another essential component of the post-treatment liquid, functions to prevent plating oxidation and corrosion. Preferred examples of the mercaptobenzothiazole compound used in the present invention include, for example, mercaptobenzothiazole, mercaptobenzothiazole Na salt, mercaptobenzothiazole K salt and the like as represented by the general formula [3]. is there.

(式〔3〕において、R3はアルカリ金属または水素を表す。) (In the formula [3], R 3 represents an alkali metal or hydrogen.)

後処理液に添加されるD構成化合物群は、潤滑、腐食防止としての機能をはたす。本発明に使用されるD構成化合物群を一般式〔4〕〜〔8〕で表し、本発明ではこれらの中から1種もしくは2種以上選択され後処理液に添加される。
一般式〔4〕のうち好ましいものを挙げると、ジノニルナフタレンスルフォン酸バリウム、ジノニルナフタレンスルフォン酸カルシウム、ジノニルナフタレンスルフォン酸亜鉛、ジノニルナフタレンスルフォン酸ナトリウム、ジノニルナフタレンスルフォン酸リチウム、などがある。
一般式〔5〕で表される化合物のなかで好ましいものを挙げると、ベンゾトリアゾール、ベンゾトリアゾールのNa塩などがある。
一般式〔6〕で表される化合物のなかで好ましいものを挙げると、パラフィンワックス、白色ワセリンなどがある。
一般式〔7〕で表される化合物のなかで好ましいものを挙げると、オレイン酸アミド、スレアリン酸アミド、ラウリン酸アミドなどがある。
一般式〔8〕で表される化合物のなかで好ましいものを挙げると、プロピレングリコールt−ブチルエーテル、プロピレングリコールモノメチルエーテルなどがある。
The D constituent compound group added to the post-treatment liquid functions as lubrication and corrosion prevention. The group D constituent compounds used in the present invention are represented by the general formulas [4] to [8]. In the present invention, one or more of these are selected from these and added to the post-treatment liquid.
Preferred examples of the general formula [4] include barium dinonylnaphthalenesulfonate, calcium dinonylnaphthalenesulfonate, zinc dinonylnaphthalenesulfonate, sodium dinonylnaphthalenesulfonate, lithium dinonylnaphthalenesulfonate, and the like. is there.
Preferred examples of the compound represented by the general formula [5] include benzotriazole and benzotriazole Na salt.
Preferable examples of the compound represented by the general formula [6] include paraffin wax and white petrolatum.
Preferable examples of the compound represented by the general formula [7] include oleic acid amide, srealic acid amide, and lauric acid amide.
Preferable examples of the compound represented by the general formula [8] include propylene glycol t-butyl ether and propylene glycol monomethyl ether.

(式〔4〕において、R4、R5はアルキル、置換アルキルを表し、M2はアルカリ金属、アルカリ土金属を表し、nは整数を表す。) (In the formula [4], R 4 and R 5 represent alkyl and substituted alkyl, M 2 represents an alkali metal or an alkaline earth metal, and n represents an integer.)

(式〔5〕において、R6は水素、アルキル、置換アルキルを表し、R7はアルカリ金属、水素、アルキル、置換アルキルを表す。) (In the formula [5], R 6 represents hydrogen, alkyl, or substituted alkyl, and R 7 represents an alkali metal, hydrogen, alkyl, or substituted alkyl.)

(式〔6〕において、n、mは整数を表す。) (In Formula [6], n and m represent integers.)

(式〔7〕において、R8はアルキル、置換アルキルを表す。) (In the formula [7], R 8 represents alkyl or substituted alkyl.)

(式〔8〕において、R9、R10はアルキル、置換アルキルを表す。) (In the formula [8], R 9 and R 10 represent alkyl and substituted alkyl.)

本発明では層14の表面にD構成化合物が合計で0.005〜10.0μg/mm2とすると潤滑性が良好で、耐食性もより良好になるため好ましい。D構成化合物の付着量が0.005μg/mm2未満ではめっき材の潤滑性が不充分で、付着量が10.0μg/mm2を超えると外観悪化や接触抵抗が高くなるという不具合が発生する。
本発明の層14の表面における後処理成分の付着量を得るために、めっきを拡散または熱処理した後に後処理液中に浸漬処理、または後処理液中で電解処理、あるいは後処理液の塗布などを行う。さらに電解処理のあとに塗布を行うなどの組合せも可能である。
In the present invention, it is preferable that the total amount of D constituent compounds on the surface of the layer 14 is 0.005 to 10.0 μg / mm 2 , because the lubricity is good and the corrosion resistance is also better. When the adhesion amount of the D constituent compound is less than 0.005 μg / mm 2 , the lubricity of the plating material is insufficient, and when the adhesion amount exceeds 10.0 μg / mm 2 , the appearance deteriorates and the contact resistance increases. .
In order to obtain the adhesion amount of the post-treatment component on the surface of the layer 14 of the present invention, the plating is diffused or heat-treated and then immersed in the post-treatment liquid, electrolytic treatment in the post-treatment liquid, or application of the post-treatment liquid. I do. Furthermore, combinations such as application after electrolytic treatment are also possible.

本発明のめっき材用の後処理液は、各成分を水中にエマルジョンにしたものや、メタノールなどの有機溶剤に各成分を溶解させたものなどが利用できる。
本発明の上層14の表面における後処理液成分の付着量を得るためのリン酸エステルの濃度は処理液全体の体積に対して、0.1〜10g/L、好ましくは0.5〜5g/Lである。一方ベンゾチアゾール系化合物濃度は処理液全体の体積に対して0.01〜1.0g/L、好ましくは0.05〜0.6g/Lである。またD構成化合物濃度は処理液全体の体積に対して、0.1〜50g/L、好ましくは0.5〜10g/Lである
後処理に時間的制約は特にないが、工業的観点からは一連の工程で行うのが好ましい。
As the post-treatment liquid for the plating material of the present invention, one obtained by emulsifying each component in water or one obtained by dissolving each component in an organic solvent such as methanol can be used.
The concentration of the phosphate ester for obtaining the adhesion amount of the post-treatment liquid component on the surface of the upper layer 14 of the present invention is 0.1 to 10 g / L, preferably 0.5 to 5 g / L based on the total volume of the treatment liquid. L. On the other hand, the concentration of the benzothiazole compound is 0.01 to 1.0 g / L, preferably 0.05 to 0.6 g / L with respect to the total volume of the treatment liquid. In addition, the concentration of the D constituent compound is 0.1 to 50 g / L, preferably 0.5 to 10 g / L with respect to the total volume of the treatment liquid. It is preferable to carry out in a series of steps.

<表面処理めっき材の特性>
超微小硬さ試験により、層14の表面に荷重3mNで打痕を打って測定して得られた硬度である、層14の表面の押し込み硬さが1000MPa以上であることが好ましい。押し込み硬さが1000MPa以上であることによって硬い上層14による薄膜潤滑効果が向上し、凝着磨耗を低下させる。上層の表面の押し込み硬さが10000MPa以下であることが好ましい。上層14の表面の押し込み硬さが10000MPa以下であると、曲げ加工性が向上し、本発明の表面処理めっき材をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性低下を抑制する。
層14の表面の算術平均高さ(Ra)は0.3μm以下であるのが好ましい。層14の表面の算術平均高さ(Ra)が0.3μm以下であると比較的腐食しやすい凸部が少なくなり平滑となるため、耐ガス腐食性が向上する。
層14の表面の最大高さ(Rz)は3μm以下であるのが好ましい。上層14の表面の最大高さ(Rz)が3μm以下であると比較的腐食しやすい凸部が少なくなり平滑となるため、耐ガス腐食性が向上する。
<Characteristics of surface treatment plating material>
It is preferable that the indentation hardness of the surface of the layer 14 is 1000 MPa or more, which is the hardness obtained by measuring the surface of the layer 14 by making a dent on the surface of the layer 14 with a load of 3 mN. When the indentation hardness is 1000 MPa or more, the thin film lubricating effect by the hard upper layer 14 is improved, and adhesive wear is reduced. The indentation hardness of the upper layer surface is preferably 10,000 MPa or less. When the indentation hardness of the surface of the upper layer 14 is 10000 MPa or less, bending workability is improved, and when the surface-treated plating material of the present invention is press-molded, cracks are hardly formed in the molded part, and gas corrosion resistance Suppresses the decline.
The arithmetic average height (Ra) of the surface of the layer 14 is preferably 0.3 μm or less. When the arithmetic average height (Ra) of the surface of the layer 14 is 0.3 μm or less, convex portions that are relatively easily corroded are reduced and smoothed, and thus gas corrosion resistance is improved.
The maximum height (Rz) of the surface of the layer 14 is preferably 3 μm or less. When the maximum height (Rz) of the surface of the upper layer 14 is 3 μm or less, the number of convex portions that are relatively easily corroded is reduced and smoothed, so that the gas corrosion resistance is improved.

<表面処理めっき材の用途>
本発明の表面処理めっき材の用途は特に限定しないが、例えば表面処理めっき材を接点部分に用いたコネクタ端子、表面処理めっき材を接点部分に用いたFFC端子またはFPC端子、表面処理めっき材を外部接続用電極に用いた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。
また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。
また本発明の表面処理めっき材は、ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、該基板接続部を基板に形成されたスルーホールに圧入して該基板に取り付ける圧入型端子に用いても良い。
コネクタはオス端子とメス端子の両方が本発明の表面処理めっき材であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の表面処理めっき材にすることで、更に低挿抜性が向上する。
<Use of surface treatment plating material>
Although the use of the surface treatment plating material of the present invention is not particularly limited, for example, a connector terminal using the surface treatment plating material for the contact portion, an FFC terminal or FPC terminal using the surface treatment plating material for the contact portion, and a surface treatment plating material Examples thereof include electronic parts used for external connection electrodes. In addition, about a terminal, it does not depend on the joining method with a wiring side, such as a crimp terminal, a solder terminal, and a press fit terminal. Examples of the external connection electrode include a connection component in which a surface treatment is performed on a tab and a material in which a surface treatment is applied to a semiconductor under bump metal.
Moreover, a connector may be produced using the connector terminal formed in this way, and an FFC or FPC may be produced using an FFC terminal or an FPC terminal.
In addition, the surface-treated plating material of the present invention has a female terminal connecting part on one side of a mounting part to be attached to a housing and a board connecting part on the other side, and the board connecting part is press-fitted into a through hole formed on the board. Then, it may be used for a press-fit terminal attached to the substrate.
In the connector, both the male terminal and the female terminal may be the surface-treated plating material of the present invention, or only one of the male terminal and the female terminal. In addition, the low insertability is further improved by using both the male terminal and the female terminal as the surface-treated plating material of the present invention.

<表面処理めっき材の製造方法>
本発明の表面処理めっき材の製造方法としては、湿式(電気、無電解)めっき、乾式(スパッタ、イオンプレーティング等)めっき等を用いることができる。
<Method for producing surface-treated plated material>
As a method for producing the surface-treated plating material of the present invention, wet (electrical, electroless) plating, dry (sputtering, ion plating, etc.) plating, or the like can be used.

以下、本発明の実施例及び比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
実施例及び比較例として、表1に示す条件で、電解脱脂、酸洗、第1めっき、第2めっき、第3めっき、及び、熱処理の順で表面処理を行った。
Hereinafter, although the Example and comparative example of this invention are shown together, these are provided in order to understand this invention better, and this invention is not intended to limit.
As an example and a comparative example, surface treatment was performed in the order of electrolytic degreasing, pickling, first plating, second plating, third plating, and heat treatment under the conditions shown in Table 1.

(素材)
(1)板材:厚み0.30mm、幅30mm、成分Cu−30Zn
(2)オス端子:厚み0.64mm、幅2.3mm、成分Cu−30Zn
(3)圧入型端子:常盤商行製、プレスフィット端子PCBコネクタ、R800
(Material)
(1) Plate material: thickness 0.30 mm, width 30 mm, component Cu-30Zn
(2) Male terminal: thickness 0.64 mm, width 2.3 mm, component Cu-30Zn
(3) Press-fit terminal: Tokiwa Shoko, press-fit terminal PCB connector, R800

(第1めっき条件)
(1)半光沢Niめっき
めっき方法:電気めっき
めっき液:スルファミン酸Niめっき液+サッカリン
めっき温度:55℃
電流密度:0.5〜4A/dm2
(2)光沢Niめっき
めっき方法:電気めっき
めっき液:スルファミン酸Niめっき液+サッカリン+添加剤
めっき温度:55℃
電流密度:0.5〜4A/dm2
(3)Cuめっき
めっき方法:電気めっき
めっき液:硫酸Cuめっき液
めっき温度:30℃
電流密度:0.5〜4A/dm2
(4)無光沢Niめっき
めっき方法:電気めっき
めっき液:スルファミン酸Niめっき液
めっき温度:55℃
電流密度:0.5〜4A/dm2
(5)Ni−Pめっき
めっき方法:電気めっき
めっき液:スルファミン酸Niめっき液+亜リン酸塩
めっき温度:55℃
電流密度:0.5〜4A/dm2
(First plating condition)
(1) Semi-bright Ni plating Plating method: electroplating Plating solution: Ni plating solution of sulfamic acid + saccharin Plating temperature: 55 ° C
Current density: 0.5-4 A / dm 2
(2) Bright Ni plating Plating method: Electroplating Plating solution: Ni plating solution of sulfamic acid + Saccharin + Additives Plating temperature: 55 ° C
Current density: 0.5-4 A / dm 2
(3) Cu plating Plating method: Electroplating Plating solution: Cu sulfate plating solution Plating temperature: 30 ° C
Current density: 0.5-4 A / dm 2
(4) Matte Ni plating Plating method: electroplating Plating solution: Ni plating solution of sulfamic acid Plating temperature: 55 ° C
Current density: 0.5-4 A / dm 2
(5) Ni-P plating Plating method: electroplating Plating solution: Ni plating solution of sulfamic acid + phosphite Plating temperature: 55 ° C
Current density: 0.5-4 A / dm 2

(第2めっき条件)
(1)Agめっき
めっき方法:電気めっき
めっき液:シアン化Agめっき液
めっき温度:40℃
電流密度:0.2〜4A/dm2
(2)Snめっき
めっき方法:電気めっき
めっき液:メタンスルホン酸Snめっき液
めっき温度:40℃
電流密度:0.5〜4A/dm2
(Second plating condition)
(1) Ag plating Plating method: Electroplating Plating solution: Cyanide Ag plating solution Plating temperature: 40 ° C
Current density: 0.2-4 A / dm 2
(2) Sn plating Plating method: Electroplating Plating solution: Methanesulfonic acid Sn plating solution Plating temperature: 40 ° C
Current density: 0.5-4 A / dm 2

(第3めっき条件)
(1)Snめっき条件
めっき方法:電気めっき
めっき液:メタンスルホン酸Snめっき液
めっき温度:40℃
電流密度:0.5〜4A/dm2
(2)Inめっき条件
めっき方法:電気めっき
めっき液:硫酸Inめっき液
めっき温度:30℃
電流密度:0.5〜2A/dm2
(Third plating condition)
(1) Sn plating conditions Plating method: Electroplating Plating solution: Methanesulfonic acid Sn plating solution Plating temperature: 40 ° C
Current density: 0.5-4 A / dm 2
(2) In plating conditions Plating method: Electroplating Plating solution: Sulfuric acid In plating solution Plating temperature: 30 ° C
Current density: 0.5-2 A / dm 2

(熱処理)
熱処理はホットプレートにサンプルを置き、ホットプレートの表面が所定の温度になったことを確認して実施した。
(Heat treatment)
The heat treatment was performed by placing a sample on a hot plate and confirming that the surface of the hot plate reached a predetermined temperature.

(後処理)
表面処理液として表1に示す各成分(リン酸エステル、メルカプト系化合物、D構成化合物)をイソパラフィン(C10〜C12)に溶解させ、この液を熱処理後のめっき材表面にスプレー噴射して塗布し、さらに温風により乾燥した。このときの表面処理条件は下記の表2に示した。めっき表面に付着したD構成化合物の量は、まずめっき材表面の付着物をメタノールに溶解させ、次にLC-QMS分析装置(Waters社製ACQUITY UPLC H−CLASS,ACQUITY QDa検出器)を用いて測定した。
(Post-processing)
Each component (phosphate ester, mercapto compound, D component compound) shown in Table 1 as a surface treatment solution is dissolved in isoparaffin (C 10 to C 12 ), and this solution is sprayed onto the surface of the plated material after the heat treatment. It was applied and further dried with warm air. The surface treatment conditions at this time are shown in Table 2 below. The amount of the D constituent compound adhering to the plating surface is obtained by first dissolving the deposit on the plating material surface in methanol, and then using an LC-QMS analyzer (ACQUITY UPLC H-CLASS, ACQUITY QDa detector manufactured by Waters). It was measured.

(上層及び中層の構造[組成]の決定及び厚み測定)
得られた試料の上層及び中層の構造の決定及び厚み測定は、STEM(走査型電子顕微鏡)分析による線分析で行った。分析した元素は、上層、中層及び下層の組成と、C、S及びOである。これら元素を指定元素とする。また、指定元素の合計を100%として、各元素の濃度(at%)を分析した。厚みは、線分析(または面分析)から求めた距離に対応する。STEM装置は、日本電子株式会社製JEM−2100Fを用いた。本装置の加速電圧は200kVである。
得られた試料の上層及び中層の構造の決定及び厚み測定は、任意の10点について評価を行って平均化した。
(Determination of the structure and composition of upper and middle layers and thickness measurement)
The determination of the structure of the upper layer and the middle layer of the obtained sample and the thickness measurement were performed by line analysis by STEM (scanning electron microscope) analysis. The analyzed elements are upper layer, middle layer and lower layer compositions, C, S and O. These elements are designated elements. Further, the concentration (at%) of each element was analyzed with the total of the designated elements as 100%. The thickness corresponds to the distance obtained from line analysis (or surface analysis). JEM-2100F manufactured by JEOL Ltd. was used as the STEM apparatus. The acceleration voltage of this device is 200 kV.
Determination of the structure of the upper layer and the middle layer of the obtained sample and measurement of the thickness were performed by evaluating 10 points and averaging.

(下層の厚み測定)
下層の厚みは、蛍光X線膜厚計(Seiko Instruments製 SFT9550X、コリメータ0.1mmΦ)で測定した。
下層の厚み測定は、任意の10点について評価を行って平均化した。
(Under layer thickness measurement)
The thickness of the lower layer was measured with a fluorescent X-ray film thickness meter (SFT 9550X manufactured by Seiko Instruments, collimator 0.1 mmΦ).
The thickness of the lower layer was averaged by evaluating 10 points.

(評価)
各試料について以下の評価を行った。
・凝着磨耗
凝着磨耗は、市販のSnリフローめっきメス端子(090型住友TS/矢崎090IIシリーズメス端子非防水/F090−SMTS)を用いてめっきを施したオス端子と挿抜試験することによって評価した。
試験に用いた測定装置は、アイコーエンジニアリング製1311NRであり、オスピンの摺動距離5mmで評価した。サンプル数は5個とし、凝着磨耗は挿入力を用いて評価した。挿入力は、各サンプルの最大値を平均した値を採用した。凝着磨耗のブランク材としては、比較例5のサンプルを採用した。
凝着磨耗の目標は、比較例5の最大挿抜力と比較して70%未満である。
(Evaluation)
The following evaluation was performed for each sample.
-Adhesion wear Adhesion wear is evaluated by performing insertion / removal tests with a male terminal plated using a commercially available Sn reflow plating female terminal (090 type Sumitomo TS / Yazaki 090II series female terminal non-waterproof / F090-SMTS). did.
The measuring device used for the test was 1311NR made by Ikko Engineering, and the evaluation was performed with a male spin sliding distance of 5 mm. The number of samples was 5, and adhesive wear was evaluated using the insertion force. As the insertion force, a value obtained by averaging the maximum values of the respective samples was adopted. The sample of Comparative Example 5 was used as the adhesive wear blank.
The target for adhesion wear is less than 70% compared to the maximum insertion / extraction force of Comparative Example 5.

・接触抵抗
接触抵抗は、山崎精機研究所製接点シミュレーターCRS−113−Au型を使用し、接点荷重50gの条件で4端子法にて測定した。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、接触抵抗10mΩ以下である。
-Contact resistance The contact resistance was measured by the 4-terminal method using a contact simulator CRS-113-Au type manufactured by Yamazaki Seiki Laboratory under the condition of a contact load of 50 g. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted. The target characteristic is a contact resistance of 10 mΩ or less.

・耐熱性
耐熱性は、大気加熱(180℃×1000h)試験後のサンプルの接触抵抗を測定し、評価した。目標とする特性は、接触抵抗10mΩ以下であるが、最大の目標としては、接触抵抗が、耐熱性試験前後で変化がない(同等である)こととした。
-Heat resistance The heat resistance was evaluated by measuring the contact resistance of the sample after the atmospheric heating (180 ° C x 1000 h) test. The target characteristic is a contact resistance of 10 mΩ or less, and the maximum target is that the contact resistance does not change before and after the heat resistance test (is equivalent).

・耐微摺動磨耗性
耐微摺動磨耗性は、山崎精機研究所製精密摺動試験装置CRS−G2050型を使用し、摺動距離0.5mm、摺動速度1mm/s、接触荷重1N、摺動回数500往復条件で摺動回数と接触抵抗との関係を評価した。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、摺動回数100回時に接触抵抗が100mΩ以下である。
・ Small sliding wear resistance Fine sliding wear resistance is measured using a precision sliding test device CRS-G2050 manufactured by Yamazaki Seiki Laboratories, with a sliding distance of 0.5 mm, a sliding speed of 1 mm / s, and a contact load of 1 N. The relationship between the number of sliding times and the contact resistance was evaluated under the condition that the number of sliding times was 500. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted. The target characteristic is a contact resistance of 100 mΩ or less when the number of sliding times is 100.

・はんだ濡れ性
はんだ濡れ性はめっき後のサンプルを評価した。ソルダーチェッカ(レスカ社製SAT−5200)を使用し、フラックスとして市販の25%ロジンメタノールフラックスを用い、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだはSn−3Ag−0.5Cu(250℃)を用いた。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、ゼロクロスタイム5秒(s)以下である。
-Solder wettability The solder wettability evaluated the sample after plating. Solder checker (SAT-5200, manufactured by Reska Co., Ltd.) was used, and a commercially available 25% rosin methanol flux was used as the flux, and the solder wetting time was measured by the meniscograph method. The solder used was Sn-3Ag-0.5Cu (250 ° C.). The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted. The target characteristic is a zero cross time of 5 seconds (s) or less.

・耐ガス腐食性
耐ガス腐食性は、下記の試験環境で評価した。耐ガス腐食性の評価は、環境試験を終えた試験後のサンプルの外観である。なお、目標とする特性は、外観が変色していないことか、実用上問題のない若干の変色である。
硫化水素ガス腐食試験
硫化水素濃度:10ppm
温度:40℃
湿度:80%RH
曝露時間:96h
サンプル数:5個
-Gas corrosion resistance Gas corrosion resistance was evaluated in the following test environment. The evaluation of gas corrosion resistance is the appearance of a sample after a test after an environmental test. The target characteristic is that the appearance is not discolored or is slightly discolored with no practical problem.
Hydrogen sulfide gas corrosion test Hydrogen sulfide concentration: 10ppm
Temperature: 40 ° C
Humidity: 80% RH
Exposure time: 96h
Number of samples: 5

・機械的耐久性
機械的耐久性は、スルーホール(基板厚2mm、スルーホールΦ1mm)に挿入した圧入型端子をスルーホールから抜き出し、圧入型端子断面をSEM(JEOL社製、型式JSM−5410)にて100〜10000倍の倍率で観察して、粉の発生状況を確認した。粉の直径が5μm未満であるものを○とし、5〜10μm未満であるものを△とし、10μm以上のものを×とした。
・ Mechanical durability Mechanical durability is obtained by extracting the press-fit type terminal inserted into the through hole (substrate thickness 2mm, through hole Φ1mm) from the through hole, and cross-sectioning the press-fit type terminal with SEM (JEOL, model JSM-5410) Was observed at a magnification of 100 to 10,000 times to confirm the occurrence of powder. A powder having a diameter of less than 5 μm was evaluated as “◯”, a powder having a diameter of less than 5 to 10 μm as “Δ”, and a powder having a diameter of 10 μm or more as “X”.

・曲げ加工性
曲げ加工性は、W字型の金型を用いて試料の板厚と曲げ半径の比が1となる条件で90°曲げで評価した。評価は曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合の実用上問題ないと判断した場合には○とし、クラックが認められた場合を×とした。なお○と×との区別がつかない場合には△とした。
Bending workability Bending workability was evaluated by bending at 90 ° using a W-shaped mold under the condition that the ratio of the plate thickness to the bending radius was 1. In the evaluation, the surface of the bent portion was observed with an optical microscope, and when it was judged that there was no practical problem when no crack was observed, it was evaluated as ◯, and when the crack was observed, it was evaluated as ×. In addition, it was set as △ when it cannot distinguish between ○ and ×.

・表面粗さ
表面粗さ(算術平均高さ(Ra)及び最大高さ(Rz))の測定は、JIS B 0601に準拠し、非接触式三次元測定装置(三鷹光器社製、形式NH−3)を用いて行った。カットオフは0.25mm、測定長さは1.50mmで、1試料当たり5回測定した。
・ Surface roughness Measurement of surface roughness (arithmetic average height (Ra) and maximum height (Rz)) conforms to JIS B 0601, and is a non-contact type three-dimensional measuring device (model NH, manufactured by Mitaka Kogyo Co., Ltd.) -3). The cut-off was 0.25 mm, the measurement length was 1.50 mm, and measurement was performed 5 times per sample.

実施例A1、7〜27は、低ウィスカ性、高はんだ付け性、低接触抵抗及び低凝着磨耗性を有する表面処理めっき材であった。
実施例B1は、D構成化合物の付着量が0.003μg/mm2であり、実施例A1と比較すると付着量が少ないため、目標とする特性は得られたものの、凝着摩耗、挿入力がやや悪かった。
実施例B2は、D構成化合物の付着量が12μg/mm2であり、実施例A1と比較すると付着量が多いため、目標とする特性は得られたものの、接触抵抗がやや高かった。
実施例B3は、上層がε相とβSn層であり、実施例A1と比較すると上層のSnの割合が多いため、目標とする特性は得られ、長さ20μm以上のウィスカは発生しなかったものの、長さ20μm未満のウィスカが発生する場合があった。
実施例B4は、中層の組成がSn:Ni=37:63であり、実施例A1と比較するとNiの割合が高く、目標の特性が得られたものの曲げ加工性が若干悪かった。
実施例B5は、中層の厚みが0.2μmであり、実施例A1と比較すると中層の厚みが厚いため、目標とする特性は得られたものの、微摺動摩耗性が若干悪かった。
実施例B6は、下層がNi−Pめっきであり、実施例A1と比較すると上層の超微小硬さが硬く、目標とする特性は得られたものの、曲げ加工性が悪かった。
実施例B7は、上層厚みが0.01μmであり、実施例A1と比較すると上層の厚みが薄く、目標とする特性は得られたものの、耐熱性、微摺動摩耗性が若干悪かった。
実施例B8は、上層厚みが1.30μmであり、実施例A1と比較すると上層の厚みが厚く、目標の特性が得られたものの、曲げ加工性が若干悪かった。
実施例B9は、中層厚みが0.005μmであり、実施例A1と比較すると中層の厚みが薄く、目標の特性が得られたものの、耐熱性が若干悪かった。
実施例B10は、中層厚みが0.50μmであり、実施例A1と比較すると中層の厚みが厚く、目標の特性が得られたものの、曲げ加工性が若干悪かった。
実施例B11は、下層厚みが0.03μmであり、実施例A1と比較すると下層の厚みが薄く、目標の特性が得られたものの、耐熱性が若干悪かった。
実施例B12は、下層厚みが5.5μmであり、実施例A1と比較すると下層の厚みが厚く、目標とする特性は得られたものの、微摺動摩耗性が若干悪かった。
実施例B13は、中層がない(0μm)ものであり、実施例A1と比較すると目標とする特性は得られたものの、耐熱性が若干悪かった。
比較例1は、リン酸エステルを含有しない液で後処理したものであり、耐熱性、微摺動磨耗性、耐ガス、腐食性、機械的耐久性が悪かった。
比較例2は、メルカプトベンゾチアゾール系化合物を含有しない液で後処理したものであり、耐熱性、耐ガス、腐食性が悪かった。
比較例3は、D構成化合物を含有しない液で後処理したものであり、凝着摩耗、挿入力が悪かった。
比較例4は、上層がAg単独で存在したため、耐ガス(硫化水素)腐食試験で変色が発生した。
比較例5は、上層がSnで後処置を施していないため、凝着摩耗が大きく、耐熱性、微摺動摩耗性も悪かった。
Examples A1 and 7 to 27 were surface-treated plating materials having low whisker properties, high solderability, low contact resistance, and low adhesion wear properties.
In Example B1, the adhesion amount of the D constituent compound is 0.003 μg / mm 2, and the adhesion amount is small compared to Example A1, so that the target characteristics were obtained, but the adhesion wear and the insertion force were somewhat. It was bad.
In Example B2, the adhesion amount of the D constituent compound was 12 μg / mm 2, and the adhesion amount was larger than that in Example A1, so that the target characteristics were obtained, but the contact resistance was slightly high.
In Example B3, the upper layer is an ε phase and a βSn layer, and the ratio of Sn in the upper layer is higher than in Example A1, so that the target characteristics were obtained, and whiskers with a length of 20 μm or more were not generated. In some cases, whiskers having a length of less than 20 μm were generated.
In Example B4, the composition of the middle layer was Sn: Ni = 37: 63, and the proportion of Ni was high compared to Example A1, and the target characteristics were obtained, but the bending workability was slightly worse.
In Example B5, the thickness of the intermediate layer was 0.2 μm, and the thickness of the intermediate layer was thicker than that of Example A1, so that although the target characteristics were obtained, the microsliding wearability was slightly worse.
In Example B6, the lower layer was Ni—P plating, and the ultrafine hardness of the upper layer was hard as compared with Example A1, and the target characteristics were obtained, but the bending workability was poor.
In Example B7, the upper layer thickness was 0.01 μm, and the upper layer was thinner than Example A1. Although the target characteristics were obtained, the heat resistance and the fine sliding wear were slightly worse.
In Example B8, the upper layer thickness was 1.30 μm. Compared with Example A1, the upper layer was thicker and the target characteristics were obtained, but the bending workability was slightly worse.
In Example B9, the thickness of the intermediate layer was 0.005 μm, and the thickness of the intermediate layer was thinner than that of Example A1. Although the target characteristics were obtained, the heat resistance was slightly worse.
In Example B10, the thickness of the intermediate layer was 0.50 μm. Compared with Example A1, the thickness of the intermediate layer was thick, and the target characteristics were obtained, but the bending workability was slightly worse.
In Example B11, the lower layer thickness was 0.03 μm. Compared to Example A1, the lower layer thickness was thinner, and the target characteristics were obtained, but the heat resistance was slightly worse.
In Example B12, the thickness of the lower layer was 5.5 μm, and compared with Example A1, the thickness of the lower layer was thick, and although the target characteristics were obtained, the microsliding wearability was slightly worse.
Example B13 had no intermediate layer (0 μm), and compared with Example A1, the target characteristics were obtained, but the heat resistance was slightly worse.
Comparative Example 1 was post-treated with a solution containing no phosphate ester, and was poor in heat resistance, fine sliding wear resistance, gas resistance, corrosion resistance, and mechanical durability.
Comparative Example 2 was post-treated with a liquid not containing a mercaptobenzothiazole compound and had poor heat resistance, gas resistance, and corrosion resistance.
Comparative Example 3 was post-treated with a solution containing no D constituent compound, and adhesion wear and insertion force were poor.
In Comparative Example 4, since the upper layer was formed of Ag alone, discoloration occurred in the gas (hydrogen sulfide) corrosion resistance test.
In Comparative Example 5, since the upper layer was Sn and no post-treatment was performed, adhesion wear was large, and heat resistance and fine sliding wear were also poor.

10 表面処理めっき材
11 基材
12 層(下層)
13 層(中層)
14 層(上層)
10 Surface treatment plating material 11 Base material 12 layer (lower layer)
13 layers (middle layer)
14 layers (upper layer)

Claims (31)

基材に上層が設けられ、前記上層がSnまたはInを含有するめっき材を備え、
前記めっき材が、前記基材上に形成された、Ni、Cr、Mn、Fe、Co及びCuからなる群であるA構成元素群から選択された1種又は2種以上で構成された下層と、
前記下層上に形成された、前記A構成元素群から選択された1種又は2種以上と、Sn及びInからなる群であるB構成元素群から選択された1種又は2種とで構成された中層と、
前記中層上に形成された、前記B構成元素群から選択された1種又は2種と、Ag、Au、Pt、Pd、Ru、Rh、Os及びIrからなる群であるC構成元素群から選択された1種又は2種類以上との合金で構成された上層と
を備え、
前記めっき材表面に下記一般式〔1〕または〔2〕で表される化合物と、下記一般式〔3〕で表される化合物とを含み、さらに下記一般式〔4〕〜〔8〕で表されるD構成化合物群から選択された2種以上前記上層側の表面に付着しており、
下記一般式〔4〕で表される化合物が、ジノニルナフタレンスルフォン酸バリウム、ジノニルナフタレンスルフォン酸カルシウム、ジノニルナフタレンスルフォン酸亜鉛、ジノニルナフタレンスルフォン酸ナトリウム及びジノニルナフタレンスルフォン酸リチウムからなる群から選択される少なくとも1種であり、下記一般式〔5〕で表される化合物が、ベンゾトリアゾール及びベンゾトリアゾールのNa塩からなる群から選択される1種であり、下記一般式〔6〕で表される化合物が、パラフィンワックス及び白色ワセリンからなる群から選択される少なくとも1種であり、下記一般式〔7〕で表される化合物が、オレイン酸アミド、スレアリン酸アミド及びラウリン酸アミドからなる群から選択される少なくとも1種であり、下記一般式〔8〕で表される化合物が、プロピレングリコールt−ブチルエーテル及びプロピレングリコールモノメチルエーテルからなる群から選択される少なくとも1種である表面処理めっき材。
(式〔1〕、〔2〕において、R1、R2はアルキル、置換アルキルを表し、M1は水素、アルカリ金属を表す。)
(式〔3〕において、R3はアルカリ金属または水素を表す。)
(式〔4〕において、R4、R5はアルキル、置換アルキルを表し、M2はアルカリ金属、アルカリ土金属を表し、nは整数を表す。)
(式〔5〕において、R6は水素、アルキル、置換アルキルを表し、R7はアルカリ金属、水素、アルキル、置換アルキルを表す。)
(式〔6〕において、n、mは整数を表す。)
(式〔7〕において、R8はアルキル、置換アルキルを表す。)
(式〔8〕において、R9、R10はアルキル、置換アルキルを表す。)
An upper layer is provided on the base material, and the upper layer includes a plating material containing Sn or In,
A lower layer composed of one or more selected from the group consisting of Ni, Cr, Mn, Fe, Co, and Cu, and the plating material is formed on the base material; ,
It is composed of one or more selected from the A constituent element group formed on the lower layer and one or two selected from the B constituent element group which is a group consisting of Sn and In. The middle layer,
One or two selected from the B constituent element group formed on the middle layer and a C constituent element group that is a group consisting of Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir And an upper layer composed of an alloy with one or more types,
The plating material surface includes a compound represented by the following general formula [1] or [2] and a compound represented by the following general formula [3], and further represented by the following general formulas [4] to [8]. two or more kinds selected from D configuration compounds which are are attached to the surface of the upper,
The compound represented by the following general formula [4] is a group consisting of barium dinonylnaphthalenesulfonate, calcium dinonylnaphthalenesulfonate, zinc dinonylnaphthalenesulfonate, sodium dinonylnaphthalenesulfonate and lithium dinonylnaphthalenesulfonate. The compound represented by the following general formula [5] is one selected from the group consisting of benzotriazole and benzotriazole Na salt, and represented by the following general formula [6]: The compound represented is at least one selected from the group consisting of paraffin wax and white petrolatum, and the compound represented by the following general formula [7] is composed of oleic acid amide, threlic acid amide, and lauric acid amide. Is at least one selected from the group, and has the following general formula Compounds represented by 8] is at least 1 Tanedea Ru surface treatment plating material selected from the group consisting of propylene glycol t- butyl ether and propylene glycol monomethyl ether.
(In the formulas [1] and [2], R 1 and R 2 represent alkyl and substituted alkyl, and M 1 represents hydrogen and an alkali metal.)
(In the formula [3], R 3 represents an alkali metal or hydrogen.)
(In the formula [4], R 4 and R 5 represent alkyl and substituted alkyl, M 2 represents an alkali metal or an alkaline earth metal, and n represents an integer.)
(In the formula [5], R 6 represents hydrogen, alkyl, or substituted alkyl, and R 7 represents an alkali metal, hydrogen, alkyl, or substituted alkyl.)
(In Formula [6], n and m represent integers.)
(In the formula [7], R 8 represents alkyl or substituted alkyl.)
(In the formula [8], R 9 and R 10 represent alkyl and substituted alkyl.)
前記めっき材表面に存在する前記D構成化合物の付着量が、合計で0.005〜10.0μg/mm2である請求項1に記載の表面処理めっき材。 The surface-treated plating material according to claim 1, wherein the adhesion amount of the D constituent compound existing on the surface of the plating material is 0.005 to 10.0 μg / mm 2 in total. 前記下層の厚みが0.05μm以上5.00μm未満であり、
前記中層の厚みが0.01μm以上0.40μm未満であり、
前記上層の厚みが0.02μm以上1.00μm未満である請求項1に記載の表面処理めっき材。
The thickness of the lower layer is 0.05 μm or more and less than 5.00 μm,
The middle layer has a thickness of 0.01 μm or more and less than 0.40 μm,
The surface-treated plated material according to claim 1, wherein the upper layer has a thickness of 0.02 μm or more and less than 1.00 μm.
前記上層が、前記B構成元素群の金属を10〜50at%含有する請求項1〜3のいずれか一項に記載の表面処理めっき材。   The surface-treated plating material according to any one of claims 1 to 3, wherein the upper layer contains 10 to 50 at% of the metal of the B constituent element group. 前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相が存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。   The surface-treated plating material according to any one of claims 1 to 4, wherein a ζ (zeta) phase, which is a SnAg alloy containing 11.8 to 22.9 at% of Sn, is present in the upper layer. 前記上層に、Ag3Snであるε(イプシロン)相が存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。 The surface-treated plating material according to any one of claims 1 to 4, wherein an ε (epsilon) phase that is Ag 3 Sn exists in the upper layer. 前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相と、Ag3Snであるε(イプシロン)相とが存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。 5. The ζ (zeta) phase that is a SnAg alloy containing 11.8 to 22.9 at% Sn and an ε (epsilon) phase that is Ag 3 Sn are present in the upper layer. The surface treatment plating material as described in 2. 前記上層に、Ag3Snであるε(イプシロン)相のみが存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。 5. The surface-treated plated material according to claim 1, wherein only the ε (epsilon) phase that is Ag 3 Sn exists in the upper layer. 前記上層に、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。 The surface-treated plating material according to any one of claims 1 to 4, wherein an ε (epsilon) phase that is Ag 3 Sn and βSn that is a single Sn phase are present in the upper layer. 前記上層に、Snを11.8〜22.9at%含むSnAg合金であるζ(ゼータ)相と、Ag3Snであるε(イプシロン)相と、Sn単相であるβSnとが存在する請求項1〜4のいずれか一項に記載の表面処理めっき材。 The ζ (zeta) phase that is a SnAg alloy containing 11.8 to 22.9 at% Sn, an ε (epsilon) phase that is Ag 3 Sn, and βSn that is a Sn single phase are present in the upper layer. The surface treatment plating material as described in any one of 1-4. 前記中層が、前記B構成元素群の金属を35at%以上含有する請求項1〜10のいずれか一項に記載の表面処理めっき材。   The surface-treated plated material according to any one of claims 1 to 10, wherein the intermediate layer contains 35 at% or more of the metal of the B constituent element group. 前記中層に、Ni3Sn4が存在する請求項1〜10のいずれか一項に記載の表面処理めっき材。 The surface-treated plated material according to any one of claims 1 to 10, wherein Ni 3 Sn 4 is present in the intermediate layer. 前記中層に、Ni3Sn4と、Sn単相であるβSnとが存在する請求項1〜10のいずれか一項に記載の表面処理めっき材。 The surface-treated plated material according to any one of claims 1 to 10, wherein Ni 3 Sn 4 and βSn that is a Sn single phase are present in the intermediate layer. 前記上層と前記中層との厚みの比が、上層:中層=9:1〜3:7である請求項1〜13のいずれか一項に記載の表面処理めっき材。   The ratio of the thickness of the said upper layer and the said middle layer is upper layer: middle layer = 9: 1-3: 7, The surface treatment plating material as described in any one of Claims 1-13. 超微小硬さ計により、前記上層の表面に荷重3mNで打痕を打って測定して得られた硬度である、前記上層の表面の押し込み硬さが1000MPa以上10000MPa以下である請求項1〜14のいずれか一項に記載の表延処理めっき材。   The indentation hardness of the surface of the upper layer is 1000 MPa or more and 10,000 MPa or less, which is the hardness obtained by measuring the surface of the upper layer with a load of 3 mN using an ultra-micro hardness meter. The surface-treated plate material according to any one of 14. 前記上層の表面の算術平均高さ(Ra)が0.3μm以下である請求項1〜15のいずれか一項に記載の表面処理めっき材。   The surface-treated plated material according to any one of claims 1 to 15, wherein an arithmetic average height (Ra) of the surface of the upper layer is 0.3 µm or less. 前記上層の表面の最大高さ(Rz)が3μm以下である請求項1〜16のいずれか一項に記載の表面処理めっき材。   The surface treatment plating material according to any one of claims 1 to 16, wherein a maximum height (Rz) of a surface of the upper layer is 3 µm or less. 前記下層は、前記A構成元素群の金属がNi、Cr、Mn、Fe、Co、Cuの合計で50mass%以上であり、さらにB、P、Sn及びZnからなる群から選択された1種又は2種以上を含む請求項1〜17のいずれか一項に記載の表面処理めっき材。 In the lower layer, the metal of the A constituent element group is 50 mass% or more in total of Ni, Cr, Mn, Fe, Co, and Cu, and one or more selected from the group consisting of B, P, Sn, and Zn The surface-treated plated material according to any one of claims 1 to 17, comprising two or more types. 前記中層は、前記B構成元素群の金属がSnとInとの合計で50mass%以上であり、残合金成分がAg、Au、Bi、Cd、Co、Cr、Cu、Fe、Mn、Mo、Ni、Pb、Sb、WおよびZnからなる群から選択された1種または2種以上の金属からなる請求項1〜18のいずれか一項に記載の表面処理めっき材。 In the middle layer, the metals of the B constituent element group are 50 mass% or more in total of Sn and In, and the remaining alloy components are Ag, Au, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni The surface-treated plating material according to any one of claims 1 to 18, comprising one or more metals selected from the group consisting of Pb, Sb, W and Zn. 前記上層は、前記C構成元素群の金属がAgとAuとPtとPdとRuとRhとOsとIrとの合計で50mass%以上であり、残合金成分がBi、Cd、Co、Cu、Fe、In、Mn、Mo、Ni、Pb、Sb、Se、Sn、W、TlおよびZnからなる群から選択された1種または2種以上の金属からなる請求項1〜19のいずれか一項に記載の表面処理めっき材。 In the upper layer, the total of metals of the C constituent element group is 50 mass% or more of Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir, and the remaining alloy components are Bi, Cd, Co, Cu, Fe. 20. It consists of one or two or more metals selected from the group consisting of In, Mn, Mo, Ni, Pb, Sb, Se, Sn, W, Tl and Zn. The surface treatment plating material of description. 前記中層が、Ni3SnとNi3Sn2とで構成されている請求項1〜20のいずれか一項に記載の表面処理めっき材。 The surface treatment plating material according to any one of claims 1 to 20, wherein the intermediate layer is composed of Ni 3 Sn and Ni 3 Sn 2 . 前記中層が、Ni3Sn2で構成されている請求項1〜20のいずれか一項に記載の表面処理めっき材。 The surface treatment plating material according to any one of claims 1 to 20, wherein the intermediate layer is made of Ni 3 Sn 2 . 前記中層が、Ni3Sn4で構成されている請求項1〜20のいずれか一項に記載の表面処理めっき材。 The surface treatment plating material according to any one of claims 1 to 20, wherein the intermediate layer is made of Ni 3 Sn 4 . 前記下層と中層との間に、さらにA構成元素群の金属とC構成元素群の金属との合金で構成された層を備える請求項1〜23のいずれか一項に記載の表面処理めっき材。   The surface-treated plating material according to any one of claims 1 to 23, further comprising a layer composed of an alloy of a metal of the A constituent element group and a metal of the C constituent element group between the lower layer and the middle layer. . 請求項1〜24のいずれか一項に記載の表面処理めっき材を接点部分に備えたコネクタ端子。   The connector terminal provided with the surface treatment plating material as described in any one of Claims 1-24 in the contact part. 請求項25に記載のコネクタ端子を備えたコネクタ。   The connector provided with the connector terminal of Claim 25. 請求項1〜24のいずれか一項に記載の表面処理めっき材を接点部分に備えたFFC端子。   The FFC terminal which provided the surface treatment plating material as described in any one of Claims 1-24 in the contact part. 請求項27に記載のFFC端子を備えたFFC。   An FFC comprising the FFC terminal according to claim 27. 請求項27に記載のFFC端子を備えたFPC。   An FPC comprising the FFC terminal according to claim 27. 請求項1〜24のいずれか一項に記載の表面処理めっき材を外部接続用電極に備えた電子部品。   The electronic component which equipped the electrode for external connection with the surface treatment plating material as described in any one of Claims 1-24. ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、前記基板接続部を基板に形成されたスルーホールに圧入して前記基板に取り付ける圧入型端子を備えた電子部品であり、
前記圧入型端子が、請求項1〜24のいずれか一項に記載の表面処理めっき材である電子部品。
A female terminal connection part is provided on one side of the mounting part to be attached to the housing, and a board connection part is provided on the other side. The press-fit type terminal to be attached to the board by press-fitting the board connection part into a through hole formed in the board. Electronic components
The electronic component in which the press-fit terminal is the surface-treated plating material according to any one of claims 1 to 24.
JP2017530781A 2017-01-30 2017-01-30 Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts Active JP6267404B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003243 WO2018138928A1 (en) 2017-01-30 2017-01-30 Surface-treated plated material, connector terminal, connector, ffc terminal, ffc, fpc and electronic component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017244252A Division JP2018123422A (en) 2017-12-20 2017-12-20 Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part

Publications (2)

Publication Number Publication Date
JP6267404B1 true JP6267404B1 (en) 2018-01-24
JPWO2018138928A1 JPWO2018138928A1 (en) 2019-01-31

Family

ID=61020645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530781A Active JP6267404B1 (en) 2017-01-30 2017-01-30 Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts

Country Status (7)

Country Link
US (1) US10868383B2 (en)
EP (1) EP3575446B1 (en)
JP (1) JP6267404B1 (en)
KR (1) KR20190101466A (en)
CN (1) CN110199054B (en)
TW (1) TWI649451B (en)
WO (1) WO2018138928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131873A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Surface-treatment metallic material for burn-in test socket, connector for burn-in test socket using the same, and burn-in test socket

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936836B2 (en) 2019-08-09 2021-09-22 株式会社オートネットワーク技術研究所 Wire with terminal
JP6957568B2 (en) * 2019-08-09 2021-11-02 株式会社オートネットワーク技術研究所 Wire with terminal
JP7040544B2 (en) * 2020-02-20 2022-03-23 三菱マテリアル株式会社 Terminal material for connectors
JP2022128612A (en) * 2021-02-24 2022-09-05 株式会社オートネットワーク技術研究所 Metal material, connection terminal, and manufacturing method of metal material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045045A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314896A (en) 1991-04-15 1992-11-06 Nikko Kyodo Co Ltd Surface treatment liquid and method
JPH04314897A (en) 1991-04-15 1992-11-06 Nikko Kyodo Co Ltd Surface treatment liquid and method
JP3350026B2 (en) * 2000-08-01 2002-11-25 エフシーエム株式会社 Electronic component material, method of connecting electronic component material, ball grid array type electronic component, and method of connecting ball grid array type electronic component
JP2004360004A (en) 2003-06-04 2004-12-24 Jfe Steel Kk Tinned steel sheet superior in solderability
JP2005240093A (en) * 2004-02-26 2005-09-08 Nippon Macdermid Kk Discoloration inhibitor for tin based alloy plating film after reflowing
JP2007197791A (en) 2006-01-27 2007-08-09 Daiwa Fine Chemicals Co Ltd (Laboratory) Composition of post-treatment agent for plating
CN102702073B (en) * 2007-05-11 2015-06-10 巴斯夫欧洲公司 Oxime ester photoinitiators
WO2009123144A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP5914907B2 (en) * 2008-08-11 2016-05-11 株式会社オートネットワーク技術研究所 Rust preventive and surface-treated metal
JP6029259B2 (en) * 2008-12-24 2016-11-24 Jx金属株式会社 Electroless tin or tin alloy plating solution and electronic component having tin or tin alloy coating formed using the plating solution
JP5473135B2 (en) * 2010-03-26 2014-04-16 Jx日鉱日石金属株式会社 Metal surface treatment agent
JP5284526B1 (en) * 2011-10-04 2013-09-11 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5138827B1 (en) * 2012-03-23 2013-02-06 Jx日鉱日石金属株式会社 Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
JP5427945B2 (en) * 2012-06-27 2014-02-26 Jx日鉱日石金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
ES2643901T3 (en) * 2012-07-25 2017-11-27 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method of production thereof, and connector terminals, connectors and electronic components that use the same
JP5667152B2 (en) * 2012-09-19 2015-02-12 Jx日鉱日石金属株式会社 Surface treatment plating material, method for producing the same, and electronic component
TWI488733B (en) * 2012-10-04 2015-06-21 Jx Nippon Mining & Metals Corp Metal material for electronic parts and manufacturing method thereof
JP5646105B1 (en) * 2013-06-27 2014-12-24 日新製鋼株式会社 Sn plated stainless steel sheet
JP5894133B2 (en) * 2013-10-17 2016-03-23 株式会社オートネットワーク技術研究所 Electrical connection structure and method of manufacturing electrical connection structure
JP5843406B2 (en) * 2014-02-19 2016-01-13 株式会社オートネットワーク技術研究所 Composition for coating metal surface and coated electric wire with terminal using the same
JP6332043B2 (en) * 2015-01-09 2018-05-30 株式会社オートネットワーク技術研究所 Connector terminal pair
JP2017033776A (en) * 2015-08-03 2017-02-09 矢崎総業株式会社 Crimp terminal, method of manufacturing the same, electric wire and wiring harness
JP6755096B2 (en) * 2016-01-22 2020-09-16 日立オートモティブシステムズ株式会社 Automotive electronic modules, card edge connectors, and connectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045045A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131873A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Surface-treatment metallic material for burn-in test socket, connector for burn-in test socket using the same, and burn-in test socket
CN110103584A (en) * 2018-02-01 2019-08-09 Jx金属株式会社 Aging test socket surface-treated metal material, the aging test socket connector and aging test socket for having used it

Also Published As

Publication number Publication date
TWI649451B (en) 2019-02-01
EP3575446A1 (en) 2019-12-04
KR20190101466A (en) 2019-08-30
JPWO2018138928A1 (en) 2019-01-31
TW201829843A (en) 2018-08-16
CN110199054A (en) 2019-09-03
US10868383B2 (en) 2020-12-15
US20200243995A1 (en) 2020-07-30
EP3575446B1 (en) 2023-06-07
EP3575446C0 (en) 2023-06-07
CN110199054B (en) 2022-02-25
EP3575446A4 (en) 2020-11-04
WO2018138928A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6050664B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5427945B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
JP6267404B1 (en) Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC and electronic parts
JP6029435B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
WO2014017238A1 (en) Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP2018123422A (en) Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
JP5275504B1 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5980746B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2015045045A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2015046268A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP6012564B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2015045042A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045053A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045044A (en) Metallic material for electronic component, method for producing the same,and connector terminal, connector and electronic component using the same
JP2015045047A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045050A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045043A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045054A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045057A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP6592140B1 (en) Surface-treated metal material, method for producing surface-treated metal material, and electronic component
JP2015045046A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170608

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171221

R150 Certificate of patent or registration of utility model

Ref document number: 6267404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250