JP4162546B2 - Power control method - Google Patents

Power control method Download PDF

Info

Publication number
JP4162546B2
JP4162546B2 JP2003208747A JP2003208747A JP4162546B2 JP 4162546 B2 JP4162546 B2 JP 4162546B2 JP 2003208747 A JP2003208747 A JP 2003208747A JP 2003208747 A JP2003208747 A JP 2003208747A JP 4162546 B2 JP4162546 B2 JP 4162546B2
Authority
JP
Japan
Prior art keywords
current
value
voltage
power
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003208747A
Other languages
Japanese (ja)
Other versions
JP2005073311A (en
Inventor
博文 松尾
不二雄 黒川
正博 佐々木
泰弘 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2003208747A priority Critical patent/JP4162546B2/en
Publication of JP2005073311A publication Critical patent/JP2005073311A/en
Application granted granted Critical
Publication of JP4162546B2 publication Critical patent/JP4162546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電源の制御技術にかかり、特に、電源をディジタル制御する制御方法に関する。
【0002】
【従来の技術】
図6の符号801は、従来技術の電源であり、図7は、その電源装置801を制御するためのフローチャートである。
【0003】
電源装置801の構成を説明すると、この電源装置801は、トランス805を有しており、一次側には入力コンデンサ815とスイッチング素子812が配置され、二次側には、整流回路822と平滑回路824が配置されている。
【0004】
トランス805内には、互いに磁気結合された一次巻線811と二次巻線821とが配置されている。
【0005】
一次側の入力端子851、852の間には、直流電圧源810から直流電圧が供給されており、供給された直流電圧は入力コンデンサ815で平滑され、一次巻線811とスイッチング素子812の直列接続回路に印加されている。
【0006】
スイッチング素子812には制御回路840が接続されており、制御回路840から入力される信号に従ってスイッチング動作し、一次巻線811に断続的に電流を流す。その電流により、二次巻線821には交流電圧が誘起される。
【0007】
二次巻線821に誘起された交流電圧は、整流回路822と平滑回路824とで整流平滑され、逆流防止用のダイオード825や電流検出抵抗828を介して出力端子853、854にそれぞれ印加され、負荷850に供給される。
【0008】
出力端子853、854間に現れる出力電圧と、電流検出抵抗828に流れる出力電流の大きさは制御回路840に入力されており、所定時間毎に、図7のフローチャートに従った一連の処理が繰り返し行われ、定電圧動作、又は定電流動作によって負荷850に電力が供給される。
【0009】
図7のフローチャートを参照し、符号T11、T31は処理の開始を示しており、検出された出力電圧と出力電流は、それぞれディジタル値に変換する変換処理T12、T32によってディジタル値である電圧測定値VMと電流測定値IMとに変換される。
【0010】
電圧測定値VMと電流測定値IMは、比例処理T17、T37と、微分処理T18、T38と、積分処理T15、T35とで用いられ、電圧加算処理T16により、電圧の各処理T17、T18、T15は重み付けして加算され、電圧制御値Aが求められ、電流加算処理T36により、電流の各処理T37、T38、T35は重み付けして加算され、電圧制御値Cが求められる。
【0011】
この電源装置801は、定常状態では、定電圧動作か、又は定電流動作で動作するように構成されており、そのため、定電圧動作中に出力される一定電圧の電圧目標値VAと、定電流動作中に出力される一定電流の電流目標値IAとが設定されている。
【0012】
ここで、定電圧動作中は、出力電流は負荷850の大きさによって決まるため、出力電流は電流目標値IAよりも小さい範囲で変動し、逆に、定電流動作中は、出力電圧は負荷850の大きさによって決まるため、出力電圧は、電圧目標値VAよりも小さい範囲で変動する。
【0013】
電圧制御値Aは出力電圧と電圧目標値VAとの差電圧の大きさを表し、電流制御値Cは、出力電流と電流目標値IAとの差電流の大きさを表しているため、定電圧動作中は、出力電流と電流目標値IAの差は大きく、そのため、電流制御値Cの値は大きいが、出力電圧は、ほぼ電圧目標値VAと等しいから、電圧制御値Aはゼロに近い値である。
【0014】
それに対し、定電流動作中は、出力電圧と電圧目標値VAの差は大きく、そのため、電圧制御値Aの値は大きい。逆に、出力電流は、ほぼ電流目標値IAと等しいから、電流制御値Cはゼロに近い値である。
【0015】
比較処理T51は、上記のような電圧制御値Aと電流制御値Cとを比較し、ゼロに近い方の値を選択し、選択値Eとする。その結果、定電圧動作中は、選択値Eとして電圧制御値Aが採用され、定電流動作中は電流制御値Cが採用される。
【0016】
選択値Eは、D/P出力処理T52にて駆動信号に変換され、スイッチング素子812のゲート端子に出力されると、スイッチング素子812の導通期間やスイッチング周波数は、選択値Eの値がゼロに近づくように変化する。
【0017】
その結果、定電圧動作中は出力電圧がほぼ電圧目標値VAに一致し、定電流動作中は出力電流がほぼ電流目標値VAに一致する。
【0018】
しかしながら、上記のような電源装置801で、定電圧動作と定電流動作との間で動作状態が切り替わるときに、出力電圧や出力電流が大きく変動し、安定するまでに比較的長い時間を要するという不都合がある。
【0019】
【先行技術文献1】
特開平8−98515号
【発明が解決しようとする課題】
上記不都合の原因は、電圧積分処理S19や電流積分処理S39の性質に起因する。
【0020】
電圧積分処理S19と電流積分処理S39の前回の処理結果を符号Ivn-1、Iin-1で表わすと、今回の処理結果Ivn、Iinは、下記(a)、(b)式のように、前回の処理結果Ivn-1、Iin-1に対し、電圧又は電流目標値VA、IAと、今回測定した電圧又は電流測定値VMn、IMnと差を加算してそれぞれ求められる。
Ivn = Ivn-1+VA−VMn ……(a)
Iin = Iin-1+IA−IMn ……(b)
【0021】
処理結果Ivn、Iinの値を記憶する変数は、有限のビット数しか割り当てられていないため、処理結果Ivn、Iinに使用される変数は、フルスケールになりやすい。
【0022】
例えば、定電圧動作ではないときは(VA−VMn)の値は大きいのに、電圧積分処理S19にて上記(a)式が毎回実行されるため、電圧の処理結果Ivnがフルスケールになり、電圧制御値Aが大きな値になってしまう。
【0023】
逆に、定電流動作ではないときにも、電流積分処理S39にて上記(b)式が毎回実行され、電流の処理結果Iivnがフルスケールになり、制御電流値Cが大きな値になってしまう。
【0024】
その結果、定電圧動作と定電流動作との間で切り替えがあった場合、電圧又は電流の積分処理S19、S39の処理結果Ivn、Iinが正常な値に戻るまでに比較的長い時間を要し、応答が遅くなる。
【0025】
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、出力状態の切り替わりが早い制御方法を提供することにある。
【0026】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、出力電圧の大きさを示す電圧測定値を用いて電圧の積分処理結果を求める電圧積分処理と、出力電流の大きさを示す電流測定値を用いて電流の積分処理結果を求める電流積分処理と、前記電圧の積分処理結果を用いて電圧制御値を求める電圧制御値算出処理と、前記電流の積分処理結果を用いて電流制御値を求める電流制御値算出処理と、少なくとも前記電圧制御値と前記電流制御値と含む制御値同士を比較し、その大小関係に基いていずれか一個の制御値を選択し、選択値として出力する選択処理と、前記選択値を駆動信号に変換し、スイッチング素子に出力して該スイッチング素子に前記駆動信号に従ったスイッチング動作をさせる駆動信号出力処理とを有し、前記各処理を繰り返し行い、前記スイッチング素子に接続された一次巻線に、前記スイッチング動作に応じた電流を流し、前記一次巻線と磁気結合された二次巻線に電圧を誘起させ、前記誘起された電圧を整流平滑回路で整流平滑し、負荷に供給する電源装置の制御方法であって、前記電圧積分処理は、前記電圧測定値と予め設定された電圧目標値の差を、当該電圧積分処理の前回の処理結果に加算して今回の処理結果とする電圧積分演算を含み、前記電流積分処理は、前記電流測定値と予め設定された電流目標値の差を、当該電流積分処理の前回の処理結果に加算して今回の処理結果とする電流積分演算を含み、前記電圧積分処理は、前記選択処理における前回の前記選択値が前記電圧制御値ではない場合には前記電圧積分演算は今回行わないように構成され、前記電流積分処理は、前記選択処理における前回の前記選択値が前記電流制御値ではない場合には前記電流積分演算は今回行わないように構成された制御方法である。
請求項2記載の発明は、所定の値の電圧バイアス値と電流バイアス値が予め設定された請求項1記載の制御方法であって、前記電圧制御値と前記電流制御値の差の絶対値が、前記電圧バイアス値以下の場合に、前回の前記選択値が前記電圧制御値でなくても前記電圧積分演算を行い、前記差の絶対値が前記電流バイアス値以下の場合に、前回の前記選択値が前記電流制御値でなくても前記電流積分演算を行う制御方法である。
請求項3記載の発明は、前記電圧測定値と前記電圧目標値の差を今回の処理結果とする電圧比例処理と、前記電流測定値と前記電流目標値の差を今回の処理結果とする電流比例処理と、今回の前記電圧測定値と前回の前記電圧測定値の差を今回の処理結果とする電圧微分処理と、今回の前記電流測定値と前回の前記電流測定値の差を今回の処理結果とする電流微分処理とを含み、前記電圧制御値算出処理は、前記電圧積分処理の処理結果と、前記電圧比例処理の処理結果と、前記電圧微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電圧制御値とし、前記電流制御値算出処理は、前記電流積分処理の処理結果と、前記電流比例処理の処理結果と、前記電流微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電流制御値とする請求項1又は請求項2のいずれか1項記載の制御方法である。
請求項4記載の発明は、出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、前記電力の積分処理結果を用いて電力制御値を求める電力制御値算出処理とを含み、前記選択処理が比較する前記制御値には前記電力制御値が含まれ、前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含む請求項1乃至請求項3のいずれか1項記載の制御方法である。
請求項5記載の発明は、出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、前記電力測定値と前記電力目標値の差を今回の処理結果とする電力比例処理と、今回の前記電力測定値と前回の前記電力測定値の差を今回の処理結果とする電力微分処理と、前記電力積分処理の処理結果と、前記電力比例処理の処理結果と、前記電力微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電力制御値とする電力制御値算出処理とを含み、前記選択処理が比較する前記制御値には前記電力制御値が含まれ、前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含む請求項3記載の制御方法である。
請求項6記載の発明は、前記電力積分処理は、前記選択処理において前回選択された値が前記電力制御値ではない場合には、今回の前記電力積分処理では前記電力積分演算を行わないように構成された請求項4又は請求項5のいずれか1項記載の制御方法である。
請求項7記載の発明は、所定の値の第一、第二の電力バイアス値が予め設定された請求項6記載の制御方法であって、前記電圧制御値と前記電力制御値の差の絶対値が前記第一の電力バイアス値以下であり、且つ、前記電流制御値と前記電力制御値の差の絶対値が前記第二の電力バイアス値以下である場合に、前回の前記選択値が前記電力制御値でなくても前記電力積分演算を行う制御方法である。請求項8記載の発明は、出力電圧の大きさを示す電圧測定値を用いて電圧の積分処理結果を求める電圧積分処理と、出力電流の大きさを示す電流測定値を用いて電流の積分処理結果を求める電流積分処理と、出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、前記電圧の積分処理結果を用いて電圧制御値を求める電圧制御値算出処理と、前記電流の積分処理結果を用いて電流制御値を求める電流制御値算出処理と、前記電力の積分処理結果を用いて電力制御値を求める電力制御値算出処理と、少なくとも前記電圧制御値と前記電流制御値と前記電力制御値とを含む制御値同士を比較し、その大小関係に基いていずれか一個の制御値を選択し、選択値として出力する選択処理と、前記選択値を駆動信号に変換し、スイッチング素子に出力して該スイッチング素子に前記駆動信号に従ったスイッチング動作をさせる駆動信号出力処理とを有し、前記各処理を繰り返し行い、前記スイッチング素子に接続された一次巻線に、前記スイッチング動作に応じた電流を流し、前記一次巻線と磁気結合された二次巻線に電圧を誘起させ、前記誘起された電圧を整流平滑回路で整流平滑し、負荷に供給する電源装置の制御方法であって、前記電圧積分処理は、前記電圧測定値と予め設定された電圧目標値の差を、当該電圧積分処理の前回の処理結果に加算して今回の処理結果とする電圧積分演算を含み、前記電流積分処理は、前記電流測定値と予め設定された電流目標値の差を、当該電流積分処理の前回の処理結果に加算して今回の処理結果とする電流積分演算を含み、前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含み、前記電圧積分処理は、前記選択処理において、前回の前記選択値が電圧制御値ではない場合に前記電圧積分演算は今回行わず、前記電力積分処理は、前記選択処理において、前回の前記選択値が電力制御値ではない場合に前記電力積分演算は今回行わず、前記電流積分処理は、前回の前記選択値が電流制御値ではない場合に前記電流積分演算は今回行わない制御方法であって、所定の値である、第一、第二の電圧バイアス値と、第一、第二の電力バイアス値と、第一、第二の電流バイアス値が設定され、前記電圧制御値と前記電力制御値の差の絶対値が前記第一の電圧バイアス値以下であり、且つ、前記電圧制御値と前記電流制御値の差の絶対値が前記第二の電圧バイアス値以下である場合に、前回の前記選択値が前記電圧制御値でなくても前記電圧積分演算を行い、前記電力制御値と前記電圧制御値の差の絶対値が前記第一の電力バイアス値以下であり、且つ、前記電力制御値と前記電流制御値の差の絶対値が前記第二の電力バイアス値以下である場合に、前回の前記選択値が前記電力制御値でなくても前記電力積分演算を行い、前記電流制御値と前記電圧制御値の差の絶対値が前記第一の電流バイアス値以下であり、且つ、前記電流制御値と前記電力制御値の差の絶対値が前記第二の電流バイアス値以下である場合に、前回の前記選択値が前記電流制御値でなくても前記電流積分演算を行う制御方法である。
請求項9記載の発明は、前記電圧測定値と前記電圧目標値の差を今回の処理結果とする電圧比例処理と、前記電流測定値と前記電流目標値の差を今回の処理結果とする電流比例処理と、前記電力測定値と前記電力目標値の差を今回の処理結果とする電流比例処理と、今回の前記電圧測定値と前回の前記電圧測定値の差を今回の処理結果とする電圧微分処理と、今回の前記電流測定値と前回の前記電流測定値の差を今回の処理結果とする電流微分処理と、今回の前記電力測定値と前回の前記電力測定値の差を今回の処理結果とする電力微分処理と、を含み、前記電圧制御値算出処理は、前記電圧積分処理の処理結果と、前記電圧比例処理の処理結果と、前記電圧微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電圧制御値とし、前記電流制御値算出処理は、前記電流積分処理の処理結果と、前記電流比例処理の処理結果と、前記電流微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電流制御値とし、前記電力制御値算出処理は、前記電力積分処理の処理結果と、前記電力比例処理の処理結果と、前記電力微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電力制御値とする請求項8記載の制御方法である。
【0027】
本発明は上記のように構成されており、電圧制御値と電力制御値と電流制御値との間の差が大きい場合には、選択処理で選択されない制御値には積分演算が行われない。従って、制御値が最大値に飽和することがなく、動作状態の間の移行がスムーズである。
【0028】
また、電圧、電力、電流の各バイアス値が設定されており、動作状態が切り替わる点の近傍では、切り替わり先の制御値の大きさも、ゼロに近いので、選択処理で選択されなくても、切り替わり先の制御値に対し、積分演算が行われ、動作状態の移行がスムーズに行われるようになっている。
【0029】
【発明の実施の形態】
図1の符号101は本発明の制御方法を適用できる電源装置の一例を示している。
この電源装置101は、トランス105と、スイッチング素子112と、整流回路122と、平滑回路124とを有している。
【0030】
トランス105の内部には、一次巻線111と、該一次巻線111と磁気結合された二次巻線121とが設けられている。
【0031】
一次巻線111とスイッチング素子112とは直列接続されており、その直列接続回路の一次巻線111側の端子は、第一の入力端子151に接続され、スイッチング素子112側の端子は、第二の入力端子152に接続されている。従って、第一、第二の入力端子151、152の間は、一次巻線111とスイッチング素子112の直列接続回路によって接続されている。
【0032】
また、第一、第二の入力端子151、152の間には入力コンデンサ115が接続されており、一次巻線111とスイッチング素子112の直列接続回路は入力コンデンサ115と並列接続されている。
【0033】
第一、第二の入力端子151、152の間には、直流電圧源110が接続されている。ここでは、直流電圧源110の高電圧側の端子が第一の入力端子151に接続され、接地電圧側の端子が第二の入力端子152に接続されており、直流電圧源110から出力される電圧が入力コンデンサ115で平滑化され、一次巻線111とスイッチング素子112の直列接続回路に印加されるようになっている。
【0034】
整流回路122は二個の整流素子1231、1232を有しており、平滑回路124はチョークコイル125と出力コンデンサ126を有している。
【0035】
二次巻線121の両端は、異なる整流素子1231、1232のアノード端子にそれぞれ接続されており、二個の整流素子1231、1232のカソード端子は、チョークコイル125の一端に接続されている。
【0036】
チョークコイル125の他端と二次巻線121の一端との間には出力コンデンサ126が接続されている。出力コンデンサ126の高電圧側の端子、ここではチョークコイル125に接続された端子は、逆流防止用のダイオード129を介して第一の出力端子153に接続されており、低電圧側の端子は、電流検出抵抗128を介して第二の出力端子154に接続されている。
【0037】
直流電圧源110から直流電圧が出力され、一次巻線111とスイッチング素子112の直列接続回路に印加された状態で、スイッチング素子112がスイッチング動作をすると一次巻線に断続的に電流が流れ、二次巻線121に交流電圧が誘起される。
【0038】
二次巻線121に誘起された交流電圧は、整流素子1231、1232によって整流され、チョークコイル124に、一方向に電流が流れ、出力コンデンサ126を充放電させる。これにより、整流された電圧が平滑され、直流電圧が得られる。
【0039】
その直流電圧は、ダイオード129と電流検出抵抗128とを介して、第一、第二の出力端子153、154間に印加され、第一、第二の出力端子153、154間に接続された負荷150に供給される。
【0040】
この電源装置101は、負荷150の状態により、第一、第二の出力端子153、154から負荷150に一定電圧を供給する定電圧動作と、一定電流を供給する定電流動作を切り換えて運転できるように構成されており、定電圧動作で出力される一定電圧と、定電流動作で出力される一定電圧の値は、電源装置101内部に目標電圧VAと目標電流IAとしてが予め設定されている。
【0041】
図5(a)は、この電源装置101の運転状態を説明するためのグラフであり、出力電流がゼロ以上IA(アンペア)以下の符号L1の範囲では、略目標電圧VAが出力され、出力電圧がゼロ以上VD以下の符号L3の範囲では略目標電流IAが出力されるように動作する。図5(a)の符号Fは、定電圧動作と定電流動作とが切り替わる点を示している。
【0042】
スイッチング素子112のゲート端子には、制御回路140が接続されている。
定電圧動作中の定電圧出力と、定電流動作中の定電流出力や、定電圧動作と定電流動作の間の切り替わりは、制御回路140が、スイッチング素子112のオン/オフ比や、周波数を制御することで行われている。
【0043】
制御回路140の内部を説明すると、制御回路140は、第一、第二のレベル変換器131、132と、第一、第二のA/D変換器133、134と、CPU141とを有している。
【0044】
第一、第二の出力端子153、154間の電圧と、電流検出抵抗128の両端の電圧は、第一、第二のレベル変換器131、132によって適切な大きさにレベルシフトされ、第一、第二のA/D変換器133、134に入力される。
【0045】
第一、第二のA/D変換器133、134は、入力された電圧を一定期間毎にA/D変換し、第一、第二の出力端子153、154間の電圧値をディジタル値の電圧測定値VMとして出力し、電流検出抵抗128の両端の電圧値、即ち電流の大きさを、ディジタル値の電流測定値IMとして出力する。
【0046】
電圧測定値VMと電流測定値IMはゼロ又は正数であり、出力電圧や出力電流の値が大きくなるほど大きくなるようにディジタル変換されている。これら電圧測定値VMと電流測定値IMはCPU141に入力される。
【0047】
図2のフローチャート中の符号S11、S31は、第一、第二の出力端子153、154間の電圧検出による処理の開始と電流検出抵抗128の両端の電圧検出による処理の開始を示している。
【0048】
CPU141には、記憶回路142が接続されており、この記憶装置142内には、定電圧動作中に出力される電圧目標値VAや、定電流動作中に出力される電流目標値IAが記憶されている。
【0049】
電圧及び電流のA/D変換や、後述する各処理は一定期間毎に繰り返し行われるので、今回の測定結果や処理結果を添字nで表し、前回の測定結果や処理結果を添字n−1で表すと、今回の電圧測定値と電流測定値は、それぞれ符号VMn、IMnで表わされ、前回の電圧測定値と電流測定値をそれぞれ符号VMn-1、IMn-1で表わされる。
【0050】
記憶回路142には、電圧目標値VAや電流目標値IAだけではなく、前回の電圧測定値VMn-1や前回の電流測定値IMn-1等も記憶されている。
【0051】
CPU141に入力された今回の電圧測定値VMnは、下記のように、それぞれ電圧比例処理S17と、電圧微分処理S18と、電圧積分処理S19とで処理され、電流測定値IMnは、電流比例処理S37と、電流微分処理S38と、電流積分処理S39とで処理される。
【0052】
先ず、電圧比例処理S17と電流比例処理S37を説明すると、電圧比例処理S17と電流比例処理S37の今回の処理結果Pvn、Pinは、今回の電圧測定値VMnと電圧目標値VAの差電圧、及び今回の電流測定値IMnと電流目標値IAの差電流として下記計算式に示すようにそれぞれ求められる。
Pvn = VA−VMn ……(1)
Pin = IA−IMn ……(2)
【0053】
また、電圧微分処理S18と電流微分処理S38では、今回の処理結果Dvn、Dinは、今回の電圧測定値VMnと前回の電圧測定値VMn-1の差電圧と、今回の電流測定値IMnと前回の電圧測定値IMn-1の差電流として、下記計算式に示されるようにそれぞれ求められる。
Dvn = VMn-1−VMn ……(3)
Din = IMn-1−IMn ……(4)
【0054】
電圧積分処理S19と電流積分処理S39では、先ず、電圧判断処理S13と電流判断処理S33がそれぞれ実行され、後述する基準に従って処理が二種類に分岐される。分岐先は、電圧判断処理S13では、処理先が電圧積分演算S15と電圧制御値算出処理S16であり、電流判断処理S33では、電流積分演算S35と電流制御値算出処理S36である。
【0055】
記憶回路142には、電圧積分処理S19と電流積分処理S39の前回の処理結果Ivn-1、Iin-1が記憶されており、電圧積分演算S15が実行されると、電圧積分処理S19の前回の処理結果Ivn-1に、今回の電圧測定値VMnと電圧目標値VAとの差電圧が加算した値が、電圧積分処理S19の今回の処理結果Ivnとして求められ、電流積分演算S35が実行されると、前回の処理結果Ivn-1に、今回の電流測定値IMnと電流目標値IAとの差電流が加算された値が今回の処理結果Iinとして求められる。
【0056】
結局、処理が電圧積分演算S15と電流積分演算S35に移行し、それぞれ実行された場合は、今回の処理結果Ivn、Iinは下記計算式で表される。
Ivn = Ivn-1+VA−VMn ……(51)
Iin = Iin-1+IA−IMn ……(61)
【0057】
他方、電圧判断処理S13から電圧制御値算出処理S16に移行した場合は電圧積分演算S15は実行されず、また、電流判断処理S33から電流制御値算出処理S36に移行した場合は電流積分演算S35は実行されず、下記式のように、今回の処理結果Ivn、Iinは、前回の処理結果Ivn-1、Iin-1と同じ値にされる。
Ivn = Ivn-1 ……(52)
Iin = Iin-1 ……(62)
【0058】
電圧測定値VMnに関する各処理S17、S18、S19の処理結果Pvn、Dvn、Ivnは、重み付けのため、予め定められた係数a1〜a3が乗算された後、加算され、後述する比較処理S51のための電圧制御値が求められる。今回の電圧制御値を符号Anで表すと、下記式で求められる。
n = a1×Pvn+a2×Dvn+a3×Ivn ……(7)
ここでは上記係数a1〜a3、及び下記係数b1〜b3、c1〜c3は正の値である。
【0059】
同様に、電流測定値IMnに関する各処理S37、S38、S39の処理結果Pin、Din、Iinは、重み付けのため、予め定められた係数c1〜c3が乗算され、加算されて下記式のように今回の電流制御値Cnが求められる。
n = c1×Pin+c2×Din+c3×Iin ……(8)
電圧制御値Anと電流制御値Cnは、記憶回路142に記憶される。
【0060】
ここで、定電圧動作中の図4(a)の符号L1の範囲では、出力電圧の大きさは電圧目標値VAが示す電圧値に近いため、電圧測定値VMnと電圧目標値VAとの差や、今回の電圧測定値VMnと前回の電圧測定値VMn-1との間の差は小さい。そのため、定電圧動作中は、電圧制御値Anはゼロに近い。
【0061】
それに対し、定電圧動作中の出力電流は電流目標値IAよりも小さいため、電流測定値IMnと電流目標値IAとの差が大きく、電流制御値Cnは大きな正数になる。
【0062】
そのため、目標電圧値VAが出力されている間は、電圧制御値An<電流制御値Cnが成立している。逆に、定電流動作中で目標電流値IAが出力されている間は、電流制御値Cn<電圧制御値Anが成立している。
【0063】
比較処理S51では、比較対象の各制御値An、Cnのうち、ゼロに近い方の値が今回の選択値Enとして選択される。従って、定電圧動作中は選択値Enに電圧制御値Anが選択され、定電流動作中は電流制御値Cnが選択される。
【0064】
CPU141の出力先にはディジタル−パルス変換回路136が配置されており、駆動信号出力処理(D/P出力処理)S52により、選択値Enの値に従ってドライブ回路138を動作させ、選択値Enがゼロに近づくようにスイッチング素子112のオン/オフを制御する。
【0065】
その結果、選択値Enとして電圧制御値Anが選択されている場合には、次回の電圧測定値VMn+1が今回の電圧測定値VMnよりも電圧目標値VAに近づき、今回の選択値Enとして電流制御値Cnが選択されている場合には、次回の電流測定値IMn+1が今回の電流測定値IMnよりも電流目標値IAに近づくようになり、その結果、定電圧又は定電流動作が達成される。
【0066】
駆動信号出力処理S52が終了すると、今回の一連の処理は終了し、次回の処理が開始される(S11、S31)。
【0067】
なお、定電圧動作中でも出力電圧は変動し、定電流動作中でも出力電流は変動するが、電流目標値IAや電圧目標値VAを超えない限り、電圧目標値VAや電流目標値IAの大きさに近く、それらとの差電圧や差電流は小さく、無視することができる。
【0068】
次に、電圧判断処理S13と電流判断処理S33で行われる判断内容を説明すると、記憶回路142には、電圧及び電流バイアス値Q1、Q2が記憶されており、電圧判断処理S13では、電圧バイアス値Q1と前回の電圧制御値An-1と前回の電流制御値Cn-1から、下記不等式が成立した場合に、電圧制御値算出処理S16に直接移行し、成立しなかった場合に電圧積分演算S15に移行するようになっている。
n-1>Cn-1+Q1 ……(9)
【0069】
また、電流判断処理S33では、電流バイアス値Q2と前回の電圧制御値An-1と電流制御値Cn-1から、下記不等式が成立した場合に、電流制御値算出処理S36に移行し、成立しなかった場合に電流積分演算S35に移行するようになっている。
n-1>An-1+Q2 ……(10)
【0070】
電圧及び電流バイアス値Q1、Q2がゼロの場合は、前回の比較処理S51の選択値En-1が電圧制御値An-1でなかった場合(電圧制御値An-1>電流制御値Cn-1であった場合)に上記(9)式が成立し、(10)式は成立しない。
【0071】
従って、(9)式が成立し、(10)式が不成立の場合は、電圧判断処理S13の判断結果は”yes”であり、電流判断処理S33の判断結果は”no”となり、電圧判断処理S13からは電圧制御値算出処理S16に処理が移行し、電圧積分演算S15が実行されずに電圧制御値算出処理S16がされる。この場合は、上記(51)式ではなく、上記(52)式に従って、電圧積分処理S19が行われる。
【0072】
他方、電流判断処理S33からは電流積分演算S35に移行し、電流積分演算S35を経て電流制御値算出処理S36で加算処理がされる。この場合は、上記(61)式に従って電流積分処理S39が行われる。
【0073】
それらの場合とは逆に、前回の比較処理S51の選択値En-1が電流制御値Cn-1ではなかった場合(電圧制御値An-1<電流制御値Cn-1であった場合)は、上記(9)式は成立せず(10)式が成立する。
【0074】
(9)式不成立、(10)式成立の場合、電圧判断処理S13からは電圧積分演算S15に処理が移行し、電圧積分演算S15を経て、電圧制御値算出処理S16で加算処理がされる。従って、電圧積分処理S19は、上記(51)式に従って行われる。
【0075】
他方、電流判断処理S33からは電流制御値算出処理S36に移行し、電流積分演算S35を経ずに加算処理がされる。従って、電流積分処理S39は上記(62)式に従って行われる。
【0076】
次に、電圧及び電流バイアス値Q1、Q2が正数である場合も含めると、電流制御値Cn-1と電圧制御値An-1の差の絶対値(|Cn-1−An-1|)が小さく、電圧及び電流バイアス値Q1、Q2と下記(13)式、
|Cn-1−An-1|≦Q1 ……(13)
の関係にある場合には(9)式が成立しないため、前回の選択値En-1が電圧制御値An-1であっても電流制御値Cn-1であっても電圧積分演算S15が実行される。
【0077】
また、下記(14)式、
|Cn-1−An-1|≦Q2 ……(14)
の関係が成立している場合は、上記(10)式が成立せず、同様に、電流積分演算S35が実行される。
【0078】
なお、電圧積分演算S15が実行されない条件は、前回の比較処理S51で電圧制御値An-1が選択されず、且つ、上記(13)式が成立しない場合であり、電流積分演算S35が実行されない条件は、前回の比較処理S51で電流制御値Cn-1が選択されず、且つ、上記(14)式が成立しない場合である。これらの条件は、電圧及び電流バイアス値Q1、Q2の両方がゼロである場合も、いずれか一方又は両方がゼロではない場合でも同じである。
【0079】
上記のように、電流制御値Cn-1と電圧制御値An-1の差が小さい場合には、電圧積分処理S19と電流積分処理S39の両方が実行されるが、差が大きい場合には、電圧又は電流に関し、目標値VA,IAとの差が大きい方では積分演算S15、S35が実行されない。即ち、定電圧動作でないときには電圧積分演算S15が実行されず、定電流動作でないときには電流積分演算S35が実行されない。
【0080】
電圧積分処理S19や電流積分処理S39の処理結果の値を記憶する変数に割り当てられるビット数は有限であるが、差が大きい場合には積分演算S15、S35が実行されないので、電圧積分処理S19や電流積分処理S39の処理結果Iv、Iiを格納する変数が最大値にならず、異なる動作に移行したときの応答速度が速い。
【0081】
逆に、上記(13)式や(14)式が成立するほど前回の電圧制御値An-1と前回の電流制御値Cn-1との差が小さい場合には、定電圧動作ではなくても電圧積分演算S15を実行し、また、定電流動作ではなくても電流積分演算S35を実行することで、電圧制御値Anと電流制御値Cnの値の差が電圧バイアス値Q1以上に確保されるか、又は電流バイアス値Q2以上に確保されるので、動作状態の切り替わりがスムーズに行われる。
【0082】
なお、下記(15)、(16)式(下記二式は相互に書き替えられる)、
n-1−Q2≦An-1≦Cn-1+Q1 ……(15)
n-1−Q1≦Cn-1≦An-1+Q2 ……(16)
が成立する場合は、上記(9)、(10)式の両方が成立せず、従って、前回選択値En-1の如何にかかわらず、電圧積分演算S15と電流積分演算S35の両方が実行される。
【0083】
上記制御方法では、定電圧動作と定電流動作との二種類の動作状態があり、その間が切り替わる制御方法であったが、本発明はそれに限定されるものではなく、他の動作状態を有しいてもよい。
【0084】
図3に示したフローチャートは、図1の電源装置101を動作させる電源の制御方法であり、定電圧動作と定電流動作に加え、定電力動作を有している。
図3では、図2と同じ処理には同じ符号を付して説明を省略する。
【0085】
図3の制御方法は、定電力動作に関する一連の処理S22〜S29を有しており、電圧目標値VAと電流目標値IAの他、電力目標値PAが設定されており、出力電力が電力目標値PAに達するまでは定電圧動作し、電力目標値PAに達した後、出力電流が電流目標値IAに達するまでは、定電力動作し、電流目標値IAに達した後は定電流動作する。
【0086】
この動作を図4(b)に示す。符号L1〜L3は、それぞれ定電圧動作の範囲と定電力動作の範囲と定電流動作の範囲を示している。
【0087】
この制御方法では、符号S11、S31での処理の開始後、電圧と電流のA/D変換処理S12、S32によって電圧測定値VMと電流測定値IMが得られると、電力計算処理S22により、得られた電圧測定値VMと電流測定値IMとから、電力測定値PMが算出される。
【0088】
電圧測定値VMの処理と電流測定値IMの処理は上記と同様であるが、電力測定値PMは、電力比例処理S27と電力微分処理S28と電力積分処理S29によって処理され、下記式により、今回の処理結果PPn、DPn、IPnが求められる。
Ppn = PA−PMn ……(21)
Dpn = PMn-1−PMn ……(23)
Ipn = Ipn-1+PA−PMn ……(251)
【0089】
電力制御値算出処理S26では、下記式のように、今回の処理結果PPn、DPn、IPnに重み付けのための正の係数b1〜b3が乗算された後、加算され、下記式のように電力制御値Bnが求められる。
【0090】
n = b1×Ppn+b2×Dpn+b3×Ipn ……(28)
電力制御値Bnとは別に、電圧制御値Anと電流制御値Cnとがそれぞれ求められている。この制御方法でも、比較処理S51'において各制御値An、Bn、Cnのうち、最もゼロに近い値が選択され、選択値Enにされる。
【0091】
定電力動作中は電力制御値Bnの値はゼロに近く、電圧制御値Anと電流制御値Cnの値は大きいから電力制御値Bnが選択される。定電圧動作中は電圧制御値Anが選択され、定電流動作中は電流制御値Cnが選択される。
【0092】
駆動信号出力処理S52では、選択値Enの値に従った制御信号がドライブ回路138に出力され、ドライブ回路138は、選択値Enがゼロに近づくようにスイッチング素子112のオン/オフが制御される。
【0093】
この制御方法では、電圧バイアス値R1と、電流バイアス値R2と、第一、第二の電力バイアス値R3、R4が設定されており、電圧判断処理S13'と電流判断処理S33'では、下記符号式が成立した場合に電圧積分演算S15や電流積分演算S35を、それぞれ行わないようになっている。
n-1>Bn-1+R1 ……(29)
n-1>Bn-1+R2 ……(30)
【0094】
電圧判断処理S13'において上式(29)が成立する場合は、比較処理S51'における前回の選択値En-1が電圧制御値An-1ではなく、且つ、前回の電圧制御値An-1と前回の電力制御値Bn-1の差の絶対値が電圧バイアス値R1以上である場合である。また、電流判断処理S33'において、上記(30)式が成立するのは、前回の選択値En-1が電流制御値Cn-1ではなく、且つ、前回の電流制御値Cn-1と前回の電力制御値Bn-1の差の絶対値が電流バイアス値R2以上である場合である。
【0095】
電力積分処理S29では、第一の電力判断処理S23と第二の電力判断処理S24が順番に処理され、下記式に基いて行われる。
n-1>An-1+R3 ……(31)
n-1>Cn-1+R4 ……(32)
【0096】
上記(31)、(32)式の両方が成立しなかった場合は、積分演算S25に分岐され、いずれか一方が成立した場合に、積分演算S25に分岐せず、直接電力制御値算出処理S26に分岐する。要するに、電力積分処理S29では、選択処理S51'において、前回の選択値が前記電力制御値ではなく、且つ、前回の電力制御値Bn-1と前回の電圧制御値An-1の差が第一の電力バイアス値R3以上であるか、又は前回の電力制御値Bn-1と前回の電流制御値Cn-1の差が第二の電力バイアス値R4以上である場合には、今回の電力積分処理S29では電力積分演算S25が行われないようになっている。
【0097】
上記のような制御方法では、電圧積分処理S19や電流積分処理S39の処理結果Ivn、Iiを格納する変数の他、電力積分処理S29の処理結果Ipを格納する変数も最大値にならず、定電圧動作と定電力動作と定電流動作の間の移行がスムーズである。
【0098】
また、電圧バイアス値R1や電流バイアス値R2に加え、第一、第二の電力バイアス値R3、R4が用いられているので、動作状態がスムーズに移行することができる。
【0099】
更に、本発明の他の例を説明すると、上記制御方法の電圧積分処理S19では、前回の電圧制御値An-1と電力制御値Bn-1とを用いたが、図4に示すように、第二の電圧判断処理S14において前回の電流制御値Cn-1と第二の電圧バイアス値U1とを用い、下記二式に基いて判断してもよい。
n-1>Bn-1+R1 ……(29)
n-1>Cn-1+U1 ……(33)
【0100】
上記(29)、(33)式の両方が成立しなかった場合に電圧積分演算S15を実行し、いずれか一方の式が成立した場合に、電圧積分演算S15を経ずに電圧制御値算出処理S16に直接分岐する。
【0101】
また、電流積分処理S39においても、前回の電流制御値Cn-1も用い、下記(30)、(34)式の両方が成立しなかった場合に電流積分演算を実行し、いずれか一方の式が成立した場合に、電流積分演算を経ずに電流制御値算出処理S36に直接分岐するようにしてもよい。
n-1>Bn-1+R2 ……(30)
n-1>An-1+U2 ……(34)
【0102】
(29)、(33)式の二式と、(30)、(34)式の二式によって判断されることにより、定電力動作を含む場合も、電圧積分処理S19の処理結果Ivの変数と電流積分処理S39の処理結果Iiの変数が最大値になることが確実に防止される。
【0103】
また、第一、第二の電圧バイアス値R1、U1や第一、第二の電流バイアス値R2、U2が用いられているので、動作状態の移行が一層スムーズである。
【0104】
【発明の効果】
動作状態の移行が速い。また、移行がスムーズである。
【図面の簡単な説明】
【図1】本発明を適用できる電源の一例の回路図
【図2】本発明の第一例のフローチャート
【図3】本発明の第二例のフローチャート
【図4】本発明の第三例のフローチャート
【図5】(a):定電圧動作と定電流動作を切換える制御方法の出力状態を説明するためのグラフ (b):定電圧動作と定電力動作と定電流動作を切換える制御方法の出力状態を説明するためのグラフ
【図6】従来技術の制御方法を説明するための回路図
【図7】従来技術の制御方法を説明するためのフローチャート
【符号の説明】
19,S19'……電圧積分処理
29……電力積分処理
39,S39'……電流積分処理
16……電圧制御値算出処理
26……電力制御値算出処理
36……電流制御値算出処理
51,S51'……選択処理
15……電圧積分演算
25……電力積分演算
35……電流積分演算
52……駆動信号出力処理
VM……電圧測定値
PM……電力測定値
IM……電流測定値
E……選択値
111……一次巻線
112……スイッチング素子
121……二次巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply control technique, and more particularly to a control method for digitally controlling a power supply.
[0002]
[Prior art]
Reference numeral 801 in FIG. 6 is a conventional power supply, and FIG. 7 is a flowchart for controlling the power supply apparatus 801.
[0003]
The configuration of the power supply device 801 will be described. The power supply device 801 includes a transformer 805, an input capacitor 815 and a switching element 812 are disposed on the primary side, and a rectifier circuit 822 and a smoothing circuit are disposed on the secondary side. 824 is arranged.
[0004]
In the transformer 805, a primary winding 811 and a secondary winding 821 that are magnetically coupled to each other are disposed.
[0005]
A DC voltage is supplied from the DC voltage source 810 between the input terminals 851 and 852 on the primary side. The supplied DC voltage is smoothed by the input capacitor 815, and the primary winding 811 and the switching element 812 are connected in series. Applied to the circuit.
[0006]
A control circuit 840 is connected to the switching element 812, performs a switching operation according to a signal input from the control circuit 840, and causes a current to flow intermittently through the primary winding 811. An alternating voltage is induced in the secondary winding 821 by the current.
[0007]
The AC voltage induced in the secondary winding 821 is rectified and smoothed by the rectifier circuit 822 and the smoothing circuit 824, and applied to the output terminals 853 and 854 via the backflow prevention diode 825 and the current detection resistor 828, respectively. A load 850 is supplied.
[0008]
The output voltage appearing between the output terminals 853 and 854 and the magnitude of the output current flowing through the current detection resistor 828 are input to the control circuit 840, and a series of processing according to the flowchart of FIG. 7 is repeated every predetermined time. The power is supplied to the load 850 by a constant voltage operation or a constant current operation.
[0009]
Referring to the flowchart of FIG. 11 , T 31 Indicates the start of processing, and the detected output voltage and output current are converted into digital values, respectively. 12 , T 32 Is converted into a voltage measurement value VM and a current measurement value IM which are digital values.
[0010]
The voltage measurement value VM and the current measurement value IM are proportionally processed T 17 , T 37 And differential processing T 18 , T 38 And integration processing T 15 , T 35 And voltage addition processing T 16 By each processing T of voltage 17 , T 18 , T 15 Are weighted and added to obtain the voltage control value A, and the current addition process T 36 By each processing T of current 37 , T 38 , T 35 Are weighted and added to obtain a voltage control value C.
[0011]
The power supply device 801 is configured to operate in a constant voltage operation or a constant current operation in a steady state. Therefore, the voltage target value V of a constant voltage output during the constant voltage operation. A Current target value I of constant current output during constant current operation A And are set.
[0012]
Here, since the output current is determined by the size of the load 850 during the constant voltage operation, the output current is the current target value I. A In contrast, during constant current operation, the output voltage is determined by the size of the load 850, so that the output voltage is equal to the voltage target value V. A It fluctuates in a smaller range.
[0013]
Voltage control value A is the output voltage and voltage target value V A The current control value C is the output current and the current target value I. A Therefore, during constant voltage operation, the output current and the current target value I A Therefore, the current control value C is large, but the output voltage is almost equal to the voltage target value V. A Therefore, the voltage control value A is a value close to zero.
[0014]
On the other hand, during constant current operation, the output voltage and the voltage target value V A Therefore, the voltage control value A is large. Conversely, the output current is approximately equal to the current target value I A Therefore, the current control value C is a value close to zero.
[0015]
Comparison process T 51 Compares the voltage control value A and the current control value C as described above, and selects a value closer to zero as a selection value E. As a result, the voltage control value A is adopted as the selection value E during the constant voltage operation, and the current control value C is adopted during the constant current operation.
[0016]
The selected value E is a D / P output process T 52 When the signal is converted to a drive signal and output to the gate terminal of the switching element 812, the conduction period and the switching frequency of the switching element 812 change so that the value of the selection value E approaches zero.
[0017]
As a result, during constant voltage operation, the output voltage is almost equal to the voltage target value V. A The output current is almost equal to the current target value V during constant current operation. A Matches.
[0018]
However, when the operating state is switched between the constant voltage operation and the constant current operation in the power supply device 801 as described above, the output voltage and the output current greatly fluctuate, and it takes a relatively long time to stabilize. There is an inconvenience.
[0019]
[Prior Art Document 1]
JP-A-8-98515
[Problems to be solved by the invention]
The cause of the inconvenience is the voltage integration process S 19 And current integration processing S 39 Due to the nature of
[0020]
Voltage integration process S 19 And current integration processing S 39 The previous processing result of n-1 , Ii n-1 In this case, the current processing result Iv n , Ii n Is the previous processing result Iv as in the following equations (a) and (b): n-1 , Ii n-1 Voltage or current target value V A , I A And the voltage or current measured value VM measured this time n , IM n And the difference are obtained respectively.
Iv n = Iv n-1 + V A -VM n ...... (a)
Ii n = Ii n-1 + I A -IM n ...... (b)
[0021]
Processing result Iv n , Ii n Since only a finite number of bits are assigned to the variable that stores the value of, the processing result Iv n , Ii n Variables used in are prone to full scale.
[0022]
For example, when the operation is not constant voltage (V A -VM n ) Is large, but the voltage integration process S 19 Since the above equation (a) is executed every time, the voltage processing result Iv n Becomes full scale, and the voltage control value A becomes a large value.
[0023]
On the contrary, the current integration process S is performed even when the constant current operation is not performed. 39 The above equation (b) is executed each time, and the current processing result Iiv n Becomes full scale, and the control current value C becomes a large value.
[0024]
As a result, when there is a switch between constant voltage operation and constant current operation, voltage or current integration processing S 19 , S 39 Processing result Iv n , Ii n It takes a relatively long time to return to a normal value, and the response becomes slow.
[0025]
The present invention has been created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a control method in which switching of the output state is fast.
[0026]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is a voltage integration process for obtaining a voltage integration process result using a voltage measurement value indicating the magnitude of the output voltage, and a current measurement indicating the magnitude of the output current. A current integration process for determining a current integration process result using the value, a voltage control value calculation process for determining a voltage control value using the voltage integration process result, and a current control value using the current integration process result. A current control value calculation process to be obtained and a selection process that compares at least the control values including the voltage control value and the current control value, selects any one control value based on the magnitude relationship, and outputs the selected control value And a drive signal output process that converts the selected value into a drive signal, outputs the selected signal to a switching element, and causes the switching element to perform a switching operation according to the drive signal, and repeats each of the processes. In addition, a current corresponding to the switching operation is passed through the primary winding connected to the switching element, a voltage is induced in the secondary winding magnetically coupled to the primary winding, and the induced voltage is rectified. A method for controlling a power supply apparatus that rectifies and smoothes in a smoothing circuit and supplies a load to a load, wherein the voltage integration processing is performed by calculating a difference between the voltage measurement value and a preset voltage target value by performing a previous processing of the voltage integration processing The current integration process includes the voltage integration calculation that adds the result to the current process result, and the current integration process adds the difference between the current measurement value and the preset current target value to the previous process result of the current integration process. Current integration calculation as a result of the current processing, and the voltage integration processing is configured such that the voltage integration calculation is not performed this time when the previous selection value in the selection processing is not the voltage control value. And Serial current integration process, when the selected value of the last in the selection process the current control value is not in the current integral calculation is configured control method so as not to perform this.
The invention according to claim 2 is the control method according to claim 1, wherein the voltage bias value and the current bias value of a predetermined value are preset, and the absolute value of the difference between the voltage control value and the current control value is When the voltage bias value is equal to or less than the voltage bias value, the voltage integration calculation is performed even if the previous selected value is not the voltage control value. When the absolute value of the difference is equal to or less than the current bias value, the previous selection value is determined. In this control method, the current integration calculation is performed even if the value is not the current control value.
The invention according to claim 3 is a voltage proportional process in which a difference between the voltage measurement value and the voltage target value is a current process result, and a current in which a difference between the current measurement value and the current target value is a current process result. Proportional processing, voltage differentiation processing in which the difference between the current voltage measurement value and the previous voltage measurement value is the current processing result, and the difference between the current measurement value and the previous current measurement value is the current processing. Current control processing as a result, and the voltage control value calculation processing multiplies the processing result of the voltage integration processing, the processing result of the voltage proportional processing, and the processing result of the voltage differentiation processing by a predetermined coefficient, respectively. The current control value calculation processing is performed by adding the processing result of the current integration processing, the processing result of the current proportional processing, and the processing result of the current differentiation processing to a predetermined coefficient, respectively. Multiply and add A control method of any one of claims 1 or claim 2, the flow control value.
According to a fourth aspect of the present invention, there is provided a power integration process for obtaining a power integration process result using a power measurement value indicating the magnitude of output power, and a power control value calculation for obtaining a power control value using the power integration process result. The control value to be compared by the selection process includes the power control value, and the power integration process calculates a difference between the power measurement value and a preset power target value. The control method according to any one of claims 1 to 3, further comprising a power integration calculation that is added to the previous processing result of the current processing result to obtain the current processing result.
According to a fifth aspect of the present invention, a power integration process for obtaining a power integration process result using a power measurement value indicating the magnitude of output power, and a difference between the power measurement value and the power target value as a current process result A power proportional process, a power differentiation process in which a difference between the current power measurement value and the previous power measurement value is a current process result, a process result of the power integration process, a process result of the power proportional process, A power control value calculation process that multiplies a result of the power differentiation process by a predetermined coefficient and adds the result to the power control value, and the control value to be compared by the selection process includes the power control value The power integration process includes a power integration calculation in which a difference between the power measurement value and a preset power target value is added to a previous process result of the power integration process to obtain a current process result. The control method according to Item 3.
According to a sixth aspect of the present invention, in the power integration process, when the value previously selected in the selection process is not the power control value, the power integration calculation is not performed in the current power integration process. 6. The control method according to claim 4, wherein the control method is configured.
The invention according to claim 7 is the control method according to claim 6, wherein the first and second power bias values of a predetermined value are preset, and the absolute difference between the voltage control value and the power control value is determined. When the value is less than or equal to the first power bias value and the absolute value of the difference between the current control value and the power control value is less than or equal to the second power bias value, the previous selected value is This is a control method for performing the power integration calculation even if it is not a power control value. The invention according to claim 8 is a voltage integration process for obtaining a voltage integration process result using a voltage measurement value indicating the magnitude of the output voltage, and a current integration process using a current measurement value indicating the magnitude of the output current. A current integration process for obtaining a result, a power integration process for obtaining a power integration process result using a power measurement value indicating the magnitude of output power, and a voltage control value calculation for obtaining a voltage control value using the voltage integration process result Processing, current control value calculation processing for determining a current control value using the current integration processing result, power control value calculation processing for determining a power control value using the power integration processing result, and at least the voltage control value The control value including the current control value and the power control value, select one of the control values based on the magnitude relationship, and output the selected value as a selected value, and drive the selected value Change to signal And a driving signal output process for outputting to the switching element and causing the switching element to perform a switching operation according to the driving signal, repeatedly performing each of the processes, and a primary winding connected to the switching element, A current of a power supply device that supplies a current corresponding to the switching operation, induces a voltage in a secondary winding magnetically coupled to the primary winding, rectifies and smoothes the induced voltage by a rectifying and smoothing circuit, and supplies the rectified smoothing circuit to a load In the control method, the voltage integration processing includes adding a difference between the voltage measurement value and a preset voltage target value to a previous processing result of the voltage integration processing to obtain a current processing result. The current integration process includes adding a difference between the measured current value and a preset current target value to a previous process result of the current integration process to obtain a current process result. The power integration process includes a power integration calculation that adds a difference between the power measurement value and a preset power target value to a previous process result of the power integration process to obtain a current process result, In the voltage integration process, if the previous selection value is not a voltage control value in the selection process, the voltage integration calculation is not performed this time, and the power integration process is performed in the selection process. The power integration calculation is not performed this time when the control value is not a control value, and the current integration process is a control method in which the current integration calculation is not performed this time when the previous selection value is not a current control value. The first and second voltage bias values, the first and second power bias values, and the first and second current bias values are set, and the difference between the voltage control value and the power control value is set. The absolute value of the first voltage When the absolute value of the difference between the voltage control value and the current control value is less than or equal to the second voltage bias value, the previous selected value is not the voltage control value. The voltage integration calculation is performed, the absolute value of the difference between the power control value and the voltage control value is less than or equal to the first power bias value, and the absolute value of the difference between the power control value and the current control value is When the second power bias value is less than or equal to the second power bias value, the power integration calculation is performed even if the previous selected value is not the power control value, and the absolute value of the difference between the current control value and the voltage control value is When the absolute value of the difference between the current control value and the power control value is less than or equal to the second current bias value, the previous selected value is the current control value. It is a control method for performing the current integration calculation even if .
The invention according to claim 9 is a voltage proportional process in which a difference between the voltage measurement value and the voltage target value is a current process result, and a current in which a difference between the current measurement value and the current target value is a current process result. Proportional processing, current proportional processing in which the difference between the power measurement value and the power target value is the current processing result, and voltage in which the difference between the current voltage measurement value and the previous voltage measurement value is the current processing result Differentiation processing, current differentiation processing in which the difference between the current measurement value of this time and the previous current measurement value is the current processing result, and the difference between the current power measurement value and the previous power measurement value are processed this time. Power differential processing as a result, and the voltage control value calculation processing includes a predetermined coefficient for the processing result of the voltage integration processing, the processing result of the voltage proportional processing, and the processing result of the voltage differentiation processing, respectively. Multiply and add to obtain the voltage control value The current control value calculation processing is performed by multiplying the processing result of the current integration processing, the processing result of the current proportional processing, and the processing result of the current differentiation processing by multiplying each by a predetermined coefficient, and adding the current control value. And the power control value calculation processing adds the processing result of the power integration processing, the processing result of the power proportional processing, and the processing result of the power differentiation processing by multiplying each by a predetermined coefficient, and adds the power. The control method according to claim 8, wherein the control value is used.
[0027]
The present invention is configured as described above. When the difference among the voltage control value, the power control value, and the current control value is large, the integral calculation is not performed on the control value that is not selected in the selection process. Therefore, the control value does not saturate to the maximum value, and the transition between operating states is smooth.
[0028]
In addition, voltage, power, and current bias values are set, and in the vicinity of the point at which the operating state switches, the magnitude of the control value at the switching destination is also close to zero, so even if it is not selected in the selection process, it switches. The integration calculation is performed on the previous control value, and the transition of the operation state is performed smoothly.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Reference numeral 101 in FIG. 1 shows an example of a power supply apparatus to which the control method of the present invention can be applied.
The power supply device 101 includes a transformer 105, a switching element 112, a rectifier circuit 122, and a smoothing circuit 124.
[0030]
Inside the transformer 105, a primary winding 111 and a secondary winding 121 magnetically coupled to the primary winding 111 are provided.
[0031]
The primary winding 111 and the switching element 112 are connected in series. The terminal on the primary winding 111 side of the series connection circuit is connected to the first input terminal 151, and the terminal on the switching element 112 side is the second. Are connected to the input terminal 152. Therefore, the first and second input terminals 151 and 152 are connected by a series connection circuit of the primary winding 111 and the switching element 112.
[0032]
An input capacitor 115 is connected between the first and second input terminals 151 and 152, and a series connection circuit of the primary winding 111 and the switching element 112 is connected in parallel with the input capacitor 115.
[0033]
A DC voltage source 110 is connected between the first and second input terminals 151 and 152. Here, the high voltage side terminal of the DC voltage source 110 is connected to the first input terminal 151, and the ground voltage side terminal is connected to the second input terminal 152, which is output from the DC voltage source 110. The voltage is smoothed by the input capacitor 115 and applied to the series connection circuit of the primary winding 111 and the switching element 112.
[0034]
The rectifier circuit 122 includes two rectifier elements 123. 1 , 123 2 The smoothing circuit 124 has a choke coil 125 and an output capacitor 126.
[0035]
Both ends of the secondary winding 121 are connected to different rectifier elements 123. 1 , 123 2 Are connected to the anode terminals of the two rectifier elements 123, respectively. 1 , 123 2 The cathode terminal is connected to one end of the choke coil 125.
[0036]
An output capacitor 126 is connected between the other end of the choke coil 125 and one end of the secondary winding 121. The terminal on the high voltage side of the output capacitor 126, here the terminal connected to the choke coil 125, is connected to the first output terminal 153 via the backflow prevention diode 129, and the terminal on the low voltage side is The current detection resistor 128 is connected to the second output terminal 154.
[0037]
When the DC voltage is output from the DC voltage source 110 and is applied to the series connection circuit of the primary winding 111 and the switching element 112, when the switching element 112 performs a switching operation, a current flows intermittently through the primary winding. An AC voltage is induced in the next winding 121.
[0038]
The AC voltage induced in the secondary winding 121 is a rectifying element 123. 1 , 123 2 The current flows in one direction in the choke coil 124, and the output capacitor 126 is charged and discharged. As a result, the rectified voltage is smoothed and a DC voltage is obtained.
[0039]
The DC voltage is applied between the first and second output terminals 153 and 154 via the diode 129 and the current detection resistor 128, and is connected between the first and second output terminals 153 and 154. 150.
[0040]
The power supply device 101 can be operated by switching between a constant voltage operation for supplying a constant voltage to the load 150 from the first and second output terminals 153 and 154 and a constant current operation for supplying a constant current depending on the state of the load 150. The constant voltage output by the constant voltage operation and the value of the constant voltage output by the constant current operation are the target voltage V in the power supply device 101. A And target current I A Is preset.
[0041]
FIG. 5 (a) is a graph for explaining the operating state of the power supply device 101, and the output current is zero or more. A (Ampere) The following code L 1 Is approximately the target voltage V A Is output and the output voltage is zero or more V D The following symbol L Three In the range of approximately target current I A Operates so that is output. Reference symbol F in FIG. 5A indicates a point at which the constant voltage operation and the constant current operation are switched.
[0042]
A control circuit 140 is connected to the gate terminal of the switching element 112.
The constant voltage output during the constant voltage operation, the constant current output during the constant current operation, and the switching between the constant voltage operation and the constant current operation are performed by the control circuit 140 according to the on / off ratio and the frequency of the switching element 112. It is done by controlling.
[0043]
The inside of the control circuit 140 will be described. The control circuit 140 includes first and second level converters 131 and 132, first and second A / D converters 133 and 134, and a CPU 141. Yes.
[0044]
The voltage between the first and second output terminals 153 and 154 and the voltage across the current detection resistor 128 are level-shifted to an appropriate level by the first and second level converters 131 and 132, respectively. The second A / D converters 133 and 134 are input.
[0045]
The first and second A / D converters 133 and 134 A / D convert the input voltage at regular intervals, and convert the voltage value between the first and second output terminals 153 and 154 into a digital value. The voltage measurement value VM is output, and the voltage value at both ends of the current detection resistor 128, that is, the current magnitude is output as a digital current measurement value IM.
[0046]
The voltage measurement value VM and the current measurement value IM are zero or a positive number, and are digitally converted so as to increase as the output voltage or output current value increases. These voltage measurement value VM and current measurement value IM are input to the CPU 141.
[0047]
Symbol S in the flowchart of FIG. 11 , S 31 Shows the start of processing by voltage detection between the first and second output terminals 153 and 154 and the start of processing by voltage detection at both ends of the current detection resistor 128.
[0048]
A storage circuit 142 is connected to the CPU 141, and a voltage target value V output during constant voltage operation is stored in the storage device 142. A Current target value I output during constant current operation A Is remembered.
[0049]
Since A / D conversion of voltage and current and each processing described later are repeatedly performed at regular intervals, the current measurement result and processing result are represented by the subscript n, and the previous measurement result and processing result are represented by the subscript n-1. In this case, the current voltage measurement value and the current measurement value are denoted by the symbol VM, respectively. n , IM n The previous voltage measurement value and current measurement value are represented by the symbols VM, respectively. n-1 , IM n-1 It is represented by
[0050]
The storage circuit 142 has a voltage target value V A And current target value I A Not only the previous voltage measurement value VM n-1 And the previous measured current value IM n-1 Etc. are also memorized.
[0051]
Current voltage measurement value VM input to CPU 141 n Is proportional to the voltage proportional processing S as follows: 17 And voltage differentiation S 18 And voltage integration processing S 19 And measured current value IM n Is the current proportional processing S 37 And current differentiation S 38 And current integration processing S 39 And processed.
[0052]
First, voltage proportional processing S 17 And current proportional processing S 37 , Voltage proportional processing S 17 And current proportional processing S 37 This processing result Pv n , Pi n Is the current measured voltage VM n And voltage target value V A Voltage difference and current measurement value IM n And current target value I A Is obtained as shown in the following formula.
Pv n = V A -VM n ...... (1)
Pi n = I A -IM n ...... (2)
[0053]
In addition, voltage differentiation processing S 18 And current differentiation S 38 Then, this processing result Dv n , Di n Is the current measured voltage VM n And the previous voltage measurement value VM n-1 Voltage difference and current measurement value IM n And previous voltage measurement value IM n-1 Are obtained as shown in the following calculation formulas.
Dv n = VM n-1 -VM n ...... (3)
Di n = IM n-1 -IM n ...... (4)
[0054]
Voltage integration process S 19 And current integration processing S 39 First, voltage determination processing S 13 And current judgment processing S 33 Are executed, and the processing is branched into two types according to the criteria described later. The branch destination is the voltage determination process S 13 Then, the processing destination is the voltage integration operation S 15 And voltage control value calculation processing S 16 And current judgment processing S 33 Then, the current integration calculation S 35 And current control value calculation processing S 36 It is.
[0055]
The storage circuit 142 includes a voltage integration process S. 19 And current integration processing S 39 Last processing result Iv n-1 , Ii n-1 Is stored, and the voltage integration operation S 15 Is executed, the voltage integration process S 19 Last processing result Iv n-1 In addition, this voltage measurement value VM n And voltage target value V A The value obtained by adding the difference voltage to the voltage integration process S 19 This processing result Iv n Current integration operation S 35 Is executed, the previous processing result Iv n-1 In addition, current measurement value IM n And current target value I A The value obtained by adding the difference current to the current processing result Ii n As required.
[0056]
After all, the processing is voltage integration operation S 15 And current integration operation S 35 If each is executed, the current processing result Iv n , Ii n Is represented by the following formula.
Iv n = Iv n-1 + V A -VM n ...... (5 1 )
Ii n = Ii n-1 + I A -IM n ...... (6 1 )
[0057]
On the other hand, voltage determination processing S 13 From the voltage control value calculation process S 16 When the process moves to, voltage integration calculation S 15 Is not executed, and the current determination process S 33 Current control value calculation processing S 36 When the process moves to, current integration calculation S 35 Is not executed, and the current processing result Iv is n , Ii n Is the previous processing result Iv n-1 , Ii n-1 To the same value.
Iv n = Iv n-1 ...... (5 2 )
Ii n = Ii n-1 ...... (6 2 )
[0058]
Voltage measurement VM n Each processing S 17 , S 18 , S 19 Processing result Pv n , Dv n , Iv n Is a predetermined coefficient a for weighting. 1 ~ A Three Are multiplied and added, and a comparison process S described later is performed. 51 The voltage control value for is determined. The current voltage control value is indicated by symbol A n It is calculated by the following formula.
A n = A 1 × Pv n + A 2 × Dv n + A Three × Iv n ...... (7)
Here, the coefficient a 1 ~ A Three , And coefficient b below 1 ~ B Three , C 1 ~ C Three Is a positive value.
[0059]
Similarly, the current measurement value IM n Each processing S 37 , S 38 , S 39 Processing result Pi n , Di n , Ii n Is a predetermined coefficient c for weighting. 1 ~ C Three Is multiplied and added to the current control value C n Is required.
C n = C 1 × Pi n + C 2 × Di n + C Three × Ii n ...... (8)
Voltage control value A n And current control value C n Is stored in the storage circuit 142.
[0060]
Here, reference sign L in FIG. 4A during constant voltage operation. 1 In this range, the magnitude of the output voltage is the voltage target value V A Is close to the voltage value indicated by n And voltage target value V A And the voltage measurement value VM of this time n And the previous voltage measurement value VM n-1 The difference between is small. Therefore, during the constant voltage operation, the voltage control value A n Is close to zero.
[0061]
On the other hand, the output current during constant voltage operation is the current target value I. A Current measurement value IM. n And current target value I A The current control value C n Becomes a large positive number.
[0062]
Therefore, the target voltage value V A Is output during the voltage control value A n <Current control value C n Is established. Conversely, the target current value I during constant current operation A Is output while the current control value C n <Voltage control value A n Is established.
[0063]
Comparison process S 51 Then, each control value A to be compared n , C n Of these, the value closer to zero is the selected value E n Selected as. Therefore, during constant voltage operation, the selected value E n Voltage control value A n Is selected, and during the constant current operation, the current control value C n Is selected.
[0064]
A digital-pulse conversion circuit 136 is disposed at the output destination of the CPU 141, and a drive signal output process (D / P output process) S 52 To select value E n The drive circuit 138 is operated according to the value of the selected value E n The switching element 112 is controlled to be turned on / off so as to approach zero.
[0065]
As a result, the selected value E n Voltage control value A as n Is selected, the next measured voltage value VM n + 1 Is the current measured voltage VM n Voltage target value V A The selected value E n Current control value C as n Is selected, the next measured current value IM n + 1 Is the current measured value IM n Current target value I than A As a result, constant voltage or constant current operation is achieved.
[0066]
Drive signal output processing S 52 Is completed, the current series of processes is terminated, and the next process is started (S 11 , S 31 ).
[0067]
Note that the output voltage fluctuates even during constant voltage operation, and the output current fluctuates even during constant current operation, but the current target value I A Voltage target value V A Voltage target value V A And current target value I A The difference voltage and current between them are small and can be ignored.
[0068]
Next, voltage determination processing S 13 And current judgment processing S 33 In the storage circuit 142, the voltage and current bias value Q is described. 1 , Q 2 Is stored, and voltage determination processing S 13 Then, the voltage bias value Q 1 And the previous voltage control value A n-1 And the previous current control value C n-1 Therefore, when the following inequality is satisfied, the voltage control value calculation process S 16 If it does not hold directly, the voltage integration operation S 15 It is supposed to move to.
A n-1 > C n-1 + Q 1 ...... (9)
[0069]
In addition, the current determination process S 33 Then, the current bias value Q 2 And the previous voltage control value A n-1 And current control value C n-1 Therefore, when the following inequality is satisfied, the current control value calculation process S 36 If it is not established, the current integration calculation S 35 It is supposed to move to.
C n-1 > A n-1 + Q 2 ...... (10)
[0070]
Voltage and current bias value Q 1 , Q 2 If is zero, the previous comparison process S 51 Selection value E n-1 Is the voltage control value A n-1 If not (Voltage control value A n-1 > Current control value C n-1 (9), the above equation (9) is established, and the equation (10) is not established.
[0071]
Therefore, if the expression (9) is satisfied and the expression (10) is not satisfied, the voltage determination process S 13 The determination result is “yes” and the current determination process S 33 The determination result is “no”, and the voltage determination process S 13 From the voltage control value calculation process S 16 Is transferred to the voltage integration calculation S 15 Is not executed and the voltage control value calculation process S 16 Is done. In this case, the above (5 1 (5) 2 ) Voltage integration process S 19 Is done.
[0072]
On the other hand, current determination processing S 33 From the current integration calculation S 35 And the current integration calculation S 35 Through the current control value calculation process S 36 The addition process is performed. In this case, the above (6 1 ) Current integration process S 39 Is done.
[0073]
Contrary to those cases, the previous comparison process S 51 Selection value E n-1 Is the current control value C n-1 If not (Voltage control value A n-1 <Current control value C n-1 (9), the above equation (9) does not hold and the equation (10) holds.
[0074]
If the expression (9) is not established and the expression (10) is established, the voltage determination process S 13 Starts from voltage integration S 15 Is transferred to the voltage integration calculation S 15 Through the voltage control value calculation process S 16 The addition process is performed. Therefore, the voltage integration process S 19 Is the above (5 1 ) Is performed according to the equation.
[0075]
On the other hand, current determination processing S 33 From the current control value calculation process S 36 And the current integration calculation S 35 The addition process is performed without going through. Therefore, the current integration process S 39 Is the above (6 2 ) Is performed according to the equation.
[0076]
Next, voltage and current bias value Q 1 , Q 2 Including the case where is a positive number, the current control value C n-1 And voltage control value A n-1 Absolute value of difference (| C n-1 -A n-1 )) Is small, voltage and current bias value Q 1 , Q 2 And the following equation (13):
| C n-1 -A n-1 | ≦ Q 1 ...... (13)
(9) does not hold when the relationship is n-1 Is the voltage control value A n-1 Even current control value C n-1 Even voltage integration operation S 15 Is executed.
[0077]
In addition, the following formula (14):
| C n-1 -A n-1 | ≦ Q 2 ...... (14)
If the above relationship is established, the above equation (10) is not established, and similarly, the current integration calculation S 35 Is executed.
[0078]
Voltage integration calculation S 15 The condition that is not executed is the previous comparison process S 51 Voltage control value A n-1 Is not selected and the above equation (13) does not hold, and the current integration calculation S 35 The condition that is not executed is the previous comparison process S 51 Current control value C n-1 Is not selected, and the above equation (14) is not satisfied. These conditions depend on the voltage and current bias values Q 1 , Q 2 The same is true if both are zero or if one or both are not zero.
[0079]
As described above, the current control value C n-1 And voltage control value A n-1 Is small, the voltage integration process S 19 And current integration processing S 39 If the difference is large, the target value V A , I A If the difference between the 15 , S 35 Is not executed. That is, when the operation is not constant voltage, the voltage integration operation S 15 Is not executed and the current integration calculation S is not performed when the constant current operation is not performed. 35 Is not executed.
[0080]
Voltage integration process S 19 And current integration processing S 39 The number of bits assigned to the variable for storing the value of the processing result is limited, but if the difference is large, the integral operation S 15 , S 35 Is not executed, voltage integration processing S 19 And current integration processing S 39 The variables for storing the processing results Iv and Ii are not the maximum value, and the response speed when shifting to a different operation is fast.
[0081]
On the contrary, the previous voltage control value A increases as the above formulas (13) and (14) hold. n-1 And the previous current control value C n-1 If the difference between the two is small, the voltage integration operation S can be performed even if the constant voltage operation is not performed. 15 In addition, the current integration operation S is performed even if the constant current operation is not performed. 35 By executing the voltage control value A n And current control value C n Is the voltage bias value Q 1 Or the current bias value Q 2 Since the above is ensured, the operation state can be smoothly switched.
[0082]
The following formulas (15) and (16) (the following two formulas are mutually rewritten),
C n-1 -Q 2 ≦ A n-1 ≦ C n-1 + Q 1 ...... (15)
A n-1 -Q 1 ≦ C n-1 ≦ A n-1 + Q 2 ...... (16)
Is satisfied, both of the above formulas (9) and (10) are not satisfied. n-1 Regardless of the voltage integration operation S 15 And current integration operation S 35 Both are executed.
[0083]
In the above control method, there are two types of operation states of constant voltage operation and constant current operation, and the control method switches between them, but the present invention is not limited to this, and has other operation states May be.
[0084]
The flowchart shown in FIG. 3 is a power supply control method for operating the power supply apparatus 101 of FIG. 1, and has a constant power operation in addition to a constant voltage operation and a constant current operation.
In FIG. 3, the same processes as those in FIG.
[0085]
The control method of FIG. 3 is a series of processes S related to constant power operation. twenty two ~ S 29 Voltage target value V A And current target value I A In addition, power target value P A Is set, and the output power is the power target value P A Until it reaches the constant value, the power target value P A The output current reaches the current target value I A Until reaching the current target value I A After reaching the value, constant current operation is performed.
[0086]
This operation is shown in FIG. Symbol L 1 ~ L Three These show the range of constant voltage operation, the range of constant power operation, and the range of constant current operation, respectively.
[0087]
In this control method, the symbol S 11 , S 31 After the start of the process at the voltage and current A / D conversion process S 12 , S 32 Voltage measurement V M And current measurement I M Is obtained, the power calculation process S twenty two To obtain the measured voltage value V M And current measurement I M From the measured power P M Is calculated.
[0088]
The processing of the voltage measurement value VM and the processing of the current measurement value IM are the same as described above, but the power measurement value PM is the power proportional processing S. 27 And power differentiation S 28 And power integration processing S 29 This processing result PP is obtained by the following equation. n , DP n , IP n Is required.
Pp n = P A -PM n ...... (21)
Dp n = PM n-1 -PM n ...... (23)
Ip n = Ip n-1 + P A -PM n ...... (25 1 )
[0089]
Power control value calculation process S 26 Then, as shown in the following formula, this processing result PP n , DP n , IP n Positive coefficient b for weighting 1 ~ B Three Are multiplied and added, and the power control value B is n Is required.
[0090]
B n = B 1 × Pp n + B 2 × Dp n + B Three × Ip n ...... (28)
Power control value B n Separately from the voltage control value A n And current control value C n And each is required. Even in this control method, the comparison process S 51 Each control value A n , B n , C n Value closest to zero is selected and selected value E n To be.
[0091]
Power control value B during constant power operation n Is close to zero and the voltage control value A n And current control value C n Because the value of is large, the power control value B n Is selected. Voltage control value A during constant voltage operation n Is selected, and during the constant current operation, the current control value C n Is selected.
[0092]
Drive signal output processing S 52 Then the selection value E n Is output to the drive circuit 138, and the drive circuit 138 receives the selection value E. n ON / OFF of the switching element 112 is controlled so as to approach zero.
[0093]
In this control method, the voltage bias value R 1 And current bias value R 2 And the first and second power bias values R Three , R Four Is set, and voltage determination processing S 13 'And current judgment processing S 33 'Is the voltage integration operation S when the following sign formula is satisfied. 15 And current integration calculation S 35 Are not performed.
A n-1 > B n-1 + R 1 ...... (29)
C n-1 > B n-1 + R 2 ...... (30)
[0094]
Voltage judgment process S 13 If the above equation (29) holds in ' 51 Last selected value E in ' n-1 Is the voltage control value A n-1 And the previous voltage control value A n-1 And the previous power control value B n-1 The absolute value of the difference is the voltage bias value R 1 This is the case. In addition, the current determination process S 33 In ', the above equation (30) is established because the previous selection value E n-1 Is the current control value C n-1 And the previous current control value C n-1 And the previous power control value B n-1 The absolute value of the difference between the current bias value R 2 This is the case.
[0095]
Power integration process S 29 Then, the first power determination process S twenty three And second power determination processing S twenty four Are processed in order and performed according to the following formula.
B n-1 > A n-1 + R Three ...... (31)
B n-1 > C n-1 + R Four ...... (32)
[0096]
If both of the above equations (31) and (32) are not satisfied, the integral operation S twenty five When one of the conditions is satisfied, the integral operation S twenty five Direct power control value calculation processing S without branching to 26 Branch to In short, the power integration process S 29 Then, the selection process S 51 ', The previous selected value is not the power control value and the previous power control value B n-1 And the previous voltage control value A n-1 Is the first power bias value R Three Or the previous power control value B n-1 And the previous current control value C n-1 Is the second power bias value R Four If this is the case, the current power integration process S 29 Then, power integration calculation S twenty five Is not done.
[0097]
In the control method as described above, the voltage integration process S 19 And current integration processing S 39 Processing result Iv n , Ii as well as a variable for storing power integration processing S 29 The variable for storing the processing result Ip is not the maximum value, and the transition between the constant voltage operation, the constant power operation, and the constant current operation is smooth.
[0098]
In addition, the voltage bias value R 1 And current bias value R 2 In addition to the first and second power bias values R Three , R Four Is used, the operating state can smoothly transition.
[0099]
Further, another example of the present invention will be described. The voltage integration process S of the control method is as follows. 19 Then, the previous voltage control value A n-1 And power control value B n-1 As shown in FIG. 4, the second voltage determination process S 14 At the previous current control value C n-1 And the second voltage bias value U 1 And may be determined based on the following two formulas.
A n-1 > B n-1 + R 1 ...... (29)
A n-1 > C n-1 + U 1 ...... (33)
[0100]
If both of the above equations (29) and (33) are not satisfied, the voltage integration operation S 15 When either one of the equations is satisfied, the voltage integration operation S 15 Voltage control value calculation process S without going through 16 Branch directly to.
[0101]
Also, the current integration process S 39 Also, the previous current control value C n-1 Also, when both of the following equations (30) and (34) are not satisfied, the current integration calculation is executed, and when either of the equations is satisfied, the current control value is calculated without performing the current integration calculation. Process S 36 You may make it branch directly to.
C n-1 > B n-1 + R 2 ...... (30)
C n-1 > A n-1 + U 2 ...... (34)
[0102]
The voltage integration process S can be performed even when the constant power operation is included by judging by the two expressions (29) and (33) and the two expressions (30) and (34). 19 Of processing result Iv and current integration processing S 39 The variable of the processing result Ii is reliably prevented from becoming the maximum value.
[0103]
The first and second voltage bias values R 1 , U 1 And first and second current bias values R 2 , U 2 Is used, the transition of the operating state is smoother.
[0104]
【The invention's effect】
The operating state transitions quickly. In addition, the transition is smooth.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an example of a power supply to which the present invention can be applied.
FIG. 2 is a flowchart of a first example of the present invention.
FIG. 3 is a flowchart of a second example of the present invention.
FIG. 4 is a flowchart of a third example of the present invention.
5A is a graph for explaining an output state of a control method for switching between constant voltage operation and constant current operation. FIG. 5B is an output state of a control method for switching between constant voltage operation, constant power operation and constant current operation. Chart to explain
FIG. 6 is a circuit diagram for explaining a conventional control method;
FIG. 7 is a flowchart for explaining a conventional control method;
[Explanation of symbols]
S 19 , S 19 '…… Voltage integration processing
S 29 …… Power integration processing
S 39 , S 39 '…… Current integration processing
S 16 ...... Voltage control value calculation process
S 26 …… Power control value calculation processing
S 36 ...... Current control value calculation processing
S 51 , S 51 '…… Selection processing
S 15 …… Voltage integration calculation
S twenty five …… Power integration calculation
S 35 …… Current integration calculation
S 52 ...... Drive signal output processing
VM: Voltage measurement value
PM: Power measurement
IM: Current measurement value
E …… Selected value
111 …… Primary winding
112 …… Switching element
121 …… Secondary winding

Claims (9)

出力電圧の大きさを示す電圧測定値を用いて電圧の積分処理結果を求める電圧積分処理と、
出力電流の大きさを示す電流測定値を用いて電流の積分処理結果を求める電流積分処理と、
前記電圧の積分処理結果を用いて電圧制御値を求める電圧制御値算出処理と、
前記電流の積分処理結果を用いて電流制御値を求める電流制御値算出処理と、
少なくとも前記電圧制御値と前記電流制御値と含む制御値同士を比較し、その大小関係に基いていずれか一個の制御値を選択し、選択値として出力する選択処理と、
前記選択値を駆動信号に変換し、スイッチング素子に出力して該スイッチング素子に前記駆動信号に従ったスイッチング動作をさせる駆動信号出力処理とを有し、
前記各処理を繰り返し行い、前記スイッチング素子に接続された一次巻線に、前記スイッチング動作に応じた電流を流し、前記一次巻線と磁気結合された二次巻線に電圧を誘起させ、前記誘起された電圧を整流平滑回路で整流平滑し、負荷に供給する電源装置の制御方法であって、
前記電圧積分処理は、前記電圧測定値と予め設定された電圧目標値の差を、当該電圧積分処理の前回の処理結果に加算して今回の処理結果とする電圧積分演算を含み、
前記電流積分処理は、前記電流測定値と予め設定された電流目標値の差を、当該電流積分処理の前回の処理結果に加算して今回の処理結果とする電流積分演算を含み、
前記電圧積分処理は、前記選択処理における前回の前記選択値が前記電圧制御値ではない場合には前記電圧積分演算は今回行わないように構成され、
前記電流積分処理は、前記選択処理における前回の前記選択値が前記電流制御値ではない場合には前記電流積分演算は今回行わないように構成された制御方法。
Voltage integration processing for obtaining a voltage integration processing result using a voltage measurement value indicating the magnitude of the output voltage; and
Current integration processing for obtaining a current integration processing result using a current measurement value indicating the magnitude of the output current; and
A voltage control value calculation process for obtaining a voltage control value using the voltage integration process result;
A current control value calculation process for obtaining a current control value using the current integration process result;
A selection process of comparing at least the voltage control value and the control value including the current control value, selecting any one control value based on the magnitude relationship, and outputting as a selection value;
A drive signal output process that converts the selected value into a drive signal, outputs it to a switching element, and causes the switching element to perform a switching operation according to the drive signal;
Each of the above processes is repeated, a current corresponding to the switching operation is caused to flow through the primary winding connected to the switching element, and a voltage is induced in the secondary winding magnetically coupled to the primary winding. A method of controlling a power supply apparatus that rectifies and smoothes the generated voltage with a rectifying and smoothing circuit and supplies the voltage to a load,
The voltage integration process includes a voltage integration calculation in which a difference between the voltage measurement value and a preset voltage target value is added to a previous process result of the voltage integration process to obtain a current process result,
The current integration process includes a current integration calculation in which a difference between the current measurement value and a preset current target value is added to a previous process result of the current integration process to obtain a current process result,
The voltage integration process is configured not to perform the voltage integration calculation this time when the previous selection value in the selection process is not the voltage control value,
The current integration processing is a control method configured such that the current integration calculation is not performed this time when the previous selection value in the selection processing is not the current control value.
所定の値の電圧バイアス値と電流バイアス値が予め設定された請求項1記載の制御方法であって、
前記電圧制御値と前記電流制御値の差の絶対値が、前記電圧バイアス値以下の場合に、前回の前記選択値が前記電圧制御値でなくても前記電圧積分演算を行い、
前記差の絶対値が前記電流バイアス値以下の場合に、前回の前記選択値が前記電流制御値でなくても前記電流積分演算を行う制御方法。
The control method according to claim 1, wherein a voltage bias value and a current bias value of a predetermined value are preset.
When the absolute value of the difference between the voltage control value and the current control value is equal to or less than the voltage bias value, the voltage integration calculation is performed even if the previous selection value is not the voltage control value,
A control method for performing the current integration calculation even when the previous selected value is not the current control value when the absolute value of the difference is equal to or less than the current bias value.
前記電圧測定値と前記電圧目標値の差を今回の処理結果とする電圧比例処理と、
前記電流測定値と前記電流目標値の差を今回の処理結果とする電流比例処理と、
今回の前記電圧測定値と前回の前記電圧測定値の差を今回の処理結果とする電圧微分処理と、
今回の前記電流測定値と前回の前記電流測定値の差を今回の処理結果とする電流微分処理とを含み、
前記電圧制御値算出処理は、前記電圧積分処理の処理結果と、前記電圧比例処理の処理結果と、前記電圧微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電圧制御値とし、
前記電流制御値算出処理は、前記電流積分処理の処理結果と、前記電流比例処理の処理結果と、前記電流微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電流制御値とする請求項1又は請求項2のいずれか1項記載の制御方法。
A voltage proportional process in which the difference between the voltage measurement value and the voltage target value is the current processing result;
A current proportional processing in which the difference between the current measurement value and the current target value is the current processing result;
A voltage differentiation process in which the difference between the current voltage measurement value and the previous voltage measurement value is the current processing result;
A current differentiation process in which the difference between the current measurement value this time and the previous current measurement value is the current processing result,
The voltage control value calculating process multiplies the processing result of the voltage integration process, the processing result of the voltage proportional process, and the processing result of the voltage differentiation process by multiplying each by a predetermined coefficient to obtain the voltage control value. ,
The current control value calculation processing is performed by multiplying the processing result of the current integration processing, the processing result of the current proportional processing, and the processing result of the current differentiation processing by multiplying each by a predetermined coefficient, and adding the current control value. The control method according to any one of claims 1 and 2.
出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、
前記電力の積分処理結果を用いて電力制御値を求める電力制御値算出処理とを含み、
前記選択処理が比較する前記制御値には前記電力制御値が含まれ、
前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含む請求項1乃至請求項3のいずれか1項記載の制御方法。
Power integration processing for obtaining a power integration processing result using a power measurement value indicating the magnitude of output power; and
A power control value calculation process for obtaining a power control value using the power integration process result,
The control value to be compared by the selection process includes the power control value,
The power integration process includes a power integration calculation in which a difference between the power measurement value and a preset power target value is added to a previous process result of the power integration process to obtain a current process result. The control method according to claim 3.
出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、
前記電力測定値と前記電力目標値の差を今回の処理結果とする電力比例処理と、
今回の前記電力測定値と前回の前記電力測定値の差を今回の処理結果とする電力微分処理と、
前記電力積分処理の処理結果と、前記電力比例処理の処理結果と、前記電力微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電力制御値とする電力制御値算出処理とを含み、
前記選択処理が比較する前記制御値には前記電力制御値が含まれ、
前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含む請求項3記載の制御方法。
Power integration processing for obtaining a power integration processing result using a power measurement value indicating the magnitude of output power; and
A power proportional process in which the difference between the power measurement value and the power target value is the current processing result;
A power differentiation process in which the difference between the current power measurement value and the previous power measurement value is the current processing result;
A power control value calculation process for multiplying and adding a predetermined coefficient to the processing result of the power integration process, the processing result of the power proportional process, and the processing result of the power differentiation process to obtain the power control value. Including
The control value to be compared by the selection process includes the power control value,
4. The power integration process includes a power integration calculation in which a difference between the power measurement value and a preset power target value is added to a previous process result of the power integration process to obtain a current process result. Control method.
前記電力積分処理は、前記選択処理において前回選択された値が前記電力制御値ではない場合には、今回の前記電力積分処理では前記電力積分演算を行わないように構成された請求項4又は請求項5のいずれか1項記載の制御方法。The power integration process is configured such that the power integration calculation is not performed in the current power integration process when the value previously selected in the selection process is not the power control value. 6. The control method according to any one of items 5. 所定の値の第一、第二の電力バイアス値が予め設定された請求項6記載の制御方法であって、
前記電圧制御値と前記電力制御値の差の絶対値が前記第一の電力バイアス値以下であり、且つ、前記電流制御値と前記電力制御値の差の絶対値が前記第二の電力バイアス値以下である場合に、前回の前記選択値が前記電力制御値でなくても前記電力積分演算を行う制御方法。
The control method according to claim 6, wherein the first and second power bias values of a predetermined value are preset.
The absolute value of the difference between the voltage control value and the power control value is less than or equal to the first power bias value, and the absolute value of the difference between the current control value and the power control value is the second power bias value. A control method for performing the power integration calculation even when the previous selection value is not the power control value when the following is true.
出力電圧の大きさを示す電圧測定値を用いて電圧の積分処理結果を求める電圧積分処理と、
出力電流の大きさを示す電流測定値を用いて電流の積分処理結果を求める電流積分処理と、
出力電力の大きさを示す電力測定値を用いて電力積分処理結果を求める電力積分処理と、
前記電圧の積分処理結果を用いて電圧制御値を求める電圧制御値算出処理と、
前記電流の積分処理結果を用いて電流制御値を求める電流制御値算出処理と、
前記電力の積分処理結果を用いて電力制御値を求める電力制御値算出処理と、
少なくとも前記電圧制御値と前記電流制御値と前記電力制御値とを含む制御値同士を比較し、その大小関係に基いていずれか一個の制御値を選択し、選択値として出力する選択処理と、
前記選択値を駆動信号に変換し、スイッチング素子に出力して該スイッチング素子に前記駆動信号に従ったスイッチング動作をさせる駆動信号出力処理とを有し、
前記各処理を繰り返し行い、前記スイッチング素子に接続された一次巻線に、前記スイッチング動作に応じた電流を流し、前記一次巻線と磁気結合された二次巻線に電圧を誘起させ、前記誘起された電圧を整流平滑回路で整流平滑し、負荷に供給する電源装置の制御方法であって、
前記電圧積分処理は、前記電圧測定値と予め設定された電圧目標値の差を、当該電圧積分処理の前回の処理結果に加算して今回の処理結果とする電圧積分演算を含み、
前記電流積分処理は、前記電流測定値と予め設定された電流目標値の差を、当該電流積分処理の前回の処理結果に加算して今回の処理結果とする電流積分演算を含み、
前記電力積分処理は、前記電力測定値と予め設定された電力目標値の差を、当該電力積分処理の前回の処理結果に加算して今回の処理結果とする電力積分演算を含み、
前記電圧積分処理は、前記選択処理において、前回の前記選択値が電圧制御値ではない場合に前記電圧積分演算は今回行わず、
前記電力積分処理は、前記選択処理において、前回の前記選択値が電力制御値ではない場合に前記電力積分演算は今回行わず、
前記電流積分処理は、前回の前記選択値が電流制御値ではない場合に前記電流積分演算は今回行わない制御方法であって、
所定の値である、第一、第二の電圧バイアス値と、第一、第二の電力バイアス値と、第一、第二の電流バイアス値が設定され、
前記電圧制御値と前記電力制御値の差の絶対値が前記第一の電圧バイアス値以下であり、且つ、前記電圧制御値と前記電流制御値の差の絶対値が前記第二の電圧バイアス値以下である場合に、前回の前記選択値が前記電圧制御値でなくても前記電圧積分演算を行い、
前記電力制御値と前記電圧制御値の差の絶対値が前記第一の電力バイアス値以下であり、且つ、前記電力制御値と前記電流制御値の差の絶対値が前記第二の電力バイアス値以下である場合に、前回の前記選択値が前記電力制御値でなくても前記電力積分演算を行い、
前記電流制御値と前記電圧制御値の差の絶対値が前記第一の電流バイアス値以下であり、且つ、前記電流制御値と前記電力制御値の差の絶対値が前記第二の電流バイアス値以下である場合に、前回の前記選択値が前記電流制御値でなくても前記電流積分演算を行う制御方法。
Voltage integration processing for obtaining a voltage integration processing result using a voltage measurement value indicating the magnitude of the output voltage; and
Current integration processing for obtaining a current integration processing result using a current measurement value indicating the magnitude of the output current; and
Power integration processing for obtaining a power integration processing result using a power measurement value indicating the magnitude of output power; and
A voltage control value calculation process for obtaining a voltage control value using the voltage integration process result;
A current control value calculation process for obtaining a current control value using the current integration process result;
A power control value calculation process for obtaining a power control value using the power integration process result;
A selection process of comparing at least the voltage control value, the current control value and the control value including the power control value, selecting any one control value based on the magnitude relationship, and outputting as a selection value;
A drive signal output process that converts the selected value into a drive signal, outputs it to a switching element, and causes the switching element to perform a switching operation according to the drive signal;
Each of the above processes is repeated, a current corresponding to the switching operation is caused to flow through the primary winding connected to the switching element, and a voltage is induced in the secondary winding magnetically coupled to the primary winding. A method of controlling a power supply apparatus that rectifies and smoothes the generated voltage with a rectifying and smoothing circuit and supplies the voltage to a load,
The voltage integration process includes a voltage integration calculation in which a difference between the voltage measurement value and a preset voltage target value is added to a previous process result of the voltage integration process to obtain a current process result,
The current integration process includes a current integration calculation in which a difference between the current measurement value and a preset current target value is added to a previous process result of the current integration process to obtain a current process result,
The power integration process includes a power integration calculation in which a difference between the power measurement value and a preset power target value is added to a previous process result of the power integration process to obtain a current process result,
In the selection process, the voltage integration calculation is not performed this time when the previous selection value is not a voltage control value in the selection process.
In the selection process, the power integration calculation is not performed this time when the previous selection value is not a power control value in the selection process.
The current integration process is a control method in which the current integration calculation is not performed this time when the previous selection value is not a current control value,
First and second voltage bias values, first and second power bias values, and first and second current bias values that are predetermined values are set.
The absolute value of the difference between the voltage control value and the power control value is less than or equal to the first voltage bias value, and the absolute value of the difference between the voltage control value and the current control value is the second voltage bias value. If the following, the voltage integration calculation is performed even if the previous selection value is not the voltage control value,
The absolute value of the difference between the power control value and the voltage control value is less than or equal to the first power bias value, and the absolute value of the difference between the power control value and the current control value is the second power bias value. If the following, the power integration calculation is performed even if the previous selection value is not the power control value,
The absolute value of the difference between the current control value and the voltage control value is less than or equal to the first current bias value, and the absolute value of the difference between the current control value and the power control value is the second current bias value. A control method for performing the current integration calculation even when the previous selection value is not the current control value when the following is true.
前記電圧測定値と前記電圧目標値の差を今回の処理結果とする電圧比例処理と、
前記電流測定値と前記電流目標値の差を今回の処理結果とする電流比例処理と、
前記電力測定値と前記電力目標値の差を今回の処理結果とする電流比例処理と、
今回の前記電圧測定値と前回の前記電圧測定値の差を今回の処理結果とする電圧微分処理と、
今回の前記電流測定値と前回の前記電流測定値の差を今回の処理結果とする電流微分処理と、
今回の前記電力測定値と前回の前記電力測定値の差を今回の処理結果とする電力微分処理と、
を含み、
前記電圧制御値算出処理は、前記電圧積分処理の処理結果と、前記電圧比例処理の処理結果と、前記電圧微分処理の処理結果とに所定係数をそれぞれ乗算して加算し、前記電圧制御値とし、
前記電流制御値算出処理は、前記電流積分処理の処理結果と、前記電流比例処理の処理結果と、前記電流微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電流制御値とし、
前記電力制御値算出処理は、前記電力積分処理の処理結果と、前記電力比例処理の処理結果と、前記電力微分処理の処理結果とを、それぞれ所定係数を乗算して加算して前記電力制御値とする請求項8記載の制御方法。
A voltage proportional process in which the difference between the voltage measurement value and the voltage target value is the current processing result;
A current proportional processing in which the difference between the current measurement value and the current target value is the current processing result;
A current proportional process in which the difference between the power measurement value and the power target value is the current processing result;
A voltage differentiation process in which the difference between the current voltage measurement value and the previous voltage measurement value is the current processing result;
A current differentiation process in which the difference between the current measurement value this time and the previous current measurement value is the current processing result;
A power differentiation process in which the difference between the current power measurement value and the previous power measurement value is the current processing result;
Including
The voltage control value calculating process multiplies the processing result of the voltage integration process, the processing result of the voltage proportional process, and the processing result of the voltage differentiation process by multiplying each by a predetermined coefficient to obtain the voltage control value. ,
The current control value calculation processing is performed by multiplying the processing result of the current integration processing, the processing result of the current proportional processing, and the processing result of the current differentiation processing by multiplying each by a predetermined coefficient, and adding the current control value. age,
The power control value calculation processing includes adding the processing result of the power integration processing, the processing result of the power proportional processing, and the processing result of the power differentiation processing by multiplying each by a predetermined coefficient, and adding the power control value. The control method according to claim 8.
JP2003208747A 2003-08-26 2003-08-26 Power control method Expired - Fee Related JP4162546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208747A JP4162546B2 (en) 2003-08-26 2003-08-26 Power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208747A JP4162546B2 (en) 2003-08-26 2003-08-26 Power control method

Publications (2)

Publication Number Publication Date
JP2005073311A JP2005073311A (en) 2005-03-17
JP4162546B2 true JP4162546B2 (en) 2008-10-08

Family

ID=34401905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208747A Expired - Fee Related JP4162546B2 (en) 2003-08-26 2003-08-26 Power control method

Country Status (1)

Country Link
JP (1) JP4162546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899927B2 (en) 2015-07-02 2018-02-20 Tdk Corporation Control device and control method for power supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170117B2 (en) * 2010-01-18 2013-03-27 株式会社村田製作所 Switching control circuit and switching power supply device
US9118239B2 (en) * 2012-03-29 2015-08-25 Texas Instruments Incorporated Power supply control method for constant current constant power control
JP5633536B2 (en) * 2012-04-16 2014-12-03 株式会社村田製作所 Switching control circuit and switching power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899927B2 (en) 2015-07-02 2018-02-20 Tdk Corporation Control device and control method for power supply device

Also Published As

Publication number Publication date
JP2005073311A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4637694B2 (en) Power factor correction circuit and output voltage control method thereof
JP5532127B2 (en) POWER SUPPLY SYSTEM, CONTROL DEVICE THEREOF, AND METHOD FOR MANUFACTURING THE CONTROL DEVICE
JP2008535456A (en) Control of resonant converter
US9160238B2 (en) Power converter with current feedback loop
US10404171B2 (en) Power converter circuit with a switched mode power converter that is switched based upon a measured inductor current and dynamically-determined first and second thresholds
JP2012110201A (en) Digital control switching power supply device having input voltage detection circuit
WO2013120534A1 (en) Voltage feed-forward compensation and voltage feedback compensation for switched mode power supplies
JP2002305873A (en) Switching power supply unit
JP4162546B2 (en) Power control method
JP6195273B2 (en) Control device for power conversion circuit
JP5229139B2 (en) Bidirectional DCDC converter
JP2809463B2 (en) Power supply and power factor improvement method
EP4012909A1 (en) Control circuit for power converting device, and power converting device
EP3335307B1 (en) Device and method for processing an inductor current
JP5507417B2 (en) Power supply
JP4234808B2 (en) Switching power supply
US20210391781A1 (en) Switching control circuit and power supply circuit
JP2022037606A (en) Converter device and power source device
KR101601591B1 (en) Apparatus and method for reducing switching losses of three phase voltage source inverter
JP2002262565A (en) Switching power supply
JPH11206119A (en) Switching power unit
JP4097341B2 (en) Switching power supply
JP2011147232A (en) Dc power supply unit
JP2006054952A (en) Semiconductor device
KR100313992B1 (en) Circuit for controlling driving of inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4162546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees