JP4168952B2 - 遠心機 - Google Patents

遠心機 Download PDF

Info

Publication number
JP4168952B2
JP4168952B2 JP2004045534A JP2004045534A JP4168952B2 JP 4168952 B2 JP4168952 B2 JP 4168952B2 JP 2004045534 A JP2004045534 A JP 2004045534A JP 2004045534 A JP2004045534 A JP 2004045534A JP 4168952 B2 JP4168952 B2 JP 4168952B2
Authority
JP
Japan
Prior art keywords
rotor
control device
motor
energy
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004045534A
Other languages
English (en)
Other versions
JP2005230751A (ja
Inventor
伸二 渡部
雅裕 稲庭
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2004045534A priority Critical patent/JP4168952B2/ja
Publication of JP2005230751A publication Critical patent/JP2005230751A/ja
Application granted granted Critical
Publication of JP4168952B2 publication Critical patent/JP4168952B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)

Description

本発明は、異なる種々のロータを回転駆動可能な遠心機において、ロータの回転エネルギーを測定し、且つ、ロータの回転エネルギーを制限する遠心機用ロータのエネルギーの測定及び制限機能を有し、いかなる単一故障が発生しても遠心機の封じ込めエネルギーに対しロータの回転エネルギーが超えないようにロータの回転速度を制限する遠心機に関するものである。
ロータがその固有の機械的強度を超えた回転速度で回転し、ロータが破損した場合において、遠心機は、破損したロータの破片が外部に飛び出すことなく遠心機内部に封じ込める必要がある。従って、遠心機本体が持つ封じ込めエネルギーに対しロータのエネルギーが超えない様に、ロータエネルギーを管理することが重要となる。ここで、ロータの回転エネルギーは、ロータの角速度をω、ロータの慣性モーメントをIpとすると
ロータ運動エネルギー=1/2(Ipω)・・・・・(1)
である。
ロータの回転エネルギーを制限する方法はロータの角速度ωを制限することである。ロータ回転速度を制限する1つの方法は、ロータの回転を抑制する風損によって実現可能であり、モータの出力トルクとロータの風損およびモータを含む駆動システムの機械損による回転抑制トルクが釣合う速度でのエネルギーが遠心機封じ込めエネルギーを超えないように、モータを含むロータ駆動システムとロータを設計することでロータ回転速度を制限が可能である。
従来の遠心機を図6を用いて説明する。図6において、601はロータ、602はモータ、613は駆動シャフト614の駆動トルクをロータ601に伝達するトルク伝達器である。603は交流電源604を入力としモータ602に可変周波の電圧を出力するインバータ、607は速度検出手段である。605は速度検出手段607が出力する速度信号に応答しインバータ603を制御しモータ602の回転速度を制御する速度制御装置である。606はエネルギーモニタであり、609は遠心機のフレーム、610はロータ601の表面を囲うボウル、611はプロテクターリング、612はドアである。
遠心機において、ロータが高速で回転し、ロータ回転エネルギーが大となっている状態で、ロータが破断した場合、ロータの破片の遠心機内部への封じ込めは、運動エネルギーの保存則に従い、ロータの回転エネルギーをプロテクターリングの回転と変形に費やすエネルギーに変換することにより成立する。従って、遠心機の封じ込めエネルギーはプロテクターリングの強度、厚さ、重量、及びドアの構造に依存して大小する。
また、エネルギーモニタ606は、モータ602の電流Iと速度検出手段607が出力する速度信号を入力とし、モータ602が加えたエネルギーを監視し、遠心機の封じ込めエネルギーよりも低いエネルギー閾値に対しロータ601に与えられたエネルギーが超えたと判断した時にインバータ603にモータ602への給電を遮断する制御信号を出力する。
ここで、大気中でロータを回転駆動する遠心機に於けるロータの回転エネルギーの測定に関し、角速度ωmにおいてモータ出力トルクτmで加速している時の角加速度をdωa/dt、モータ出力トルクがゼロとなり、速度ωmでの風損等の回転抑制トルクに従い減速する時の角加速度をdωb/dtとすると、角速度ωmでロータが持つ運動エネルギーEmは、下式により表される。
Figure 0004168952
即ち、ロータ601に与えられたエネルギーは、モータ602の出力トルクとモータの角加速度を基に決定され、モータ602の出力トルクはモータ電流Iに所定のモータ定数を掛け合わせることで求められていた。
また、図6に示す従来の遠心機において、第1のロータ回転速度の制限は、モータ602の出力トルクとロータ601の風損による回転抑制トルクが釣合う速度以上に加速できないことであり、第2の制限は、エネルギーモニタ606によるエネルギー閾値に対しロータ601に与えられたエネルギーが超えたと判断した時のモータ2への給電遮断であった。(例えば、特許文献1参照)
特開平8-57353号公報
上記した従来の遠心機において、ロータの加速時間の短縮を図るために、モータの出力トルクを増大させるようロータ駆動システムを設計すると、モータの出力トルクとロータの風損等の機械的損失による回転抑制トルクが釣合う速度の上昇に伴いロータの回転エネルギーも増大するので、遠心機の封じ込めエネルギーを増大させる必要がある。
また、上記した従来のロータに与えられたエネルギーは、モータ電流に所定のモータ定数を掛け合わせることで求めたモータ出力トルクを基に測定していたが、モータ巻線温度による1次抵抗の変動やインバータ出力電圧の変動が発生すると、モータ出力トルクとモータ電流の相関が崩れ、トルクが正確に測定できなくなるので、ロータに与えられた真のエネルギーを正確に同定することが困難となる。
そのためロータに与えられたエネルギーを少なく測定してしまった場合、エネルギーモニタがエネルギー閾値に対しロータのエネルギーが超えたと判断した時の真のロータエネルギーは、エネルギー閾値以上の値となってしまうので、エネルギーモニタが同定するエネルギーの誤差を考慮して、遠心機の封じ込めエネルギーを大きめに設定する必要がある。
上記した遠心機の封じ込めエネルギーの増大は、プロテクターの大形化及びドアロック機構の強化を行うことで実現可能であるが、遠心機製造コストのアップ、遠心機の構造の複雑化、遠心機本体のサイズの大型化を招く問題があった。
更に、従来の遠心機において、ロータを真空中で回転駆動する際は、風損による回転抑制トルクは無視できるほど小さくなるので、モータはトルクを出力し続けることで、ロータは高速まで加速可能となる。ここで、エネルギーモニタによるエネルギー閾値に対しロータに与えられたエネルギーが超えたと判断した時は、エネルギーモニタによるモータへの給電遮断動作でロータ回転速度の制限が可能であるが、エネルギーモニタ部に異常が発生すると、ロータのエネルギー同定が困難となる。従って、単一故障時にロータ回転速度の制限が不完全となる問題があった。
本発明は上記した従来技術の欠点を排除するためになされたものであり、その目的は、如何なる単一故障に対してもロータの回転速度の制限を可能とし、且つ、ロータの回転エネルギーの測定精度の向上を図ると共に、モータの出力トルクと上記した回転抑制トルクの特性とに依存せず、必要最小限の遠心機の封じ込めエネルギーを確保できる防御構成を可能とする遠心機を提供することにある。
本発明は、試料を収納するロータと、該ロータを可変の角速度で回転駆動するモータと、直流電源を交流電源に変換し該モータに可変周波の交流電圧を出力するインバータ変換器と、前記モータの電流を検出する第1の電流検出器及び第2の電流検出器と、前記インバータ変換器の直流電源電圧を検出する第1の直流電圧検出器及び第2の直流電圧検出器と、前記ロータ或は前記モータの角速度を検出する第1の速度検出手段及び第2の速度検出手段と、第1の制御装置及び第2の制御装置を備え、前記第1の制御装置は、前記第1の電流検出器による前記モータの電流と、前記第1の直流電圧検出器による前記インバータ変換器の直流電源電圧と、前記第1の速度検出手段による前記ロータの角速度と角加速度に基づいて、前記ロータの回転エネルギーを求め、前記第2の制御装置は、前記第2の電流検出器による前記モータの電流と、前記第2の直流電圧検出器による前記インバータ変換器の直流電源電圧と、前記第2の速度検出手段による前記ロータの角速度と角加速度に基づいて、前記ロータの回転エネルギーを求めることで達成される。
さらに、前記第1の制御装置及び第2の制御装置は、各々独立して所定の前記ロータの回転エネルギー制限値を持つことで達成される。
さらに、前記第1の制御装置は前記ロータの回転エネルギー制限値として、遠心機の封じ込めエネルギー或は任意のロータで予め定められたロータ固有のエネルギー上限値の少なくとも一方を有し、前記第2の制御装置は前記ロータの回転エネルギー制限値として遠心機の封じ込めエネルギーを有していることで達成される。
さらに、前記遠心機は、前記インバータ変換器から前記モータへの電圧供給路に互いに独立して配置された前記インバータ変換器から前記モータへの電圧供給を遮断する第1の遮断装置及び第2の遮断装置を備え、前記第1の制御装置は、前記ロータが任意の角速度で回転している状態での回転エネルギーを求め、該回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記第1の遮断装置に遮断動作信号を出力し、前記第2の制御装置は、前記ロータが任意の角速度で回転している状態での回転エネルギーを求め、該回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記第2の遮断装置に遮断動作信号を出力することで達成される。
さらに、前記遠心機は、前記ロータの整定回転速度を操作者が任意に設定できるユーザーインタフェース手段を備え、前記第1の制御装置は、前記ロータがユーザーインタフェース手段により設定された整定回転速度での前記ロータの回転エネルギーを求め、該整定回転速度での前記ロータの回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記インバータ変換器を制御し、前記モータを減速させることで達成される。
さらに、前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、前記第1の制御装置は前記インバータ変換器を制御し、且つ、前記通信手段を介し前記第2の制御装置との前記ロータの回転エネルギーの測定に関する時間の同期を取ることで達成される。
さらに、前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、前記第1の制御装置は前記インバータ変換器を制御し、且つ前記通信手段による前記第2の制御装置との通信が不当であると判断した時に前記モータを減速させることで達成される。
さらに、前記遠心機は、前記インバータ変換器から前記モータへの電圧供給路に互いに独立して配置された前記インバータ変換器から前記モータへの電圧供給を遮断する第1の遮断装置及び第2の遮断装置と、前記第1の制御装置と前記第2の制御装置との間に通信手段を備え、前記第2の制御装置は前記通信手段による前記第1の制御装置との通信が不当であると判断した時に前記第2の遮断装置に遮断動作信号を出力することで達成される。
さらに、前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、前記第1の制御装置は、前記通信手段により前記第2の制御装置が測定した前記ロータの回転エネルギーを観測し、前記第1の制御装置が測定した前記ロータの回転エネルギーと前記第2の制御装置が測定した前記ロータの回転エネルギーの誤差が所定値を超えたと判断した時に、前記インバータ変換器を制御し、前記モータを減速させることで達成される。
本発明によれば、第1の制御装置は、第1の電流検出器によるモータの電流と、第1の直流電圧検出器によるインバータ変換器の直流電源電圧と、第1の速度検出手段によるロータの角速度と角加速度に基づいて、ロータの回転エネルギーを求め、第2の制御装置は、第2の電流検出器によるモータの電流と、第2の直流電圧検出器によるインバータ変換器の直流電源電圧と、第2の速度検出手段によるロータの角速度と角加速度に基づいて、ロータの回転エネルギーを求め、第1の制御装置及び第2の制御装置は、各々独立して所定の前記ロータの回転エネルギー制限値を持ち、ロータの回転エネルギーが上記所定のエネルギー制限値を超えたと判断した時に、第1の制御装置は第1の遮断装置に、第2の制御装置は第2の遮断装置に遮断動作信号を出力するようにしたので、如何なる単一故障に対してもロータの回転速度の制限を可能とし、且つ、ロータの回転エネルギーの測定精度の向上を図ることができる。
本発明の具体的実施例を以下図面に基づき詳細に説明する。
図1は本発明の具体的実施例となる遠心機の構成を示したものである。図1において、1は試料を収納するロータであり、2はロータ1を回転駆動する3相の誘導モータであり、13は駆動シャフト14の駆動トルクをロータ1に伝達するクラウン、スパッド等のトルク伝達器である。3は交流電源4を入力としモータ2に可変周波の電圧を出力するインバータ変換器であり、5は第1の速度検出手段であり、例えば、エンコーダディスク27のスリットの有無によりパルス信号φ1を出力するフォトインタラプタである。6は第2の速度検出手段であり、トルク伝達器13の低部の円周上に設けた少なくとも1つ以上のマグネット7の有無を検出しパルス信号φ2を出力するホール素子等のマグネットセンサである。
15は遠心機のフレームであり、10はフレーム15で支持されるロータ1の表面を囲うボウルであり、11はフレーム15で支持されるプロテクターリングであり、ボウル10を囲いロータ1破損時に遠心力に従い遠心機外部に飛び出そうとするロータ1の破片を受け止めるものである。12は開閉可能なドアであり、ロータ1が回転している際は、プロテクターリング11及びボウル10と共にロータ1を閉じ込める空間を作る。
16はモータ2のU相の1次電流を検出し電流信号Iuを出力する第1の電流検出器であり、17はモータ2のW相の1次電流を検出し電流信号Iwを出力する第2の電流検出器であり、電流検出器16、17は、例えばNANA・LEM社製HX20Pのようなホール素子を利用した電流の大きさに比例し電圧を出力するカレントセンサである。
18はインバータ変換器3の直流電源電圧を検出し電圧信号V1を出力する第1の直流電圧検出器であり、19は同様にインバータ変換器3の直流電源電圧を検出し電圧信号V2を出力する第2の直流電圧検出器であり、20はインバータ変換器3からモータ2への電圧供給路に配置されたインバータ変換器3からモータ2への電圧供給を遮断する第1の遮断装置であり、インバータ変換器3からモータ2への電圧供給路に設けられたモータ入力遮断装置である。21は同様にインバータ変換器3からモータ2への電圧供給を遮断する第2の遮断装置であり、電源4からインバータ変換器3への電力供給路に設けられたインバータ入力遮断装置である。
8は第1の制御装置であり、インバータ変換器3にモータ2へ出力する電圧の指令値を信号ライン30を介して出力することでインバータ変換器3を制御し、また、第1の速度検出手段5が出力するパルス信号φ1と、第1の電流検出器16が出力する電流信号Iuと、第1の直流電圧検出器18が出力する電圧信号V1に従いロータ1の回転エネルギーを測定する。9は第2の制御装置であり、第2の速度検出手段6が出力するパルス信号φ2と、第2の電流検出器17が出力する電流信号Iwと、第2の直流電圧検出器19が出力する電圧信号V2に従いロータ1の回転エネルギーを測定する。
25は運転するロータの種類をロータテーブルから選択するための機種(ID)コードの入力と、その選択されたロータ1の整定回転速度や、運転時間、設定温度等を操作者が任意に設定できるユーザーインタフェース手段である。遠心機は種々のロータについてのロータ固有の情報となるロータテーブルを予め備えており、各々のロータテーブルには温度補正係数や許容最高回転速度、ロータの所定の回転速度でのエネルギー、さらにロータの許容最高回転速度でのエネルギーEmaxの情報が予め登録されている。操作者はユーザーインタフェース手段25からロータを1つ選択でき且つ選択したロータの整定回転速度、運転時間、設定温度を設定することができるようになっており、第1の制御装置は、ユーザーインタフェース手段25に入力されたロータ1の設定回転速度等に従いロータ1の回転速度、運転時間、図示されていない冷凍機を制御する。26は第3の速度検出手段であり、例えば、シャープ製GP1A16Rのようなエンコーダディスク27のスリットの有無により位相差が90度の2相のパルス信号φ3a、φ3bを出力するフォトインタラプタである。
本実施例において、第1の制御装置8と第1の遮断装置20は信号ライン22で結合されており、第1の遮断装置20は第1の制御装置8が出力する遮断信号によりモータ2の駆動を停止させることができ、第2の制御装置9と第2の遮断装置21は信号ライン23で結合されており、第2の遮断装置21は第2の制御装置9が出力する遮断信号によりモータ2の駆動を停止可能な構成としている。また、第1の制御装置8と第2の制御装置9は通信ライン24で結合されており、両制御装置は通信手段を備えることで装置間の通信が可能な構成としている。
次に、本実施例の詳細な構成及び動作について図2から図10を参照し説明する。なお、図2から図10においては、図1と同一の機能の部分には同一の番号が符してある。
図2は図1における第1の制御装置8と第2の制御装置9の詳細な構成を示すブロック回路図である。図2において、第1の制御装置8はCPU(Central Processing Unit)201と電流実効値変換器202と不揮発メモリのRandom Access Memory(以後RAMと言う)208とインバータ制御部210で構成され、第2の制御装置9はCPU211と電流実効値変換器212と不揮発メモリのElectrically Erasable Programmable Read Only Memory(以後EEPROMと言う)218で構成されている。
CPU201及びCPU211は、例えばルネサステクノロジー社製のH8/3003やH8/3048Fのようなタイマユニット(以下ITUと称す)、A/D変換器、シリアルコミュニケーションインターフェース(以下SCIと称す)、入出力ポート(以下I/Oと称す)等のペリフェラルを内蔵したマイクロプロセッサである。また、不揮発メモリはRAMやEEPROMに限定させるものではなく、同機能を有しているものであればよい。
電流実効値変換器202は第1の電流検出器16による電流信号Iuを実効値変換し、出力信号をCPU201内蔵のA/D変換器203に入力し、電流実効値変換器212は第2の電流検出器17による電流信号Iwを実効値変換し、出力信号をCPU211内蔵のA/D変換器213に入力する。A/D変換器203とA/D変換器213で入力されたアナログ電圧をデジタル値に変換し、CPU201とCPU211は、これらのデジタル値に基づき、モータ2の1次電流を観測する。第1の遮断装置20への遮断信号はCPU201内蔵のI/O207から、第2の遮断装置21への遮断信号はCPU211内蔵のI/O217から出力されるようになっている。
第1の速度検出手段5によるパルス信号φ1はCPU201内蔵のITU204に、第2の速度検出手段6によるパルス信号φ2はCPU211内蔵のITU214に入力され、ITU204及びITU214は、各々パルス信号φ1、φ2のパルスの周期をCPUの内部クロックにより計測する。第3の速度検出手段26が出力する2相のパルス信号φ3a、φ3bは、それぞれ、φ3aはCPU201内蔵のITU205に、φ3bはCPU211内蔵のITU215に入力され、同様にパルス信号φ3a、φ3bのパルスの周期は、ITU205及びITU215により計測される。
第1の直流電圧検出器18による電圧信号V1はCPU201内蔵のA/D変換器206に、第2の直流電圧検出器19による電圧信号V1はCPU211内蔵のA/D変換器216に入力され、A/D変換器206とA/D変換器216で入力されたアナログ電圧をデジタル値に変換し、CPU201とCPU211は、これらのデジタル値に基づき、インバータ変換器3の直流電源電圧を観測する。
また、インバータ制御部210は、インバータ変換器3へ可変周波の3相電圧指令信号を出力し、CPU201は、パルス信号φ1或はφ3aよりモータ2の速度を検出し、インバータ制御部210を介し、インバータ変換器3を制御する。なお、第1の制御装置8と第2の制御装置9は、CPU201内蔵のSCI209とCPU211内蔵のSCI219が通信ライン24を介し接続されることでCPU間の通信が可能であり、第1の制御装置8は第2の制御装置9の動作状態をモニタでき、且つ、ロータ1のエネルギーを測定する際に測定タイミングの同期を取ることを可能としている。
本実施例では、パルス信号φ1、φ2はモータ2の1回転当たり2パルスの信号であり、パルス信号φ3a、φ3bはモータ2の1回転で30パルスの信号としている。ロータ1及びモータ2の角速度ωの測定は、パルス信号φ1による速度検出を例にすると、CPU201内蔵のITU204によりパルスφ1の立下りエッジ間の時間を測定することで為され、具体的には、パルスφ1の立下りエッジ毎に、前回立下りエッジから今回エッジが発生するまでのCPU201の内部クロックのカウント値に基づき算出される。ここで、内部クロックの周波数をF、立下りエッジ間での内部クロックのカウント数をCNTとすると、角速度ωは
ω=2π×F/2CNT・・・・・(3)
である。
なお、3相誘導モータであるモータ2の速度は、図5の実線で示したωのように、励磁周波数の6次や、12次成分(3の倍数成分)のトルクリプルの発生やモータ制御上の電圧指令変更時の応答により、1周期trでの速度が波線でωoに示す理想速度に対して変動しており、速度勾配は測定タイミングで値が変化してしまう恐れがある。
このため、本実施例では、求める速度は、速度の高次変動を減衰するように速度計測毎に速度を逐次更新するソフトウェアでのフィルタリング処理を施しており、図5の一点破線に示すフィルタリング後の今回の速度ωは、前回の速度をωn−1、測定した速度をω、フィルタリングの定数をαとすると、
ωn=α(ω−ωn−1)+ωn−1・・・・・(4)
である。ここで、αは1より小さい値であり、小さい値であればあるほど減衰効果を期待できるが、図5のΔtで表した実際の速度に対する時間遅れも大きくなってしまう。さらにこの時間遅れは速度の検出周期が長いほど大きくなってしまう。本実施例では、CPU201とCPU211が検出する速度は、フィルタリング処理での時間遅れを極力小さくできるようにモータ2の1回転当たりのパルス数が多く速度の更新周期が短くなる第3の速度検出器26からのパルス信号φ3a、φ3bから求め、上記時間遅れを200ms程度にし遠心機の回転速度制御上問題無いようにしている。
なお、パルス信号φ3a、φ3bのパルス欠損等の速度検出での不具合が発生すると正確なロータエネルギーの測定ができなくなるので、このような不具合の発生を検知できるように、第1の制御装置8ではパルス信号φ1で求めた速度とパルス信号φ3aで求めた速度を比較し、第2の制御装置9ではパルス信号φ2で求めた速度とパルス信号φ3bで求めた速度を比較できる構成としている。
また、A/D変換器203、213に入力される電流実効値変換器202、212の出力信号も高次の電流リプル成分を含んでいるので、例えば、2ms周期でA/D変換器203、213でのA/D値のサンプリングを行い、速度検出と同様のソフトウェアでのフィルタリング処理を実施している。
次に、インバータ変換器3の詳細な構成について図3を用い説明する。
インバータ変換器3において312は交流電源4を直流電源に変換するコンバータであり、311はコンバータ312で変換された電源を平滑する平滑コンデンサである。30、31、32は、それぞれモータ2に3相の交流電力を供給するインバータブリッジであり、例えばIGBTやFET等のスイッチング素子に還流ダイオードを逆接続した上アーム、下アームで構成されている。図3ではスイッチング素子としてIGBTを用いており、インバータブリッジ30を代表し、ブリッジを構成する上アーム、下アームを301、302で示し、304、306はそれぞれ上アーム301、下アーム302のゲート制御回路であり、これらはフォトカプラ305、307から点孤信号が送られるようになっている。310は フォトカプラ305、307の発光素子を点灯させるための電源であり、トランジスタ等の半導体スイッチから成る第1の遮断装置20と抵抗器308、309を介しフォトカプラ305、307の発光素子のアノード側に接続されている。インバータ制御部210が出力する各ブリッジのオン・オフ信号はドライバ316、317を介しフォトカプラ305、307の発光素子のカソード側に送られ、上アーム301、下アーム302は各々インバータ制御部210の出力信号がLOWレベルになった時にオンするようになっている。
また、交流電源4とコンバータ312との間にフォトトライアック314による点孤信号に従いオン・オフするトライアック313を設けており、フォトトライアック314の発光素子のアノード側は抵抗器315、トランジスタ等の半導体スイッチから成る第2の遮断装置21を介し電源310に接続され、カソード側にはインバータ制御部210の制御信号がドライバ318を介し送られるようになっている。ここで、第1の遮断装置20が信号ライン22により遮断状態になると、インバータブリッジ30、31、32の発光素子の電源供給は断たれるので、インバータ制御部210がモータ2を駆動すべくオン・オフ信号を出力しても全てのブリッジはオンできず、モータ2を駆動する電圧供給を遮断されるようになっている。同様にして、第2の遮断装置21が信号ライン23により遮断状態になると、インバータ制御部210がモータ2を駆動すべくトライアック313をオンさせる制御信号を出力しても、トライアック313はオフ状態となり、交流電源4からのインバータ変換器3への電源供給が遮断され、モータ2への電力の供給も断たれる構成となっている。
続いて、ロータ1のエネルギー測定動作の一例について図4を参照し説明する。図4において実線はロータ1及びモータ2の角速度ωを表し、一点破線はモータ2の出力トルクτmを表している。
第1の制御装置8は加速途上の速度ω1となる時刻T1で、慣性モーメントの小さいロータ(軽いロータ)の急加速状態での測定を避けるために、モータ2の出力トルクをτaからτbに低減するように制御し、上記した速度検出や電流検出フィルタリング処理の、速度勾配と電流値が一定の値として検出できるように時刻T2まで出力トルクを低減させた状態を保つ。時刻T2での角速度はω2となっており、時刻T3まで出力トルクτbとなるようにモータ2を制御した状態で加速し続けると、角速度はω3に達する。この時刻T2−T3間に出力された出力トルクτbは、(2)式におけるモータ出力トルクτmであり、さらにトルクτbで加速している時の角加速度dωa/dtは、下式の通りとなる。
dωa/dt=(ω3−ω2)/(T3−T2)・・・・・(5)
時刻T3では、第1の制御装置8は出力トルクをゼロとし、風損等の回転抑制トルクに従う自然減速状態となり、速度検出フィルタリング処理時間遅れを考慮し、時刻T4まで自然減速状態を保ち、T4での速度ω4から更に自然減速させ、時刻T5の速度ω5まで低下させる。この時、(2)式における減速している時の角加速度dωb/dtは、下式の通りとなる。
dωb/dt=(ω4−ω5)/(T5−T4)・・・・・(6)
しかし、本実施例のモータ2は誘導モータであるためモータの制御は一定周期でモータ電圧の大きさと周波数を変更しているので、扱うロータの慣性モーメントの大きさに伴い瞬時のすべりが変化し、更に平滑コンデンサ電圧やモータ巻線の温度変化による1次巻線抵抗の変化により、モータ電流と出力トルクの線形性が失われてしまう。
このため、本実施例の遠心機では、時刻T2から時刻T3でモータ2が出力したトルクτbの推定は、時刻T2から時刻T3の間にモータ2に通流した電流と、同時間での平滑コンデンサ311の電圧と、ロータの慣性モーメントの大きさにより変化量が変わる加速時の角加速度に基づき行うようにしている。
つまり、ロータ1を回転駆動している時のモータ2の実出力トルクの推定値τb^は、予めモータ2が実際に出力したトルクを基に、モータ電流Im、平滑コンデンサ電圧V、加速時の角加速度dωa/dtとの回帰分析を行い、各要素のゲインを決定し、次式で推定している。
τb^=A×Im+B×dωa/dt+C×V+D・・・・・(7)
A、B、Cはそれぞれ各要素、電流Im、平滑コンデンサ電圧V、加速時の角加速度dωa/dtのゲイン、Dはオフセットである。なお、平滑コンデンサ電圧Vの変わりにモータ2の相間電圧でも良い。
また、本実施例では(2)式でのエネルギー測定時の角速度ωmは、時刻T2での速度ω2と時刻T3でのω3の中間速度とし、
ωm=(ω2+ω3)/2・・・・・(8)
である。
上記のロータエネルギー測定動作における第1の制御装置8と第2の制御装置9の動作の詳細を図7と図8を参照し説明する。図7は第1の制御装置8内のCPU201の動作フローチャート図であり、図8は第2の制御装置9内のCPU211の動作フローチャート図である。
CPU201の動作を示す図7において、ステップ700はモータ2の速度がω1に達しているかを判断する判断処理であり、ω1以上であればステップ701に進み、CPU201はCPU211が正常に動作しているか確認するために、CPU211の現在の状態を問い合わせる通信を出力する。ステップ702ではCPU211からステップ701での通信出力に対する応答の有無をチェックし、応答がない場合はCPU211は異常であると判断し、ステップ703でモータ2の減速停止処理を実施し測定を終了する。
応答があった場合は、ステップ704に進み、モータ滑りとモータ印可電圧を所定の値まで低減させ、モータ2の出力トルクをτbに低減する。この後、上記したように速度検出や電流検出フィルタリング処理後の速度勾配と電流値が安定した状態で検出できるように、ステップ705で図4の時刻T1からT2までの時間であるtxの間、出力トルクを低減させた状態を保つインターバルを置き、ステップ706でCPU201、211の速度ω2の測定に関する同期が取れるようにCPU211に加速開始の通知を通信出力し、ステップ707で速度ω2を測定する。
ステップ708はトルクτbでの加速状態を予め決められた時間tyだけ持続させ、ステップ709に進む。ステップ709では速度ω2を測定してから角速度Δωx以上加速しているかを判断する。もし角速度がΔωx以上加速していない場合は、Δωx以上上昇するまで現状の加速を維持するようインバータ制御部210を制御する。
Δωx以上加速していればステップ710に進み、ステップ710ではこの時の速度ω3とω2からω3までの加速に要した時間taの測定が行われ、ステップ711ではモータ電流Iuと平滑コンデンサ電圧V1の時間taでの平均値を求める。ここで、時間taは図4の時刻T2からT3までの時間である。ステップ712はモータ2への電力供給を停止し自然減速を開始する処理であり、ステップ713に進み、速度検出フィルタリング処理の時間遅れを考慮し、速度勾配が安定した状態で検出できるように、図4の時刻T3からT4までの時間であるtzの間トルクゼロの状態を保ち、ステップ714でCPU201、211の速度ω4の測定に関する同期が取れるようにCPU211に減速開始の通知を通信出力し、ステップ715で速度ω4を測定する。
ステップ716では速度ω4を測定してから角速度がΔωy以上減速しているかを判断する。もし角速度がΔωy以上減速していない場合は、Δωy以上減速するまで現状の減速状態を維持するようインバータ制御部210を制御する。Δωy以上減速していればステップ716に進み、ステップ716ではこの時の速度ω5とω4からω5までの減速に要した時間tbの測定が行われる。ここで、時間tbは図4の時刻T4からT5までの時間である。
ステップ717ではロータエネルギーを同定する項目の測定が完了したので、急加速するためにモータ2の出力トルクをτaまで増加させる処理が行われ、ステップ719でトルクτbで加速している時の角加速度dωa/dtを次式に従い求め、
dωa/dt=(ω3−ω2)/ta・・・・・(9)
処理720で自然減速時の角加速度dωb/dtが次式により演算される。
dωb/dt=(ω4−ω5)/tb・・・・・(10)
ステップ721では、(8)式に従い決定したエネルギー測定時の角速度ωmと(7)式により推定したモータ2の出力トルクの推定値τm^と更に角加速度dωa/dt、dωb/dtを(2)式に代入して角速度ωmでのロータ1の回転エネルギーEmが同定され、ステップ722でωmとEmは不揮発メモリのRAM208に記憶される。ステップ723では、ユーザーインタフェース手段25により操作者が設定した設定整定速度ωsでのロータエネルギーーEsが次式に従い演算される。
Es=Em(ωS/ωm)・・・・・(11)
ステップ724ではCPU201とCPU211で測定したロータエネルギーを通信にて照合し、互いのCPUが異常なくエネルギー算出が実施されたか否かを判断し、正常にエネルギー演算が実施されていれば、各CPUが演算したエネルギー値を比較し合い所定の誤差以内にあれば正常と判断しステップ726に進む。所定の値を超えた誤差がある時は、第1の制御装置8と第2の制御装置9のいずれか一方に不具合があると判断し、ステップ725に進みモータ2の減速停止処理を実施し測定を終了する。
また、ステップ726では、遠心機の封じ込めエネルギーよりも低いエネルギー閾値Ec(以後、遠心機の封じ込めエネルギー閾値という)とユーザーインタフェース手段25より入力された設定整定回転速度での角速度ωsでのロータエネルギーEsとを比較し、EsがEc以上であればステップ725に進み減速停止し、EsがEc未満であれば角速度ωsまでの加速を続行し、ロータエネルギーの測定を終了する。
本実施例の遠心機はユーザーインタフェース手段25により操作者が試料を遠心分離するために選択したロータの機種(ID)コード(例えば、各ロータ毎に割振られている番号など)を入力することにより、CPU201は不揮発メモリのRAM208に記憶されている複数のロータテーブルの中から、選択されたロータの情報(仕様のデータ)を読み込むことができる。第1の制御装置8は、上記選択されたロータのロータ情報の1つとして記憶されている所定の回転速度ωuでのロータエネルギーEuと、ステップ723で演算した回転エネルギーEmを基に回転速度ωuでロータ1が持つと推定されるエネルギーEu'との比較を行い、所定の値を超えた誤差があった場合は、ユーザーインタフェース手段25より入力されたロータの機種コードと回転駆動中のロータが一致していないと判断して、モータ2を減速停止させることも可能である。
CPU211の動作を示す図8において、ステップ800は速度ω2の測定に関するCPU201、211の同期を取るためのCPU201から加速開始通知の通信があったか判断する判断処理であり、通信が無い場合は、ステップ801に進み、速度がエネルギー測定の上限速度であるωlim未満であればステップ800に戻り、ωlim以上であれば、第1の制御装置8に異常が発生した状態で加速を継続している危険
状態と判断し、ステップ802でインバータ変換器3の電源入力を遮断するようにI/O217から信号ライン23を介し第2の遮断装置21へ遮断信号を出力し、エネルギー測定を終了する。
ステップ800で加速開始通知の通信があったと判断した場合は、ステップ803に進み速度ω2を測定する。ステップ804では時間tyだけタイムインターバルを取り、ステップ805に進み、速度ω2を測定してから速度Δωx以上加速しているかを判断する。もし角速度がΔωx以上加速していない場合は、Δωx以上上昇するまで待機する。Δωx以上加速していればステップ806に進み、この時の速度ω3とω2からω3に加速に要した時間taの測定が行われ、また、処理807でモータ電流Iwと平滑コンデンサ電圧V2の時間taでの平均値を求める。
ステップ808は速度ω4の測定に関するCPU201、211の同期を取るためのCPU201から減速開始通知の通信があったか判断する処理であり、通信が無い場合は、ステップ809に進み、速度がωlim未満であればステップ808に戻り、ωlim以上であれば、ステップ810でI/O217から信号ライン23を介し第2の遮断装置21へ遮断信号を出力し、エネルギー測定を終了する。
ステップ808で減速開始通知の通信があったと判断した場合は、ステップ811に進み速度ω4を測定し、ステップ812で速度ω4を測定してから速度Δωy以上減速しているかを判断する。もし角速度がΔωy以上減速していない場合は、Δωy以上減速するまで待機する。Δωy以上減速していればステップ813に進み、この時の速度ω5とω4からω5までの減速に要した時間tbの測定が行われる。以降、ステップ814、815、816では図7のステップ719、720、721と同様の処理が実施され、第2の制御装置9が同定する角速度ωmでのロータ1の回転エネルギーEm’が求められ、ステップ817でωmとEm’は不揮発メモリのEEPROM218に記憶され測定を終了する。
なお、第2の制御装置9は第1の制御装置8のSCI209からの通信信号を受けてから、測定を開始するため時間遅れを考慮して、ステップ804での時間tyは図7のステップ708でのtyより短い時間とし、ステップ805及びステップ812でのΔωx、Δωyは、それぞれ図7のステップ709及びステップ716でのΔωx、Δωyより小さい値として、CPU201とCPU211での角加速度の検出に関する時間の整合を取ることにより、第1の制御装置8と第2の制御装置9が同定するエネルギーの誤差を最小限にすることが可能である。また、本実施例では測定したロータエネルギーとその測定速度は不揮発のメモリRAM208及びEEPROM218に記憶されており、ロータエネルギー測定終了後に停電が発生し、復電した際のロータ1の速度が高速であっても、不揮発メモリのRAM208及びEEPROM218からEm及びEm'を読み出すことでロータエネルギーの管理を可能としている。
次に、遠心機運転時の第1の制御装置8と第2の制御装置9のモータ2への電力供給遮断動作について図9、図10を参照して説明する。図9、図10はそれぞれ第1の制御装置8、第2の制御装置9についての動作を示すフローチャート図である。
図9において、ステップ900はロータ1が回転しているか否かを判断し、回転していなければ、処理901に進み不揮発メモリのRAM208に記憶した上記したエネルギー測定時の角速度ωmと角速度ωmでのロータ1の回転エネルギーEmをクリアし、ステップ900に戻る。ステップ900でロータ1が回転していると判断した時は、ステップ902に進み、速度ω1を超えEmの測定が完了したかを判断する。測定未完の時はステップ900に戻り、測定が完了していればステップ903でωmとEmを基に現在速度ωrでのロータエネルギーErを次式に従い算出する。
Er=Em(ωr/ωm)・・・・・(12)
ステップ904は、遠心機の封じ込めエネルギー閾値EcとωrでのロータエネルギーErとの大小を判断し、ErがEc以上であればステップ905に進み第1の遮断装置20に遮断信号を出力し、ErがEc未満であればステップ906に進み、ステップ906では、ユーザーインタフェース手段25を介し操作者が選択したロータの許容最高回転速度ωmaxでのロータ固有のエネルギー上限値Emaxと上記Erを比較し、ErがEmax以上であればステップ905に進み第1の遮断装置20に遮断信号を出力し、ErがEmax未満であればステップ900に戻り、以降、現在速度ωrに従い大小するロータエネルギーを監視し、遠心機の封じ込めエネルギー又はロータ固有のエネルギー上限値Emaxに対して上記ロータエネルギーが超えないように、エネルギーの監視が実施される。
第2の制御装置9の動作は、図10に示すとおり、上記の図9により説明した第1の制御装置8の動作と同様であり、エネルギー測定時の角速度ωmと角速度ωmでのロータ1の回転エネルギーEmのクリアと参照はEEPROM218を対象とし、モータ2の駆動の禁止は、遠心機の封じ込めエネルギー閾値Ecと現在速度ωrでのロータエネルギーErとの大小を判断し、ErがEc以上となった時に第2の遮断装置21に遮断信号を出力することで為されている。
以上、上記の実施例は、ロータ1は大気中で回転することを想定しているが、真空中で回転する際は、風損は無視できるので、エネルギー測定時に自然減速を行う必要はなく、所定の加速範囲でロータエネルギーを測定することができる。例えば、モータ2がロータ1に印加する仕事率Pについて考え,Pはロータ1を加速させるトルクτaにモータの角速度ωを掛合せた量であるので、
P=τa×ω・・・・・(13)
である。ここで、風損等の機械損を無視すると、モータ2の出力トルクτmは(13)式のτaと等価と見ることができるので、加速状態でロータ1に印可されたEnは上記仕事率Pを次式に従い時間積分した値で表される。
Figure 0004168952
第1の制御装置8、第2の制御装置9は、τaを(7)式に従い逐次推定し,ロータ1の所定の加速範囲ωxからωyでロータ1に印可されたエネルギーEnを(14)式により計算し、所定の速度ωrでロータ1が持つエネルギーErを次式に従い求める。
Er=En・ωr/(ωy−ωX)・・・・・(15)
第1の制御装置8、第2の制御装置9は、各々このErと遠心機の封じ込めエネルギー閾値Ecとを比較し、ErがEcを越えたと判断した時に第1の遮断装置20、第2の遮断装置21に遮断信号を出力するように動作するので、遠心機の封じ込めエネルギーに対しロータ1のエネルギーが超えないようにロータ1の速度の制限が可能である。
本発明となる遠心機の具体的実施例を示す構成図である。 図1の詳細な実施例を示すブロック回路図である。 図1の詳細な実施例を示すブロック回路図である。 ロータのエネルギー測定動作を模擬的に示す図である。 速度の様子を模擬的に示す図である。 従来の遠心機の構成を示す構成図である。 第1の制御装置のロータのエネルギー測定動作フローチャート図である。 第2の制御装置のロータのエネルギー測定動作フローチャート図である。 第1の制御装置のモータへの電力供給遮断動作のフローチャート図である。 第2の制御装置のモータへの電力供給遮断動作のフローチャート図である。
符号の説明
1はロータ、2はモータ、3はインバータ変換器、5は第1の速度検出手段、6は第2の速度検出手段、8は第1の制御装置、9は第2の制御装置、16は第1の電流検出器、17は第2の電流検出器、18は第1の直流電圧検出器、19は第2の直流電圧検出器、20は第1の遮断装置、21は第2の遮断装置である。

Claims (9)

  1. 試料を収納するロータと、該ロータを可変の角速度で回転駆動するモータと、直流電源を交流電源に変換し該モータに可変周波の交流電圧を出力するインバータ変換器と、前記モータの電流を検出する第1の電流検出器及び第2の電流検出器と、前記インバータ変換器の直流電源電圧を検出する第1の直流電圧検出器及び第2の直流電圧検出器と、前記ロータ或は前記モータの角速度を検出する第1の速度検出手段及び第2の速度検出手段と、第1の制御装置及び第2の制御装置を備え、前記第1の制御装置は、前記第1の電流検出器による前記モータの電流と、前記第1の直流電圧検出器による前記インバータ変換器の直流電源電圧と、前記第1の速度検出手段による前記ロータの角速度と角加速度に基づいて、前記ロータの回転エネルギーを求め、前記第2の制御装置は、前記第2の電流検出器による前記モータの電流と、前記第2の直流電圧検出器による前記インバータ変換器の直流電源電圧と、前記第2の速度検出手段による前記ロータの角速度と角加速度に基づいて、前記ロータの回転エネルギーを求めることを特徴とする遠心機。
  2. 前記第1の制御装置及び第2の制御装置は、各々独立して所定の前記ロータの回転エネルギー制限値を持つことを特徴とする請求項1記載の遠心機。
  3. 前記第1の制御装置は前記ロータの回転エネルギー制限値として、遠心機の封じ込めエネルギー或は任意のロータで予め定められたロータ固有のエネルギー上限値の少なくとも一方を有し、前記第2の制御装置は前記ロータの回転エネルギー制限値として、遠心機の封じ込めエネルギーを有していることを特徴とする請求項2記載の遠心機。
  4. 前記遠心機は、前記インバータ変換器から前記モータへの電圧供給路に互いに独立して配置された前記インバータ変換器から前記モータへの電圧供給を遮断する第1の遮断装置及び第2の遮断装置を備え、前記第1の制御装置は、前記ロータが任意の角速度で回転している状態での回転エネルギーを求め、該回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記第1の遮断装置に遮断動作信号を出力し、前記第2の制御装置は、前記ロータが任意の角速度で回転している状態での回転エネルギーを求め、該回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記第2の遮断装置に遮断動作信号を出力することを特徴とする請求項2記載の遠心機。
  5. 前記遠心機は、前記ロータの整定回転速度を操作者が任意に設定できるユーザーインタフェース手段を備え、前記第1の制御装置は、前記ロータがユーザーインタフェース手段により設定された整定回転速度での前記ロータの回転エネルギーを求め、該整定回転速度での前記ロータの回転エネルギーが前記ロータの回転エネルギー制限値を超えたと判断した時に、前記インバータ変換器を制御し、前記モータを減速させることを特徴とする請求項2記載の遠心機。
  6. 前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、前記第1の制御装置は前記インバータ変換器を制御し、且つ、前記通信手段を介し前記第2の制御装置との前記ロータの回転エネルギーの測定に関する時間の同期を取ることを特徴とする請求項1記載の遠心機。
  7. 前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、前記第1の制御装置は前記インバータ変換器を制御し、且つ前記通信手段による前記第2の制御装置との通信が不当であると判断した時に前記モータを減速させることを特徴とする請求項1記載の遠心機。
  8. 前記遠心機は、前記インバータ変換器から前記モータへの電圧供給路に互いに独立して配置された前記インバータ変換器から前記モータへの電圧供給を遮断する第1の遮断装置及び第2の遮断装置と、前記第1の制御装置と前記第2の制御装置との間に通信手段を備え、前記第2の制御装置は前記通信手段による前記第1の制御装置との通信が不当であると判断した時に前記第2の遮断装置に遮断動作信号を出力することを特徴とする請求項1記載の遠心機。
  9. 前記第1の制御装置と前記第2の制御装置の間に通信手段を備え、
    前記第1の制御装置は、前記通信手段により前記第2の制御装置が測定した前記ロータの回転エネルギーを観測し、前記第1の制御装置が測定した前記ロータの回転エネルギーと前記第2の制御装置が測定した前記ロータの回転エネルギーの誤差が所定値を超えたと判断した時に、前記インバータ変換器を制御し、前記モータを減速させることを特徴とする請求項1記載の遠心機。
JP2004045534A 2004-02-20 2004-02-20 遠心機 Expired - Fee Related JP4168952B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045534A JP4168952B2 (ja) 2004-02-20 2004-02-20 遠心機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045534A JP4168952B2 (ja) 2004-02-20 2004-02-20 遠心機

Publications (2)

Publication Number Publication Date
JP2005230751A JP2005230751A (ja) 2005-09-02
JP4168952B2 true JP4168952B2 (ja) 2008-10-22

Family

ID=35014248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045534A Expired - Fee Related JP4168952B2 (ja) 2004-02-20 2004-02-20 遠心機

Country Status (1)

Country Link
JP (1) JP4168952B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840724B2 (ja) * 2006-06-08 2011-12-21 日立工機株式会社 遠心機
JP5115409B2 (ja) * 2008-09-05 2013-01-09 日立工機株式会社 遠心分離機
EP3102334A4 (en) * 2014-01-22 2017-11-22 Theranos, Inc. High speed, compact centrifuge for use with small sample volumes

Also Published As

Publication number Publication date
JP2005230751A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4085112B2 (ja) モータ制御方法およびモータ制御装置
JP5055836B2 (ja) 同期モーター用磁極位置センサーの位相ズレ検出装置および検出方法
JP2005218215A (ja) Pmモータの駆動方法および温度推定方法
JPH10328952A (ja) モータの制御方法及び装置並びにねじ締め方法及び装置
US9146166B2 (en) Method and apparatus for determining an electrical torque of an electrical machine
JP2019030117A (ja) モータ制御装置
JP7417899B2 (ja) 電動工具システム、制御方法、及びプログラム
EP3825069B1 (en) Electric tool, control method, and program
CN109687793B (zh) 电动机控制装置
JP4168952B2 (ja) 遠心機
JP4168951B2 (ja) 遠心機
EP3133732B1 (en) Power conversion device and power conversion method
JP5151994B2 (ja) 慣性モーメント同定装置とその同定方法、ならびにその同定装置を備えたモータ制御装置
JP3860949B2 (ja) エレベータ用永久磁石同期電動機の調整方法およびその装置
JP4417586B2 (ja) ダイナミックブレーキ回路保護装置
JP2015106936A (ja) モータと主軸との間の動力伝達部の異常検出機能を有するモータ制御装置
JP2005295737A (ja) ステッピングモータの制御装置
KR20150078661A (ko) 모터 감자 에러 감지 장치 및 방법
JP2012223664A (ja) 遠心分離機
KR20160068478A (ko) 화상형성장치 및 화상형성장치의 동작 방법
WO2020261756A1 (ja) 電動工具
JP4498730B2 (ja) エレベータの異常振動検出装置
JP5402175B2 (ja) 電動機駆動システム
JP5399789B2 (ja) インバータ装置及びインバータ装置のティーチング方法
JP2007288829A (ja) 機械の異常検出方法およびその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees