JP4173618B2 - Manufacturing method of high strength and high toughness martensitic steel - Google Patents

Manufacturing method of high strength and high toughness martensitic steel Download PDF

Info

Publication number
JP4173618B2
JP4173618B2 JP2000062575A JP2000062575A JP4173618B2 JP 4173618 B2 JP4173618 B2 JP 4173618B2 JP 2000062575 A JP2000062575 A JP 2000062575A JP 2000062575 A JP2000062575 A JP 2000062575A JP 4173618 B2 JP4173618 B2 JP 4173618B2
Authority
JP
Japan
Prior art keywords
toughness
strength
less
martensitic steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000062575A
Other languages
Japanese (ja)
Other versions
JP2001247936A (en
Inventor
護 長尾
浩 家口
琢哉 ▲高▼知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000062575A priority Critical patent/JP4173618B2/en
Publication of JP2001247936A publication Critical patent/JP2001247936A/en
Application granted granted Critical
Publication of JP4173618B2 publication Critical patent/JP4173618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高靭性マルテンサイト鋼及びその製造方法と、上記高靭性マルテンサイト鋼を用いてなる高強度ばね及び高強度ボルトに関するものである。
【0002】
【従来の技術】
近年自動車の燃費改善に向けた使用鋼材の軽量化ニーズが高まっており、ばね用鋼やボルト用鋼などの高強度鋼に対しても、より一層の高強度化が要求されている。
【0003】
上記高強度鋼としてはマルテンサイト鋼が用いられているが、高強度化の弊害として鋼材の靭性の劣化があり、高強度化の一方で、遅れ破壊感受性や腐食疲労特性の向上が重要な課題として取り上げられ、種々の技術が提案されている。
【0004】
例えば、特公昭60−30736号公報では、冷間成形コイルばねの靭性の向上を目的として、高周波加熱焼入れによって微細マルテンサイトを生成させる方法が開示されている。但し、これは通常の高周波加熱処理でオーステナイト粒を微細化し間接的にマルテンサイトを微細化する技術であることから、靭性向上の程度も十分に満足できるものではなく、更なる高靭性化技術の開発が望まれている。
【0005】
また特開平6−116637号公報には、成分組成としてはNiを多量に(8〜11%)含有させると共に、昇温中にせん断型逆変態オーステナイト相を生成させ、転位密度の高い未変態オーステナイトから焼入れることでマルテンサイト鋼の靭性を向上させる方法が開示されている。しかし、Niは積極的に利用するには高価な元素であるという問題点がある。
【0006】
更に、特開平11−229075号公報では、成分組成を限定し、昇温速度及び冷却速度を制限することで高強度鋼の耐遅れ破壊性を高める方法が開示されている。但し、この技術は利用範囲が厚板に限定されていると共に、到達強度が引張強さで最大1551MPaであり、靭性を示す破断応力も945MPaと低く、自動車に使用される高強度鋼としては強度及び靭性が不足している。
【0007】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであって、自動車用のばねやボルトとして用いても十分な強度を有すると共に、靭性にも優れたマルテンサイト鋼及びその製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決した本発明の高靭性マルテンサイト鋼とは、旧オーステナイト平均粒径Dが20μm以下で、平均マルテンサイトラス長さが、上記粒径Dの30%以下であることを要旨とするものである。また、平均マルテンサイトラス長さを4.0μm以下とすることでも高い靭性を発揮するマルテンサイト鋼とすることができる。十分な強度を得る上でC含有量は0.1質量%以上とすることが望ましい。
【0009】
上記高靭性マルテンサイト鋼を製造するにあたっては、500℃以下の温度にて少なくとも真ひずみ0.20以上の冷間加工を施す工程、加熱速度50℃/s以上で、Ac3点+150℃以上1200℃未満に加熱する工程、100℃/s以上の冷却速度で急冷する焼入れ工程を有する製造方法を採用すればよく、加熱時間は5秒以上10秒未満とすることが望ましい。
【0010】
本発明に係る高靭性マルテンサイト鋼は、高強度ばねや高強度ボルトとして好適である。
【0011】
【発明の実施の形態】
本発明者らは、マルテンサイト鋼の高靭性化を図るべく種々検討を重ねた結果、高靭性化を図る上で非常に優れたマルテンサイト金属組織が存在することを突き止めた。具体的には、旧オーステナイトの平均結晶粒径とマルテンサイトの下部組織であるラスの平均長さの比において、旧オーステナイト粒径の30%以下にマルテンサイトラス長さを微細化することで靭性を向上させることが可能であることを見出し、本発明に想到した。
【0012】
更に本発明者らは、以上のような相対的な組織制御による靭性向上だけではなく、絶対的な組織制御の条件として、マルテンサイトの下部組織であるラスの平均長さを4.0μm以下とすることにより非常に靭性に優れたマルテンサイト鋼を得ることができるとの知見を得た。マルテンサイトのラスの平均長さは、少なくとも4μmを超えており通常5μm以上であるが、後述の実施例からも明らかな通り、4.0μm以下とすることが望ましく、3.0μm以下であればより優れた靭性が得られる。
【0013】
尚、成分組成に関しては、マルテンサイトの強度を確保するという観点から、C含有量を0.1%以上とすることが望ましく、0.2%以上とすればより望ましい。上限は靭性の低い双晶マルテンサイトが主体となり始める0.6%とすることが望ましく、0.5%以下であればより望ましい。
【0014】
Si,Mn,P,S,Al,N,Bなどの元素は、用途に合わせて適量添加したり低減すればよく、例えば、ばね鋼であれば耐へたり性を高めるためには、Siを1%以上含有させることが望ましい。
【0015】
V,Nb,Ti,Hfは微量の添加で炭化物を生成し強度を高める元素であり、また水素トラップサイトとなって耐遅れ破壊特性を向上させる効果を持つので含有させることが望ましいが、多すぎると靭性が低下するので総量で0.2%以下とすれば望ましい。
【0016】
Mo,Crは焼入性を制御したり、炭・窒化物による強度バランスを調整する上で有効な元素である。但し、多すぎると靭性に悪影響を及ぼすので、1%以下とすることが望ましい。
【0017】
次に本発明に係る高靭性マルテンサイト鋼を製造する方法を示す。即ち、急速加熱焼入れ処理の前段の冷間加工度を制御することが非常に重要であり、真ひずみで0.20以上の強加工を行っておくことで単純な微細マルテンサイト組織ではなく、その下部構造の制御が可能となる。従来は、線材であれば線径を整える製寸を目的として低加工度で伸線することが一般的であった(例えば、特公平3−6981号公報)。本発明では十分な前加工を施すことで、単純熱処理によるマルテンサイト下部構造の制御が可能になる。換言すれば、伸線加工度を高めることによりマルテンサイトの下部構造であるラスを微細化してランダムに配向させ靭性を向上させるものである。但し、加工温度が500℃を超えると回復が進行し、下部構造の制御の効果が薄れるため、上限は500℃とした。
【0018】
加熱速度は50℃/s以上とすべきであり、100℃/s以上の速度で加熱すると望ましい。鋼の昇温中の相変態は冷却中の相変態と同様、拡散型の相変態とするのが普通であるが、拡散変態では原子配列がリフレッシュされるため冷間加工で生じさせたひずみ(転位)はキャンセルされてしまう。ところが加熱速度を高めて、逆変態の駆動力を高めると、冷却時のマルテンサイト変態と同様にオーステナイト相への逆変態も無拡散型の相変態となる。尚、マルエージ鋼やステンレス鋼などの高合金鋼では、昇温時の無拡散型逆変態が、通常の加熱速度で起こることが知られている。これはNiやCrなど、比較的拡散の遅い置換型元素が多量に添加されるためで、拡散変態を遅らせることが容易な鋼種での知見である。これに対して本発明では、拡散の早い侵入型元素である炭素が拡散変態を律速するような低中炭素鋼においても、Cの拡散変態を生じさせない急速加熱を行うことで、無拡散型変態が実現したものである。無拡散型変態を起こさせることで、冷間加工で与えた転位が高温相であるオーステナイト相にそのまま引き継がれ、あたかもオーステナイト相を加工した状態を得ることが可能となる。
【0019】
無拡散変態を生じさせる駆動力を得る上で過昇温することが熱力学的に不可欠である。従って加熱温度は、Ac3点+150℃以上とすることが必要であり、Ac3点+200℃以上であると望ましい。Ac3点+150℃に満たない温度への加熱は拡散変態が生じてしまう。また加熱温度が高すぎると、無拡散変態を実現させて得られた加工状態のオーステナイト相の再結晶が発生し、転位が消滅してしまうため1200℃までに抑えることが望ましい。
【0020】
加熱時間は無拡散変態させるには1秒もあれば十分であるが、鋼材中心までの加熱のために5秒以上確保することが望ましい。さらに冷間加工で与えたひずみと、急昇温逆変態で与えたひずみを効率よく冷却でのマルテンサイト変態に引き継ぐために20秒未満に制御することが望ましく、10秒未満であればより望ましい。
【0021】
冷却工程では通常の焼入れと同様に、臨界冷却速度以上で急冷しマルテンサイト変態を起こさせればよい。冷却速度を大きくするほどラスの微細化には効果的であり、焼き割れの生じない範囲において100℃/s以上の冷却速度にすることが効果的である。
【0022】
これまでは、オーステナイト粒を微細化することで間接的にパケットサイズを微細化することに留まっていたが、本発明方法によればオーステナイト粒を微細にすることに加えて、パケットサイズを更に微細化することが可能であり、靭性を高めることで、マルテンサイト鋼の高強度化を阻害する耐腐食疲労や耐遅れ破壊などの様々な問題点を克服することが可能であり、従来にない高強度かつ高靭性なマルテンサイト組織を得ることができる。
【0023】
加熱装置は特に定めないが適用する製品に合わせて適宜選択すれば良く、直火式のガス加熱炉,誘導加熱装置,通電式の加熱装置,イメージ炉などが例示できる。また、焼入れ後の焼戻し工程も適宜選択すれば良く、電気炉焼戻しでもかまわないし、溶融金属浴による焼戻しや高周波加熱焼戻しでもよい。
【0024】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の主旨に徴して設計変更することはいずれも本発明の技術的範囲内に含まれるものである。
【0025】
【実施例】
表1に示す鋼材を用いて、加工度5〜50%の範囲で伸線加工し、急速加熱焼入れした後、鉛焼戻しを行い、強度を1600〜2200MPaに調整した。
【0026】
【表1】

Figure 0004173618
【0027】
なお、靭性の評価は、以下に示す陰極CH寿命により行い、寿命1000秒を超えるものが実用に適する靭性を有するものであることから、寿命1000秒を靭性の合否判定基準とした。即ち、線材から放電加工により長さ65mm,幅15mm,厚さ1.5mmの板状の試験片を切り出し、図1に示す治具1にて4点で支え、曲げ応力1400MPaを与えた。上記試験片2を装着した治具1を、0.5mol/lの硫酸と0.01mol/lのKSCNの混合液に浸し、陽極に白金電極を用い、陰極電位−700mVを付加することで、試験片2に電気化学的に水素を供給した。電位付与後、曲げ応力を与えた試験片が破断するまでの時間を測定し、靭性を評価した。これは特性の優れるものは寿命が長いが、靭性に乏しい材料は、それ以下の時間で早期破断する特徴を利用した試験方法である。
【0028】
また旧オーステナイト平均粒径Dは、常法の組織現出方法によって得られる旧オーステナイト粒の平均粒切片により求めた。
【0029】
さらに平均マルテンサイトラス長さの測定は、透過型電子顕微鏡にて観察される10μm×14μmの視野中に観察される任意のマルテンサイトラス長さを10個測定し、5視野での平均値を求めた。なお、本発明例であるNo.3の電子顕微鏡写真を図2に、比較例であるNo.8の電子顕微鏡写真を図3に示す。
【0030】
結果は、表2に示す。
【0031】
【表2】
Figure 0004173618
【0032】
ラスの平均長さが4.0μm以下であるNo.1〜7の本発明例では、十分な強度と優れた靭性を有することが分かる。これに対してラスの平均長さが4.0μmを超えるNo.8〜14の比較例では、靭性に乏しい。
【0033】
更に、表2の試験結果の中で、旧オーステナイト平均粒径に対する平均マルテンサイトラス長さの比(以下、相対比Aという)と陰極CH寿命をプロットしたグラフを図4に示す。相対比Aを30%以下とすることにより優れた靭性が得られることが分かる。
【0034】
また、図5には、表2の試験結果の中で、引張強度と陰極CH寿命(靭性)のデータをプロットしたグラフである。一般的には、強度が大きくなると靭性は低下するが、本発明例では、強度が大きくなっても靭性は高く維持されていることが分かる。
【0035】
【発明の効果】
本発明は以上の様に構成されているので、自動車用のばねやボルトとして用いても十分な強度を有すると共に、靭性にも優れたマルテンサイト鋼及びその製造方法が提供できることとなった。
【図面の簡単な説明】
【図1】陰極CH寿命の測定方法を示す説明図である。
【図2】本発明に係る高靭性マルテンサイト鋼の金属組織を撮影した電子顕微鏡写真である。
【図3】比較例のマルテンサイト鋼の金属組織を撮影した電子顕微鏡写真である。
【図4】マルテンサイト鋼の前記相対比Aと陰極CH寿命の関係を示すグラフである。
【図5】マルテンサイト鋼の引張強度と陰極CH寿命の関係を示すグラフである。
【符号の説明】
1 治具
2 試験片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high toughness martensitic steel and a method for producing the same, and a high strength spring and a high strength bolt using the high toughness martensitic steel.
[0002]
[Prior art]
In recent years, there has been a growing need for weight reduction of steel materials used for improving the fuel efficiency of automobiles, and higher strength is required for high strength steels such as spring steel and bolt steel.
[0003]
Martensitic steel is used as the above-mentioned high-strength steel, but there is a deterioration of the toughness of the steel material as an adverse effect of increasing the strength. On the other hand, it is important to improve delayed fracture susceptibility and corrosion fatigue properties. Various techniques have been proposed.
[0004]
For example, Japanese Patent Publication No. 60-30736 discloses a method of generating fine martensite by induction heating and quenching for the purpose of improving the toughness of a cold-formed coil spring. However, since this is a technology for refining austenite grains by means of normal high-frequency heat treatment and indirectly refining martensite, the degree of toughness improvement is not fully satisfactory, and further toughening technology Development is desired.
[0005]
Japanese Patent Laid-Open No. 6-116637 discloses that the component composition contains a large amount (8 to 11%) of Ni and generates a shear-type reverse transformed austenite phase during the temperature rise, thereby producing untransformed austenite having a high dislocation density. A method for improving the toughness of martensitic steel by quenching is disclosed. However, there is a problem that Ni is an expensive element for positive use.
[0006]
Furthermore, Japanese Patent Application Laid-Open No. 11-229075 discloses a method for increasing the delayed fracture resistance of high-strength steel by limiting the component composition and limiting the rate of temperature rise and the rate of cooling. However, the range of use of this technology is limited to thick plates, the ultimate strength is a maximum of 1551 MPa in tensile strength, and the breaking stress indicating toughness is as low as 945 MPa, which is a high strength steel used for automobiles. And toughness is insufficient.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and intends to provide a martensitic steel having sufficient strength even when used as a spring or bolt for automobiles and having excellent toughness and a method for producing the same. Is.
[0008]
[Means for Solving the Problems]
The high-toughness martensitic steel of the present invention that has solved the above problems is characterized in that the prior austenite average particle diameter D is 20 μm or less and the average martensite lath length is 30% or less of the particle diameter D. It is. Moreover, it can be set as the martensitic steel which exhibits high toughness also by setting average martensitic lath length to 4.0 micrometers or less. In order to obtain sufficient strength, the C content is desirably 0.1% by mass or more.
[0009]
In producing the high toughness martensitic steel, a process of performing cold working at a true strain of 0.20 or more at a temperature of 500 ° C. or less, a heating rate of 50 ° C./s or more, and Ac 3 points + 150 ° C. or more and 1200 ° C. A manufacturing method having a step of heating to less than 0 ° C. and a quenching step of quenching at a cooling rate of 100 ° C./s or more may be employed, and the heating time is desirably 5 seconds or more and less than 10 seconds.
[0010]
The high toughness martensitic steel according to the present invention is suitable as a high strength spring or a high strength bolt.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various studies to increase the toughness of martensitic steel, the present inventors have found that there is a martensitic metal structure that is extremely excellent in increasing the toughness. Specifically, in the ratio of the average crystal grain size of prior austenite to the average length of lath that is the substructure of martensite, the toughness is reduced by reducing the martensite lath length to 30% or less of the prior austenite grain size. The present inventors have found that it is possible to improve, and have arrived at the present invention.
[0012]
Furthermore, the present inventors not only improve the toughness by the relative structure control as described above, but also as an absolute structure control condition, the average length of the lath as the substructure of martensite is 4.0 μm or less. As a result, it was found that a martensitic steel having excellent toughness can be obtained. The average length of the martensite lath exceeds at least 4 μm and is usually 5 μm or more, but as is apparent from the examples described later, it is preferably 4.0 μm or less, and if it is 3.0 μm or less. Better toughness can be obtained.
[0013]
Regarding the component composition, from the viewpoint of securing the strength of martensite, the C content is preferably 0.1% or more, and more preferably 0.2% or more. The upper limit is desirably 0.6% at which twinned martensite having low toughness starts to be the main component, and more desirably 0.5% or less.
[0014]
Elements such as Si, Mn, P, S, Al, N, and B may be added or reduced in an appropriate amount according to the application. For example, in the case of spring steel, Si may be added to increase sag resistance. It is desirable to contain 1% or more.
[0015]
V, Nb, Ti, and Hf are elements that generate carbides and increase the strength with a small amount of addition, and also have the effect of improving delayed fracture resistance as a hydrogen trap site, but it is desirable to contain V, Nb is too much Since the toughness decreases, the total amount is preferably 0.2% or less.
[0016]
Mo and Cr are effective elements for controlling the hardenability and adjusting the strength balance by charcoal and nitride. However, if too much, the toughness is adversely affected, so it is desirable to make it 1% or less.
[0017]
Next, a method for producing a high toughness martensitic steel according to the present invention will be described. That is, it is very important to control the degree of cold work before the rapid heating and quenching process, and it is not a simple fine martensite structure by carrying out strong work of 0.20 or more with true strain. The substructure can be controlled. Conventionally, in the case of a wire rod, it was common to draw the wire with a low degree of processing for the purpose of making a wire diameter (for example, Japanese Patent Publication No. 3-6981). In the present invention, by performing sufficient pre-processing, the martensite substructure can be controlled by simple heat treatment. In other words, by increasing the degree of wire drawing, the lath, which is the lower structure of martensite, is refined and randomly oriented to improve toughness. However, when the processing temperature exceeds 500 ° C., recovery proceeds and the effect of controlling the lower structure is diminished, so the upper limit was set to 500 ° C.
[0018]
The heating rate should be 50 ° C./s or higher, and it is desirable to heat at a rate of 100 ° C./s or higher. The phase transformation during the temperature rise of steel is usually a diffusion type phase transformation, similar to the phase transformation during cooling. However, since the atomic arrangement is refreshed in the diffusion transformation, the strain caused by cold working ( (Dislocation) is canceled. However, when the heating rate is increased and the driving force for reverse transformation is increased, the reverse transformation to the austenite phase becomes a non-diffusion type phase transformation as well as the martensitic transformation during cooling. In high alloy steels such as maraging steel and stainless steel, it is known that non-diffusion type reverse transformation at the time of temperature rise occurs at a normal heating rate. This is because a relatively slow diffusion substitutional element such as Ni or Cr is added in large quantities, and is a finding in steel types that can easily delay the diffusion transformation. On the other hand, in the present invention, even in a low-medium carbon steel in which carbon, which is an interstitial element that diffuses quickly, determines the rate of diffusion transformation, by performing rapid heating that does not cause C diffusion transformation, non-diffusion transformation Is realized. By causing a non-diffusion type transformation, it is possible to obtain a state in which dislocations given by cold working are directly carried over to the austenite phase, which is a high-temperature phase, as if the austenite phase has been worked.
[0019]
It is thermodynamically indispensable to overheat to obtain a driving force that causes a non-diffusion transformation. Accordingly, the heating temperature needs to be Ac 3 point + 150 ° C. or higher, and is preferably Ac 3 point + 200 ° C. or higher. Heating to a temperature lower than Ac 3 point + 150 ° C. causes diffusion transformation. If the heating temperature is too high, recrystallization of the austenite phase in the processed state obtained by realizing the non-diffusion transformation occurs and dislocations disappear, so that it is desirable to suppress the temperature to 1200 ° C.
[0020]
A heating time of 1 second is sufficient for non-diffusion transformation, but it is desirable to secure 5 seconds or more for heating to the center of the steel material. Furthermore, it is desirable to control the strain given by cold working and the strain given by rapid temperature increase reverse transformation to less than 20 seconds in order to efficiently take over the martensitic transformation by cooling, and more desirably less than 10 seconds. .
[0021]
In the cooling step, the martensite transformation may be caused by quenching at a critical cooling rate or higher, as in ordinary quenching. Increasing the cooling rate is more effective in reducing the fineness of the lath, and it is effective to set the cooling rate to 100 ° C./s or more in a range where no burning cracks occur.
[0022]
Until now, it has been limited to making the packet size indirectly smaller by making the austenite grains finer, but according to the method of the present invention, in addition to making the austenite grains finer, the packet size is made finer. By improving toughness, it is possible to overcome various problems such as anti-corrosion fatigue and delayed fracture that impede the strengthening of martensite steel. A strong and tough martensite structure can be obtained.
[0023]
The heating device is not particularly defined, but may be appropriately selected according to the product to be applied. Examples thereof include a direct-fired gas heating furnace, an induction heating device, an energizing heating device, and an image furnace. Further, the tempering step after quenching may be appropriately selected, and electric furnace tempering may be used, tempering with a molten metal bath or induction heating tempering may be used.
[0024]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limits the present invention, and any design changes may be made in accordance with the gist of the present invention. It is included in the range.
[0025]
【Example】
Using the steel materials shown in Table 1, the wire was drawn in a workability range of 5 to 50%, and after rapid heating and quenching, lead tempering was performed to adjust the strength to 1600 to 2200 MPa.
[0026]
[Table 1]
Figure 0004173618
[0027]
The toughness was evaluated based on the cathode CH life shown below, and those having a life exceeding 1000 seconds have toughness suitable for practical use. Therefore, the life of 1000 seconds was used as a criterion for acceptability of toughness. That is, a plate-like test piece having a length of 65 mm, a width of 15 mm, and a thickness of 1.5 mm was cut out from the wire by electric discharge machining, supported at four points by the jig 1 shown in FIG. 1, and given a bending stress of 1400 MPa. By immersing the jig 1 equipped with the test piece 2 in a mixed solution of 0.5 mol / l sulfuric acid and 0.01 mol / l KSCN, using a platinum electrode as an anode and applying a cathode potential of −700 mV, Hydrogen was supplied to the test piece 2 electrochemically. After applying the potential, the time until the test piece to which bending stress was applied was broken was measured to evaluate toughness. This is a test method using the feature that a material with excellent characteristics has a long life, but a material with poor toughness breaks early in less time.
[0028]
The prior austenite average particle diameter D was determined from the average grain section of the prior austenite grains obtained by a conventional structure revealing method.
[0029]
Further, the average martensite length was measured by measuring 10 arbitrary martensite lengths observed in a 10 μm × 14 μm field observed with a transmission electron microscope, and obtaining an average value in five fields. . In addition, No. which is an example of the present invention. The electron micrograph of No. 3 is shown in FIG. The electron micrograph of 8 is shown in FIG.
[0030]
The results are shown in Table 2.
[0031]
[Table 2]
Figure 0004173618
[0032]
The average length of the lath is 4.0 μm or less. It can be seen that Examples 1 to 7 have sufficient strength and excellent toughness. On the other hand, No. with an average length of lath exceeding 4.0 μm. In the comparative examples of 8 to 14, the toughness is poor.
[0033]
Furthermore, a graph plotting the ratio of the average martensite length to the prior austenite average particle diameter (hereinafter referred to as the relative ratio A) and the cathode CH lifetime among the test results in Table 2 is shown in FIG. It can be seen that excellent toughness can be obtained by setting the relative ratio A to 30% or less.
[0034]
FIG. 5 is a graph plotting data of tensile strength and cathode CH life (toughness) among the test results of Table 2. In general, as the strength increases, the toughness decreases, but in the examples of the present invention, it can be seen that the toughness is maintained high even when the strength increases.
[0035]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide martensitic steel having a sufficient strength and excellent toughness even when used as a spring or bolt for automobiles and a method for producing the same.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a method of measuring cathode CH lifetime.
FIG. 2 is an electron micrograph of a metal structure of high toughness martensitic steel according to the present invention.
FIG. 3 is an electron micrograph of a metal structure of a martensitic steel of a comparative example.
FIG. 4 is a graph showing the relationship between the relative ratio A of the martensitic steel and the cathode CH lifetime.
FIG. 5 is a graph showing the relationship between tensile strength and cathode CH life of martensitic steel.
[Explanation of symbols]
1 Jig 2 Test piece

Claims (3)

旧オーステナイト平均粒径Dが10μm以上20μm以下で、
平均マルテンサイトラス長さが、上記粒径Dの30%以下であるばね用またはボルト用の高強度高靭性マルテンサイト鋼を製造する方法であって、
500℃以下の温度にて少なくとも真ひずみ0.20以上の冷間加工を施す工程、
加熱速度50℃/s以上で、Ac3点+150℃以上、1020℃以下に加熱し、13秒以下(0秒を含む)の時間加熱する工程、
50℃/s以上の冷却速度で急冷する焼入れ工程
を有することを特徴とするばね用またはボルト用の高強度高靭性マルテンサイト鋼の製造方法。
The prior austenite average particle diameter D is 10 μm or more and 20 μm or less,
A method for producing a high-strength, high-toughness martensitic steel for springs or bolts having an average martensite lath length of 30% or less of the particle size D ,
A step of performing cold working at a true strain of 0.20 or more at a temperature of 500 ° C. or lower,
Heating at a heating rate of 50 ° C./s or more, Ac 3 points + 150 ° C. or more and 1020 ° C. or less, and heating for 13 seconds or less (including 0 seconds);
A method for producing a high-strength, high-toughness martensitic steel for springs or bolts, comprising a quenching step of quenching at a cooling rate of 50 ° C./s or more.
前記高強度高靭性マルテンサイト鋼は、C含有量が0.1質量%以上である請求項1に記載の製造方法The manufacturing method according to claim 1, wherein the high-strength, high-toughness martensitic steel has a C content of 0.1 mass% or more. 旧オーステナイト平均粒径Dが10μm以上20μm以下で、
平均マルテンサイトラス長さが、上記粒径Dの30%以下である高強度高靭性マルテンサイト鋼を用いて得られる高強度高靭性ボルト。
The prior austenite average particle diameter D is 10 μm or more and 20 μm or less,
A high-strength, high-toughness bolt obtained by using a high-strength, high-toughness martensitic steel having an average martensite lath length of 30% or less of the particle size D.
JP2000062575A 2000-03-07 2000-03-07 Manufacturing method of high strength and high toughness martensitic steel Expired - Lifetime JP4173618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062575A JP4173618B2 (en) 2000-03-07 2000-03-07 Manufacturing method of high strength and high toughness martensitic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062575A JP4173618B2 (en) 2000-03-07 2000-03-07 Manufacturing method of high strength and high toughness martensitic steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008137233A Division JP5014257B2 (en) 2008-05-26 2008-05-26 High strength and high toughness martensitic steel

Publications (2)

Publication Number Publication Date
JP2001247936A JP2001247936A (en) 2001-09-14
JP4173618B2 true JP4173618B2 (en) 2008-10-29

Family

ID=18582572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062575A Expired - Lifetime JP4173618B2 (en) 2000-03-07 2000-03-07 Manufacturing method of high strength and high toughness martensitic steel

Country Status (1)

Country Link
JP (1) JP4173618B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027956B2 (en) 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
CN104611525A (en) * 2015-02-06 2015-05-13 桂林理工大学 Heating method for refining 30# steel austenite grains
CN104611530A (en) * 2015-02-06 2015-05-13 桂林理工大学 Heating method for refining steel 40 austenite grains
WO2019063081A1 (en) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof

Also Published As

Publication number Publication date
JP2001247936A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
EP2465963B1 (en) High strength spring steel and steel wire
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP2007191776A (en) High-strength spring steel superior in brittle fracture resistance and manufacturing method therefor
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
JP2004143482A (en) High strength cold formed spring steel wire and its production method
US7404865B2 (en) Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
JP4109619B2 (en) High strength steel plate with excellent elongation and stretch flangeability
JP2004360005A (en) High strength pc steel wire having excellent delayed fracture property, and its production method
WO2002063055A1 (en) Heat-treated steel wire for high strength spring
JP2002180198A (en) High strength steel wire for spring
JP2001220650A (en) Steel wire, spring and producing method therefor
JP2007254775A (en) Self-piercing rivet and manufacturing method therefor
JP5014257B2 (en) High strength and high toughness martensitic steel
JP2007031735A (en) Hot-forged component having excellent delayed fracture resistance, and method for producing the same
JP4173618B2 (en) Manufacturing method of high strength and high toughness martensitic steel
JP3934303B2 (en) Method for producing high-strength martensitic steel
JP2001288538A (en) High strength steel for bolt excellent in delayed fracture resistance, bolt and method for producing the bolt
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP4451951B2 (en) Steel material for high strength springs
JP2864348B2 (en) High strength and high weldability steel rod or steel wire for prestressed concrete and method for producing the same
JP5288674B2 (en) Steel composition, process for producing the same and parts produced from said composition, in particular valves
JP2008057007A (en) Low alloy steel material and manufacturing method therefor
JP4664929B2 (en) High strength martensitic steel
JPH07300651A (en) High strength steel bar excellent in delayed fracture resistance and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

EXPY Cancellation because of completion of term