JP4171355B2 - Molded power device - Google Patents

Molded power device Download PDF

Info

Publication number
JP4171355B2
JP4171355B2 JP2003178147A JP2003178147A JP4171355B2 JP 4171355 B2 JP4171355 B2 JP 4171355B2 JP 2003178147 A JP2003178147 A JP 2003178147A JP 2003178147 A JP2003178147 A JP 2003178147A JP 4171355 B2 JP4171355 B2 JP 4171355B2
Authority
JP
Japan
Prior art keywords
metal layer
layer
solder
metal
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178147A
Other languages
Japanese (ja)
Other versions
JP2005019447A (en
Inventor
尚彦 平野
信之 加藤
孝紀 手嶋
善次 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003178147A priority Critical patent/JP4171355B2/en
Priority to US10/859,130 priority patent/US7193326B2/en
Priority to DE102004030056.9A priority patent/DE102004030056B4/en
Priority to CNB2004100616490A priority patent/CN100353541C/en
Publication of JP2005019447A publication Critical patent/JP2005019447A/en
Priority to US11/702,498 priority patent/US7468318B2/en
Application granted granted Critical
Publication of JP4171355B2 publication Critical patent/JP4171355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁ゲート型バイポーラトランジスタ(以下IGBTと記す)などの半導体素子を備える半導体チップを樹脂モールドしたモールド型半導体装置に関するものである。
【0002】
【従来の技術】
従来、半導体素子が形成された半導体チップを樹脂にて封止した半導体パッケージが提案されている(特許文献1参照)。図5に、この従来の半導体パッケージ36を示す。
【0003】
半導体パッケージ36は、半導体基板上にIGBTを備えた半導体チップ37と、IGBTのコレクタ電極に接続される下側ヒートシンク38と、IGBTのエミッタ電極に接続される上側ヒートシンク39と、半導体装置37の上面に設置された内部ヒートシンク40とを備えて構成されている。各部材は、はんだ41を介して電気的に接続されている。また、半導体チップ37のゲート電極とリードフレーム42とが、ゲートワイヤ43を介して接続されている。そして、下側および上側ヒートシンク38、39のそれぞれの片面とリードフレーム42の一部が露出するように樹脂44にて封止され、半導体パッケージ36が形成されている。
【0004】
【特許文献1】
特開2003−110064号公報
【0005】
【発明が解決しようとする課題】
上述した半導体パッケージ36は、各部材を型内に設置したのち、溶かした樹脂44をその型に流し込むことで形成される。このとき、樹脂44が180℃とされることから、樹脂44の熱により、半導体パッケージ36を構成する各部材が高温になる。このとき、各部材の線膨張係数の差によって応力が発生するが、各部材を接合しているはんだ41によりその応力が吸収される。
【0006】
しかしながら、線膨張係数の差によって発生した応力が大きい場合、はんだ41がその応力を吸収しきれなくなり、この応力がIGBTのエミッタ電極やIGBTが形成された半導体基板に印加されることになる。そして、エミッタ電極や半導体基板がこの応力を受けると、エミッタ電極の電極材料となるAl層にクラックが入り、エミッタ電極が半導体基板からはく離するという問題が生じる。このような場合、IGBTが動作しなくなったり、動作したとしても、剥離箇所でのギャップにより熱伝導が良好に行われなくなり、放出されるはずの熱がIGBTから放出されず、IGBTが破壊されたりするという問題も生じる。
【0007】
また、当該半導体パッケージ36の実際の使用時においては、半導体素子の動作によって高温になったり、使用雰囲気の温度変動によって低温にさらされたりするため、当該半導体パッケージ36には大きな熱サイクルが印加される。この熱サイクルによっても同様に電極部には応力、あるいは歪みが生じ、前述と同様、電極の剥離、ひいてはIGBTの動作不良や破壊に至るという問題も懸念される。
【0008】
また、近年では、鉛フリーはんだなどの硬い材質のはんだが用いられるようになっている。このような硬いはんだを使用した場合、上記した問題がより生じ易くなる。
【0009】
本発明は上記点に鑑みて、さまざまな熱変化によって生じる応力により半導体素子が破壊されることを防止できるモールド型半導体装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するべく、本発明者らは、モールド型パワーデバイス(モールド型半導体装置)における半導体チップの電極材料と、この電極材料に接続されるはんだの材料との関係に着目した。その結果、半導体チップの電極材料とはんだの材料それぞれの降伏応力の関係において、はんだの材料の方が半導体チップの電極材料よりも降伏応力が小さくなるようにすることで、熱サイクルによって生じる応力をはんだによって吸収でき、電極材料にクラックが生じることを防止できるという効果を得られることが確認された。
【0011】
より詳しくは、半導体チップの電極材料が多層構造で構成される場合、はんだの材料の降伏応力が好ましくは多層構造を構成する各層の電極材料よりも小さく、少なくともの半導体チップに接続される下層側の電極材料よりも小さくなっていれば、上記した効果を得られることが分かった。
【0012】
また、半導体チップの電極材料には様々な種類があり、その種類毎に降伏応力が異なるが、半導体チップの電極材料として選択されたものの降伏応力に対して、はんだの材料の降伏応力が小さければ、上記した効果が得られることも確認している。すなわち、半導体チップの電極材料として、例えばAl層とNi層とAu層という3層構造が採用された場合、半導体チップに直接接続される最下層がAl層となる。このため、比較的降伏応力が小さいAl層よりも更にはんだの材料の降伏応力が小さくなっていることが要求される。また、半導体チップの電極材料として、例えばCu層とNi層とAu層という3層構造とされた場合、半導体チップに直接接続される最下層がCu層となる。この場合、比較的降伏応力が大きなCu層よりもはんだの材料の降伏応力が小さくなっていれば良いため、はんだの材料の選択肢が広がることになる。
【0013】
なお、ここでいう降伏応力とは、降伏現象、つまり、材料に負荷される応力が弾性限界を超えてある値に達すると応力の増加がほとんどないまま急激に塑性歪みが発生するという現象を引き起こすのに必要な応力を指す。一般的に、降伏に伴い応力が極大を示す場合には、極大点の応力が降伏応力とされるが、極大が明瞭に現われないような場合、0.2%の永久歪みを生じる応力(0.2%耐力)が実用的に降伏応力として扱われる。本明細書中においては、はんだや電極材料等の金属が明瞭に極大が現われない場合の一例であることから、0.2%耐力が降伏応力と定義されるものとして説明している。
【0014】
以上のような検討結果に基づき、請求項1に記載の発明では、半導体素子が形成された半導体チップ(1)の表面に金属層(13)およびPbフリーはんだ(14)を介して金属部材(24)が接合されてなるモールド型パワーデバイスにおいて、Pbフリーはんだの降伏応力を、金属層の降伏応力よりも小さくしたことを特徴としている。
【0015】
このように、金属層よりも降伏応力が小さいはんだ材料で金属層に接続されるPbフリーはんだを構成することで、熱サイクルによって生じる応力をPbフリーはんだによって吸収でき、電極材料にクラックが生じることを防止できる。請求項1に示すように、PbフリーはんだをSn−Cu−Niの3元系のはんだ材料で構成すれば、金属層よりも降伏応力を小さくすることが可能となる。
【0016】
請求項1に記載の発明では、金属層は、半導体素子の表面に形成され、半導体素子と電気的接続がなされる第1金属層(13a)を有しており、Pbフリーはんだの降伏応力を、少なくとも第1金属層の降伏応力よりも小さくしたことを特徴としている。このように、Pbフリーはんだの降伏応力が半導体素子と電気的接続がなされる第1金属層の金属材料の降伏応力よりも小さくなっていれば、上記の効果を得ることができる。
【0017】
請求項1に示すように、金属層は、第1、第2金属層を含む多層金属層で構成され、第1金属層はAlを含む金属材料で、第2金属層はNiを含む金属材料で構成される。この場合にも、Pbフリーはんだの降伏応力が第1金属層よりも小さければ良い。
【0018】
請求項1に記載の発明では、Al層の厚みは、少なくとも2μmとされていることを特徴としている。このように、Al層の厚みを2μm以上とすることにより、応力による歪みの影響により半導体基板自体に亀裂が生じることを防止することができる。
【0020】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0021】
【発明の実施の形態】
(第1実施形態)
図1は、本発明の一実施形態が適用された半導体チップ1の断面構造を示す図である。また、図2は、半導体チップ1が樹脂モールドされたモールド型パワーデバイスの断面構造を示す図である。以下、これらの図に基づいて半導体チップ1およびモールド型パワーデバイスの構成について説明する。
【0022】
半導体チップ1は、p+型基板2の主表面上にn-型ドリフト層3を形成した半導体基板を用いて形成されたものであり、半導体チップ1は、セル部と、セル部の外周に形成された外周耐圧部とが備えられた構成となっている。
【0023】
セル部には、多数のIGBTが形成されている。n-型ドリフト層3の表層部にはp型ベース層4が形成され、p型ベース層4の表層部にはn+型ソース層6が形成されている。これら、n+型ソース層6とp型ベース層4とを貫通してn-型ドリフト層3に達するようにトレンチ7が形成され、このトレンチ7の内壁表面にゲート絶縁膜8とゲート層9とが順に形成され、これらトレンチ7、ゲート絶縁膜8、ゲート層9からなるトレンチゲート構造が構成されている。また、n+型ソース層6の一部とトレンチゲート構造とが絶縁膜12aにて覆われている。p+型基板2の裏面には、当該裏面と接するようにコレクタ電極18が形成されている。
【0024】
さらに、IGBTの表面にエミッタ電極13が形成されている。このエミッタ電極13は、例えばAl−Si−Cu等のAlを主成分とするAl合金からなる第1金属層13aと、Niからなる第2金属層13bと、Auからなる第3金属層13cとを有した多層金属層から構成されている。このエミッタ電極13における第3金属層13cの表面にPbフリーのはんだ14が接続された構成となっている。なお、図1においてエミッタ電極13は、便宜上はんだ14を溶融する前の状態で示している。
【0025】
第1金属層13aは、複数のトレンチゲート構造上にまたがるように形成され、p型ベース層4とn+型ソース層6に接するように形成され、多数のIGBTを共通に接続している。この第1金属層13aは、例えばスパッタリングにより形成され、膜厚が約2μm以上とされている。これは、第1金属層13aが2μm未満になると、応力による歪みの影響が第1金属層13aではなく半導体基板そのものに作用してしまうからである。このため、応力による歪みの影響によって半導体基板自体に亀裂が生じたりすることを防止するために、第1金属膜13aを上記の膜厚に設定している。第1金属層13aは、上述したようにAl合金で構成されており、材質としての降伏応力がはんだ14よりも高いものとなっている。
【0026】
第2金属層13bは、第1金属層13aを構成する金属と第3金属層13cの双方と接合性が良好なNiで構成され、例えば、湿式プロセス、具体的には湿式無電解メッキにより5μm程度の膜厚で形成されている。この第2金属層13bを構成するNiは、はんだ14と比べて硬い材料であり、その降伏応力もはんだ14よりも高いものとなっている。
【0027】
第3金属層13cは、Niの酸化を抑制してはんだ14の濡れ性が良好となるように、例えばめっき形成されたAuで構成されている。この第3金属層13cは、例えば0.1μm程度の膜厚とされているが、はんだ14が溶融してはんだのSnと第2金属層13bのNiが合金層を形成する際に散逸してしまい、ほとんど厚みが残らない場合もある。この第3金属層13cを構成するAuは、柔らかい材料であるが、第1、第2金属層13a、13bと比べて非常に薄く、またはんだ溶融後にはほとんど層状に存在していないため、線膨張係数の相違に基づいて生じる応力による歪みの影響を考える上では、考慮に入れる必要はない。
【0028】
はんだ14は、Sn−Cu−Niの3元系はんだ材で構成されており、その組成は、例えば、Cuが0.5〜2.0重量%程度、Niが0.05〜0.1重量%程度、Snが残部、および微量な混入成分からなっている。このような組成比で構成されたはんだ14は、降伏応力が小さく、具体的には第1金属層13aよりも小さくなる。
【0029】
図3に、素子電極材となる第1金属層13aの材料と本実施形態に示されるはんだ14および従来の代表的なPbフリーはんだ材それぞれの温度(℃)と降伏応力[MPa]との関係を示す。ただし、この図は、各材料を同一の形態で、−40〜150℃の温度域において、比較評価した一例である。サンプル形状は一般的な引張試験やねじり試験に用いられる形状等を参照すればよい。なお、ここでいう従来の代表的なPbフリーはんだ材とは、Sn−Ag−Cuの3元系はんだ材を指している。
【0030】
この図から分かるように、第1金属層13aの材料とはんだ14の材料それぞれの降伏応力の関係は、モールド型パワーデバイスが使用され得るあらゆる温度域において、第1金属層13aの方がはんだ14よりも大きくなっている。本実施形態では、このような材質を用いてはんだ14を形成している。
【0031】
このような材質を用いてはんだ14を形成した場合に、半導体基板表面近傍でどの程度の大きさのせん断応力が発生するかを調べてみた。具体的には、第1金属層13aとしてAl−Si−Cuを用い、モールド型パワーデバイスが使用され得る温度域において第1金属層13aよりも降伏応力が小さくなるSn−Cu−Niの3元系はんだ材ではんだ14を形成した場合と、モールド型パワーデバイスが使用され得る温度域の一部において第1金属層13aよりも降伏応力が小さくなるSn−Ag−Cuの3元系はんだ材ではんだ14を形成した場合、それぞれで半導体基板表面近傍で生じるせん断応力を比較してみた。その結果を図4に示す。
【0032】
この図に示されるように、Sn−Cu−Niの3元系はんだ材ではんだ14を形成した場合には、Sn−Ag−Cuの3元系はんだ材を用いた場合と比べて、せん断応力が小さくなっていることが分かる。このように、本実施形態では、第1金属層13aとしてAl合金を用いた場合において、モールド型デバイスが使用され得る温度域において第1金属層13aよりも降伏応力が小さくなるSn−Cu−Niの3元系はんだ材ではんだ14を形成している。このため、半導体基板表面近傍に生じるせん断応力も小さなものとなっている。
【0033】
一方、外周耐圧部には、n-型ドリフト層3の表層部に形成されたp型層5と、LOCOS酸化膜11および絶縁膜12bを介して、p型層5の上に形成されたフィールドプレートとしての第1の電極15とが備えられている。また、n-型ドリフト層3の表層部に形成されたn+型層10と、このn+10と接するように形成された最外周リングとしての第2の電極16が備えられている。これら第1、第2の電極15、16により、半導体チップ1にサージが印加されたときにIGBT内部に発生する電界集中を緩和させ、電界強度を低下させられるようになっている。そして、第1、第2の電極15、16を覆うパッシベーション膜17が形成され、外周耐圧部の表面が保護されている。
【0034】
このように構成された半導体チップ1が樹脂部20にて封止されて、図2に示す半導体パッケージ21が形成されている。
【0035】
図2に示されるように、半導体パッケージ21は、半導体チップ1と共に、下側ヒートシンク22、上側ヒートシンク23、内部ヒートシンク24、ゲートワイヤ25およびリード端子26が樹脂部20に封止された構成となっている。半導体チップ1に形成されたIGBTのゲート電極パッドとリード端子26とがゲートワイヤ25を介してワイヤボンディングされ、リード端子26の一部が樹脂部20から露出させられている。これにより、リード端子26を介して、外部からIGBTにゲート駆動電圧を印加できるようになっている。なお、ゲート電極パッドも、エミッタ電極部13と同様、下層側からAl合金層、Niメッキ層、Auメッキ層からなり、各トレンチゲート構造のゲート層9に接続している。Au層は上記の如く約0.1μm(0.2μm以下)であり、Alワイヤからなるゲートワイヤ25とのボンディング性も良好である。
【0036】
また、下側ヒートシンク22の上面と半導体チップ1の下面との間がはんだ27により、半導体チップ1の上面と内部ヒートシンク24の下面との間がはんだ14により、さらに、内部ヒートシンク24の上面と上側ヒートシンク23の下面との間がはんだ28により、それぞれ電気的に接続されている。このため、半導体チップ1に形成されたIGBTのエミッタ電極1は内部ヒートシンク24および上側ヒートシンク23を介して、また、IGBTのコレクタ電極18は下側ヒートシンク22を介して外部と電気的に接続できるようになっている。
【0037】
下側および上側ヒートシンク22、23は、それぞれIGBTのコレクタ電極18およびエミッタ電極13を通じて伝わってくる熱を逃がすと共に、IGBTの電流経路を構成するものであり、熱伝導性が良く、電気抵抗が低いCuなどで構成されている。これら下側および上側ヒートシンク22、23は共に、一面が樹脂部20から露出させられ、半導体チップ1から発せられる熱を放出し易くした構成とされている。
【0038】
内部ヒートシンク24は半導体チップ1のエミッタ電極16から伝わってくる熱を上側ヒートシンク23側へ逃がすと共に、エミッタ電極13と上側ヒートシンク23との電気的接続を図るものであり、例えばCuなどで構成される。
【0039】
このように構成されたモールド型パワーデバイスにおいては、上述したように、半導体チップ1に形成されたIGBTとの電気的接合を行うためのはんだ14が第1金属層13aよりも降伏応力が小さなSn−Cu−Niの3元系はんだ材で構成されている。このため、半導体基板表面近傍に発生し得るせん断応力も小さなものとなり、半導体チップ1を樹脂部20にて封止したとしても、第1金属層13aにクラックが発生することを防止することができる。したがって、エミッタ電極13の剥離やIGBTの破壊を防止することができる。また、IGBTの表面が破壊されることによって引き起こされる不具合、例えば電流が流れなくなったり、熱の流れが止まるなどによって素子そのものが破壊されたりすることも防止することができる。
【0040】
参考として、−40℃〜125℃の加熱冷却を3000サイクル繰り返すという液相冷熱サイクル試験により、本実施形態のようにSn−Cu−Niの3元系はんだ材ではんだ14を形成した場合とSn−Ag−Cuの3元系はんだ材を用いた場合、それぞれの場合における半導体基板表面近傍の様子を調べた。その結果、Sn−Ag−Cuの3元系はんだ材を用いた場合には、IGBTの表面に形成される電極層にクラックが発生してIGBTが破壊されていた。これに対し、本実施形態のようにSn−Cu−Niの3元系はんだ材を用いた場合には、IGBTの表面に形成される第1電極層13aにクラックが発生せず、IGBTも全く破壊されていなかった。この結果からも、本実施形態の構成を採用することで、エミッタ電極13の剥離やIGBTの破壊を防止できるといえる。
【0041】
(他の実施形態)
上記第1実施形態では、第1金属層13aをAl−Si−CuからなるAlを主成分とするAl合金で構成した場合において、それよりも降伏応力が小さくなる材質であるSn−Cu−Niではんだ14を形成する場合について説明している。Al合金としてはAl-Cu、Al−Siもしくは他の添加元素を含むものが採用可能である。また純Alを採用してもよい。要は、はんだ14の材質の降伏応力が半導体素子と電気的に接続される第1金属層13aの材質よりも小さくなればよく、第1金属層13aとはんだ14とは他の組み合わせも適用可能である。
【0042】
例えば、第1金属層13aがAlを主成分とする金属材料で構成される場合、はんだ14をSn−CuやSn−Niの2元系の金属材料またはSn−Cu−Niの3元系の金属材料で構成することが可能である。
【0043】
また、上記実施例では、第1金属層13aを直接半導体基板(Si)に接触する電極層として説明するものであったが、バリアメタルをAl合金とSiとの間に挿入してエミッタ電極を構成する場合もある。その場合も本発明は適用可能である。すなわち、エミッタ電極を構成する全ての積層金属膜の何れよりも降伏応力が小さくなる材質をはんだ材料に選ぶようにすればよい。
【0044】
また、第1金属層13aはAlを主成分とする金属材料に限定されるものでもない。第1金属層13aがCuを主成分とする金属材料で構成される場合には、はんだ14をSn−Agの2元系の金属材料またはSn−Ag−Cuの3元系の金属材料で構成することも可能である。
【0045】
また、半導体素子としてIGBTを例に挙げて説明したが、他の半導体素子についても適用可能である。例えば、縦型MOSFET、ダイオードやバイポーラトランジスタに対しても本発明を適用可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態が適用された半導体チップの断面構成を示す図である。
【図2】図1に示す半導体チップを樹脂封止したモールド型パワーデバイスの断面構成を示す図である。
【図3】第1電極層を構成する金属材料とSn−Ag−Cuのはんだ材およびSn−Cu−Niのはんだ材との温度と降伏応力の関係を示した図である。
【図4】Sn−Ag−Cuのはんだ材とSn−Cu−Niのはんだ材それぞれにおける半導体基板表面近傍に発生するせん断応力を調べた結果を示す図である。
【図5】従来のモールド型パッケージの断面構成を示した図である。
【符号の説明】
1…半導体チップ、2…p+型基板、3…n-型ドリフト層、
13…エミッタ電極、13a…第1金属層、13b…第2金属層、
13c…第3金属層、14…はんだ、20…樹脂部、
21…モールド型パワーデバイス、22…下側ヒートシンク、
23…上側ヒートシンク、24…内部ヒートシンク。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded semiconductor device in which a semiconductor chip including a semiconductor element such as an insulated gate bipolar transistor (hereinafter referred to as IGBT) is resin-molded.
[0002]
[Prior art]
Conventionally, a semiconductor package in which a semiconductor chip on which a semiconductor element is formed is sealed with a resin has been proposed (see Patent Document 1). FIG. 5 shows this conventional semiconductor package 36.
[0003]
The semiconductor package 36 includes a semiconductor chip 37 having an IGBT on a semiconductor substrate, a lower heat sink 38 connected to the collector electrode of the IGBT, an upper heat sink 39 connected to the emitter electrode of the IGBT, and an upper surface of the semiconductor device 37. And an internal heat sink 40 installed in the. Each member is electrically connected via a solder 41. The gate electrode of the semiconductor chip 37 and the lead frame 42 are connected via the gate wire 43. The semiconductor package 36 is formed by sealing with a resin 44 so that one side of each of the lower and upper heat sinks 38 and 39 and a part of the lead frame 42 are exposed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-110064
[Problems to be solved by the invention]
The semiconductor package 36 described above is formed by pouring molten resin 44 into the mold after each member is placed in the mold. At this time, since the resin 44 is set to 180 ° C., each member constituting the semiconductor package 36 is heated by the heat of the resin 44. At this time, a stress is generated due to a difference in coefficient of linear expansion of each member, but the stress is absorbed by the solder 41 joining each member.
[0006]
However, when the stress generated by the difference in linear expansion coefficient is large, the solder 41 cannot absorb the stress, and this stress is applied to the semiconductor substrate on which the IGBT emitter electrode and IGBT are formed. When the emitter electrode and the semiconductor substrate are subjected to this stress, there arises a problem that the Al layer as the electrode material of the emitter electrode is cracked and the emitter electrode is peeled off from the semiconductor substrate. In such a case, even if the IGBT does not operate or operates, heat conduction is not satisfactorily performed due to the gap at the peeling site, and heat that should be released is not released from the IGBT, and the IGBT is destroyed. Problem arises.
[0007]
Further, when the semiconductor package 36 is actually used, the semiconductor package 36 is heated to a high temperature due to the operation of the semiconductor element, or is exposed to a low temperature due to temperature fluctuations in the use atmosphere. The This thermal cycle similarly causes stress or distortion in the electrode portion, and there is a concern that the electrode may be peeled off and eventually cause malfunction or destruction of the IGBT, as described above.
[0008]
In recent years, a hard material solder such as lead-free solder has been used. When such a hard solder is used, the above-described problem is more likely to occur.
[0009]
An object of the present invention is to provide a mold type semiconductor device capable of preventing a semiconductor element from being destroyed by stresses caused by various thermal changes.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors paid attention to the relationship between the electrode material of the semiconductor chip in the mold type power device (mold type semiconductor device) and the solder material connected to the electrode material. As a result, in the relationship between the yield stress of each of the semiconductor chip electrode material and the solder material, the stress generated by the thermal cycle is reduced by making the solder material have a smaller yield stress than the semiconductor chip electrode material. It was confirmed that the effect of being able to be absorbed by the solder and preventing the electrode material from cracking can be obtained.
[0011]
More specifically, when the electrode material of the semiconductor chip has a multi-layer structure, the yield stress of the solder material is preferably smaller than the electrode material of each layer constituting the multi-layer structure, and the lower layer side connected to at least the semiconductor chip It was found that the effects described above can be obtained if the electrode material is smaller than the above electrode material.
[0012]
In addition, there are various types of semiconductor chip electrode materials, and the yield stress varies depending on the type, but if the yield stress of the solder material is small compared to the yield stress of the semiconductor chip electrode material selected. It has also been confirmed that the effects described above can be obtained. That is, for example, when a three-layer structure of an Al layer, a Ni layer, and an Au layer is employed as the electrode material of the semiconductor chip, the lowermost layer directly connected to the semiconductor chip is the Al layer. For this reason, the yield stress of the solder material is required to be smaller than that of the Al layer having a relatively low yield stress. Further, when the electrode material of the semiconductor chip has a three-layer structure of a Cu layer, an Ni layer, and an Au layer, for example, the lowermost layer directly connected to the semiconductor chip is the Cu layer. In this case, since it is sufficient that the yield stress of the solder material is smaller than that of the Cu layer having a relatively large yield stress, options for the solder material are expanded.
[0013]
The yield stress here refers to the yield phenomenon, that is, when the stress applied to the material reaches a certain value exceeding the elastic limit, it causes a phenomenon in which plastic strain occurs suddenly with almost no increase in stress. It refers to the stress required for Generally, when the stress shows a maximum accompanying yield, the stress at the maximum point is regarded as the yield stress. However, when the maximum does not appear clearly, a stress (0) that causes a permanent strain of 0.2%. .2% yield strength) is practically treated as yield stress. In the present specification, it is an example in which a metal such as solder or electrode material does not clearly show a maximum, and therefore, 0.2% proof stress is defined as a yield stress.
[0014]
Based on the above examination results, in the invention according to claim 1 , the metal member (13) and the Pb-free solder (14) are disposed on the surface of the semiconductor chip (1) on which the semiconductor element is formed via the metal member (13). in mold type power device 24) is formed by bonding, a Pb-free solder yield stress, is characterized in that is smaller than the yield stress of the metal layer.
[0015]
In this way, by configuring the Pb-free solder connected to the metal layer with a solder material whose yield stress is smaller than that of the metal layer, the stress generated by the thermal cycle can be absorbed by the Pb-free solder, and the electrode material is cracked. Can be prevented. As shown in claim 1 , if the Pb-free solder is made of Sn—Cu—Ni ternary solder material, the yield stress can be made smaller than that of the metal layer.
[0016]
In the first aspect of the present invention, the metal layer has the first metal layer (13a) formed on the surface of the semiconductor element and electrically connected to the semiconductor element, and the yield stress of the Pb-free solder is reduced. , At least smaller than the yield stress of the first metal layer. As described above, if the yield stress of the Pb-free solder is smaller than the yield stress of the metal material of the first metal layer that is electrically connected to the semiconductor element, the above effect can be obtained.
[0017]
According to another aspect of the present invention, the metal layer is composed of a multilayer metal layer including first and second metal layers , the first metal layer is a metal material containing Al, and the second metal layer is a metal material containing Ni. in Ru it is configured. Also in this case, it is sufficient that the yield stress of the Pb-free solder is smaller than that of the first metal layer.
[0018]
The invention according to claim 1 is characterized in that the thickness of the Al layer is at least 2 μm. Thus, by setting the thickness of the Al layer to 2 μm or more, it is possible to prevent the semiconductor substrate itself from being cracked due to the influence of strain due to stress.
[0020]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a diagram showing a cross-sectional structure of a semiconductor chip 1 to which an embodiment of the present invention is applied. FIG. 2 is a diagram showing a cross-sectional structure of a molded power device in which the semiconductor chip 1 is resin-molded. Hereinafter, the configuration of the semiconductor chip 1 and the mold type power device will be described based on these drawings.
[0022]
The semiconductor chip 1 is formed using a semiconductor substrate in which an n type drift layer 3 is formed on the main surface of a p + type substrate 2, and the semiconductor chip 1 is formed on the cell portion and the outer periphery of the cell portion. The outer periphery pressure | voltage resistant part formed is comprised.
[0023]
A number of IGBTs are formed in the cell portion. A p-type base layer 4 is formed on the surface layer portion of the n -type drift layer 3, and an n + -type source layer 6 is formed on the surface layer portion of the p-type base layer 4. A trench 7 is formed so as to penetrate the n + -type source layer 6 and the p-type base layer 4 and reach the n -type drift layer 3. A gate insulating film 8 and a gate layer 9 are formed on the inner wall surface of the trench 7. Are formed in order, and a trench gate structure including the trench 7, the gate insulating film 8, and the gate layer 9 is formed. Further, a part of the n + type source layer 6 and the trench gate structure are covered with an insulating film 12a. A collector electrode 18 is formed on the back surface of the p + type substrate 2 so as to be in contact with the back surface.
[0024]
Further, an emitter electrode 13 is formed on the surface of the IGBT. The emitter electrode 13 includes, for example, a first metal layer 13a made of an Al alloy whose main component is Al, such as Al-Si-Cu, a second metal layer 13b made of Ni, and a third metal layer 13c made of Au. It is comprised from the multilayer metal layer which has. A Pb-free solder 14 is connected to the surface of the third metal layer 13 c in the emitter electrode 13. In FIG. 1, the emitter electrode 13 is shown in a state before melting the solder 14 for convenience.
[0025]
The first metal layer 13a is formed so as to straddle a plurality of trench gate structures, is formed so as to be in contact with the p-type base layer 4 and the n + -type source layer 6, and commonly connects a number of IGBTs. The first metal layer 13a is formed by sputtering, for example, and has a thickness of about 2 μm or more. This is because when the first metal layer 13a is less than 2 μm, the influence of strain due to stress acts on the semiconductor substrate itself, not the first metal layer 13a. Therefore, the first metal film 13a is set to the above-described film thickness in order to prevent the semiconductor substrate itself from being cracked due to the influence of strain due to stress. The first metal layer 13 a is made of an Al alloy as described above, and has a higher yield stress than the solder 14 as a material.
[0026]
The second metal layer 13b is made of Ni having good bonding properties with both the metal constituting the first metal layer 13a and the third metal layer 13c, and is, for example, 5 μm by a wet process, specifically wet electroless plating. It is formed with a film thickness of about. Ni constituting the second metal layer 13 b is a harder material than the solder 14, and its yield stress is higher than that of the solder 14.
[0027]
The third metal layer 13c is made of, for example, Au formed by plating so that the oxidation of Ni is suppressed and the wettability of the solder 14 is improved. The third metal layer 13c has a film thickness of, for example, about 0.1 μm, but is dissipated when the solder 14 melts and the solder Sn and Ni of the second metal layer 13b form an alloy layer. As a result, there may be little thickness remaining. Au constituting the third metal layer 13c is a soft material, but is very thin as compared with the first and second metal layers 13a and 13b, or is hardly present in layers after melting. It is not necessary to take into account the influence of strain caused by stress caused by the difference in expansion coefficient.
[0028]
The solder 14 is made of Sn—Cu—Ni ternary solder material, and the composition thereof is, for example, about 0.5 to 2.0% by weight of Cu and 0.05 to 0.1% by weight of Ni. About%, Sn consists of the balance and a trace amount of mixed components. The solder 14 configured with such a composition ratio has a small yield stress, specifically, smaller than the first metal layer 13a.
[0029]
FIG. 3 shows the relationship between the temperature (° C.) and the yield stress [MPa] of the material of the first metal layer 13a serving as the element electrode material, the solder 14 shown in the present embodiment, and the conventional typical Pb-free solder material. Indicates. However, this figure is an example in which each material was compared and evaluated in the same form in a temperature range of −40 to 150 ° C. For the sample shape, a shape used for a general tensile test or torsion test may be referred to. In addition, the conventional typical Pb-free solder material here refers to the Sn-Ag-Cu ternary solder material.
[0030]
As can be seen from this figure, the relationship between the yield stress of the material of the first metal layer 13a and the material of the solder 14 is that the first metal layer 13a is more solderable in any temperature range where the mold type power device can be used. Is bigger than. In this embodiment, the solder 14 is formed using such a material.
[0031]
When the solder 14 was formed using such a material, it was examined how much shear stress was generated in the vicinity of the surface of the semiconductor substrate. Specifically, Sn—Cu—Ni ternary is used in which Al—Si—Cu is used as the first metal layer 13a, and yield stress is smaller than that of the first metal layer 13a in a temperature range where the mold type power device can be used. A Sn-Ag-Cu ternary solder material in which the yield stress is smaller than that of the first metal layer 13a in a part of the temperature range in which the mold type power device can be used. When the solder 14 was formed, the shear stress generated in the vicinity of the surface of the semiconductor substrate was compared. The result is shown in FIG.
[0032]
As shown in this figure, when the solder 14 is formed with the Sn-Cu-Ni ternary solder material, the shear stress is larger than when the Sn-Ag-Cu ternary solder material is used. Can be seen to be smaller. Thus, in the present embodiment, when an Al alloy is used as the first metal layer 13a, Sn—Cu—Ni whose yield stress is smaller than that of the first metal layer 13a in a temperature range where the mold type device can be used. The solder 14 is formed of the ternary solder material. For this reason, the shear stress generated near the surface of the semiconductor substrate is also small.
[0033]
On the other hand, a field formed on the p-type layer 5 through the p-type layer 5 formed in the surface layer portion of the n -type drift layer 3 and the LOCOS oxide film 11 and the insulating film 12b is formed in the outer peripheral breakdown voltage portion. A first electrode 15 as a plate is provided. In addition, an n + type layer 10 formed in the surface layer portion of the n type drift layer 3 and a second electrode 16 as an outermost ring formed so as to be in contact with the n + type layer 10 are provided. . These first and second electrodes 15 and 16 alleviate the electric field concentration generated inside the IGBT when a surge is applied to the semiconductor chip 1, thereby reducing the electric field strength. And the passivation film 17 which covers the 1st, 2nd electrodes 15 and 16 is formed, and the surface of an outer periphery pressure | voltage resistant part is protected.
[0034]
The semiconductor chip 1 configured as described above is sealed with the resin portion 20 to form the semiconductor package 21 shown in FIG.
[0035]
As shown in FIG. 2, the semiconductor package 21 has a configuration in which the lower heat sink 22, the upper heat sink 23, the internal heat sink 24, the gate wire 25, and the lead terminal 26 are sealed together with the semiconductor chip 1 in the resin portion 20. ing. The gate electrode pad of the IGBT formed on the semiconductor chip 1 and the lead terminal 26 are wire-bonded via the gate wire 25, and a part of the lead terminal 26 is exposed from the resin portion 20. As a result, a gate drive voltage can be applied to the IGBT from the outside via the lead terminal 26. The gate electrode pad is also made of an Al alloy layer, an Ni plating layer, and an Au plating layer from the lower layer side, like the emitter electrode portion 13, and is connected to the gate layer 9 of each trench gate structure. As described above, the Au layer is about 0.1 μm (0.2 μm or less), and the bonding property with the gate wire 25 made of an Al wire is also good.
[0036]
Also, the space between the upper surface of the lower heat sink 22 and the lower surface of the semiconductor chip 1 is solder 27, the space between the upper surface of the semiconductor chip 1 and the lower surface of the internal heat sink 24 is solder, and the upper surface and upper side of the internal heat sink 24 The lower surface of the heat sink 23 is electrically connected by solder 28. Therefore, the emitter electrode 1 3 of the IGBT formed in the semiconductor chip 1 through the internal heat sink 24 and the upper heatsink 23, also a collector electrode 18 of the IGBT can be electrically connected to the outside via the lower heat sink 22 It is like that.
[0037]
The lower and upper heat sinks 22 and 23 release heat transmitted through the collector electrode 18 and the emitter electrode 13 of the IGBT, respectively, and constitute a current path of the IGBT, and have good thermal conductivity and low electrical resistance. It is made of Cu or the like. Each of the lower and upper heat sinks 22 and 23 is configured such that one surface is exposed from the resin portion 20 and the heat generated from the semiconductor chip 1 is easily released.
[0038]
The internal heat sink 24 releases heat transmitted from the emitter electrode 16 of the semiconductor chip 1 to the upper heat sink 23 side, and also electrically connects the emitter electrode 13 and the upper heat sink 23, and is made of, for example, Cu. .
[0039]
In the mold type power device configured as described above, as described above, the solder 14 for electrical connection with the IGBT formed on the semiconductor chip 1 has a lower yield stress than the first metal layer 13a. -It is comprised with the ternary system solder material of Cu-Ni. For this reason, the shear stress that can be generated in the vicinity of the surface of the semiconductor substrate is small, and even if the semiconductor chip 1 is sealed with the resin portion 20, it is possible to prevent the first metal layer 13a from being cracked. . Therefore, peeling of the emitter electrode 13 and destruction of the IGBT can be prevented. It is also possible to prevent problems caused by the destruction of the surface of the IGBT, for example, the destruction of the element itself due to the fact that the current stops flowing or the heat flow stops.
[0040]
As a reference, when the solder 14 is formed with a Sn—Cu—Ni ternary solder material as in the present embodiment by a liquid phase cooling / heating cycle test in which heating and cooling at −40 ° C. to 125 ° C. are repeated 3000 cycles, Sn is used. When a ternary solder material of -Ag-Cu was used, the state near the surface of the semiconductor substrate in each case was examined. As a result, when Sn—Ag—Cu ternary solder material was used, cracks were generated in the electrode layer formed on the surface of the IGBT and the IGBT was destroyed. On the other hand, when the Sn—Cu—Ni ternary solder material is used as in the present embodiment, no crack is generated in the first electrode layer 13a formed on the surface of the IGBT, and the IGBT is not at all. It was not destroyed. Also from this result, it can be said that by adopting the configuration of this embodiment, peeling of the emitter electrode 13 and destruction of the IGBT can be prevented.
[0041]
(Other embodiments)
In the first embodiment, in the case where the first metal layer 13a is made of an Al alloy mainly composed of Al—Si—Cu, it is Sn—Cu—Ni, which is a material having a lower yield stress. The case where the solder 14 is formed is described. As the Al alloy, an alloy containing Al-Cu, Al-Si, or other additive elements can be used. Pure Al may also be adopted. In short, it is sufficient that the yield stress of the material of the solder 14 is smaller than the material of the first metal layer 13a electrically connected to the semiconductor element, and other combinations of the first metal layer 13a and the solder 14 are applicable. It is.
[0042]
For example, when the first metal layer 13a is made of a metal material mainly composed of Al, the solder 14 is made of a binary metal material of Sn—Cu or Sn—Ni or a ternary system of Sn—Cu—Ni. It can be made of a metal material.
[0043]
In the above embodiment, the first metal layer 13a is described as an electrode layer in direct contact with the semiconductor substrate (Si). However, an emitter electrode is formed by inserting a barrier metal between the Al alloy and Si. May be configured. Even in that case, the present invention is applicable. That is, a material whose yield stress is smaller than any of all the laminated metal films constituting the emitter electrode may be selected as the solder material.
[0044]
The first metal layer 13a is not limited to a metal material mainly composed of Al. When the first metal layer 13a is made of a metal material containing Cu as a main component, the solder 14 is made of a Sn-Ag binary metal material or a Sn-Ag-Cu ternary metal material. It is also possible to do.
[0045]
Moreover, although IGBT was mentioned as an example as a semiconductor element, it is applicable also to another semiconductor element. For example, the present invention can be applied to a vertical MOSFET, a diode, or a bipolar transistor.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor chip to which a first embodiment of the present invention is applied.
FIG. 2 is a view showing a cross-sectional configuration of a mold type power device in which the semiconductor chip shown in FIG. 1 is sealed with resin.
FIG. 3 is a diagram showing the relationship between the temperature and the yield stress of a metal material constituting a first electrode layer, a Sn—Ag—Cu solder material, and a Sn—Cu—Ni solder material.
FIG. 4 is a diagram showing a result of examining a shear stress generated in the vicinity of the surface of a semiconductor substrate in each of a Sn—Ag—Cu solder material and a Sn—Cu—Ni solder material.
FIG. 5 is a diagram showing a cross-sectional configuration of a conventional mold type package.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip, 2 ... p <+> type | mold substrate, 3 ... n < - > type | mold drift layer,
13 ... Emitter electrode, 13a ... First metal layer, 13b ... Second metal layer,
13c ... 3rd metal layer, 14 ... Solder, 20 ... Resin part,
21 ... Mold type power device, 22 ... Lower heat sink,
23 ... Upper heat sink, 24 ... Internal heat sink.

Claims (1)

半導体素子が形成された半導体チップ(1)の表面に金属層(13)およびPbフリーはんだ(14)を介して金属部材(24)が接合されてなるモールド型パワーデバイスにおいて、
前記金属層は、前記半導体素子の表面に形成され前記半導体素子と電気的接続がなされる第1金属層(13a)と、前記第1金属層の上に該第1金属層と異なる金属材料で構成された第2金属層(13b)とを有した多層金属層であって、
前記第1金属層はAlを含む金属材料であり厚みが少なくとも2μmとして構成され、第2金属層はNiを含む金属材料で構成されているとともに、
前記Pbフリーはんだは、Sn−Cu−Niの3元系のはんだ材料で構成されることにより、
−40〜150℃の温度域において、前記Pbフリーはんだの降伏応力を前記第1金属層の降伏応力よりも小さくしたことを特徴とするモールド型パワーデバイス
In a molded power device in which a metal member (24) is joined to a surface of a semiconductor chip (1) on which a semiconductor element is formed via a metal layer (13) and Pb-free solder (14),
The metal layer includes a first metal layer (13a) formed on a surface of the semiconductor element and electrically connected to the semiconductor element, and a metal material different from the first metal layer on the first metal layer. A multilayer metal layer having a second metal layer (13b) configured,
The first metal layer is a metal material containing Al and has a thickness of at least 2 μm, the second metal layer is made of a metal material containing Ni,
The Pb-free solder is composed of Sn—Cu—Ni ternary solder material,
A mold type power device , wherein a yield stress of the Pb-free solder is made smaller than a yield stress of the first metal layer in a temperature range of -40 to 150 ° C.
JP2003178147A 2003-06-23 2003-06-23 Molded power device Expired - Fee Related JP4171355B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003178147A JP4171355B2 (en) 2003-06-23 2003-06-23 Molded power device
US10/859,130 US7193326B2 (en) 2003-06-23 2004-06-03 Mold type semiconductor device
DE102004030056.9A DE102004030056B4 (en) 2003-06-23 2004-06-22 Molded semiconductor device
CNB2004100616490A CN100353541C (en) 2003-06-23 2004-06-23 Mold type semiconductor device and method for manufacturing the same
US11/702,498 US7468318B2 (en) 2003-06-23 2007-02-06 Method for manufacturing mold type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178147A JP4171355B2 (en) 2003-06-23 2003-06-23 Molded power device

Publications (2)

Publication Number Publication Date
JP2005019447A JP2005019447A (en) 2005-01-20
JP4171355B2 true JP4171355B2 (en) 2008-10-22

Family

ID=34179862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178147A Expired - Fee Related JP4171355B2 (en) 2003-06-23 2003-06-23 Molded power device

Country Status (1)

Country Link
JP (1) JP4171355B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973046B2 (en) * 2006-07-20 2012-07-11 株式会社デンソー Manufacturing method of semiconductor device
JP5542567B2 (en) * 2010-07-27 2014-07-09 三菱電機株式会社 Semiconductor device
JP6237227B2 (en) * 2013-12-27 2017-11-29 マツダ株式会社 Semiconductor device
JP2015222743A (en) * 2014-05-22 2015-12-10 三菱電機株式会社 Semiconductor device
JP6179538B2 (en) 2015-03-04 2017-08-16 トヨタ自動車株式会社 Semiconductor device
JP6455335B2 (en) 2015-06-23 2019-01-23 三菱電機株式会社 Semiconductor device
US10600738B2 (en) 2016-01-21 2020-03-24 Mitsubishi Electric Corporation Semiconductor device
JP6895834B2 (en) * 2017-07-21 2021-06-30 三菱電機株式会社 Power device
JP7169187B2 (en) * 2018-12-21 2022-11-10 株式会社豊田中央研究所 power module
CN109659280A (en) * 2018-12-27 2019-04-19 西安中车永电电气有限公司 A kind of compression joint type IGBT internal enclosing structure

Also Published As

Publication number Publication date
JP2005019447A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US7468318B2 (en) Method for manufacturing mold type semiconductor device
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP4479577B2 (en) Semiconductor device
US11710709B2 (en) Terminal member made of plurality of metal layers between two heat sinks
WO2014097798A1 (en) Semiconductor device
JP4645406B2 (en) Semiconductor device
JP4171355B2 (en) Molded power device
JP2007088030A (en) Semiconductor device
JP6440794B1 (en) Semiconductor device
WO2017183580A1 (en) Semiconductor device, power module, and method for manufacturing same
JP4096741B2 (en) Semiconductor device
JP6877600B1 (en) Semiconductor device
JP2015211178A (en) Semiconductor device
CN111433910B (en) Semiconductor device and method for manufacturing semiconductor device
JP2005019798A (en) Mold type semiconductor device and method for manufacturing the same
WO2021193338A1 (en) Semiconductor device
JP7419781B2 (en) semiconductor module
JP6157320B2 (en) Power semiconductor device, power semiconductor module, and method of manufacturing power semiconductor device
JP6924432B2 (en) Manufacturing method of semiconductor devices and semiconductor devices
JP7452040B2 (en) Semiconductor device and semiconductor device manufacturing method
WO2024029258A1 (en) Semiconductor module and method for manufacturing semiconductor module
JP2017050441A (en) Semiconductor device
JP2019110280A (en) Method of manufacturing semiconductor device
JP2015115349A (en) Semiconductor device
US11967577B2 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060424

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4171355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees