JP4174275B2 - Photosensitive organic / inorganic composite material and semiconductor device using the same - Google Patents

Photosensitive organic / inorganic composite material and semiconductor device using the same Download PDF

Info

Publication number
JP4174275B2
JP4174275B2 JP2002263343A JP2002263343A JP4174275B2 JP 4174275 B2 JP4174275 B2 JP 4174275B2 JP 2002263343 A JP2002263343 A JP 2002263343A JP 2002263343 A JP2002263343 A JP 2002263343A JP 4174275 B2 JP4174275 B2 JP 4174275B2
Authority
JP
Japan
Prior art keywords
resin
composite material
inorganic composite
photosensitive organic
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002263343A
Other languages
Japanese (ja)
Other versions
JP2004101850A (en
Inventor
豊誠 高橋
均 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002263343A priority Critical patent/JP4174275B2/en
Publication of JP2004101850A publication Critical patent/JP2004101850A/en
Application granted granted Critical
Publication of JP4174275B2 publication Critical patent/JP4174275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)

Description

【0001】
【発明の属する技術分野】
高充填された無機フィラーにより高度に補強されかつ、光解像性を有する有機無機複合材料に関するものである。
【0002】
【従来の技術】
近年の電子機器の高機能化並びに軽薄短小化の要求に伴い、電子部品の高密度集積化、さらには高密度実装化が進んできている。これらの電子機器に使用される半導体パッケージは、小型化かつ多ピン化してきており、また、半導体パッケージを含めた電子部品を実装する、実装用基板も小型化してきている。さらには電子機器への収納性を高めるため、リジット基板とフレキシブル基板を積層し一体化して、折り曲げを可能としたリジットフレックス基板が、実装用基板として使われるようになってきている。
【0003】
半導体パッケージはその小型化に伴って、従来のようなリードフレームを使用した形態のパッケージでは、小型化に限界がきているため、最近では回路基板上にチップを実装したものとして、BGA(Ball Grid Array)や、CSP(Chip Scale Package)等の、エリア実装型の新しいパッケージ方式が提案されている。これらの半導体パッケージにおいて、半導体チップの電極と従来型半導体パッケージのリードフレームの機能を有する、半導体パッケージ用基板と呼ばれる、プラスチックやセラミックス等各種材料を使って構成される、サブストレートの端子との電気的接続方法として、ワイヤーボンディング方式やTAB(Tape Automated Bonding)方式、さらにはFC(Frip Chip)方式などが知られている。最近では、半導体パッケージの小型化に有利なFC接続方式を用いた、BGAやCSPの構造が盛んに提案されており、ウエハーレベルCSP(WLCSP)に代表されるように、さらなる小型化のため、CSPを半導体チップサイズにまで小型化されたリアルチップサイズパッケージ(RCSP)が提案されている。
【0004】
このようなパッケージの小型化、薄型化に伴って、1パッケージを構成する絶縁樹脂も少量になり、信頼性に関する樹脂性能の向上が、よりいっそう求められるようになった。BGA・CSP・WLPKGに共通する問題は、感光性樹脂が熱膨張係数の著しく小さいシリコンやウエハーに密着した構造をしているか、もしくは、熱膨張係数がウエハーに拘束されている有機材料に密着した構造をしているため、上記半導体パッケージに対しパッケージの性能を加速して評価する温度サイクル試験(TC試験)を行った場合、感光性樹脂とシリコンとの熱膨張係数のミスマッチにより、樹脂に過大な応力がかかりクラックが発生してしまうことである。このTC試験での信頼性、つまり、耐クラック性は半導体パッケージ用材料として必要不可欠である。
【0005】
しかしながら、とりわけ、メタクリロイル基やアクリロイル基を有する化合物に代表されるような光重合化合物から光架橋して作製された絶縁樹脂や、エポキシ樹脂とその硬化剤に代表されるような熱硬化性樹脂が架橋して作製された絶縁樹脂はじん性に乏しく、TC信頼性に劣る。このため、TC試験での信頼性向上を目的に、ゴム変性して、絶縁樹脂の熱応力を低減させる方法や加工条件により絶縁樹脂の熱応力を低減させる方法が検討されているが、未だ充分な効果が得られないのが実状である。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みなされたものであって、TC試験において耐クラック性に優れた、高信頼性の感光性有機無機複合材料および、それを用いた半導体装置の提供を目的とする。
【0007】
即ち、本発明は、
(1)感光性樹脂、及び無機フィラーから構成される感光性有機無機複合材料において、前記無機フィラーの含有量が30体積%以上75体積%未満であり、かつ、
前記無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が40μm以下、アペクト比が4以上40以下であることを特徴とする感光性有機無機複合材料、
(2)前記無機フィラーが、2次凝集を起こすことなく、樹脂中に層状に積み重なるように分散されている(1)に記載の感光性有機無機複合材料。
(3)(1)または(2)のいずれか記載の感光性有機無機複合材料を用いることを特徴とする半導体装置、
である。
【0008】
【発明の実施の形態】
本発明で用いられる無機フィラーは、鱗片状もしくは板状であり、最大粒径50μm以下、アスペクト比が4以上50以下であることが好ましく、更には最大粒径40μm以下、アスペクト比が4以上40以下であることがより好ましい。最大粒径が50μmを超えると、感光性樹脂の解像性を著しく低下させる。また、アスペクト比が4未満であり、形状が球形に近づくとフィラーが層状に積み重なる効果が低下し、フィラーによる樹脂の補強効果が低下する。針状のフィラーを用いると面内で物性に異方性が発現するため好ましくない。また、アスペクト比が50を超えると、フィラーが層状に積み重なる効果は向上するものの、フィラー粒子が薄くなるため、フィラーの厚み方向に伸展するクラックに対する抵抗が低くなり、フィラーによる樹脂の補強効果が低下する。
【0009】
無機フィラーの添加量は30体積%以上、75体積%未満であることが好ましく、更に好ましくは、35体積%以上、70体積%未満である。30体積%未満であると、フィラー粒子間距離が長くなり、フィラーによる樹脂の補強効果が充分ではない。一方、75体積%以上であると、解像性が低下し、感光性樹脂としての機能を発しなくなる。
【0010】
また、本発明は無機フィラーの形状、サイズ、アスペクト比、充填量およびフィラーが層状に積み重なる用に分散されることを特徴とする感光性有機無機複合材料であり、本発明で用いられる感光性のベース樹脂は何ら限定されることはないが、以下のものが例としてあげられる。とりわけ、ネガ型感光性樹脂の耐クラック性の改善効果は大きい。
【0011】
ネガ型感光性樹脂としては、1)アクリロイル基、メタクリロイル基や、ビニル基などのラジカル重合を起こす官能基を有する化合物を1種類または2種類以上に、ベンゾフェノン、ベンゾイル安息香酸、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインブチルエーテル、ベンゾインイソブチルエーテル、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、4−t−ブチル−トリクロロアセトフェノン、ジエトキシアセトフェノン、エチルアントラキノン、ブチルアントラキノンなどに代表されるような光重合開始剤を1種類または2種類以上添加したものや、2)上記1)にエポキシ樹脂およびその硬化剤、マレイミド、フノール樹脂、シアネート樹脂などの熱硬化性樹脂を添加したものが挙げられる。
【0012】
ポジ型感光性樹脂としては、ポリイミド樹脂、ポリベンゾオキサゾール樹脂などにナフトキノンジアジド類化合物を添加したものが挙げられる。
【0013】
これら無機フィラー、感光性樹脂のほかに、消泡剤、レベリング剤、紫外線吸収剤や、可塑剤が添加されていても良い。また、無機フィラーが層状に積み重なることを阻害しない程度であれば、ゴム粒子や、不定形や球形の無機フィラーを添加してもよい。針状フィラーも、板状もしくは鱗片状フィラーが層状に積み重なることを阻害しない程度で、面内の物性に異方性が出ない程度であれば添加してもよい。
【0014】
本発明の有機無機複合材料は、各種の半導体装置に適用される。。本発明の半導体装置は、如何なる形状であってもよく、また、前記の有機無機複合材料を用いてさえすれば、他材料の構成は如何なるものであってもよい。感光性有機無機複合材料は、例えば、半導体装置内のインターポーザーと呼ばれる回路のソルダーレジストとして使用することもできる。一方、ウエハー上に再配線層を形成するタイプの半導体装置には、その再配線層を保持するために、再配線層とウエハー間に存在する感光性絶縁樹脂層として使用することもできる。また、再配線層を被覆する感光性ソルダーレジストとして使用することもできる。より好ましくは、感光性絶縁樹脂層と感光性ソルダーレジストの両方に用い、半導体装置構成材料中での前記有機無機複合材料の構成比率を高めるのがよい。
【0015】
【実施例】
以下、実施例により更に具体的に説明するが、本発明はこれによって何ら限定されるものではない。
[実施例および比較例]
<感光性樹脂成分>
エポキシ樹脂*1;EPICLON−N865(大日本インキ化学工業(株)製)フェノール樹脂*2;アロニックス TO−1496(東亞合成(株)製)
光重合モノマー*3;ネオマーPM201(三洋化成(株)製)
光反応開始剤*4;ベンジルジメチルケタール(チバスペシャリティーケミカルズ製)
<無機フィラー成分>
鱗片シリカ;鱗片状、 最大粒径40μm、アスペクト比10
合成マイカ;鱗片状、 最大粒径30μm、アスペクト比 40
球形シリカ;球状、 最大粒径5μm、 アスペクト比 1
マイカ;鱗片状、 最大粒径40μm、アスペクト比30
【0016】
<樹脂溶液の作製>
無機充填剤を除く各樹脂組成物成分を、それぞれ表1に示す配合量に従い、メチルエチルケトン300gに添加し、ディスパーザー(4000rpm)で約1時間撹拌し溶解した。その後、表1に示す配合量の無機充填剤を添加し、樹脂溶液の周囲を氷水で冷却しながら、ディスパーザー(8000rpm)で15分間、さらにゴーリン式撹拌装置(圧力600kg/cm2)に通し、加えて、アルティマイザー(圧力200MPa)で処理することにより、感光性有機無機複合材料の溶液を得た。
【0017】
<樹脂付き銅箔の作製>
上記で得た樹脂溶液を、5μm厚の電解銅箔上にバーコーターにより流延塗布し、60℃で10分間、80℃で10分間乾燥することにより、樹脂厚み70μmの樹脂付き銅箔(RCC)を得た。
<ドライフィルムソルダーレジストの作製>
上記で得た樹脂溶液を、25μm厚のPET(ポリエチレンテレフタレート)フィルム上にバーコーターにより流延塗布し、60℃で10分間、80℃で10分間乾燥することにより、樹脂厚み18μmのドライフィルムソルダーレジストを得た。
【0018】
<半導体装置の作製>
図1に温度サイクル信頼性評価用半導体装置の断面概略図を示す。
上記RCCを8インチの半導体ウエハー1の表面にロールラミネーターにより貼り付けし、半導体ウエハー1、絶縁樹脂層2、及び銅箔を積層した構造物を得た。次に、この構造物上にロールラミネーターによりドライフィルムメッキレジストを貼り付けて、メッキレジスト層を形成し、ワイヤーボンドフィンガー、半田ボールパッド、およびそれらをつなぐ回路となるべき部位をフォトリソグラフィー手法により開口した後、該部位に10μm厚みの銅層、5μm厚みのニッケル層、および1μm厚みの金層6を電解メッキにより形成した。この後、メッキレジストを3%水酸化ナトリウム水溶液で剥離除去した後、金メッキ層をレジストとして、RCCの銅箔をフラッシュエッチングし、金メッキ層直下に再配線回路5を形成した。
【0019】
さらに、エッチングにより銅箔が除去された樹脂層表面を、ワイヤーボンドパッド上の部位が現像、開口できるように、平行光露光機を用いて露光し、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液にて、所定位置の樹脂を溶解除去し、その表面に紫外線を500mJ照射した後、180℃1時間加熱することにより、ウエハー上にワイヤーボンディング用の樹脂開口部、および金メッキで表面を被覆されたワイヤーボンドフィンガー、半田ボールパッド、およびこれらをつなぐ再配線回路を持つ、完全硬化した絶縁樹脂層2を得た。
【0020】
次に、70℃に加熱されたロールラミネーターにより、上記のドライフィルムソルダーレジストを再配線回路5上に貼り付け、ワイヤーボンドフィンガー、半田ボールパッドとワイヤーボンディング用として、絶縁樹脂層開口部にフォトマスクを使用し、平行光露光機を用いて250mJで露光し、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液にて所定位置の絶縁樹脂層を溶解除去し、その表面に紫外線を500mJ照射した後、180℃1時間加熱することによりソルダーレジスト層3を硬化させた。次に、樹脂開口部を経由して金ワイヤー8により、半導体ウエハー1と絶縁樹脂上の再配線回路5が接合された後、絶縁樹脂層開口部およびワイヤーボンドフィンガー周辺を印刷封止樹脂(CRP5300住友ベークライト製)4により封止し、180℃1時間で硬化した。そして半田ボール7を搭載し、最後にダイシングすることにより、TC信頼性評価用半導体装置(図1)を得た。サイズは10mm×10mm×1.3mmである。
【0021】
このようにして得られた半導体装置について−65℃/30分〜150℃/30分の条件でサイクル数を50、100、200、300、400、500サイクルと変えてTC試験を行った。そして、TC試験における樹脂層クラックの発生数を顕微鏡観察により測定した(各n=10)。これらの結果を表1に示した。
表1の結果から、実施例は比較例に比べて、TC試験の評価結果が良好であることがわかる。
【0022】
【表1】

Figure 0004174275
【0023】
【発明の効果】
本発明によれば、温度サイクル試験において絶縁樹脂層クラックの発生の問題がない、信頼性に優れた感光性有機無機複合材料および半導体装置を提供できる。
【図面の簡単な説明】
【図1】温度サイクル信頼性評価用半導体装置の断面概略図である。
【符号の説明】
半導体ウエハー 1
絶縁樹脂層 2
ソルダーレジスト層 3
印刷封止樹脂 4
再配線回路 5
ニッケル/金メッキ層 6
半田ボール 7
金ワイヤー 8[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic-inorganic composite material that is highly reinforced by a highly filled inorganic filler and has optical resolution.
[0002]
[Prior art]
With recent demands for higher functionality and lighter, thinner and smaller electronic devices, electronic components have been increasingly integrated and densely packaged. Semiconductor packages used in these electronic devices have been reduced in size and increased in pin count, and mounting substrates on which electronic components including the semiconductor package are mounted have also been reduced in size. Furthermore, in order to improve the storage property in an electronic device, a rigid flex board that can be bent by laminating and integrating a rigid board and a flexible board has been used as a mounting board.
[0003]
With the miniaturization of semiconductor packages, the conventional package using a lead frame has a limit on miniaturization. Therefore, recently, it is assumed that a chip is mounted on a circuit board, and BGA (Ball Grid) is used. Array) and a new area mounting type package system such as CSP (Chip Scale Package) have been proposed. In these semiconductor packages, the electrical connection between the electrodes of the semiconductor chip and the terminals of the substrate, which is made of various materials such as plastics and ceramics, called the semiconductor package substrate, has the function of the lead frame of the conventional semiconductor package. As a general connection method, a wire bonding method, a TAB (Tape Automated Bonding) method, an FC (Flip Chip) method, or the like is known. Recently, BGA and CSP structures using an FC connection method advantageous for miniaturization of semiconductor packages have been actively proposed, and as represented by wafer level CSP (WLCSP), for further miniaturization, A real chip size package (RCSP) in which the CSP is downsized to a semiconductor chip size has been proposed.
[0004]
Along with the downsizing and thinning of such packages, the amount of insulating resin that constitutes one package has been reduced, and an improvement in resin performance related to reliability has been further demanded. The problem common to BGA, CSP, and WLPKG is that the photosensitive resin has a structure that is in close contact with silicon or a wafer having a very low thermal expansion coefficient, or that the thermal expansion coefficient is in close contact with an organic material that is constrained to the wafer. Due to the structure, when a temperature cycle test (TC test) is performed on the semiconductor package to accelerate and evaluate the performance of the package, the resin is excessive due to a mismatch in the thermal expansion coefficient between the photosensitive resin and silicon. The stress is applied and cracks occur. Reliability in the TC test, that is, crack resistance is indispensable as a semiconductor package material.
[0005]
However, in particular, there are insulating resins produced by photocrosslinking from photopolymerized compounds represented by compounds having methacryloyl groups and acryloyl groups, and thermosetting resins represented by epoxy resins and their curing agents. The insulating resin produced by crosslinking is poor in toughness and inferior in TC reliability. For this reason, for the purpose of improving the reliability in the TC test, a method of reducing the thermal stress of the insulating resin by modifying the rubber and a method of reducing the thermal stress of the insulating resin depending on the processing conditions has been studied. The actual situation is that it is not possible to obtain an effective effect.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and an object thereof is to provide a highly reliable photosensitive organic-inorganic composite material having excellent crack resistance in a TC test and a semiconductor device using the same. And
[0007]
That is, the present invention
(1) a photosensitive resin, and the photosensitive organic-inorganic composite material composed of an inorganic filler, the content of the inorganic filler is less than 30 vol% to 75 vol%, and,
Wherein the inorganic filler has a flake or plate-like shape, the maximum particle size of 40μm or less, photosensitive organic-inorganic composite material, wherein the A scan and aspect ratio is 4 or more and 40 or less,
(2) The photosensitive organic-inorganic composite material according to (1) , wherein the inorganic filler is dispersed in a layered manner in the resin without causing secondary aggregation.
(3) A semiconductor device using the photosensitive organic-inorganic composite material according to any one of (1) and (2) ,
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inorganic filler used in the present invention is scaly or plate-like, and preferably has a maximum particle size of 50 μm or less and an aspect ratio of 4 to 50, and further has a maximum particle size of 40 μm or less and an aspect ratio of 4 to 40. The following is more preferable. When the maximum particle size exceeds 50 μm, the resolution of the photosensitive resin is remarkably lowered. Moreover, the aspect ratio is less than 4, and when the shape approaches a sphere, the effect of fillers being stacked in layers decreases, and the effect of reinforcing the resin by the fillers decreases. Use of a needle-like filler is not preferable because anisotropy appears in the physical properties in the plane. Also, if the aspect ratio exceeds 50, the effect of stacking the fillers in layers is improved, but the filler particles become thinner, so the resistance to cracks extending in the thickness direction of the fillers is reduced, and the resin reinforcing effect by the fillers is reduced. To do.
[0009]
The addition amount of the inorganic filler is preferably 30% by volume or more and less than 75% by volume, more preferably 35% by volume or more and less than 70% by volume. If it is less than 30% by volume, the distance between the filler particles becomes long, and the reinforcing effect of the resin by the filler is not sufficient. On the other hand, when it is 75% by volume or more, the resolution is lowered and the function as a photosensitive resin is not exhibited.
[0010]
Further, the present invention is a photosensitive organic-inorganic composite material characterized in that the shape, size, aspect ratio, filling amount, and filler of the inorganic filler are dispersed so as to be stacked in layers, and the photosensitive organic material used in the present invention. Although base resin is not limited at all, the following are mentioned as an example. In particular, the effect of improving the crack resistance of the negative photosensitive resin is great.
[0011]
As the negative photosensitive resin, 1) one or more compounds having a functional group causing radical polymerization such as acryloyl group, methacryloyl group, vinyl group, benzophenone, benzoylbenzoic acid, 4-phenylbenzophenone, Hydroxybenzophenone, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzoin isobutyl ether, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, ethyl anthraquinone 1 or 2 or more types of photopolymerization initiators typified by butyl anthraquinone, etc. 2) Epoxy resin and its curing agent to 1) above Maleimide, Funoru resins include those obtained by adding a thermosetting resin such as cyanate resin.
[0012]
Examples of the positive photosensitive resin include those obtained by adding a naphthoquinonediazide compound to a polyimide resin, a polybenzoxazole resin, or the like.
[0013]
In addition to these inorganic fillers and photosensitive resins, antifoaming agents, leveling agents, ultraviolet absorbers, and plasticizers may be added. Further, rubber particles or amorphous or spherical inorganic fillers may be added as long as the inorganic fillers are not hindered from being stacked in layers. Needle-like fillers may also be added as long as they do not inhibit layering of plate-like or scale-like fillers and do not cause anisotropy in the in-plane physical properties.
[0014]
The organic-inorganic composite material of the present invention is applied to various semiconductor devices. . The semiconductor device of the present invention may have any shape, and any other material may be used as long as the organic-inorganic composite material is used. The photosensitive organic-inorganic composite material can also be used, for example, as a solder resist for a circuit called an interposer in a semiconductor device. On the other hand, in a semiconductor device of a type in which a rewiring layer is formed on a wafer, it can be used as a photosensitive insulating resin layer existing between the rewiring layer and the wafer in order to hold the rewiring layer. It can also be used as a photosensitive solder resist that covers the rewiring layer. More preferably, it is used for both the photosensitive insulating resin layer and the photosensitive solder resist, and the constituent ratio of the organic-inorganic composite material in the semiconductor device constituent material is increased.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[Examples and Comparative Examples]
<Photosensitive resin component>
Epoxy resin * 1; EPICLON-N865 (manufactured by Dainippon Ink & Chemicals, Inc.) Phenolic resin * 2; Aronix TO-1496 (manufactured by Toagosei Co., Ltd.)
Photopolymerization monomer * 3; Neomer PM201 (manufactured by Sanyo Chemical Co., Ltd.)
Photoinitiator * 4; benzyl dimethyl ketal (Ciba Specialty Chemicals)
<Inorganic filler component>
Scale silica; scale-like, maximum particle size 40μm, aspect ratio 10
Synthetic mica; scale-like, maximum particle size 30μm, aspect ratio 40
Spherical silica; spherical, maximum particle size 5μm, aspect ratio 1
Mica; scale-like, maximum particle size 40μm, aspect ratio 30
[0016]
<Preparation of resin solution>
Each resin composition component excluding the inorganic filler was added to 300 g of methyl ethyl ketone according to the blending amounts shown in Table 1, respectively, and dissolved by stirring for about 1 hour with a disperser (4000 rpm). Thereafter, an inorganic filler having a blending amount shown in Table 1 was added, and the resin solution was cooled with ice water while passing through a disperser (8000 rpm) for 15 minutes and further through a gorin type stirring device (pressure 600 kg / cm 2 ). In addition, a solution of a photosensitive organic-inorganic composite material was obtained by treating with an optimizer (pressure 200 MPa).
[0017]
<Preparation of copper foil with resin>
The resin solution obtained above was cast-coated on a 5 μm thick electrolytic copper foil with a bar coater, and dried at 60 ° C. for 10 minutes and at 80 ° C. for 10 minutes, whereby a resin-coated copper foil (RCC) with a resin thickness of 70 μm (RCC). )
<Preparation of dry film solder resist>
The resin solution obtained above is cast-coated on a 25 μm-thick PET (polyethylene terephthalate) film by a bar coater, and dried at 60 ° C. for 10 minutes and at 80 ° C. for 10 minutes, whereby a dry film solder having a resin thickness of 18 μm. A resist was obtained.
[0018]
<Fabrication of semiconductor device>
FIG. 1 is a schematic sectional view of a semiconductor device for temperature cycle reliability evaluation.
The RCC was attached to the surface of an 8-inch semiconductor wafer 1 with a roll laminator to obtain a structure in which the semiconductor wafer 1, the insulating resin layer 2, and the copper foil were laminated. Next, a dry film plating resist is pasted onto this structure with a roll laminator to form a plating resist layer, and the wire bond fingers, solder ball pads, and the parts that should be the circuit connecting them are opened by photolithography. Then, a 10 μm-thick copper layer, a 5 μm-thick nickel layer, and a 1 μm-thick gold layer 6 were formed on the portion by electrolytic plating. Thereafter, the plating resist was peeled and removed with a 3% aqueous sodium hydroxide solution, and then the RCC copper foil was flash-etched using the gold plating layer as a resist to form the rewiring circuit 5 immediately below the gold plating layer.
[0019]
Further, the surface of the resin layer from which the copper foil has been removed by etching is exposed using a parallel light exposure machine so that the portion on the wire bond pad can be developed and opened, and the 2.38% tetramethylammonium hydroxide aqueous solution is obtained. Then, the resin at a predetermined position is dissolved and removed, and the surface is irradiated with ultraviolet rays of 500 mJ, and then heated at 180 ° C. for 1 hour, so that the wire opening is covered with a resin opening for wire bonding and a wire whose surface is coated with gold plating. A completely cured insulating resin layer 2 having bond fingers, solder ball pads, and a rewiring circuit connecting them was obtained.
[0020]
Next, the above dry film solder resist is pasted on the rewiring circuit 5 by a roll laminator heated to 70 ° C., and a photomask is formed on the opening of the insulating resin layer for wire bonding fingers, solder ball pads and wire bonding. And exposed to 250 mJ using a parallel light exposure machine, dissolve and remove the insulating resin layer at a predetermined position with a 2.38% tetramethylammonium hydroxide aqueous solution, and then irradiate the surface with 500 mJ of ultraviolet rays. The solder resist layer 3 was cured by heating at 1 ° C. for 1 hour. Next, after the semiconductor wafer 1 and the redistribution circuit 5 on the insulating resin are bonded by the gold wire 8 through the resin opening, the periphery of the insulating resin layer opening and the wire bond finger are printed with a sealing resin (CRP5300). (Made by Sumitomo Bakelite) 4 and cured at 180 ° C. for 1 hour. Then, a solder ball 7 was mounted and finally diced to obtain a TC reliability evaluation semiconductor device (FIG. 1). The size is 10 mm × 10 mm × 1.3 mm.
[0021]
The semiconductor device thus obtained was subjected to a TC test under the conditions of −65 ° C./30 minutes to 150 ° C./30 minutes, changing the number of cycles to 50, 100, 200, 300, 400, 500 cycles. Then, the number of occurrences of resin layer cracks in the TC test was measured by microscopic observation (each n = 10). These results are shown in Table 1.
From the results of Table 1, it can be seen that the evaluation results of the TC test are better in the example than in the comparative example.
[0022]
[Table 1]
Figure 0004174275
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the photosensitive organic inorganic composite material and semiconductor device excellent in the reliability which do not have the problem of generation | occurrence | production of an insulating resin layer crack in a temperature cycle test can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a semiconductor device for temperature cycle reliability evaluation.
[Explanation of symbols]
Semiconductor wafer 1
Insulating resin layer 2
Solder resist layer 3
Printing sealing resin 4
Rewiring circuit 5
Nickel / gold plating layer 6
Solder balls 7
Gold wire 8

Claims (3)

感光性樹脂、及び無機フィラーから構成される感光性有機無機複合材料において、
前記無機フィラーの含有量が30体積%以上75体積%未満であり、かつ、
前記無機フィラーが、鱗片状もしくは板状の形状を有し、最大粒径が40μm以下、アペクト比が4以上40以下であることを特徴とする感光性有機無機複合材料。
In a photosensitive organic-inorganic composite material composed of a photosensitive resin and an inorganic filler,
The content of the inorganic filler is less than 30 vol% to 75 vol%, and,
Wherein the inorganic filler has a flake or plate-like shape, the maximum particle size of 40μm or less, photosensitive organic-inorganic composite material, wherein the A scan and aspect ratio is 4 or more and 40 or less.
前記無機フィラーが、2次凝集を起こすことなく、樹脂中に層状に積み重なるように分散されている請求項に記載の感光性有機無機複合材料。The photosensitive organic-inorganic composite material according to claim 1 , wherein the inorganic filler is dispersed so as to be layered in the resin without causing secondary aggregation. 請求項1または2のいずれか記載の感光性有機無機複合材料を用いることを特徴とする半導体装置。A semiconductor device using the photosensitive organic-inorganic composite material according to claim 1 .
JP2002263343A 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same Expired - Fee Related JP4174275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263343A JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263343A JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008186414A Division JP4715877B2 (en) 2008-07-17 2008-07-17 Photosensitive organic / inorganic composite material and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2004101850A JP2004101850A (en) 2004-04-02
JP4174275B2 true JP4174275B2 (en) 2008-10-29

Family

ID=32263111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263343A Expired - Fee Related JP4174275B2 (en) 2002-09-09 2002-09-09 Photosensitive organic / inorganic composite material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4174275B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291394A (en) * 2004-05-31 2007-11-08 Sumitomo Bakelite Co Ltd Resin composition, adhesive film and resin varnish
JP5287397B2 (en) * 2009-03-18 2013-09-11 Jsr株式会社 Aluminum-containing photosensitive resin composition and pattern forming method
JP5583941B2 (en) * 2009-09-30 2014-09-03 太陽ホールディングス株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
JP5466522B2 (en) * 2010-02-08 2014-04-09 太陽ホールディングス株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
CN104950579B (en) * 2010-05-20 2020-10-27 日立化成工业株式会社 Photosensitive resin composition, photosensitive film, method for forming rib pattern, hollow structure and method for forming same, and electronic component
JP5810625B2 (en) * 2010-05-20 2015-11-11 日立化成株式会社 Lid or rib material
JP5707779B2 (en) * 2010-08-24 2015-04-30 日立化成株式会社 Photosensitive resin composition, photosensitive film, rib pattern forming method, hollow structure forming method, and electronic component
KR20130099219A (en) * 2010-12-28 2013-09-05 다이요 잉키 세이조 가부시키가이샤 Photocurable resin composition, dry film and cured object obtained therefrom, and printed wiring board obtained using these
JP2014078045A (en) * 2014-01-24 2014-05-01 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the composition, and printed wiring board using the same
TW201821280A (en) 2016-09-30 2018-06-16 日商富士軟片股份有限公司 Laminate and manufacturing method for semiconductor element
CN110692018B (en) 2017-05-31 2023-11-03 富士胶片株式会社 Photosensitive resin composition, polymer precursor, cured film, laminate, method for producing cured film, and semiconductor device
JP6646640B2 (en) * 2017-11-16 2020-02-14 積水化学工業株式会社 Non-developable resist photocurable composition and method for producing electronic component
JP6646641B2 (en) * 2017-11-16 2020-02-14 積水化学工業株式会社 Non-developable resist curable composition, printed wiring board and method for producing electronic component
KR102571972B1 (en) 2018-09-28 2023-08-29 후지필름 가부시키가이샤 Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
KR102636334B1 (en) 2018-12-05 2024-02-14 후지필름 가부시키가이샤 Pattern formation method, photosensitive resin composition, cured film, laminate, and device
KR102577538B1 (en) 2018-12-05 2023-09-12 후지필름 가부시키가이샤 Photosensitive resin composition, pattern formation method, cured film, laminate, and device
CN113574091A (en) 2019-03-15 2021-10-29 富士胶片株式会社 Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, and polymer precursor
TW202128839A (en) 2019-11-21 2021-08-01 日商富士軟片股份有限公司 Pattern forming method, photocurable resin composition, layered body manufacturing method, and electronic device manufacturing method
TW202248755A (en) 2021-03-22 2022-12-16 日商富士軟片股份有限公司 Negative photosensitive resin composition, cured product, laminate, method for producing cured product, and semiconductor device
JP7405803B2 (en) * 2021-08-27 2023-12-26 株式会社タムラ製作所 Photosensitive resin composition, photocured product of the photosensitive resin composition, and printed wiring board coated with the photosensitive resin composition
JP7259141B1 (en) 2021-08-31 2023-04-17 富士フイルム株式会社 Method for producing cured product, method for producing laminate, method for producing semiconductor device, and treatment liquid

Also Published As

Publication number Publication date
JP2004101850A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4174275B2 (en) Photosensitive organic / inorganic composite material and semiconductor device using the same
JP4935670B2 (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for sealing
TWI715734B (en) Manufacturing method of semiconductor device, manufacturing method of flip chip semiconductor device, semiconductor device, and flip chip semiconductor device
KR102263433B1 (en) Semiconductor device, layered semiconductor device, sealed-then-layered semiconductor device, and manufacturing methods therefor
CA2630824C (en) Semiconductor device
US7999354B2 (en) Resin composition, filling material, insulating layer and semiconductor device
JP2008211179A (en) Semiconductor image device package with die having through hole and method therefor
CN110176432B (en) Semiconductor device, laminated semiconductor device, and sealed laminated semiconductor device
JP2013251368A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
JP2011195742A (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP4715877B2 (en) Photosensitive organic / inorganic composite material and semiconductor device using the same
JPWO2016063908A1 (en) Photosensitive adhesive composition and semiconductor device
JP5157980B2 (en) Manufacturing method of semiconductor element sealing body and manufacturing method of semiconductor package
JP2013251369A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
CN111033379A (en) Negative photosensitive resin composition, semiconductor device, and electronic device
JP5120305B2 (en) Manufacturing method of semiconductor element sealing body and manufacturing method of semiconductor package
JP4639505B2 (en) Semiconductor device
JP2003206452A (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrates for connecting semiconductors and semiconductor device
JP2004128353A (en) Semiconductor device
JP7348857B2 (en) Manufacturing method of semiconductor device
JP6903961B2 (en) Manufacturing method of electronic device
JP2003209205A (en) Semiconductor device
JP2019060959A (en) Photosensitive resin composition, patterning method and method for manufacturing semiconductor device
JP2003309131A (en) Manufacturing method of semiconductor package
JP2018151475A (en) Method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4174275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees