JP4162652B2 - Sputtering target material - Google Patents

Sputtering target material Download PDF

Info

Publication number
JP4162652B2
JP4162652B2 JP2004507551A JP2004507551A JP4162652B2 JP 4162652 B2 JP4162652 B2 JP 4162652B2 JP 2004507551 A JP2004507551 A JP 2004507551A JP 2004507551 A JP2004507551 A JP 2004507551A JP 4162652 B2 JP4162652 B2 JP 4162652B2
Authority
JP
Japan
Prior art keywords
mass
thin film
target material
sputtering target
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004507551A
Other languages
Japanese (ja)
Other versions
JPWO2003100112A1 (en
Inventor
浩一 長谷川
信雄 石井
知美 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Publication of JPWO2003100112A1 publication Critical patent/JPWO2003100112A1/en
Application granted granted Critical
Publication of JP4162652B2 publication Critical patent/JP4162652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Description

技術分野
本発明は、高い反射率を維持しながら、耐食性、特に耐硫化性を向上させた薄膜形成用スパッタリングターゲット材、およびこのスパッタリングターゲット材を用いて形成された薄膜に関する。
背景技術
CD(Compact Disc)、DVD(Digital Versatile Disc)等の光学記録媒体に使用されている反射膜や、反射型STN(Super Twist Nematic)液晶表示装置、有機EL(Electro luminescence)表示装置等に使用されている光反射性導電膜には、一般に、AlやAl合金が使用されている。
上記の光学記録媒体や液晶表示装置、有機EL表示装置などの用途に使用される光反射性薄膜は、一般に、所望とする性質をもつスパッタリングターゲット材を作製し、そのスパッタリングターゲット材を使用してRF(高周波)スパッタリング法やDC(直流)スパッタリング法等により成膜することにより製造されている。
上記の方法で製造されるAlやAl合金からなる薄膜は、ある程度の反射率を有しかつ電気抵抗が低く、しかも、表層に不動態皮膜を形成するため、空気中においても安定した耐食性を有するが、AlやAl合金からなる薄膜の反射率は、例えば波長が700nmの光の場合80%程度であり、高反射率が要求される用途に対しては充分に満足できるものではない。
そのため、高い反射率を有する薄膜が要求される、例えばCDやDVDに代表される光ディスク媒体には、スパッタリングターゲット材として、AlまたはAl合金に代わりに、AuやAgを使用して薄膜を形成することが提案されており、また、反射型STN液晶表示装置についても、薄膜材料として反射率の高いAgを使用することが提案されている。
しかしながら、Auは高価であり、また、Agは、Alと比較して、耐食性、特に耐酸化性、耐硫化性に問題がある。例えば、Agは硫黄と反応すると、Agの硫化物を生成して黒色化し反射率が低下する。
そのため、例えば、特開平7−3363号公報には、Agに少量のMgを添加して合金化することにより、耐食性を向上させることが提案されている。
しかしながら、これらのAgの合金化によっても、充分な耐食性は得られない。
また、次世代大容量光記録メディアでは、記憶容量の増加のために405nmのような短波長のレーザー光を使用することが予定されており、そのような条件下での耐食性、耐熱性等が要求されている。
本発明の主たる目的は、高い反射率を維持しながら、耐食性、特に耐硫化性が改善されたAg合金からなる薄膜形成用のスパッタリングターゲット材を提供することである。
発明の開示
本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、今回、Agに、特定少量のInと、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分の少量とを添加して合金化すると、Agがもつ高い反射率を維持しつつ、耐食性、特に耐硫化性および耐熱性が格段に向上したAg基合金が得られること、そして該Ag基合金成分に対し、さらにAu、Pt及びPdから選ばれる少なくとも一種の他の金属成分の少量を添加して合金化すると、耐食性、特に耐硫化性がより一層向上することを見出し、本発明を完成するに至った。
かくして、本発明は、Agに、Inを0.01〜5.0mass%と、Cu、Ni及びCoから選ばれる少なくとも一種を0.01〜5.0mass%含有せしめてなるAg基合金より構成されていることを特徴とする高反射率を有する高耐食性薄膜形成用スパッタリングターゲット材を提供するものである。
本発明は、また、Agに、Inを0.01〜5.0mass%と、Cu、Ni及びCoから選ばれる少なくとも一種を0.01〜5.0mass%と、Au、Pd及びPtから選ばれる少なくとも一種を0.01〜0.1mass%未満含有せしめてなるAg基合金より構成されていることを特徴とする高反射率を有する高耐食性薄膜形成用スパッタリングターゲット材を提供するものである。
本発明は、また、Agに、Inを0.01〜5.0mass%と、Cu、Ni及びCoから選ばれる少なくとも一種を0.01〜5.0mass%含有せしめてなるAg基合金よりなる薄膜を提供するものである。
本発明は、さらにまた、Agに、Inを0.01〜5.0mass%と、Cu、Ni及びCoから選ばれる少なくとも一種を0.01〜5.0mass%と、Au、Pd及びPtから選ばれる少なくとも一種を0.01〜0.1mass%未満含有せしめてなるAg基合金よりなる薄膜を提供するものである。
以下、本発明についてさらに詳細に説明する。
発明の実施の形態
本発明のスパッタリングターゲット材は、一つの態様によれば、Agをベースとし、これにInと、Cu、Ni及びCoから選ばれる少なくとも一種を添加して合金化してなるAg合金からなるものである。
上記Inは、Agに対し、0.01〜5.0mass%、好ましくは0.1〜1.5mass%の範囲内の量で添加することができる。また、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分は、Agに対し、合計で0.01〜5.0mass%、好ましくは0.1〜1.5mass%の範囲内の量で添加することができる。
本発明のスパッタリングターゲット材は、別の態様によれば、Agをベースとし、これにInと、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分、及びさらにAu、Pd及びPtから選ばれる少なくとも一種の他の金属成分を添加し合金化してなるAg基合金からなることもできる。
この後者の態様のAg基合金において、Inは、Agに対し、0.01〜5.0mass%、好ましくは0.1〜1.5mass%の範囲内の量で添加することができる。また、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分は、Agに対し、合計で0.01〜5.0mass%、好ましくは0.1〜1.5mass%の範囲内の量で添加することができる。さらに、Au、Pd及びPtから選ばれる少なくとも一種の他の金属成分は、Agに対し、合計で0.01〜0.1mass%未満、好ましくは0.02〜0.08mass%の範囲内の量で添加することができる。
Ag合金は、例えば、Agに対し、InとCu、Ni及びCoから選ばれる少なくとも一種の金属成分を上記の量で添加し、あるいはAgに対し、InとCu、Ni及びCoから選ばれる少なくとも一種の金属成分とAu、Pd及びPtから選ばれる少なくとも一種の他の金属成分を上記の量で添加し、ガス炉、高周波溶解炉などの適当な金属溶解炉内で約1000〜1200℃の温度で溶融することにより製造することができる。溶解時の雰囲気は空気中で十分であるが、必要に応じ、不活性ガス雰囲気又は真空を使用してもよい。
原料として使用されるAg;In;Cu、Ni及びCoから選ばれる少なくとも一種の金属成分ならびにAu、Pd及びPtから選ばれる少なくとも一種の他の金属成分としては、粒状、板状、塊状等の形態で市販されているものを使用することができるが、通常、純度が99.9%以上、特に99.95%以上のものが好適である。
かくして、Ag中に、Inと、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分、あるいはInと、Cu、Ni及びCoから選ばれる少なくとも一種の金属成分と、Au、Pd及びPtから選ばれる少なくとも一種の他の金属成分を、前記の割合で含有するAg基合金が得られる。このAg基合金から構成されるスパッタリングターゲット材は、Agが本来もつ高い反射率を維持しており、しかも、耐酸化性、耐硫化性などの耐食性が、従来のAgやAg−Mg合金に比べて遥かに向上している。
したがって、本発明の上記Ag基合金から構成されるスパッタリングターゲット材は、高反射率が要求されるCDやDVDに代表される光ディスク媒体の反射膜用として、また、反射型STN液晶表示装置や有機EL表示装置などの光反射性薄膜用として有利に使用することができる。
また、CDやDVDに代表される光ディスク媒体および反射型STN液晶表示や有機EL表示装置に使用される反射膜に対しては、耐食性に加えて、使用条件下における耐高温高湿性や耐熱性も要求される。
耐高温高湿性及び耐熱性は、Ag−In二元系Ag基合金においてもAgに比較して或る程度向上するが、次世代大容量光記録メディア等に対しては、さらなる耐高温高湿性、耐熱性の改善が求められている。本発明のスパッタリングターゲット材から形成される薄膜はこの要求を満たすものであり、次世代大容量光記録メディア用の反射膜として特に有用である。
本発明のAg基合金から構成されるスパッタリングターゲット材からの反射膜の形成は、それ自体既知のスパッタリング法、例えば、高周波(RF)スパッタリング法、直流(DC)スパッタリング法、マグネトロンスパッタリング法等により行なうことができる。
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲はこれら実施例によって何ら限定されるものではない。
実施例
実施例1−1〜1−5及び比較例1−1〜1−3
Agに所定の金属元素を加え、ガス炉内で約1050℃の温度に加熱して溶融した後、鋳型で鋳造し、加工し、表1に示す組成のスパッタリングターゲット材を作製した。
このスパッタリングターゲット材を用い、RFスパッタリング法により、ガラス基板上に厚さが約150nmの表1に示すと同じ組成の薄膜を形成せしめた。

Figure 0004162652
形成せしめた薄膜の反射率を測定した後、基板を0.01%硫化ナトリウム(NaS)水溶液中に1時間浸漬し、再度反射率を測定し、浸漬前後での反射率の変化率を下記式により算出した。その下記表2に結果を示す。
変化率(%)=100−(浸漬後の反射率/浸漬前の反射率×100)
Figure 0004162652
表2から明らかなように、実施例1−1〜1−5の薄膜の反射率の変化は比較例1−1〜1−3の薄膜と比較して遥かに少なく、耐食性が向上していることがわかる。
実施例2−1〜2−4及び比較例2−1〜2−2
反射膜を液晶関係や有機EL、DVD、DVD−RWやDVD−RAM等に使用する場合、使用条件によっては200℃以上の高温に曝される場合があるが、例えば、純銀の薄膜は200℃以上に曝されると、膜の凝集等を起こし白く濁り反射率が落ちることがある。そのため、これらの用途では、熱に対する膜の安定性が求められる。特に、光記録メディアにおいて、レーザーの使用波長が405nmの場合、短波長領域での耐熱性が要求される。
そこで、本発明のスパッタリングターゲット材から形成される薄膜の熱的安定性を調べるために、前記実施例と同様にして下記表3に示す組成のスパッタリングターゲット材を作製し、それを用いて前記実施例と同様にしてガラス基板上に膜さが約150nmの下記表3に示す組成の薄膜を形成せしめ、その膜の熱的安定性を調べた。
Figure 0004162652
薄膜の熱的安定性を評価するため、形成せしめた薄膜の反射率を測定した後、その薄膜を大気中で250℃、1時間熱処理し、再度反射率を測定し、熱処理前後での反射率の変化率を下記式により算出した。その結果を下記表4に示す。
変化率(%)=100−(熱処理後の反射率/熱処理前の反射率×100)
Figure 0004162652
表4の結果から、測定波長が700nmでは、各試料とも熱処理前後で反射率に殆ど変化が無いものの、測定波長が400nmの場合、実施例2−1〜2−4の薄膜は、比較例2−1及び2−2の薄膜と比較して、耐熱性が遥かに向上していることがわかる。
実施例3−1〜3−3及び比較例3−1
反射膜を液晶のような半透過・反射電極膜に使用する場合、反射膜に対しては、配線用のために、ウェットエッチングによるパターニング特性が求められる。
そこで、本発明のスパッタリングターゲット材から形成される薄膜のパターニング特性を調べるために、前記実施例と同様にして下記表5に示す組成のスパッタリングターゲット材を作製し、それから前記実施例と同様にして下記表5に示す組成の薄膜を形成せしめ、ウェットエッチングによるパターニングを行い、その特性を評価した。なお、ウェットエッチングには、燐酸+硝酸+酢酸+水の混合溶液を使用した。その結果を下記表6に示す。
Figure 0004162652
Figure 0004162652
表6から明らかなように、実施例3−1〜3−3の薄膜では良好な結果が得られたが、比較例3−1の薄膜は、エッチング後、残渣物が一部溶け残り基板に付着していた。残渣物はAuであった。TECHNICAL FIELD The present invention relates to a sputtering target material for forming a thin film having improved corrosion resistance, particularly sulfidation resistance, while maintaining a high reflectance, and a thin film formed using this sputtering target material.
BACKGROUND ART Reflective films used in optical recording media such as CD (Compact Disc) and DVD (Digital Versatile Disc), reflective STN (Super Twist Nematic) liquid crystal display devices, organic EL (Electro luminescence) display devices, etc. In general, Al or an Al alloy is used for the light-reflective conductive film used.
The light-reflective thin film used for applications such as the above-mentioned optical recording media, liquid crystal display devices, and organic EL display devices is generally produced by producing a sputtering target material having desired properties and using the sputtering target material. It is manufactured by forming a film by an RF (high frequency) sputtering method, a DC (direct current) sputtering method, or the like.
The thin film made of Al or Al alloy produced by the above method has a certain degree of reflectivity, low electrical resistance, and forms a passive film on the surface layer, so that it has stable corrosion resistance even in the air. However, the reflectance of a thin film made of Al or an Al alloy is, for example, about 80% in the case of light having a wavelength of 700 nm, and is not sufficiently satisfactory for applications requiring high reflectance.
Therefore, a thin film having a high reflectance is required. For example, an optical disk medium represented by CD or DVD is formed by using Au or Ag as a sputtering target material instead of Al or Al alloy. It is also proposed to use Ag having a high reflectivity as a thin film material for the reflective STN liquid crystal display device.
However, Au is expensive, and Ag has a problem in corrosion resistance, particularly oxidation resistance and sulfidation resistance, as compared with Al. For example, when Ag reacts with sulfur, it produces Ag sulfide, which is blackened and the reflectance decreases.
Therefore, for example, Japanese Patent Laid-Open No. 7-3363 proposes to improve the corrosion resistance by adding a small amount of Mg to Ag and alloying.
However, sufficient corrosion resistance cannot be obtained even by alloying these Ags.
In addition, next-generation large-capacity optical recording media are planned to use laser light with a short wavelength such as 405 nm in order to increase the storage capacity. Corrosion resistance, heat resistance, etc. under such conditions are expected. It is requested.
A main object of the present invention is to provide a sputtering target material for forming a thin film made of an Ag alloy having improved corrosion resistance, particularly sulfidation resistance, while maintaining high reflectance.
DISCLOSURE OF THE INVENTION As a result of intensive studies to achieve the above-mentioned object, the present inventors have now confirmed that Ag contains a specific small amount of In and a small amount of at least one metal component selected from Cu, Ni and Co. When an alloy is added to form an alloy, an Ag-based alloy with significantly improved corrosion resistance, particularly sulfidation resistance and heat resistance can be obtained while maintaining the high reflectivity of Ag. Furthermore, when a small amount of at least one other metal component selected from Au, Pt and Pd is added to form an alloy, the corrosion resistance, particularly the sulfidation resistance is further improved, and the present invention has been completed.
Thus, the present invention is composed of an Ag-based alloy comprising 0.01 to 5.0 mass% of In and 0.01 to 5.0 mass% of at least one selected from Cu, Ni and Co in Ag. The present invention provides a sputtering target material for forming a highly corrosion-resistant thin film having a high reflectivity.
In the present invention, Ag is selected from 0.01 to 5.0 mass% of In, 0.01 to 5.0 mass% of at least one selected from Cu, Ni and Co, and Au, Pd and Pt. The present invention provides a sputtering target material for forming a highly corrosion-resistant thin film having a high reflectance, characterized in that it is made of an Ag-based alloy containing at least one kind in an amount of less than 0.01 to 0.1 mass%.
The present invention also provides a thin film made of an Ag-based alloy containing 0.01 to 5.0 mass% of In and 0.01 to 5.0 mass% of at least one selected from Cu, Ni and Co in Ag. Is to provide.
In the present invention, moreover, Ag is selected from 0.01 to 5.0 mass%, at least one selected from Cu, Ni and Co from 0.01 to 5.0 mass%, and selected from Au, Pd and Pt. The present invention provides a thin film made of an Ag-based alloy containing at least one of the above components in an amount of less than 0.01 to 0.1 mass%.
Hereinafter, the present invention will be described in more detail.
BEST MODE FOR CARRYING OUT THE INVENTION According to one aspect, a sputtering target material of the present invention is based on Ag, and is an Ag alloy formed by alloying at least one selected from In, Cu, Ni and Co with In. It consists of
The In can be added in an amount within a range of 0.01 to 5.0 mass%, preferably 0.1 to 1.5 mass% with respect to Ag. In addition, at least one metal component selected from Cu, Ni and Co is added in a total amount of 0.01 to 5.0 mass%, preferably 0.1 to 1.5 mass% with respect to Ag. be able to.
According to another aspect, the sputtering target material of the present invention is based on Ag, and includes at least one metal component selected from In, Cu, Ni, and Co, and at least selected from Au, Pd, and Pt. It can also be made of an Ag-based alloy obtained by alloying with another kind of metal component.
In the Ag-based alloy of the latter embodiment, In can be added in an amount in the range of 0.01 to 5.0 mass%, preferably 0.1 to 1.5 mass% with respect to Ag. In addition, at least one metal component selected from Cu, Ni and Co is added in a total amount of 0.01 to 5.0 mass%, preferably 0.1 to 1.5 mass% with respect to Ag. be able to. Further, at least one other metal component selected from Au, Pd and Pt is a total amount of 0.01 to less than 0.1 mass%, preferably 0.02 to 0.08 mass% with respect to Ag. Can be added.
In the Ag alloy, for example, at least one metal component selected from In, Cu, Ni, and Co is added to Ag in the above amount, or at least one selected from In, Cu, Ni, and Co to Ag. And at least one other metal component selected from Au, Pd and Pt are added in the above amounts, and the temperature is about 1000 to 1200 ° C. in a suitable metal melting furnace such as a gas furnace or a high-frequency melting furnace. It can be manufactured by melting. The atmosphere at the time of dissolution is sufficient in air, but an inert gas atmosphere or a vacuum may be used if necessary.
Ag used as a raw material: In; at least one metal component selected from Cu, Ni and Co and at least one other metal component selected from Au, Pd and Pt are in the form of particles, plates, lumps, etc. However, those having a purity of 99.9% or more, particularly 99.95% or more are suitable.
Thus, in Ag, at least one metal component selected from In and Cu, Ni and Co, or at least one metal component selected from In and Cu, Ni and Co, and Au, Pd and Pt are selected. An Ag-based alloy containing at least one other metal component in the above ratio can be obtained. The sputtering target material composed of this Ag-based alloy maintains the high reflectivity inherent in Ag, and is more resistant to corrosion such as oxidation resistance and sulfidation resistance than conventional Ag and Ag-Mg alloys. Far improved.
Therefore, the sputtering target material composed of the above Ag-based alloy of the present invention is used for a reflective film of an optical disk medium represented by CD or DVD, which requires high reflectivity, and for a reflective STN liquid crystal display device or organic material. It can be advantageously used for a light reflective thin film such as an EL display device.
In addition to corrosion resistance, optical disk media represented by CD and DVD and reflective films used in reflective STN liquid crystal displays and organic EL display devices have high temperature and high humidity resistance and heat resistance under operating conditions. Required.
The high-temperature and high-humidity resistance and heat resistance are improved to some extent in Ag-In binary Ag-based alloys as compared with Ag. There is a need for improved heat resistance. The thin film formed from the sputtering target material of the present invention satisfies this requirement and is particularly useful as a reflective film for the next generation large-capacity optical recording media.
The reflective film is formed from the sputtering target material composed of the Ag-based alloy of the present invention by a known sputtering method, for example, a radio frequency (RF) sputtering method, a direct current (DC) sputtering method, a magnetron sputtering method, or the like. be able to.
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
Examples Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-3
A predetermined metal element was added to Ag, heated to a temperature of about 1050 ° C. in a gas furnace and melted, then cast in a mold and processed to produce a sputtering target material having the composition shown in Table 1.
Using this sputtering target material, a thin film having the same composition as shown in Table 1 having a thickness of about 150 nm was formed on a glass substrate by RF sputtering.
Figure 0004162652
After measuring the reflectance of the formed thin film, the substrate was immersed in an aqueous solution of 0.01% sodium sulfide (Na 2 S) for 1 hour, the reflectance was measured again, and the rate of change in reflectance before and after immersion was calculated. It was calculated by the following formula. The results are shown in Table 2 below.
Rate of change (%) = 100− (reflectance after immersion / reflectivity before immersion × 100)
Figure 0004162652
As is apparent from Table 2, the change in reflectance of the thin films of Examples 1-1 to 1-5 is far less than that of the thin films of Comparative Examples 1-1 to 1-3, and the corrosion resistance is improved. I understand that.
Examples 2-1 to 2-4 and comparative examples 2-1 to 2-2
When the reflective film is used for liquid crystal, organic EL, DVD, DVD-RW, DVD-RAM, etc., it may be exposed to a high temperature of 200 ° C. or more depending on the use conditions. When exposed to the above, the film may be agglomerated and become white and turbid and the reflectance may decrease. Therefore, in these applications, the stability of the film against heat is required. In particular, in an optical recording medium, when the wavelength of the laser used is 405 nm, heat resistance in the short wavelength region is required.
Therefore, in order to investigate the thermal stability of the thin film formed from the sputtering target material of the present invention, a sputtering target material having the composition shown in the following Table 3 was prepared in the same manner as in the above-described example, and the above-described implementation was performed using it. In the same manner as in the example, a thin film having a composition shown in the following Table 3 having a film thickness of about 150 nm was formed on a glass substrate, and the thermal stability of the film was examined.
Figure 0004162652
In order to evaluate the thermal stability of the thin film, after measuring the reflectance of the formed thin film, the thin film was heat treated in the atmosphere at 250 ° C. for 1 hour, the reflectance was measured again, and the reflectance before and after the heat treatment was measured. The change rate was calculated by the following formula. The results are shown in Table 4 below.
Rate of change (%) = 100− (reflectance after heat treatment / reflectance before heat treatment × 100)
Figure 0004162652
From the results of Table 4, when the measurement wavelength is 700 nm, there is almost no change in the reflectance before and after the heat treatment, but when the measurement wavelength is 400 nm, the thin films of Examples 2-1 to 2-4 are Comparative Example 2. It can be seen that the heat resistance is far improved compared to the thin films of -1 and 2-2.
Examples 3-1 to 3-3 and Comparative Example 3-1
When the reflective film is used for a semi-transmissive / reflective electrode film such as a liquid crystal, the reflective film is required to have patterning characteristics by wet etching for wiring.
Therefore, in order to investigate the patterning characteristics of the thin film formed from the sputtering target material of the present invention, a sputtering target material having the composition shown in Table 5 below was prepared in the same manner as in the above example, and then as in the above example. A thin film having the composition shown in Table 5 below was formed, patterned by wet etching, and its characteristics were evaluated. For wet etching, a mixed solution of phosphoric acid + nitric acid + acetic acid + water was used. The results are shown in Table 6 below.
Figure 0004162652
Figure 0004162652
As is clear from Table 6, good results were obtained with the thin films of Examples 3-1 to 3-3, but the thin film of Comparative Example 3-1 was partially dissolved in the remaining substrate after etching. It was attached. The residue was Au.

Claims (13)

Agに、Inを0.01〜5.0mass%と、Cuを0.01〜5.0mass%含有せしめてなるAg基合金より構成されていることを特徴とする高反射率を有する高耐食性薄膜形成用スパッタリングターゲット材。High corrosion resistance with high reflectivity, characterized in that it is composed of an Ag-based alloy containing 0.01 to 5.0 mass% of In and 0.01 to 5.0 mass% of Cu in Ag. Sputtering target material for thin film formation. Inを0.1〜1.5mass含有する請求項1に記載のスパッタリングターゲット材。  The sputtering target material of Claim 1 containing 0.1-1.5 mass of In. uを0.1〜1.5mass%含有する請求項1又は2に記載のスパッタリングターゲット材。The sputtering target material of Claim 1 or 2 containing 0.1-1.5 mass% of Cu. Agに、Inを0Ag is 0 for In .. 01〜5.001-5.0 massmass %と、Cuを0.01〜5.0% And Cu from 0.01 to 5.0 massmass %含有せしめてなるAg基合金からなる薄膜。A thin film made of an Ag-based alloy. 請求項4に記載の薄膜よりなる光ディスク媒体。An optical disk medium comprising the thin film according to claim 4. 請求項4に記載の薄膜を用いてなる反射型STN液晶表示又は有機EL表示装置。A reflective STN liquid crystal display or organic EL display device using the thin film according to claim 4. Agに、Inを0.01〜5.0mass%と、Cu、Ni及びCoから選ばれる少なくとも一種を0.01〜5.0mass%と、Au、Pd及びPtから選ばれる少なくとも一種を0.01〜0.1mass%未満含有せしめてなるAg基合金より構成されていることを特徴とする高反射率を有する高耐食性薄膜形成用スパッタリングターゲット材。  Ag contains 0.01 to 5.0 mass% of In, 0.01 to 5.0 mass% of at least one selected from Cu, Ni and Co, and 0.01 to at least one selected from Au, Pd and Pt. A sputtering target material for forming a highly corrosion-resistant thin film having a high reflectivity, comprising an Ag-based alloy containing less than ~ 0.1 mass%. Inを0.1〜1.5mass含有する請求項に記載のスパッタリングターゲット材。The sputtering target material of Claim 7 containing 0.1-1.5 mass of In. Cu、Ni及びCoから選ばれる少なくとも一種を0.1〜1.5mass%含有する請求項7又は8に記載のスパッタリングターゲット材。The sputtering target material according to claim 7 or 8 , comprising 0.1 to 1.5 mass% of at least one selected from Cu, Ni and Co. Au、Pd及びPtから選ばれる少なくとも一種を0.02〜0.08mass%含有する請求項7〜9にいずれかに記載のスパッタリングターゲット材。  The sputtering target material in any one of Claims 7-9 which contains 0.02-0.08 mass% of at least 1 type chosen from Au, Pd, and Pt. Agに、Inを0 . 01〜5.0 mass %と、Cu、Ni及びCoから選ばれる少なくとも一種を0 . 01〜5.0 mass %と、Au、Pd及びPtから選ばれる少なくとも一種を0 . 01〜0.1 mass %未満含有せしめてなるAg基合金からなる薄膜。 To Ag, and 0. 01~5.0 mass% of an In, Cu, and 0. 01~5.0 mass% of at least one selected from Ni and Co, Au, at least one selected from Pd and Pt 0 A thin film made of an Ag-based alloy containing less than 01-0.1 mass % . 請求項11に記載の薄膜よりなる光ディスク媒体。An optical disk medium comprising the thin film according to claim 11 . 請求項11に記載の薄膜を用いてなる反射型STN液晶表示又は有機EL表示装置。A reflective STN liquid crystal display or organic EL display device using the thin film according to claim 11 .
JP2004507551A 2002-05-28 2003-05-23 Sputtering target material Expired - Fee Related JP4162652B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002153729 2002-05-28
JP2002153729 2002-05-28
PCT/JP2003/006455 WO2003100112A1 (en) 2002-05-28 2003-05-23 Sputtering target material

Publications (2)

Publication Number Publication Date
JPWO2003100112A1 JPWO2003100112A1 (en) 2005-09-22
JP4162652B2 true JP4162652B2 (en) 2008-10-08

Family

ID=29561318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004507551A Expired - Fee Related JP4162652B2 (en) 2002-05-28 2003-05-23 Sputtering target material

Country Status (4)

Country Link
JP (1) JP4162652B2 (en)
AU (1) AU2003242423A1 (en)
TW (1) TWI283710B (en)
WO (1) WO2003100112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487274A4 (en) * 2009-10-06 2017-05-24 Mitsubishi Materials Corporation Silver alloy target for forming reflection electrode film for organic el element, and method for manufacturing the silver alloy target

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287565A (en) * 2009-05-14 2010-12-24 Mitsubishi Materials Corp Al ALLOY-REFLECTING ELECTRODE FILM FOR FORMING ANODE LAYER OF TOP-EMISSION TYPE ORGANIC EL ELEMENT
JP5522599B1 (en) * 2012-12-21 2014-06-18 三菱マテリアル株式会社 Ag alloy sputtering target
JP5850077B2 (en) * 2014-04-09 2016-02-03 三菱マテリアル株式会社 Ag alloy film and sputtering target for forming Ag alloy film
CN115976478B (en) * 2022-12-13 2023-11-28 江苏迪纳科精细材料股份有限公司 Silver sulfide resistant alloy target and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243509A (en) * 1993-02-19 1994-09-02 Ricoh Co Ltd Light reflecting film and optical recording information medium using the same
JPH09324264A (en) * 1996-06-03 1997-12-16 Toppan Printing Co Ltd Sputtering target
JP2001035014A (en) * 1999-07-19 2001-02-09 Ricoh Co Ltd Optical information recording medium, manufacture of the same and sputtering device used for production of the same
JP4638015B2 (en) * 2000-10-31 2011-02-23 株式会社フルヤ金属 Sputtering target material for forming a thin film, thin film formed using the same, and optical recording medium
JP4801279B2 (en) * 2001-05-09 2011-10-26 石福金属興業株式会社 Sputtering target material
JP3915114B2 (en) * 2001-11-26 2007-05-16 三菱マテリアル株式会社 Silver alloy sputtering target for reflection film formation of optical recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487274A4 (en) * 2009-10-06 2017-05-24 Mitsubishi Materials Corporation Silver alloy target for forming reflection electrode film for organic el element, and method for manufacturing the silver alloy target

Also Published As

Publication number Publication date
AU2003242423A1 (en) 2003-12-12
TW200401835A (en) 2004-02-01
TWI283710B (en) 2007-07-11
WO2003100112A1 (en) 2003-12-04
JPWO2003100112A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JPWO2002077317A1 (en) Sputtering target material
WO2005056848A1 (en) Silver alloy for reflective film
JP2004002929A (en) Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material
JP4801279B2 (en) Sputtering target material
JP4309227B2 (en) Sputtering target material
JP4162652B2 (en) Sputtering target material
WO2005056851A1 (en) Silver alloy excelling in performance of reflectance maintenance
JP4351216B2 (en) Silver alloy with excellent reflectance maintenance characteristics
JP2005048231A (en) Sputtering target material
JP4500945B2 (en) Silver alloy with excellent reflectance maintenance characteristics
JP4418777B2 (en) Sputtering target material and thin film made of Ag-based alloy
JP3855958B2 (en) Sputtering target material
JP4864538B2 (en) Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film
JP2003293055A (en) Silver alloy thin film and silver alloy for forming thin film
JP2003160859A (en) Silver alloy sputtering target for forming reflection coat on optical recording medium
JP2003160860A (en) Silver alloy sputtering target for forming reflection coat on optical recording medium
JP2006252746A (en) Silver alloy for reflection film
JP2004217986A (en) Silver alloy for reflection film of optical recording medium
JP4585952B2 (en) Thin film made of Ag-based alloy
JP4186223B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP4186222B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP2003006927A (en) Gold alloy for forming reflection film of optical recording disk
KR20020095257A (en) Sputtering target materials
JP2007003624A (en) Transflective film
JP2011084803A (en) Aluminum alloy reflection film for optical recording medium and sputtering target for forming the reflection film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees