JP4171612B2 - インバータ装置,半導体集積回路装置 - Google Patents
インバータ装置,半導体集積回路装置 Download PDFInfo
- Publication number
- JP4171612B2 JP4171612B2 JP2002148154A JP2002148154A JP4171612B2 JP 4171612 B2 JP4171612 B2 JP 4171612B2 JP 2002148154 A JP2002148154 A JP 2002148154A JP 2002148154 A JP2002148154 A JP 2002148154A JP 4171612 B2 JP4171612 B2 JP 4171612B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage signal
- circuit
- phase
- signal
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【発明の属する技術分野】
本発明は、例えばファンやポンプ等を負荷とする永久磁石モータを駆動制御するためのインバータ装置、このインバータ装置に使用される半導体集積回路装置に関する。
【0002】
【発明が解決しようとする課題】
インバータ装置における駆動方式の1つに、永久磁石モータたるブラシレスモータの回転子の位置を検出して位置信号を得て、その位置信号に基づいて固定子巻線に対する通電位相角(転流タイミング)を決定するものがある。斯様な駆動方式では、位置信号の位相がモータの回転数や負荷トルクなどに応じてずれるため、通電位相においてもずれを生じ、モータの効率が低下してしまうという問題がある。
【0003】
この問題を解決する従来技術として、例えば特開平7−111795号公報に開示されているものがある。この従来技術では、モータの回転数及び負荷トルクを検出し、それらの検出値に応じた補正位相値をマイクロコンピュータが記憶装置のデータマップより読み出す。そして、その補正位相値に相当する時間を演算して通電切換信号の出力タイミングを補正することで、モータを最適な位相で120°通電して駆動するようにしている。
【0004】
しかしながら、この従来技術においては、補正位相値に相当する時間を得るためにマイクロコンピュータが複雑な演算を行う必要があり、その演算を行うための制御プログラムを作成する必要がある。また、その演算を行うために、マップを含む各種データを記憶するための記憶装置も必要となる。更に、位相を最適に補正した場合でも、モータを矩形波によって120°通電するため、振動や騒音が発生するという問題があった。
【0005】
そこで、本発明の発明者は、特開2001−37279に開示されている技術を考案した。この技術は、パルス発生回路が永久磁石モータの回転子の位置に応じて出力される三相の位置信号Hu〜Hwの変化周期T内に複数個のクロックパルスCKを発生すると、位相推定回路は、そのクロックパルスCKの数を位置信号Huの立上がりエッジを基準としてカウントすることで回転子の詳細な位相を推定する。そして、電圧信号形成回路は、回転子の位相に応じた所定の電圧信号VSIN をメモリから読み出して形成出力する。
【0006】
この時、位相補正回路は、位置信号Huの立上がりエッジにおいて位相推定回路のカウンタに位相補正値PC をセットすることで位相を補正するが、その位相補正値PC として、永久磁石モータ6の回転数に応じた電圧信号と負荷トルクに応じた電圧信号とを加算してA/D変換した値を用いるように構成したものである。
【0007】
斯様に構成された上記技術によれば、永久磁石モータの回転数及び負荷トルクに応じて変動する位相のずれを補正して適切な転流タイミングで各相巻線に通電を行い、永久磁石モータを高い効率で運転することができる。そして、マイクロコンピュータを用いて複雑な演算を行ったりデータを記憶するための記憶装置を用いる必要がないので、構成が簡単になると共に補正処理を短時間で行うことができる、といった効果が得られるようになり、技術課題をある程度解決することができた。
【0008】
しかしながら、その後、発明者が研究を進めた結果、特開2001−37279で開示した技術では、通電位相の補正が適切に行なわれているとは言い難い部分があった。
【0009】
本発明は上記事情に鑑みてなされたものであり、その目的は、通電位相の補正をより適切に行なうことができるインバータ装置、このインバータ装置に使用される半導体集積回路装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1載のインバータ装置は、永久磁石モータを構成する回転子の回転位置に応じ、複数相の固定子巻線に発生する誘起電圧に対して一定の位相関係を有する位置信号を出力する位置信号出力手段と、
前記位置信号の変化周期を測定する周期測定手段と、
前記変化周期内に複数個のクロックパルスを発生するパルス発生手段と、
前記クロックパルスの発生数をカウントするカウンタを備え、前記位置信号の変化するタイミングを基準とする前記カウンタのカウント値に基づいて前記回転子の位相を推定する位相推定手段と、
前記タイミングにおいて、前記カウンタに補正値をセットして前記回転子の位相を補正する位相補正手段と、
前記回転子の位相に応じて所定の電圧信号を形成する電圧信号形成手段と、
PWM信号の搬送波を出力する搬送波発生手段と、
前記電圧信号の信号レベルと前記搬送波の信号レベルとを比較して、駆動信号を形成する駆動信号形成手段と、
前記駆動信号に基づいて、前記複数相の固定子巻線に通電する駆動手段と、
前記永久磁石モータのトルクを検出し、検出したトルクに応じた電圧信号を出力するトルク検出手段と、
このトルク検出手段によって出力される電圧信号と、前記永久磁石モータの回転状態が反映される電圧信号とを乗算する乗算手段と、
この乗算手段によって出力される電圧信号をA/D変換するA/D変換手段とを備え、
前記乗算手段を、永久磁石モータの回転状態が反映される電圧信号と、トルク検出手段によって出力される電圧信号との何れか一方の電圧信号レベルに応じて連続的に出力されるパルス信号の振幅を変化させると共に、前記パルス信号のデューティを他方の電圧信号レベルに応じて変化させるようにパルス変調を行うパルス変調手段と、このパルス変調手段によって出力されるパルス信号を平均化処理する平均化手段とで構成し、
前記位相補正手段は、前記A/D変換手段によって出力されるデジタルデータを補正値とすることを特徴とする。
【0011】
即ち、モータのトルクを増加させるために通電電流を増加させる場合、電流は、巻線が有するインダクタンス分により所定の傾きをもって増加することになるので、電流波形は遅れ位相側にシフトする傾向を示す。そして、モータのトルクは巻線に通電される電流と巻線に発生する誘起電圧との積に比例するので、トルクの発生効率を最適に維持するためには、電流の増加に応じて通電位相を進み側にシフトさせる必要がある。
【0012】
一方、モータの回転数を上昇させようとすると、その上昇に応じて通電周期が短くなり、同じ通電期間に対応する通電位相は大きくなるから、モータのトルクと回転数とをパラメータとして通電位相を補正するには、両者のパラメータを乗算した結果に基づいて行うことが適切である。従って、請求項1のように構成することで、位相補正をより適切に行なうことができるようになる。
また、パルス変調手段によって出力されるパルス信号は、2つの電圧信号のレベルに応じて振幅とデューティとが夫々変化するので、このようなパルス変調を行なうことは、2つの電圧信号を乗算することと等価である。そして、そのパルス信号が平均化処理された信号のレベル(直流レベル)は、2つの電圧信号の乗算結果を反映したものとなるので、簡単な構成によってアナログ信号の乗算を行なうことができる。
【0013】
この場合、請求項2に記載したように、永久磁石モータの回転数を検出し、検出した回転数に応じた電圧信号を出力する回転数検出手段を備え、
乗算手段を、トルク検出手段によって出力される電圧信号と、前記回転数検出手段によって出力される電圧信号とを乗算するように構成すると良い。斯様に構成すれば、位相補正を永久磁石モータの実際の回転数に応じて適切に行なうことができる。
【0014】
また、請求項3に記載したように、乗算手段を、トルク検出手段によって出力される電圧信号と、永久磁石モータの回転速度を設定するために外部より与えられる速度指令とを乗算するように構成しても良い。または、請求項4に記載したように、電圧指令を永久磁石モータの回転速度を設定するために外部より与えられる速度指令と回転数検出手段によって出力される電圧信号との差に応じて出力する速度制御手段を備え、乗算手段を、トルク検出手段によって出力される電圧信号と前記電圧指令とを乗算するように構成しても良く、斯様に構成した場合も、位相補正を適切に行なうことができる。
【0015】
以上の場合において、請求項5乃至8に記載したように、トルク検出手段を、駆動手段に駆動用電源として供給される直流電源の電流を検出する電流検出手段と、
この電流検出手段によって検出される電流値をサンプル処理して電圧信号を出力する電流値処理手段とで構成し(請求項5)、具体的には、電流値処理手段を、電流検出手段によって検出される電流値を平均値処理する(請求項6)、また、サンプルホールド処理する(請求項7)、また、ピークホールド処理する(請求項8)ように構成すると良い。
【0016】
即ち、直流電源の電流値は永久磁石モータの負荷トルクに比例する。また、このような直流電源は、通常交流電源を整流して生成されるため電流値の検出レベルは常に変動する。従って、その電流値の検出信号を、例えば平滑回路などにより平均値処理したり(請求項6)、また、サンプルホールド回路によりサンプルホールド処理したり(請求項7)、或いは、ピークホールド回路によりピークホールド処理する(請求項8)ことで、直流電源電流の検出レベルを適切にサンプル処理してA/D変換し、位相補正手段に出力することができる。
【0019】
請求項9記載の半導体集積回路装置は、請求項1乃至8の何れかに記載のインバータ装置に使用される周期測定手段と,パルス発生手段,位相推定手段,位相補正手段,電圧信号形成手,搬送波発生手段,駆動信号形成手段,乗算手段,A/D変換手段を集積回路として構成する。従って、請求項1乃至8の何れかに記載のインバータ装置を小型に構成することができる。
【0020】
この場合、請求項10に記載したように、トルク検出手段と請求項2記載のインバータ装置に使用される回転数検出手段をも加えて集積回路として構成しても良く、斯様に構成すれば、インバータ装置を更に小型に構成することができる。
【0023】
【発明の実施の形態】
(第1実施例)
以下、本発明の第1実施例について、図1乃至図12を参照して説明する。電気的構成を示す図1において、直流電源1は、商用交流電源をダイオードブリッジなどにより全波整流し、平滑コンデンサ(何れも図示せず)により平滑して生成されたものである。その直流電源1の正,負両端子は、直流母線2a,2bを介してインバータ主回路(駆動手段)3の電源入力端子に接続されている。
【0024】
インバータ主回路3は、6個のトランジスタ4U,4V,4W及び4X,4Y,4Zを三相ブリッジ接続して構成されており、各トランジスタ4のコレクタ−エミッタ間には、フライホイールダイオード5U,5V,5W及び5X,5Y,5Zが接続されている。インバータ主回路3の出力端子3U,3V,3Wは、例えばブラシレスモータ等の永久磁石モータ6において、一端がスター結線されている各相固定子巻線(以下、単に巻線と称す)6U,6V,6Wの他方の端子に夫々接続されている。
【0025】
また、永久磁石モータ6は、それらの巻線6U,6V,6Wと所定の空隙を有するように配置され、永久磁石で構成される回転子6Rを有している。そして、永久磁石モータ6の内部には、回転子6Rの回転位置を検出するために、ホールICで構成される位置検出器(位置信号出力手段)7(7U,7V,7W)が配置されている。そして、位置検出器7(7U,7V,7W)によって出力される位置信号Hu,Hv,Hwは、周期測定回路(周期測定手段)8,位相補正回路(位相補正手段)9及び回転数検出回路(回転数検出手段)10に与えられている。
【0026】
位置信号Hu,Hv,Hwは、図2に示すように、各相巻線6U,6V,6Wに発生する誘起電圧Eu,Ev,Ewの正半波期間がハイレベル,負半波期間がロウレベルとなる信号に対して、例えば電気角で30°位相遅れとなる信号として出力されるように位置検出器7U,7V,7Wが配置されている。
【0027】
周期測定回路8は、位置信号Hu,Hv,Hwの何れかの信号レベルが変化するタイミングである立上がり,立下がりエッジを検出し、それらの出力間隔、即ち変化周期T(図3(b)参照)に相当する時間をカウンタ(図示せず)によりカウントする。そして、そのカウント値を周期データTD としてパルス発生回路(パルス発生手段)11に出力するようになっている。尚、前記カウンタのカウント周期は、変化周期Tに比較して十分短くなるように設定されている。また、変化周期Tは、電気角60°に相当する。
【0028】
パルス発生回路11は、例えばデジタルPLL回路を応用した周波数逓倍回路として構成されており、例えば、位置信号Hu〜Hwの変化周期Tに応じた周波数をfとすると、その周波数fを32逓倍した周波数32f(周期T/32)のクロックパルスCKを生成して出力するようになっている(図3(c)参照)。
【0029】
具体的には、例えば、周期測定回路8より与えられた周期データTD をラッチして5ビット右シフトし周期データTD/32を得ると、その周期データTD/32を、周期測定回路8のカウンタと同じカウント周期でダウンカウントする。そして、カウント値が0になった時点でクロックパルスを発生して位相推定回路(位相推定手段)12に出力し、それと同時に、次に与えられた周期データTD をラッチしてシフトした後、ダウンカウンタにセットする。以上の処理を繰り返すことで、周波数32fのクロックパルスCKが生成出力される。
【0030】
位相推定回路12は、例えば位置信号Huの立上がりエッジを基準(カウント値“0”)としてクロックパルスCKの入力数をカウンタによりカウントし、そのカウント値CNTを以て、永久磁石モータ6の回転子6Rの詳細な回転位置(位相)を推定する。即ち、カウント値“1”は、電気角60°/32=1.875°に相当することになる。従って、位相推定回路12は、“192”をカウントした時点で電気角360°に達して(図3(d)参照)、次周期の位置信号Huの立上がりエッジが与えられることになる。位相推定回路12によってカウントされたカウント値CNTは、電圧信号形成回路(電圧信号形成手段)13に与えられるようになっている。
【0031】
電圧信号形成回路13は、例えばROM及びD/A変換回路などで構成されており、図3(e)に示すように、正弦波の振幅率を有する電圧信号VSIN の波形データが記憶されている。尚、電圧信号VSIN の交流振幅の負の最大値がデータ“0”となるように、オフセットが加えられている。そして、位相推定回路12より与えられるカウント値CNTは、電圧信号VSIN の波形データの読出しアドレスとして与えられ、回転子6Rの回転位置に応じた波形データが読み出されるようになっている。
【0032】
また、電圧信号形成回路13には、外部より電圧指令(図示せず)が与えられるようになっており、読み出された電圧信号VSIN の波形データ値には、その電圧指令に応じた係数が乗じられるようになっている。そして、その波形データ値をD/A変換したアナログ電圧信号が駆動信号形成回路(駆動信号形成手段)14に出力されるようになっている。また、電圧信号形成回路13は、例えば、位置信号Huを基準としてU相に対応する電圧信号VSIN の波形データ値を読み出すと、その波形データ値を基準として120°,240°遅れ位相に対応する波形データ値をV相,W相に対応する波形データ値とする。そして、夫々をD/A変換して駆動信号形成回路14に出力するようになっている。
【0033】
三角波発生回路(搬送波発生手段)15は、図3(e)に示すように、PWM信号の搬送波たる三角波VTRを発生し、駆動信号形成回路14に出力するようになっている。駆動信号形成回路14は、コンパレータなどで構成されており、電圧信号形成回路13より与えられる電圧信号VSIN のレベルと、前記三角波VTRのレベルとを比較して、前者のレベルが高い場合にハイレベルとなるPWM信号Su,Sv,Swを出力する(図3(f)参照)。そのPWM信号は、フォトカプラなどで構成される図示しないベースドライブ回路を介してインバータ主回路3のトランジスタ4U,4V,4Wにベース信号として与えられるようになっている。また、トランジスタ4X,4Y,4Zには、前記ベース信号のレベルが反転されたものがベース信号として与えられる。
【0034】
一方、回転数検出回路10は、位置信号Hu〜Hwの何れか1つについて、例えば1秒当たりの立上がりエッジの出力回数を永久磁石モータ6の回転数としてカウントし、その回転数に応じたレベルの電圧信号Vf (永久磁石モータ6の回転状態が反映された信号)を乗算回路(乗算手段)18に出力することでF/V変換を行うようになっている。ここで、図4に示すように、永久磁石モータ6は回転数0〜60Hzの範囲で運転されるものとし、出力電圧Vf の範囲は、その回転数範囲に応じて、例えば0〜5Vでリニアに出力されるように設定されている。回転数が60Hzを超えた場合は、電圧Vf が5V一定で出力される。
【0035】
また、直流母線2bには、変流器などの電流センサ(電流検出手段,トルク検出手段)16が介挿されており、電流センサ16の検出信号は、ピークホールド回路17に与えられている。電流センサ16によって検出される直流電源電流は、交流電源を整流,平滑した電流(直流リンク電流)であるため、その検出信号IL は、図5に示すように交流電源周波数でレベルが変動している。ピークホールド回路(電流値処理手段,トルク検出手段)17は、コンデンサやオペアンプなどで構成される周知の回路であり、電流センサ16の検出信号のピークレベルVp をホールドして乗算回路(乗算手段,乗算装置)18に出力するようになっている。
【0036】
ここで、図6に示すように、永久磁石モータ6は負荷トルク0〜1N・mの範囲で運転されるものとし、出力電圧VT の範囲は、その負荷トルク範囲に応じて例えば0〜5Vでリニアに出力されるように設定されている。また、負荷トルクが1N・mを超えた場合は、VT が5V一定で出力される。
【0037】
乗算回路18は、詳細は後述するが、パルス変調動作を行なう回路で構成されており、回転数検出回路10及びピークホールド回路17より夫々出力される電圧信号レベルをアナログ的に乗算して、A/D変換回路(A/D変換手段)19に出力するようになっている。A/D変換回路19は、乗算回路18より与えられるアナログ電圧信号をA/D変換し、デジタルデータを位相補正回路9に出力するようになっている。ここで、図7に示すように、A/D変換回路19は、入力信号の電圧範囲0〜5Vを5ビットで変換し、“0”〜“32”のデジタルデータを出力する。
【0038】
位相補正回路9は、位置信号Huの立上がりエッジをトリガとして、A/D変換回路19より出力されるデジタルデータを位相補正値PC として位相推定回路12のカウンタにロードするようになっている。即ち、位相推定回路12のカウンタは、位置信号Huの立上がりでカウント値が本来“0”となるものであるが、位相補正回路9によってロードされるデータが初期値としてセットされることになる(図3(d)参照)。
【0039】
図8は、乗算回路18の内部構成を中心として示すものであり、図9は、乗算回路18の動作を示すタイミングチャートである。乗算回路18は、三角波発生回路(搬送波発生手段)20,比較回路(PWM信号出力手段)21,スイッチング部(スイッチング手段)22及びフィルタ回路(平均化手段)23によって構成されている。三角波発生回路20は、PWM信号の搬送波信号Vcを三角波で出力し(図9(a)参照)、比較回路21は、搬送波信号Vcと回転数検出回路10が出力する電圧Vfとを比較することでPWM信号VPWMを出力する(図9(b)参照)。
【0040】
スイッチング部22は、PWM信号VPWMに応じてピークホールド回路17が出力する電圧Vpをスイッチングする素子、例えばトランジスタで構成されている。従って、スイッチング部22が出力するパルス変調信号VPMは、図9(c)に示すように、検出電圧Vfのレベルに応じてPWMデューティが変化すると共に、検出電圧Vpのレベルに応じてパルス波高値が変化する波形となる。尚、図9(c)では、縦軸の振幅レベルを誇張して図示している。また、三角波発生回路20,比較回路21,スイッチング部22は、パルス変調手段24を構成している。
【0041】
即ち、検出電圧Vf,Vpが何れも5Vであるとすると、PWMデューティは100%でパルス波高値が5V、即ち5Vの直流信号となり、検出電圧Vf,VTが何れも2.5Vであるとすると、PWMデューティは50%でパルス波高値が2.5Vのパルス信号となる。従って、これらの動作は、検出電圧Vf,Vpの乗算を行なうことと等価である。そして、フィルタ回路23は、時定数が少なくとも搬送波信号Vcの周期よりも大きくなるように設定されているローパスフィルタとして構成されており、パルス変調信号VPMを平均化処理する。その結果、乗算回路18より出力される乗算出力信号VMPは、図9(d)に示すような直流信号として出力される。
【0042】
ここで、図10には、永久磁石モータ6のトルク[N・m]及び回転数[Hz]に基づく、乗算出力信号VMPの変化を示す。即ち、乗算出力信号VMPは両者の積として得られるので、同じトルクに対して回転数が変化することで出力信号VMPはリニアに変化する。
【0043】
また、図11は、本発明の発明者が実測した結果であり、モータの回転数とトルクとを変化させた場合にモータの効率が最大となる、乗算出力信号VMPに相当する電圧信号レベルを測定したものである。回転数が低く且つトルクが小さい領域においては、誘起電圧波形の歪が大きくなるため線形性を示さなくなる傾向にあるが、概ね理論と一致したものとなっている。
【0044】
ここで、図1において2点鎖線で囲んだ部分に内包される、周期測定回路8,位相補正回路9,パルス発生回路11,位相推定回路12,電圧信号形成回路13,駆動信号形成回路14,三角波発生回路15,乗算回路18及びA/D変換回路19は、半導体集積回路装置25として構成されている。
【0045】
次に、本実施例の作用について図12をも参照して説明する。外部より始動指令信号が出力されると、駆動信号形成回路14に接続されている始動信号発生回路(図示せず)が120°通電信号を一定時間出力し、永久磁石モータ6を回転させる。すると、巻線6U,6V,6Wに誘起電圧が発生し、位置検出器7U,7V,7Wは、その誘起電圧の発生に伴い回転子6Rにおいて発生する磁界の変化を検出して位置信号Hu,Hv,Hwを出力する。
【0046】
周期測定回路8は、位置信号Hu,Hv,Hwの立上がり,立ち下がりエッジを検出し、変化周期T(図3(b)参照)に相当する時間をカウントし、そのカウント値である周期データTD をパルス発生回路11に出力する。パルス発生回路11は、位置信号Hu〜Hwの変化周期Tに応じた周波数fを32逓倍した周波数32fのクロックパルスCKを生成して位相推定回路12に出力し(図3(c)参照)、位相推定回路12は、位置信号Huの立上がりエッジを基準としてクロックパルスCKの入力数をカウントする。
【0047】
この時、位相推定回路12には、位相補正回路9より位相補正値PC が初期値としてロードされる。その位相補正値PC は、上述したように、乗算回路18が出力電圧Vf,Vpを乗算した結果をA/D変換したものである。永久磁石モータ6の回転数が高くなると回転数検出回路10の出力電圧Vf が上昇し、永久磁石モータ6の負荷トルクが大きくなるとピークホールド回路17の出力電圧Vpが上昇する。従って、位相補正値PC は、回転数,負荷トルクの何れかが大きくなると大きくなり、永久磁石モータ6に対する通電位相(転流タイミング)が進み側となるように補正される。
【0048】
即ち、永久磁石モータ6の巻線6U,6V,6Wは抵抗及びインダクタンスで決定される時定数を有しているので、永久磁石モータ6のトルクを増加させるために通電電流を増加させると、これらの巻線6U,6V,6Wに流れる電流は印加電圧に対して時定数に相当する位相だけ遅れを生じる。この遅れ位相は永久磁石モータ6の回転数によらず一定であるから、回転数が高くなるほど(即ち、回転周期が短くなるほど)電流の位相遅れは相対的に増大することになる。
【0049】
そして、永久磁石モータ6のトルクは誘起電圧を巻線電流との積で発生するので、巻線電流に位相遅れが生じるとトルクが低下して効率が低下することになり、最悪の場合には脱調のおそれもある。以上の原理に基づいて、位相補正値PC を、永久磁石モータ6の回転数,負荷トルクの検出電圧の乗算結果に応じて通電位相が進み側となるように設定している。
【0050】
位相推定回路12によってカウントされるカウント値CNTは電圧信号形成回路13に与えられ、電圧信号形成回路13は、電圧信号VSIN の波形データをカウント値CNTに応じて読み出し、D/A変換して駆動信号形成回路14に出力する。そして、駆動信号形成回路14は、電圧信号VSIN のレベルと、前記三角波VTRのレベルとを比較してPWM信号Su,Sv,Swを出力する(図3(e),(f)参照)。
【0051】
すると、インバータ主回路3の出力端子3U,3V,3Wには、図8(b)に示すように、正弦波の振幅率に基づくPWM波形の駆動電圧Vu,Vv,Vwが発生して永久磁石モータ6が回転する。この時、各相巻線6U,6V,6Wには正弦波状の通電電流が流れる。
【0052】
以上のように本実施例によれば、パルス発生回路11は、位置信号Hu〜Hwの変化周期T内に32個のクロックパルスCKを発生し、位相推定回路12は、そのクロックパルスCKの数を位置信号Huの立上がりエッジを基準としてカウントして永久磁石モータ6の回転子6Rの位相を推定する。そして、電圧信号形成回路13は、回転子6Rの位相に応じた所定の電圧信号VSIN をメモリから読み出して形成する。この場合、乗算回路18は、回転数検出回路10の出力電圧Vfと、ピークホールド回路17の出力電圧Vpとを乗じた結果をA/D変換回路19を介して位相補正回路9に出力するようにした。
【0053】
即ち、特開2001−37279に開示されている技術においては、出力電圧VfとVpとを加算した結果に基づいて位相補正を行うようにしていたが、モータの回転数,トルクの変動に応じて発生する通電位相の遅れに正確に対応するものでなかったため、得られる補正量は不足ぎみとなり、モータの効率を最大にすることができなかった。
【0054】
これに対して、本実施例によれば、永久磁石モータ6の回転数或いは負荷トルクの上昇に応じて遅れを生じる永久磁石モータ6の通電電流位相を適切に進み側に補正することで、永久磁石モータ6の運転効率を高めることができる。そして、永久磁石モータ6の回転数及び負荷トルクに応じて変動する位相のずれを補正して適切な転流タイミングで各相巻線6U〜6Wに通電を行い、永久磁石モータ6を高い効率で運転することができる。そして、マイクロコンピュータを用いて複雑な演算を行ったり、データを記憶するための記憶装置を用いる必要がないので、構成が簡単になると共に補正処理を短時間で行うことができる。
【0055】
また、乗算回路18を、出力電圧Vpのレベルに応じて連続的に出力されるパルス信号VMPの振幅を変化させ、出力電圧Vfのレベルに応じて前記パルス信号VMPのデューティが変化するようにパルス変調を行うパルス変調手段24と、パルス信号VMPを平均化処理するフィルタ回路23とで構成した。
【0056】
即ち、パルス信号VMPは2つの電圧信号Vp,Vfのレベルに応じて振幅とデューティとが夫々変化するので、このようなパルス変調を行なうことは2つの電圧信号Vp,Vfを乗算することと等価である。そして、そのパルス信号VMPが平均化処理された信号のレベル(直流レベル)は、2つの電圧信号Vp,Vfの乗算結果を反映したものとなるので、簡単な構成によってアナログ電圧信号の乗算を行なうことができる。
【0057】
ここで、乗算回路18のように、極めて簡単な構成によって2つのアナログ信号をアナログ的に乗算するものは従来存在しなかった。従って、乗算回路18のような乗算装置は、本実施例のインバータ装置に適用するものに限ることなく、2つのアナログ信号をアナログ的に乗算する必要があるものについて広く適用することが可能である。
【0058】
また、本実施例によれば、直流電源1の電流を電流センサ16によって検出し、その検出信号のピークレベルをピークホールド回路17によりホールドするようにしたので、変動する直流電源電流の検出レベルを適切にサンプル処理してA/D変換し、位相補正回路9に出力することで、永久磁石モータ6の負荷トルクを位相補正値PC に適切に反映させることができる。
【0059】
更に、本実施例によれば、周期測定回路8,位相補正回路9,パルス発生回路11,位相推定回路12,電圧信号形成回路13,駆動信号形成回路14,三角波発生回路15,乗算回路18及びA/D変換回路19を半導体集積回路装置25として構成したので、インバータ装置を小型に構成することができる。
【0060】
(第2実施例)
図13及び図14は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。図13に示すように、第2実施例の電気的構成は、第1実施例の構成に、速度制御回路(速度制御手段)26を加えたものである。
【0061】
即ち、速度制御回路26の一方の入力端子には、外部より永久磁石モータ6の速度指令が電圧信号として与えられており、もう一方の入力端子には、回転数検出回路10によってF/V変換された電圧信号Vfが与えられている。そして、速度制御回路26は、速度指令と回転数検出回路10からの電圧信号Vfとの差に応じて、両者が一致するように電圧指令を生成して電圧信号形成回路13及び乗算回路18に出力するようになっている。乗算回路18は、第1実施例における電圧信号Vfに代えて、速度制御回路26が出力する電圧指令を乗算パラメータに用いている。その他の構成は第1実施例と同様である。
【0062】
次に、第2実施例の作用について図14をも参照して説明する。図14は、永久磁石モータ6を無負荷で運転させた場合における回転数検出回路10が出力する電圧信号Vfと、速度制御回路26が出力する電圧指令との関係を示すものである。この図14に示すように、無負荷時には、電圧信号Vfと電圧指令とが同じ電圧となるように回転数検出回路10におけるF/V変換レートを調整してある。
【0063】
そして、一定回転数(速度)で制御する場合、永久磁石モータ6に負荷がかかると、速度制御回路26は、速度を一定に維持するために電圧指令値を上昇させる。すると、乗算回路18においては、電圧指令と電圧信号Vpとが乗算されて位相指令値が上昇する。従って、永久磁石モータ6の負荷トルクが上昇するのに応じて、通電タイミング位相が進み側となるように補正が行われる。
【0064】
以上のように第2実施例によれば、速度制御回路26は、外部より与えられる速度指令と、その速度指令に応じて永久磁石モータ6が駆動された結果、回転数検出回路10が出力する電圧信号Vfとの差に応じて電圧指令を設定し、乗算回路18は、前記電圧指令と電圧信号Vpとを乗算するようにした。
【0065】
従って、永久磁石モータ6の負荷トルクが上昇するのに応じて、転流タイミングを進めるように補正することができる。また、永久磁石モータ6の回転数を、外部より与えられる速度指令に極力一致させるように制御することができる。
【0066】
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
第1実施例において、周期測定回路8は、位置信号Hu〜Hwの何れかの信号レベルが変化する周期を測定したが、何れか1つの位置信号の周期を測定しても良い。そして、位置検出器7U〜7Wを何れか1相のみについて設けても良い。
【0067】
パルス発生手段は、変化周期を32逓倍するものに限らず、2以上の整数であれば何逓倍でも良い。また、位相推定手段が各パルスの発生タイミング情報を予め得るようにすれば、変化周期を複数逓倍するものに限らず、例えば、1変化周期内に、複数個のパルスを発生させる構成であっても良い。
ピークホールド回路17に代えて、電流値処理手段として、電流センサ16が出力する検出電圧レベルを積分回路で平均化しても良いし、また、所定のタイミングでサンプルホールドするサンプルホールド回路を配置しても良い。
電圧信号形成手段において形成する電圧信号波形は、正弦波に基づくものに限らず、例えば、図15(a)に示すような波形であっても良い。このような波形の場合、永久磁石モータ6の端子電圧波形は略半周期の間0Vとなる。斯様な波形であっても120°通電信号に比較して永久磁石モータの振動や騒音を低減することは可能である。また、インバータ主回路3の最大出力電圧を高めることができる。
【0068】
搬送波発生手段は、三角波に限ることなく、搬送波として鋸歯状波を発生させるものでも良い。
位置信号出力手段は、位置検出器7U,7V,7Wに限ることなく、分圧抵抗やコンパレータなどを用いて、巻線6U〜6Vに発生する誘起電圧波形のゼロクロス点(極性変化点)を検出して位置信号を出力するものでも良い。
電圧信号形成回路13は、U,V,Wの各相毎に対応してROMを設けて、位相推定回路12より出力されるカウンタの同じアドレスに対して、V相対応のROMからはU相対応のROMに対して120°遅れの波形データ値が読み出されるようにし、W相対応のROMからはU相対応のROMに対して240°遅れの波形データ値が読み出されるようにしてデータを記憶させても良い。
【0069】
乗算回路18を、電圧信号Vf,Vpを入れ替えて、電圧信号Vfを電圧信号Vpのレベルに応じてデューティが変化するようにスイッチングしても良い。また、第2実施例において、速度制御回路26が出力する電圧指令に代えて、速度指令を乗算するように構成しても良い。
半導体集積回路装置25に、ピークホールド回路17と、回転数検出回路10とを加えたものを半導体集積回路装置として構成しても良く、斯様に構成すれば、インバータ装置を更に小型に構成することができる。
【0070】
【発明の効果】
請求項1載のインバータ装置によれば、乗算手段は、トルク検出手段によって出力される電圧信号と永久磁石モータの回転状態が反映される電圧信号とを乗算し、位相補正手段は、乗算手段によって出力される電圧信号をA/D変換したデジタルデータを補正値として、永久磁石モータの回転子の位相を推定する位相推定手段に出力するようにした。従って、位相補正を従来よりも適切に行なうことができる。また、パルス変調手段によって出力されるパルス信号が平均化処理された信号のレベルは、2つの電圧信号の乗算結果を反映したものとなるので、簡単な構成によってアナログ信号の乗算を行なうことができる。
【0071】
請求項9記載の半導体集積回路装置によれば、請求項1乃至8の何れかに記載のインバータ装置に使用される周期測定手段と,パルス発生手段,位相推定手段,位相補正手段,電圧信号形成手,搬送波発生手段,駆動信号形成手段,乗算手段,A/D変換手段を集積回路として構成するので、請求項1乃至8の何れかに記載のインバータ装置を小型に構成することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であり、インバータ装置の電気的構成を示す機能ブロック図
【図2】永久磁石モータの固定子巻線に発生する誘起電圧と位置信号との関係を示す図
【図3】各信号のタイミングチャート
【図4】回転数検出回路における、周波数(永久磁石モータの回転数)−電圧変換特性を示す図
【図5】電流センサによって検出される直流電源電流に応じた電圧波形図
【図6】ピークホールド回路におけるホールドレベルと永久磁石モータの負荷トルクとの関係を示す図
【図7】A/D変換回路におけるA/D変換特性を示す図
【図8】乗算回路内部の構成を中心として示す機能ブロック図
【図9】乗算回路の動作を示すタイミングチャート
【図10】永久磁石モータのトルク及び回転数に応じて変化する、乗算回路の出力特性を示す図
【図11】本発明の発明者が、モータの回転数とトルクとを変化させた場合にモータの効率が最大となる、乗算出力信号VMPに相当する電圧信号レベルを測定した結果を示す図
【図12】(a)は電圧信号VSIN 及び搬送波信号VTR、(b)は永久磁石モータの各相端子電圧、(c)はU−V相間電圧波形を示す
【図13】本発明の第2実施例を示す図1相当図
【図14】無負荷運転時における回転数検出回路が出力するF/V変換電圧信号と、速度制御回路が出力する電圧指令との関係を示す
【図15】変形例を示す図12相当図
【符号の説明】
1は直流電源、3はインバータ主回路(駆動手段)、6は永久磁石モータ、6U,6V,6Wは固定子巻線、6Rは回転子、7U,7V,7Wは位置検出器(位置信号出力手段)、8は周期測定回路(周期測定手段)、9は位相補正回路(位相補正手段)、10は回転数検出回路(回転数検出手段)、11はパルス発生回路(パルス発生手段)、12は位相推定回路(位相推定手段)、13は電圧信号形成回路(電圧信号形成手段)、14は駆動信号形成回路(駆動信号形成手段)、15は三角波発生回路(搬送波発生手段)、16は電流センサ(電流検出手段,トルク検出手段)、17はピークホールド回路(電流値処理手段,トルク検出手段)、18は乗算回路(乗算手段,乗算装置)、19はA/D変換回路(A/D変換手段)、20は三角波発生回路(搬送波発生手段)、21は比較回路(PWM信号出力手段)、22はスイッチング部(スイッチング手段)、23はフィルタ回路(平均化手段)、24はパルス変調手段、25は半導体集積回路装置、26は速度制御回路(速度制御手段)を示す。
Claims (10)
- 永久磁石モータを構成する回転子の回転位置に応じ、複数相の固定子巻線に発生する誘起電圧に対して一定の位相関係を有する位置信号を出力する位置信号出力手段と、
前記位置信号の変化周期を測定する周期測定手段と、
前記変化周期内に複数個のクロックパルスを発生するパルス発生手段と、
前記クロックパルスの発生数をカウントするカウンタを備え、前記位置信号の変化するタイミングを基準とする前記カウンタのカウント値に基づいて前記回転子の位相を推定する位相推定手段と、
前記タイミングにおいて、前記カウンタに補正値をセットして前記回転子の位相を補正する位相補正手段と、
前記回転子の位相に応じて所定の電圧信号を形成する電圧信号形成手段と、
PWM信号の搬送波を出力する搬送波発生手段と、
前記電圧信号の信号レベルと前記搬送波の信号レベルとを比較して、駆動信号を形成する駆動信号形成手段と、
前記駆動信号に基づいて、前記複数相の固定子巻線に通電する駆動手段と、
前記永久磁石モータのトルクを検出し、検出したトルクに応じた電圧信号を出力するトルク検出手段と、
このトルク検出手段によって出力される電圧信号と、前記永久磁石モータの回転状態が反映される電圧信号とを乗算する乗算手段と、
この乗算手段によって出力される電圧信号をA/D変換するA/D変換手段とを備え、
前記乗算手段は、
永久磁石モータの回転状態が反映される電圧信号と、トルク検出手段によって出力される電圧信号との何れか一方の電圧信号レベルに応じて連続的に出力されるパルス信号の振幅を変化させると共に、前記パルス信号のデューティを他方の電圧信号レベルに応じて変化させるようにパルス変調を行うパルス変調手段と、
このパルス変調手段によって出力されるパルス信号を平均化処理する平均化手段とで構成され、
前記位相補正手段は、前記A/D変換手段によって出力されるデジタルデータを補正値とすることを特徴とするインバータ装置。 - 永久磁石モータの回転数を検出し、検出した回転数に応じた電圧信号を出力する回転数検出手段を備え、
乗算手段は、トルク検出手段によって出力される電圧信号と、前記回転数検出手段によって出力される電圧信号とを乗算するように構成されていることを特徴とする請求項1記載のインバータ装置。 - 乗算手段は、トルク検出手段によって出力される電圧信号と、永久磁石モータの回転速度を設定するために外部より与えられる速度指令とを乗算するように構成されていることを特徴とする請求項1記載のインバータ装置。
- 電圧指令を、永久磁石モータの回転速度を設定するために外部より与えられる速度指令と回転数検出手段によって出力される電圧信号との差に応じて出力する速度制御手段を備え、
乗算手段は、トルク検出手段によって出力される電圧信号と、前記電圧指令とを乗算するように構成されていることを特徴とする請求項1記載のインバータ装置。 - トルク検出手段は、
駆動手段に駆動用電源として供給される直流電源の電流を検出する電流検出手段と、
この電流検出手段によって検出される電流値をサンプル処理して電圧信号を出力する電流値処理手段とで構成されることを特徴とする請求項1乃至4の何れかに記載のインバータ装置。 - 電流値処理手段は、電流検出手段によって検出される電流値を平均値処理することを特徴とする請求項5記載のインバータ装置。
- 電流値処理手段は、電流検出手段によって検出される電流値をサンプルホールド処理することを特徴とする請求項5記載のインバータ装置。
- 電流値処理手段は、電流検出手段によって検出される電流値をピークホールド処理することを特徴とする請求項5記載のインバータ装置。
- 請求項1乃至8の何れかに記載のインバータ装置に使用され、
周期測定手段と、パルス発生手段と、位相推定手段と、位相補正手段と、電圧信号形成手段と、搬送波発生手段と、駆動信号形成手段と、乗算手段と、A/D変換手段とを、集積回路として構成したことを特徴とする半導体集積回路装置。 - トルク検出手段と、請求項2記載のインバータ装置に使用される回転数検出手段をも加えて集積回路として構成したことを特徴とする請求項9記載の半導体集積回路装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148154A JP4171612B2 (ja) | 2002-05-22 | 2002-05-22 | インバータ装置,半導体集積回路装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148154A JP4171612B2 (ja) | 2002-05-22 | 2002-05-22 | インバータ装置,半導体集積回路装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003348876A JP2003348876A (ja) | 2003-12-05 |
JP4171612B2 true JP4171612B2 (ja) | 2008-10-22 |
Family
ID=29766849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002148154A Expired - Lifetime JP4171612B2 (ja) | 2002-05-22 | 2002-05-22 | インバータ装置,半導体集積回路装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4171612B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007060894A (ja) * | 2005-08-10 | 2007-03-08 | Internatl Rectifier Corp | 過電流保護回路からのブラシレスdcモータ平均電流を感知するための方法及び装置 |
TWI347078B (en) * | 2007-05-25 | 2011-08-11 | Delta Electronics Inc | Motor control method and device thereof |
JP5418769B2 (ja) * | 2009-07-27 | 2014-02-19 | コニカミノルタ株式会社 | ブラシレスモータの電気角推定方法およびブラシレスモータ |
TWI488423B (zh) * | 2010-03-02 | 2015-06-11 | Agave Semiconductor Llc | 利用位置校正脈寬調變之無刷式直流馬達控制方法及其所用之積體電路 |
KR102159616B1 (ko) * | 2012-08-30 | 2020-09-24 | 알레그로 마이크로시스템스, 엘엘씨 | 전기 모터의 권선 내에 검출되는 영전류에 따라 전기 모터에 인가되는 구동 신호의 위상을 자동적으로 조정하고 영전류를 검출하기 위한 전기 회로 및 방법 |
JP6805035B2 (ja) * | 2017-03-14 | 2020-12-23 | 株式会社東芝 | 集積回路 |
CN111954978B (zh) * | 2018-03-28 | 2024-01-05 | 新电元工业株式会社 | 驱动装置、驱动方法以及电动车辆 |
WO2019186757A1 (ja) * | 2018-03-28 | 2019-10-03 | 新電元工業株式会社 | 駆動装置、駆動方法、駆動プログラムおよび電動車両 |
WO2019186756A1 (ja) * | 2018-03-28 | 2019-10-03 | 新電元工業株式会社 | 駆動装置、駆動方法、駆動プログラムおよび電動車両 |
-
2002
- 2002-05-22 JP JP2002148154A patent/JP4171612B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003348876A (ja) | 2003-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7365506B2 (en) | Motor driving device, motor driving method, and motor apparatus | |
US7626350B2 (en) | Motor drive apparatus and motor drive method | |
US5420492A (en) | Method and apparatus of operating a dynamoelectric machine using DC bus current profile | |
TWI535187B (zh) | 用於改良無感測器無刷直流馬達中的零交叉偵測之方法及配置 | |
JP4575547B2 (ja) | モータの制御装置 | |
US20070296371A1 (en) | Position sensorless control apparatus for synchronous motor | |
KR101536787B1 (ko) | 모터 구동 제어 장치 | |
CN112448623A (zh) | 马达驱动电路及方法 | |
JP4171612B2 (ja) | インバータ装置,半導体集積回路装置 | |
US11658600B2 (en) | Motor controller, motor system and method for controlling motor | |
JP4031965B2 (ja) | 電動機の制御装置 | |
JP2006034086A (ja) | モータ駆動装置、モータ駆動方法及び電子装置 | |
JP3500328B2 (ja) | インバータ装置 | |
JP2004222482A (ja) | ブラシレス直流モータの制御装置及び方法 | |
JPH0884493A (ja) | ブラシレス直流モータの駆動方法及び駆動装置 | |
WO2021200845A1 (ja) | モータ制御装置、モータシステム及びモータ制御方法 | |
US11804797B2 (en) | Motor controller, motor system and method for controlling motor | |
US9385639B2 (en) | Switching controller for electric motors and related method of controlling electric motors | |
JPH1175396A (ja) | 位置センサレス・モータ駆動装置 | |
JP6805197B2 (ja) | モータ制御用集積回路 | |
JP6383128B1 (ja) | 電動機のインダクタンス起電圧の推定方法及び界磁位置推定方法 | |
JP6935349B2 (ja) | モータ駆動装置 | |
JP3296636B2 (ja) | ブラシレス直流モータの駆動方法 | |
JP2020048381A (ja) | モータ制御装置、モータシステム及びインバータ制御方法 | |
US20230111291A1 (en) | Motor controller, motor system and method for controlling motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080811 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4171612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |